540 Broadway
P.O. Box 22222

Albany, New York 12201-2222
(518) 426-4600

Partner

Direct Dial: (518) 320-3406
Telecopier: (518) 320-3499
email: lsinger@couchwhite.com

June 17, 2010

## VIA E-MAIL \& U.S. MAIL

Hon. Jaclyn Brilling
Secretary
State Board on Electric Generation Siting and the Environment
Three Empire State Plaza, $14^{\text {th }}$ Floor
Albany, New York 12223-1350
Re: Case 08-F-1367 - Petition of Astoria Energy LLC and Astoria Energy II LLC, for the Amendment \& Transfer of their Certificate of Environmental Compatibility \& Public Need

Dear Secretary Brilling:
Enclosed please find a copy of Astoria Energy II LLC's Petition to Amend the Certificate to Allow for a New Submittal Date for the Relay Coordination Study.

Please contact me if you have any questions.
Very truly yours, COUCH WHITE, LLP

Leonard H. Singer

Leonard H. Singer
LHS/dp
Enclosure
cc: David Drexler, Esq. (Petition only via Hand Delivery)
Active Parties in Case 99-F-1191 (Petition only via U.S. mail)
S:\DATA\Client5 12200-12455\12307\corres\Brilling 6-17-10.doc

# NEW YORK STATE BOARD ON ELECTRIC GENERATION SITING AND THE ENVIRONMENT 

IN THE MATTER
-- of the --
Case 08-F-1367

Petition of Astoria Energy LLC and Astoria Energy
II LLC, for the Amendment of Certificate of
Environmental Compatibility and Public Need

## ASTORIA ENERGY LL LLC'S PETITION TO AMEND THE CERTIFICATE TO ALLOW FOR A NEW SUBMITTAL DATE FOR THE RELAY COORDINATION STUDY

Pursuant to 16 NYCRR § 1000.15, Astoria Energy II LLC ("Astoria Energy II") hereby petitions the New York State Board on Electric Generation Siting and the Environment ("Siting Board") to amend the Certificate of Environmental Compatibility and Public Need ("Certificate") transferred to Astoria Energy LLC and Astoria Energy II on April 7, 2010 for the construction and operation of an electric generation facility in Queens, New York. Specifically, Astoria Energy II seeks to shorten the filing time for the Relay Coordination Study from twelve months to approximately eleven and a half months prior to commercial operation of Astoria Energy II's generation facility.

## I. BACKGROUND

Astoria Energy LLC ("Astoria Energy") and Astoria Energy II separately own, operate, and control the two power blocks of the Astoria facility, which will ultimately comprise an approximately 1,240 MW, natural-gas fueled wholesale electric generation
complex in Queens County, New York ("Astoria Facility"). In New York State Public Service Commission ("Commission") Case No. 08-E-111 ${ }^{1}$, the Commission granted, inter alia, authorization for the transfer of ownership interests in the second power block of the Astoria Facility from Astoria Energy to Astoria Energy II. In Siting Board Case No. 08-F$1367^{2}$, the Siting Board granted the request of Astoria Energy and Astoria Energy II to transfer the Certificate, issued for the Astoria Facility under Article $X$ of the Public Service Law, to Astoria Energy and Astoria Energy II jointly. The second power block of the Astoria Facility is now separately owned by Astoria Energy II.

## II. REQUESTED CERTIFICATE MODIFICATION

By this petition, Astoria Energy II seeks a modification to Certificate condition II. F (4), which refers to the submittal of a Relay Coordination Study. Certificate condition II. F (4) originally stated that Astoria Energy shall file with the Siting Board and the Commission a copy of a "Relay Coordination Study, which shall be filed not later than 18 months prior to the projected commercial operation date of the Project." Thereafter, on January 27, 2005, based on a request from Astoria Energy, the Board amended the Certificate by replacing Certificate condition II. F (4) with the following condition:
[A] Relay Coordination Study, which shall be filed at least 45

[^0]days prior to the projected first energization of the Facility's generator step-up (GSU) transformer at the 138 kV terminal interconnection; if the current projected first energization date of March 17, 2005 is revised, the Certificate Holder shall notify Consolidated Edison Company of New York, Inc. in writing within 3 business days of the decision to revise such date and the 45-day period shall apply to any revision of such date. ${ }^{3}$

Certificate condition II. F (4) was further modified to state that Astoria Energy II shall file with the Siting Board and the Commission a copy of "the Relay Coordination Study, which shall be filed not later than twelve months prior to the projected date for commencement of commercial operation of the facilities."

