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STEPPED COLUMNS: A SIMPLIFIED DESIGN METHOD

Summary

A simple method is presented for the design of stepped columns which
presents., with respect to the classical effective length method, some
advantages (mainly swiftness and precision), when designing members in com~

pression and bending.

The method is based on a simplified model with two degrees of freedom. It
is possible to obtain the ultimate interaction domains for stepped members,
taking into account the effects of both geometrical and mechanical imperfections
and of the loading path.

Some of these domains are presented, and compared with available numerical
results.



Introduction

The problem of how to determine the ultimate load carrying capacity of
stepped steel columns has been exhaustively -- even if not extensively -
treated in the literature.

Only limited research has, however, been carried out on the behavior of
these structural elements when taking into account both the non-linearity of the
constitutive law of the material and the geometrical non-linearity.

Most of the preceeding studies /1,6/ dealt with the problem of the deter
mination of the elastic critical load of axially compressed members, with
various conditions of end restraints and loading ..

The only attempt, to the author's knowledge, to determine the load carrying
capacity in the e1astop1astic range for a stepped column is a work of Barnes
and Mangelsdorf /7/; the paper, however, doesn't consider compression and bending,
which is the most frequently occurring stress state for these members.

It may be concluded that the only aspect to be investigated so far is that
related to the elastic behavior of stepped columns, and that when determining
the ultimate load carrying capacity of such elements, reference is usually made
to the effective length parameter.

Design practice /8,11/ reflects the theoretical state of the research. The
tendency is basically to design stepped members carrying out separate checks
for the two shafts, by using the effective length method and the axial thrust
bending moment interaction formulas which are valid for members with uniform
cross-section.

With reference to the AISE Recommendation, /8/ such formulas can be written
as:

~ 1 (1)

where P is the total axial thrust in the shaft (upper or lower), M is the
maximum first order bending moment, em is a reduction coefficient ~ 1 which
is a function of the bending moment's distribution, ~ is the fully plastic
bending moment of the profile, Pc nand PE are the ultimate and critical elastic
loads, calculated on the base of tfie effective slenderness ratio of the shaft
under consideration.

Several general and specific critical considerations may be developed about
this kind of approach; in particular it should be noted that:

• the effective length is derived from the critical multiplier
of the axial loads acting on the column, and is thus linked
to a prefixed value of the ratio of these loads; the effective
length is therefore different for different load combinations.
(the methods based on calculating the effective length of the
structural members, lose than (at least in part), their advantage
of being easy and quick to apply, when the ultimate limit state
design method is adopted, which implies to take into account a
number of different load combinations).
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• design methods based on the concept of effective length do
not fit well for considering the interaction between the
column segments in operative terms. Thus they require a
series of separate checks.

On the basis of these considerations, the author (believing that the correct
way to deal with the problem of determining the load carrying capacity of these
members is the approach developed by preceding. international research into the
behavior and stability of members with uniform cross-section and axial load) has
performed a numerical study /lZ,13/ following step-by-step the response of a
stepped member (affected by both geometrical and mechanical imperfections) during
a number of different loading paths, up to the attainment of the collapse
situation.

Ultimate interaction domains, for the elements considered in the study were
numerically obtained in terms of the two vertical loads PI and Pz (respectively
applied on the upper and lower shafts) and compared with those deducible on the
base of design methods based on the effective length and formula (1).

It was pointed out that:

• The shapes of the interaction domains obtained numerically are
very similar to those obtained making reference to the effective
length concept.

• For simple compression members, there is a close agreement between
the numerical results, and those obtained by the effective length
method, which enables a fundamentally correct evaluation of the
ultimate load carrying capacity for stepped columns.

• For members in compression and bending:

a. With a method based on the concept of effective length
(which is implicitly linked with the concept of instability
of equilibrium as a bifurcation problem), it is possible to
understand correctly which situation. is associated with the
collapse of the structural element, but it is not possible
to appreciate the effect of the geometrical imperfections on
the behavipr of the member and on the shape of its ultimate
interaction domain. (The author pointed out /13/ that this
effect is relevant and different in the two shafts).

b., The method based on the effective length tends to be always
on the safe side when the collapse situation is reached in
the lower shaft (the situation of greatest practical interest),
whilst it tends sometimes to be on the unsafe side when the
collapse occurs in the upper shaft.

• The safety factor assumed using a method based on the effective length
concept is not homogeneous, and is a function of the vertical loads'
ratio.

