We use symmetry to reduce the number of unknowns.

Equivalent configuration:

Using left half of above
From equilibrium of forces:

$$
\begin{equation*}
P+Q+\frac{R}{2}-q \frac{l}{2}=0 \tag{1}
\end{equation*}
$$

From equilibrium of moments(wrt midpoint):

$$
\begin{equation*}
P \frac{l}{2}-\left(q \frac{l}{4}\right)\left(\frac{l}{4}+\frac{l}{8}\right)+Q \frac{l}{4}-\left(q \frac{l}{4}\right)\left(\frac{l}{8}\right)-M=0 \tag{2}
\end{equation*}
$$

The singularity function for deflection is

$$
E I y^{\prime \prime}=P x-\frac{q x^{2}}{2}+Q<x-\frac{l}{4}>-M
$$

Integrating

$$
E I y^{\prime}=P \frac{x^{2}}{2}-q \frac{x^{3}}{6}+Q \frac{<x-\frac{l}{4}>^{2}}{2}-M x+C_{1}
$$

Integrating again

$$
E I y=P \frac{x^{3}}{6}-q \frac{x^{4}}{24}+Q \frac{<x-\frac{l}{4}>^{3}}{6}-M \frac{x^{2}}{2}+C_{1} x+C_{2}
$$

Boundary conditions:

$$
y(0)=0, C_{2}=0
$$

From symmetry of beam,

$$
\begin{gather*}
y^{\prime}\left(\frac{l}{2}\right)=0 \\
P \frac{l^{2}}{8}-q \frac{l^{3}}{48}+Q \frac{l^{2}}{32}-M \frac{l}{2}=0 \tag{3}\\
y\left(\frac{l}{4}\right)=0 \\
P \frac{l^{3}}{384}-q \frac{l^{4}}{6144}-M \frac{l^{2}}{32}+C_{1} \frac{l}{4}=0 \tag{4}\\
y\left(\frac{l}{2}\right)=0 \\
P \frac{l^{3}}{48}-q \frac{l^{4}}{384}+Q \frac{l^{3}}{384}-M \frac{l^{2}}{8}+C_{1} \frac{l}{2}=0 \tag{5}
\end{gather*}
$$

We have 5 unknowns (P, Q, R, M and C_{1}) and 5 equations. So we can solve for the unknowns. After we get forces and moments is is easy to draw BMD and SFD.