Astoria Energy II is currently in the process of constructing the second power block of the Facility and expects that power block to commence commercial operations in June 2011. Accordingly, Certificate condition II. F (4) required Astoria Energy II to file a copy of its Relay Coordination Study with the Siting Board and the Commission by June 1, 2010.

However, Astoria Energy II has only recently completed its Relay Coordination Study because the inputs needed to conduct the Relay Coordination Study have only recently become available. The completed the Relay Coordination Study is attached to this Petition.

Accordingly, Astoria Energy II is hereby requesting to shorten the time for filing the Relay Coordination Study by 2 weeks. Specifically, Astoria Energy II requests that Certificate Condition II. F (4) be revised to read as follows: "the Relay Coordination Study, which shall be filed not later than eleven and a half months prior to the projected date for

[^1]commencement of commercial operation of the facilities." Approval of this request will not result in any adverse impact on the environment or electric system. Also, it is significant to note that no adverse environmental or electric system impacts resulted from a previouis modification granted by the Board of the date required for the Relay Coordination Study to be filed under Certifcate condition II. F (4). Finally, because Astoria Energy II is requesting a modification of the filing date of the Relay Coordination Study of only approximately two weeks, such modification is de minimis.

## III. CONCLUSION

For the reasons set forth herein, Astoria Energy II respectfully requests that the Siting Board grant this petition and amend the Certificate by changing the date for submission of the Relay Coordination Study.

Dated: June 17, 2010
Albany, New York

Respectfully submitted,
Leonard H. Singer
Leonard H. Singer
William J.McCarthy
COUCH WHITE, LLP
Attorneys for Astoria Energy II LLC
540 Broadway - Suite 7
Albany, New York 12207
Telephone: (518) 426-4600
Telecopier: (518) 426-0376
E-Mail: lsinger@couchwhite.com

S:\DATA\Client5 12200-12455\12307\Relay Coordination Petition\6-17-10 Petition final.doc

PROJECT NAME: CHARLES POLETTI SUBSTATION
PROJECT NUMBER: S029-011C
CLIENT: $\quad$ SNC LAVALIN CONSTRUCTORS INC.

## CALCULATIONS FOR: SHORT CIRCUIT AND RELAY SETTING

| Rev. | Date | Description | Prepared | Review | Approved |
| :---: | :---: | :--- | :---: | :---: | :---: |
| A | $11 / 09 / 2009$ | Issued for review | MSE | MSE | MSE |
| B | $05 / 27 / 2010$ | Revised per NYPA and Con Ed's comments | MSE | MSE | MSE |
| C | $06 / 04 / 2010$ | Revised per Con Ed's provided relay data | MSE | MSE | MSE |