The knowledge of the ultimate interaction domains has the advantage of
allowing the safety margin associated with the various load combinations (which
can occur during the life of the structure) to be appreciated in global terms in
design checks. If reference is made to these ultimate domains, methods based on
axial thrust-bending moment interaction formulas such as (1) are decidedly
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complex, from the computational point of view, since for every load combination
they require:

- the calculation of the effective length
- the solution of the ;.:interaction formula with regard

to the axial load

Furthermore, in order to obtain a better precision in the solution, also, the
reduction coefficient Cm should be defined for the different values of the ratio
between the applied loads.

A simple approach was then proposed /12,13/ based on the use of an interaction
formula directly written in terms of the applied vertical loads, of the type:

+ = 1 (2)

In (2), P1C ,M
sustainable by the
PZC,M , implicitly

and PZC,M are the maximum values of the loads Pl and Pz
column in the presence of a single vertical load; P1C M and,
take into account the possible transverse actions.

The use of such formula requires on the one hand the definition of the value
of the exponent a , and on the other hand the availability of a sufficiently simple·
method for determining the loads P1C~M and P2C M ; it has thus the implicit advantage
of using formula (1) (i,e. determining the coefticient Cm) only for calculating
PlC,M and PZC,M , that is when one of the two vertical loads is absent.

In: the case of members with uniform cross-section, it was shown in a preceding
papers /12/ that it is possible, with a certainly acceptable degree of approxi-
mation, to adopt a = 1.0 for elements subjected to centric vertical loads, and
a = 0.9 for elements subjected to eccentric vertical loads.

In the same paper, it was however pointed out the coefficient Cm's obvious
influence on the domain's intersection with the load axis (that is on the values
of PIC ,M and P2C .M)·

It has been tried. but it hasn't yet been possible/to extend the same approach
to columns with variable cross-section. because coefficient a has a very wide
range of variation. and it is influenced by too many parameters. Some research
is still going on, trying to determine the values of a to be used in (2), in the
case of stepped elements.

Because of the uncertainties introduced while calculating PlC.M and P2C •M
(i.e .• calculating the reduction coefficient Cm of (1» and because of the
problems arisen while trying to determine the values of a. the simple method
presented in this paper has been set up which enables the ultimate interaction
domains for stepped elements to be determined in a very simple and easy way.
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The Model

The Equilibrium Equations

From preceding studies /lZt13/t it has been noticed that the collapse of
a stepped member is mainly associated with two different and non-correlated
situations: the collapse of the upper shaft or the collapse of the lower shaft;
in both cases t however t the collapse situation is reached in the most stressed
section of the shaft.

The collapse situation of these elements t seems then to be caused more by
local buckling in a well defined area of one of the shafts (the most stressed
cross section) rather than by global instability of, the whole member.

It is then possible to predict "where" in the shaft t but it is not possible
to know a-priori in which one of the two shafts the collapse will occur, this
last fact depending on the loading conditions.

Starting from these considerations, in this paper the behavior of stepped
columns is simulated with a simple model with two degrees of freedom; the
deformability of the element is concentrated in the two most stressed cross
sections and the interaction between the two shafts is disregarded.

If the column is considered as simply cantilevered at its lower edge (a
simplifying and conservative scheme. when dealing with mill-building columns,
because the rotational restraint effect of the roof struc~ure is ignored) the
most stressed section in each shaft is its lower section, and the ultimate load
carrying capacity of the stepped element can be determined making reference to
the simple model shown in Fig. 1. (It is assumed the presence of adequate
bracings preventing the out-of-plane buckling of the column ):

The model consists of two rigid bars and two cells in which the deformability
has been concentrated. The two shafts, having respectively a length Ll, a cross
section with area Al and moment of intertia (with respect to the center of gravity)
II (upper shaft) and a length, LZ' a cross~section with area AZ a moment of inertia
(with respect to the center of gravity) I Z (lower shaft), are connected together
taking into account an eccentricity e lZ between them.

Two vertical loads PI and Pz are applied respectively with an eccentricity
el and e2, at the top of each shaft t together with two horizontal forces FI and
FZ. In addition, a horizontal force H, proportional by a constant coefficient ~

to the vertical load Pz may be present at the top of the lower shaft : H= ~P2

The two degrees of freedom of the model may be identified with the relative
rotation VI between the upper and the lower shaft and with the absolute rotation
~Z of the lower shaft with respect to the vertical axis. Initial geometrical
1mperfections f Ol = val Ll and f02 = v02 L2 have been assumed respectively at
the top of the upper and of the lower shaft, val and v02 being the initial values
of I and v2 , respectively.