## TABLE OF CONTENT

Executive Summary
Appendix 01 -11L-1-Q35L (Areva-P546) Setting Calculation
Appendix 02-11L-2-Q35L (SEL-311L) Setting Calculation
Appendix 03 - 85-Q35L (SEL-311L) Setting Calculation
Appendix 04 - 87B-BS1 (SEL-387) Setting Calculation
Appendix 05 -11L-1-Q35M (Areva-P546) Setting Calculation
Appendix 06-11L-2-Q35M (SEL-311L) Setting Calculation
Appendix 07-85-Q35M (SEL-311L) Setting Calculation
Appendix 08-87B-BS5 (SEL-387) Setting Calculation
Appendix 09-85-1-G13 (Areva P546) Setting Calculation
Appendix 10-85-2-G13 (SEL-311L) Setting Calculation
Appendix 11 -87B-BS2 (SEL-387) Setting Calculation
Appendix 12-87B-1-BS3 (SEL-387) Setting Calculation
Appendix 13-87B-2-BS3 (GE-B30) Setting Calculation
Appendix 14-87-51-1-R1 (SEL-387) Setting Calculation
Appendix 15-87-51-2-R1 (GE-T60) Setting Calculation
Appendix 16-87-51-1-R2 (SEL-387) Setting Calculation
Appendix 17-87-51-2-R2 (GE-T60) Setting Calculation
Appendix 18-50-62-1-BKR1 (Areva P141) Setting Calculation
Appendix 19-50-62-2-BKR1 (GE-C60) Setting Calculation
Appendix 20-50-62-1-BKR2 (Areva P141) Setting Calculation
Appendix 21-50-62-2-BKR1 (GE-C60) Setting Calculation

## TABLE OF CONTENT

## Appendix 22-50-62-1-BKR3 (Areva P141) Setting Calculation

Appendix 23-50-62-2-BKR3 (GE-C60) Setting Calculation
Appendix 24-50-62-1-BKR5 (Areva P141) Setting Calculation
Appendix 25-50-62-2-BKR5 (GE-C60) Setting Calculation
Appendix 26 - CT Evaluation
Appendix 27 - Short Circuit Study Results including
Appendix 28 - Relay Coordination between Charles Poletti Station and Farragut Station
Appendix 29 - Relay Coordination between Charles Poletti Station and East $13^{\text {th }}$ street Station
Attachment 01 - Transmission Line Impedance Calculation
Attachment 02 - Transformer Data
Attachment 03 - Turbine Generator Data
Attachment 04-345KV Cable Data

## CHARLES POLETTI SUBSTATION

## EXECUTIVE SUMMARY

## INTRODUCTION

A new 345 kV SF6 gas insulated substation, Charles Poletti Substation, is to be constructed to support a new 650 MW combined cycle power plant, Astoria Energy II Plant (AEII Plant). The configuration of Charles Poletti Substation will be a five breaker ring bus with four installed breakers and one future breaker position. The Charles Poletti Substation will be the point of connection (POI) between the AEII Plant and existing 345kV Feeders Q35L and Q35M, owned by NYPA. These two feeders, along with Con Edison’s 345kV Feeder B47 and Feeder 48, are each part of a three terminal feeder system operating between Con Edison’s Farragut and East $13^{\text {th }}$ Street Substations and NYPA's Poletti Generating Station. The Poletti Generating Station and its existing 345 kV substation are to be retired from service and replaced by the Charles Poletti Substation. The Q35L and Q35M Feeders will each connect to a different bus section in the Charles Poletti Substation. Existing 345kV Shunt Reactors R1 and R2, utilized for Feeder Q35L and Q35M, will be relocated from the retired Poletti Substation to the Charles Poletti Substation.

The Charles Poletti Substation will be designed as a bulk power system facility. The protection system design must be in accordance with applicable NPCC criteria. The protection at the Charles Poletti Substation consists of the following new microprocessor based primary and secondary protection packages.
A. Q35L and Q35M Line Relaying
a) Primary Line Protection System (21L-P / 21GL-P)
i. Relay: Areva P546
ii. Scheme: Direct Under-reaching Transfer Trip (DUTT)
iii. Communications (DTT):

1. Route 1: Verizon T1 via RFL Gard 8000
2. Route 2: Con Ed CCTN via RFL IMUX 2000
b) Secondary Line Protection System (21L-S / 21GL-S)
i. Relay: SEL 311L
ii. Scheme: Direct Underreaching Transfer Trip (DUTT)
iii. Communications (DTT):
3. Route 1: Verizon T1 via RFL Gard 8000
4. Route 2: Con Ed CCTN via RFL IMUX 2000

A new two position Zone 2 Timer Bypass switch, identical in design and function as the switch provided at the Farragut Substation, is to be installed at Charles Poletti Substation.
c) High Set Fault Protection (50HS)
i. Relay: Function with Areva P546 and SEL 311L relays described in a) and b) above
ii. Scheme: High Set Non-directional Phase Overcurrent