The equilibrium conditions for the model in a displaced configuration, charac
terized by two rotations VI and v2 can be derived by equating in each cell the
internal bending moments to the external ones due to the applied loads.
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Two equations can be written:

(3)

(4)

In
and
vI may

P2e2 + P2L2v2 + F2L2 + HL2 + Fl (Ll + L2) + Pl (el+e12) + PI [(Ll+ L2)v2+ Llvl]

= K2 ( v2 - v02 )

When the external loads. the initial out of straightness and the bending
stiffnesses Kl and K2 of the two shafts are known. (3) and (4) form a system of
linear equations in which the unknowns are the two rotations vI and v2 • that is
the parameters which define the equilibrium configurations of the model. The
collapse situation may be reached either in the upper or in the lower shaft.
the first case. rotation vI is equal to the ultimate limit rotation vI lim •
V2 may be whatever (but less than v2 lim ). while in the second case rotation
be whatever ( but less than vI lim ). and v2 is equal to v2 lim'

Equivalance Between Model and Real Column

The parameters which govern the behavior of the model must be defined so that
there is a complete equivalence between the model and the simulated real element.

To reach this aim. equating for each step the Euler elastic critical load
and the ultimate limit bending moment. it is imposed that the discrete model and
the continuous real member have the same global elastic deformability, and that
they locally reach their ultimate strength under the same bending stresses.

So. for each step. two equations may be written from which the two unknown
parameters (the bending stiffness K. and the ultimate limit rotation Vlim) can
be determined.

In each shaft of the model, the Euler critical load can be defined respectiv-
ely as:

and =

while the ultimate limit bending moment. in the elastic range. can be defined
respectively as:

MpL2 = KZ (v2 lim - vOZ)

For the real column. the Euler critical loads of the two shafts are respectively:

= and =

where E is the Young modulus.
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The ultimate limit bending moment, is not a constant, in a cross-section
of a member which is subjected to variable axial loads, but it is different,
for different values of the axial load.

For the cross-section, a linear interaction domain can be assumed (on the
safe side), of the kind:

N°
+

N·u

where Mu is the maximum bending moment sustainable by the cross-section in
absence of axial load at the plastic adaptation limit state (i.e., Mu = ~fy S,
where the coefficient ~ ( ~l) amplifying the section modulus S, is called the
plastic adaptation coefficient, and is: l~~~a , where a is the shape factor of
the cross section/14/,fy is the yield stress of the material) and Nu is the
maximum axial load sustainable by the cross section, in absence of bending
moment (Le., Nu = f y A). \)

When the value of the axial load in the shaft is known, then it is possible
to define:

PI PI + P2
MpLI = Mul ( I - Plu

) and M Mu2 ( I - P2u
)

PL2

where Mul = f y

By equating the corresponding expressions, the four unknown parameters are
determined:

Sa)

6a) v
2 lim

( I -
PI

)
Mul

+ vOl Sb) KI rr2 EIJ4LIP
lu KI

( I -
PI +P 2 )

Mu2 6b) K2 rr2 EI2/4L2-- + v02P2u K2

It must be noted that posing the equivalence of the Euler elastic critical
loads separately in the various steps doesn't imply that the same equivalerice exists
between the whole model and the real structure. The operating way was however
forced, because the critical load of the model depends on the ratio of the bending
stiffness KI an~ K2 of the two steps, which are a-priori unknown.

The approximation here introduced, can however be disregarded in the present
work, because of the assumption of disregarding the overall buckling of the member.
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The Ultimate Interaction Domains

It is possible to reduce equations (3) and (4) to two expressions respec
tively of the kind· vI = vI (VZ) and v2 = Vz (vI)' by solving equations (3)
with respect to vI and equation (4) with respect to vz.

Substituting in equation (4), equation (3) solved with respect to vI ' the
following expression for Vz is obtained:

I
v Z = ------::---:~-:-::---:----::-::---=-..,,--..,,--

KZ - PI(LI+LZ) - PZLZ - PllLlL

Kl-PlLl (7)

When the geometrical characteristics of the column are known, this expression
gives a value of Vz as a function of the external loads. The collapse situation
is reached in the lower sh~ft when the loading condition is such that Vz is greater
than (or e.qual to) vZ.. lim Ceq. (6a)]. Equat~ng '1Z tovZ. lim and varying the val~es of
t;h~ verttcal loads,. equation (7) describes a.C:tl~ye_in the plane Pl+PZ' This curve
defines in .the s~me plane Pl+PZ an admissible region: all the poi~ts ~o~~ained in
the area bounded by the coordinate axis and by the curve represent admissible
loading conditions for the lower shaft. The points on th~ curve represent loads'
combinations which cause the limit situation to be reached in the lower shaft.

The points external to this admissible area represent loads' combinations
which cannot be sustained by the column and cause the collapse of the lower shaft.

Analogously substituting in equation (3) equation (4) solved with respect
to v2' an expression is reached:

1

(8)

K2VOZ + PI (el + e lZ ) + FI (Ll + LZ) + FZLZ + ~PZLZ + PZeZ J
KZ PZLZ - PI (Ll + LZ)

which, when the geometrical characteristics of the column are known, defines the
value of VI as a function of the external loads.

The collapse situation in the upper shaft is reached when the loading conditions
is such that VI' is greater than (or equal to) VI lim [eq (Sa)].
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Equating v 1 to v 1 lim and varying the values of the vertical loads, also
equation (8) describes a curve in the plane PI 7 PZ: all the points contained
in the region bounded by the coordinate axis and the curve represent admissible
loading conditions for the upper shaft. On the contrary, the column cannot
sustain loads' combinations represented by points external to the admissible
region, without collapse of the upper shaft.

If the two shafts have different cross sectional properties than the two
curves represented by equations (7) and (8) intersect each other. The ultimate
interaction domain for the column is the intersection of the two admissible
regions for the two shafts, and the boundary of the domain is the envelop~ of
the two curves.

If the column has a constant cross section, the two curves don't intersect,
and the region bounded by equation (7), which is completely contained into that
bounded by equation (8), turns out to be the ultimate interaction domain of the
element.

Design Considerations

Reliable results cannot, of course, be expected from the model as it is. In
fact, even if it is possible to evaluate in a substantially correct way the global
behavior of the column, the real stiffness of the stepped member cannot be
correctly evaluated using the model, because of the rough simplifying assumptions
on which the model itself is based:

Furthermore, even if it is possible to take into account the effect of the
initial out-of-straightness on the shape of the ultimate domains, the .model
cannot take into account the effect ·of the residual stresses, an effect that
preceding papers /lZ,13,15/ have shown to be relevant, on stepped members as
well as on prismatic members. It is possible to partially reduce the approxi
mation introduced with the initial*assumptions by normalizing the domains
obtained over the maximum values Pluc ·and P~uc of the centric vertical loads
sustainable by the model (respectively at the top of the whole column, and at
the top of the lower shaft), in absence of the other loads (both vertical and
horizontal).

Thus it is possible to reduce the ultimate interaction domains in a non-
dimensional form, in the plane Pl/Fluc PZ/~Zuc·' These domains however,
because in a non-dimensional form, cannot yet be used by the designer for practical
applications.

Preceding studies /lZ,13/ has shown that by using the effective length
concept, it is possible to evaluate with a good precision (at least from an
engineering point of view). the values of Pluc and PZuc for the real column,
entering with the values of the equivalent length (calculated separately for the
upper shaft and for the lower shaft /4,6/) on the stability curves for the upper
and lower shaft respectively.

Once the two values Pluc and PZuc for the real column have been calculated,
in an extremely fast and easy way, it is possible to render the non-dimensional
domains previously obtained in a dimensional form, ready for being used by the
designer.

9



By following this way, it is also possible, although indirectly, to
conglobate into the model the effect of residual stresses on the ultimate
value of the load carrying capacity of the member.

A short interactive computer program has been set up, which enables the
numerical solution of equations (7) and (8) to be obtained, for the different
loads' combinations considered. Once the statical and geometrical properties
of a stepped member are entered 'as input datas, the code automatically furnishes
as output result the ultimate interaction domains in the non-dimensional form,
in the plane Pl/P!uc 7 P2/P~uc .

Comparison With the Numerical Results

Some comparisons have been done (even if in a limited number of available
cases), between the domains obtained in former works 112,131 with a numerical
simulation method 116/.