This protection will be programmed into the Primary and Secondary Line Protection System's numerical relays (Areva P546 and SEL 311L) as a separate function and will provide high speed direct trip for all internal close-in phase faults. The 50HS function must not operate for remote bus faults or reverse faults (local line end) with appropriate operating margin. If this function cannot be set securely, then it shall not be used.
d) Stub Bus Protection (50SB)
i. Relay: Function with Areva P546 and SEL 311L relays described in a) and b) above This protection will be programmed into the Primary and Secondary Line Protection System's numerical relays (Areva P546 and SEL 311L) as a separate function and will be used to detect faults for the system operating condition with the associated line ring bus breakers closed and the line motor operated disconnect (MOD) switch open. The function is to be supervised by the MOD's 89 b contact or other combination. This protection is not required if the voltage source is on the bus side of the MOD.
e) Switch-On-To-Fault Protection (50SOTF)
i. Relay: Function with Areva P546 and SEL 311L relays described in a) and b) above This protection will be programmed into the Primary and Secondary Line Protection System's numerical relays (Areva P546 and SEL 311L) as a separate function and will only be armed when the circuit breakers are open and the associated line is de-energized. While closing the first circuit breaker to energize the line this function shall only be in service for the first 15 cycles and will reset if no fault is detected.
f) Directional Ground Overcurrent Backup Protection (67N)
i. Relay: Function with Areva P546 and SEL 311L relays described in a) and b) above This protection will be programmed into the Primary and Secondary Line Protection System's numerical relays (Areva P546 and SEL 311L) as a separate function. The time-overcurrent (TOC) function will be used to provide backup protection for ground faults on the system. The instantaneous-overcurrent (IOC) function can be used to provide close-in ground fault detection if it can be set selectively.

## B. Breaker Failure Relaying

a) Primary Breaker Failure Relaying (50BF/62-P)
i. Relay: Areva P141
ii. Communications: same routes as A. (a.)(iii.) above
b) Secondary Breaker Failure Relaying (50BF/62-S)
i. Relay: GE C60
ii. Communications: same routes as A. (b.)(iii.) above

Although NPCC does not require dual breaker failure protection systems, the Charles Poletti Substation is designed with dual and independent breaker failure protection systems for maintenance and testing conditions. Separate primary and secondary relays of different manufacture are used for this protective function.

The fault detectors are used and set to supervise the relay operation. Normal operation of the breaker failure relaying system will energize a lockout relay after an acceptable time delay to trip all the local breakers and initiate the direct transfer trip system to open all the associated remote breakers.
C. SF6 Bus Protection Relaying
a) Primary Bus Protection Relaying (87B-P)
i. Relay: SEL 387
ii. Scheme: Current Differential for fault targeting only; no tripping function except as noted below.
iii. The primary bus protection relaying (87B-P) will be provided for all bus sections in the Charles Poletti Substation and will be a permanent system. It will normally provide fault targeting for all ring bus sections. Initially, the 87B-P will trip circuit breakers CB-2 and CB-5 for bus faults on the bus section between these two breakers. When the future facility's interconnecting line is connected to this bus section, the 87B-P will be used for fault targeting only.
b) Secondary Bus Protection Relaying (87B-S only)
i. Relay: GE B30
ii. Scheme: Low Impedance Current Differential
iii. The secondary bus protection relaying (87B-S) will initially trip circuit breakers CB-2 and CB-4 for bus faults on the bus section between these two breakers. When
the future interconnecting line is installed, the secondary bus protection relay (87BS) will be removed from service.
c) When the future facility is installed, new primary and secondary line protection relays will be designed and installed to protect the new interconnecting line.
D. Q35L and Q35M Current Differential Relaying
a) Primary Current Differential Relaying (85)
i. Relay: SEL 311L (Stand-alone)
ii. Communications:

1. Route 1: Verizon T1 via RFL Gard 8000 (only).

This system will include primary relays only, no secondary relaying is required. The primary function of this relay scheme will be to provide line fault targeting only; the tripping function will be enabled for certain feeder configurations. Two current differential systems will be configured; one will operate between Charles Poletti Substation and East 13th Street and the other will operate between East 13th Street and Farragut.
E. Shunt Reactor R1 and R2 Protection Relaying
a) Primary Shunt Reactor Protection (87R1(R2)-P / 51R1 (R2)-P)
i. Relay: SEL 387
ii. Scheme: Current Differential / Time Overcurrent
iii. Communications: same routes as A. (a.)(iii.) above
b) Secondary Shunt Reactor Protection (87R1\& (R2)-S / 51R1\& (R2)-S)
i. Relay: GE T60
ii. Scheme: Low Impedance Differential / Time Overcurrent
iii. Communications: same routes as A. (b.)(iii.) above

The existing Poletti Shunt Reactors R1 and R2 will be relocated to Charles Poletti Substation. Both reactors are oil-filled type and equipped with sudden pressure relays (63SP) set to trip. F. Generator (AEII Plant) - GIS (Charles Poletti Substation) Interconnection Cable Relaying
a) Primary Interconnecting Line Differential Relaying (85L1-P)
i. Relay: Areva P546
ii. Scheme: Current Differential with Distance Back-up
$50 \mathrm{HS}, 50 \mathrm{SB}, 50 \mathrm{SOTF}$ and 67 N are considered as A.(c) through A.(f) above.
iii. Communications: Dedicated Fiber Optic (Cable 1)
b) Secondary Interconnecting Line Differential Relaying (85L1-S)
i. Relay: SEL 311L
ii. Scheme: Current Differential with Distance Back-up
$50 \mathrm{HS}, 50 \mathrm{SB}, 50 \mathrm{SOTF}$ and 67 N are considered as A.(c) through A.(f) above.
iii. Communications: T1 network (using an IMUX 2000 as the T1 interface).
G. Automatic Circuit Breaker Reclosing (79)

Automatic circuit breaker reclosing relays (79) are not required for Charles Poletti Substation.
H. Synchronism Check Relaying

Synchronism check relays will not be required for Charles Poletti Substation.

## SCOPE OF WORK

The study addresses 345 kV line protection setting, 345 kV bus differential settings, and 345 kV breaker failure settings etc at the Charles Poletti Substation and relay coordination between Charles Poletti Substation and its connected adjacent substations.

## METHODOLOGY

The system model in ASPEN software has been received from NYISO. We have added the planned relay settings in the model. The short circuit calculation, protection calculation and coordination study were performed using ASPEN model.

## ASSUMPTION

Charles Poletti Substation relay settings are set for addition of Astoria Energy II Plant (AEII Plant) only. When adjacent BERRIANS 3 station is added in the future as indicated in NYSIO Aspen model "NYISO_2012_Q308_ON.orl", reviewing and revising of Charles Poletti Substation relay setting may be necessary.

## SHORT CIRCUIT STUDY

Short circuit study results at Charles Poletti Substation have been provided and can be found in Appendix 27. The results generated by ASPEN show fault values for Three-Phase-to-ground,

| Revision C | EXECUTIVE SUMMARY | Page 5 of 8 |
| :--- | :--- | :--- |

Phase-to-Ground, Phase-to-Phase-to-Ground and Phase-to-Phase. The numbers shown are fault magnitudes, in amps for faults at the corresponding bus. The Thevenin equivalent impedance in ohms, $\mathrm{X} / \mathrm{R}$ ratio and fault angles are also given in the ASPEN report.