In the following figures (2-6), the domains are shown in a non-dimensional
form, in the plane PllPluC 7 P2/P2uc. The numerical domains have been non
dimensionalized on the values PlUC and P2UC obtained by the numerical simulation
112,13/, while the domains o~tained by using the simplified model have been
normalized over the values Pluc ',PZuc obtained using the model itself.

It is possible to see that there is a good agreement between the results
of the numerical simulation, and those obtaine~ using the simplified model.
Only in the case when horizontal forces of the wind are present, the difference
is significant, although contained under the 8%, and however always on the safe
side (Fig. 4). A comparison has also been done with some of the domains ob
tainable by using formula (2) as proposed in 1121 (Fig. 2 and 3).

Conclusion

In this paper a simple method is presented for determining the ultimate
interaction domains for stepped columns. The method requires the use of the
effective length concept only for calculating the ultimate values of the' centric
axial load applied at the top of the lower shaft (PZuc )' and of the whole column
(Pluc )·

These values are then used for rendering in a dimensional form the ultimate
interaction domains determined in a non-dimensional form using a simple model
with two degrees of freedom.

Using this model, it is possible to take into account the effect of both
mechanical and geometrical imperfections and of the loading path, on the shape
of the ultimate interaction domains for stepped structural members. It is
possible to obtain the ultimate domains avoiding all the difficulties connected
with the use of methods based on the effective length concept and axial thrust
bending moment interaction formulas [like (1)], which require long calculations
when dealing with members in compression and bending.
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The method presented in this
proposed in /12/ and /13/, based
influenced by the values adopted
calculating the values of PIC M

. ,

paper represents also an overcoming of that
on equation (2), and whose results are heavily
for the coefficient Cm of equation (1), when
and P2C ,M to be used in equation (2).

The method was checked only in a limited number of cases, whose numerical
results were available to the author at the time of the publication.

These cases refer to some of the examples presented in /12/ and '/13/, that
is prismatic members, with stepwise axial loads, whose cross-section is a HE200A
profile, and stepped columns, with ratio between the moments of inertia
12/11 = 10, and ratio between the lengths of the two shafts L2/Ll = .6, 1.0.
Therefore, before any use or application of the method in standard design practice,
more extensive research and check works (both numerical and experimental) are
required.
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3100
3110
3120
3130
3140
3150
31GO
3170
3180
3190
3200 C
3210
3220
3230

SUBROUTINE SUB1(P1,P2,FUNZ)
COlINOU/UNO/AAl, AA2, ALl, AL2, All, AI2, urn, U[-12, VOl, VO 2, E1, E2

+,E12,F1,F2,ALFA,CK1,CK2,PU1,PU2,ALT
A=CK1-P1*AL1
B=CK2-P2*AL2-P1*ALT
C=CK2*V02+P2*E2+F2*AL2+PiliFA*P2*AL2+F1*ALT+P1*(E1+E12)
D=CK1*VOl+P1*E1+F1*AL1
TETA1=(D+P1*AL1*C/B)/(A-(P1*AL1)**2/B)
TETA1L=(1.-P1/PU1)*UD1/CK1
FUUZ=ABS(TE'rA1-V01)-ABS(TETA1L)
tlRITE(6,123)A,B,C,D,TETA1,TETA1L,FUNZ,P1,P2

123 FORMAT(10(2X,E10.4»
RETURN
END

Fig. 7
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2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060 C
3070
3080
3090

SUBROUTINE SUB2(Pl,P2,FUNZ)
COm·lON/UNO/AAl, AA2, ALl, AL2, All, AI2, UHI, UH2, VO 1, VO 2, El, E2

+,EI2,FI,F2,ALFA,CKI,CK2,PUI,PU2,ALT
A= CKl-PI*ALI
B=CK2-P2*AL2-PI*ALT-(PI*ALI)**2/A
C=CK2*V02+P2*E2+F2*AL2+ALFA*P2*AL2+FI*ALT+PI*(EI+E12)
D=(CKl*VOl+Pl*E1+FI*ALl)/A
TETA2=C+PI*AL1*D
TETA2=TE'l'A2/8
TETA2L=(I.-(PI+P2)/PU2)*UD2/CK2
FUHZ=ABS (TETA2-V02) -ABS (TETA2L)
WRITE(6,123)A,B,C,D,TETA2,TETA2L,FUNZ~P1,P2

123 FORrlAT(10(2X,ElO.4»
P.ETURN
END

Fig. 8
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