## RELAY COORDINATION

A. Relay Coordination between Charles Poletti Station and Farragut Station Q35L/Q35M line directional ground over-current backup protection (67N) at Charles Poletti station is set to trip for a ground fault at Farragut 345 kV bus with $0.52 \sim 0.69$ second time delays as shown in Appendix 28. Coordination between Q35L/M-67N at Charles Poletti and Farragut directional over-current relays has been done with the following worse case considerations:
(1) The strongest source is from upstream relay in order to have the fastest upstream relay clearing time;
(2) One of the strongest local sources to downstream relay is out of service ( $\mathrm{N}-1$ contingency), so that the downstream relay will clear a fault with relative slow speed comparing with normal condition.
(3) Q35L or Q35M is out of service is also considered for a fault at Farragut station, so that all the fault contributions from Charlie Poletti will not be shared by both Q35L and Q35M, and the Q35L-67N or Q35M-67N at Charlie Poletti will see the maximum contribution from Charlie Poletti.

As shown in Appendix 28, the minimum coordination time interval (CTI) is 0.25 second per case 19 which a single phase to ground fault is at relay ( $67 \mathrm{~N}-1 / \mathrm{B} 7 \mathrm{E}$ or $67 \mathrm{~N}-2 / \mathrm{B} 7 \mathrm{E}$ ) or feeder 48 close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station and line Q35M at Charlie Poletti out of service. This is considered acceptable since the 0.25 second CTI will only happen when the high speed pilot relaying schemes at feeder 48 fail to operate for the fault, with both line 41 at Farragut and line Q35M at Charlie Poletti out of service.

Q35L/Q35M-67N setting will also ensure its proper coordination with Farragut protection by considering Con Ed standard breaker failure timer of 160 ms for a ground fault. Q35L/Q35M
line high set fault protection (50HS) and directional instantaneous-over-current function are not used at Charles Poletti station side since they cannot be set securely.

Per case 20 through case 25 in Appendix 28, 67N-1/B7E or 67N-2/B7E for B47 at Farragut, or $67 \mathrm{~N}-1 / \mathrm{F} 2 \mathrm{~W}$ or $67 \mathrm{~N}-2 / \mathrm{F} 2 \mathrm{~W}$ for 48 at Farragut will also properly coordinate with the 67 N elements used Charlie Poletti for a relay close in fault.
B. Relay Coordination between Charles Poletti Station and East $13^{\text {th }}$ street Station Relay coordination between Charles Poletti Station and East $13^{\text {th }}$ street station is as shown in Appendix 29. The minimum CTI is 0.53 second which is acceptable. It is noted that coordination between Q35L-67N or Q35M-67N at Charlie Poletti and 67N/48 or 67N/B47 at East $13^{\text {th }}$ street for a relay close-in fault at East 13th line 48 or B47 is not needed, since there is no 345 kV breaker at East $13^{\text {th }}$ station. Q35L/Q35M line distance elements at Charles Poletti Station are set per NYPA \& Con Ed standard and will not over-reach transformer low side at East $13^{\text {th }}$ street station. It is also noted that the ground fault contribution differences between the existing Poletti Station and the new Charles Poletti station is neglectable. No ground overcurrent relay setting change at East $13^{\text {th }}$ street is found necessary due to the modifications to the system caused by this project.

## C. Relay Coordination between Charles Poletti Station and Astoria Energy II Plant Station

 Relay coordination between Charles Poletti Station and Astoria Energy II Plant Station is not stringently required since there is no breaker at 345 kV side of Astoria Energy II Plant Station, and distance elements at Charles Poletti Station side for the line between two stations are set per NYPA \& Con Ed standard and will not over-reach transformer low side at Astoria Energy II Plant Station.
## RELAY LOADABILITY CHECK

Per Standard PRC-023-1 Transmission Relay Loadability, each transmission owner, generator owner, and distribution provider shall evaluate relay loadability at 0.85 per unit voltage and a power factor angle of 30 degrees. Per equation from Power System Relaying by Stanley H. Horowitz, and Arun G. Phadke,

Loadability $\mathrm{S}=\left(\mathrm{kV}_{\mathrm{L}-\mathrm{L}}\right)^{2} / \mathrm{Zsec} / \cos (\mathrm{Z} 1 \mathrm{ANG}-30) *(\mathrm{CTR} / \mathrm{PTR})$.
Where,
$\mathrm{k} \mathrm{V}_{\mathrm{L}-\mathrm{L}}$ - system line to line voltage, 0.85 per unit voltage shall be used per PRC-023-1.
Zsec - distance element with the longest reach setting in secondary ohm.
Z1ANG - transmission line angle.
CTR - CT ratio.
PTR - PTR ratio.

For either 345 kV Q35L or Q35M line, Zone 2 setting is the distance element with the longest reach as $\mathrm{Z} 2 \mathrm{P}=0.98$ secondary ohm. $\mathrm{kV}_{\mathrm{L}-\mathrm{L}}$ is $0.85 * 345$. Line angle Z 1 ANG is 78.20 . CTR is 600 and PTR is 3000 . Zone 2 loadability is 26329.22 MVA. This is far more than $150 \%$ of the highest seasonal facility rating of the line, or $115 \%$ of the highest seasonal 15 -minute facility rating of the line, or $115 \%$ of the maximum theoretical power transformer capability.

For 345 kV line from Charles Poletti to Astoria II generation station, Zone 2 setting is the distance element with the longest reach as $\mathrm{Z} 2 \mathrm{P}=0.1$ secondary ohm. $\mathrm{kV}_{\mathrm{L}-\mathrm{L}}$ is $0.85 * 345$. Line angle Z1ANG is 83.96. CTR is 600 and PTR is 3000 . Zone 2 loadability is 293235.87 MVA. This is far more than $150 \%$ of the highest seasonal facility rating of the line, or $115 \%$ of the highest seasonal 15 -minute facility rating of the line, or $115 \%$ of the maximum theoretical power transformer capability.

## CONCLUSION

Adequate protection at 345 kV Charles Poletti Substation and proper coordination with the relays in its connected adjacent stations have been developed and demonstrated by this study.

## REFERENCE

1. NYPA - Protection Application Document For the 345 kV SF6 Gas Insulated Substation, Revision 1.
2. NYPA - Relay Settings Database for Poletti Station.
3. Power System Relaying By Stanley H. Horowitz, Arun G. Phadke

## Appendix 01 11L-1-Q35L (Areva-P546) Setting Calculation



Secondary Ohms = Primary Ohms • (CTR/PTR)

| Line ID | From | To | R1(2nd ohm) | X1(2nd ohm) | R0(2nd ohm) | X0(2nd ohm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q35L+B47 | Charles Poletti | FARRAGUT | 0.10 | 0.48 | 0.86 | 1.23 |

Z1 = Sqrt (R1*R1 + X1*X1)

| Zine ID | From | To | Z1 $1(2$ nd ohm $)$ | Z1Ang | Z0(2nd ohm) | Z0Ang |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q35L+B47 | Charles Poletti | FARRAGUT | 0.49 | 78.20 | 1.50 | 54.90 |

2. Setting Criteria
2.1 Set Zone 1 phase distance at $87 \%$ of the line impedance with no time delay.
2.2 Set Zone 2 phase distance at $200 \%$ of the line impedance with 0.35 second delay.
(ConEd 0.3s)
2.3 Set Zone 1 ground distance at $70 \%$ of the line impedance with no time delay.
2.4 Set Zone 2 ground distance at $200 \%$ of the line impedance with 0.6 second delay.
(ConEd 0.3s)
2.5 Line differential and other distance elements are not used.
2.6 High Set Fault Protection (50HS):

For 3LG fault at Charles Poletti 345kV bus, the fault contributions are as following.



50HS shall provide high spped direct trip for all internal close-in phase faults and must not operate for remote bus faults or reverse faults with appropriate operating margin. Based on the fault current contribution above, 50 HS if set to clear a fault of $24,893 \mathrm{Amp}$, it may false trip for a reverse fault $(21,423$ Amp), especially when Q35M is out of service ( $33,943 \mathrm{Amp}$ ), so 50HS cannot be set securely and therefore is disabled.
Noted that the Aspen model (NYISO_2012_Q308_ON ) provided by NYISO shows a higher fault level due to consideration of future BERRIANS 3 station. However, it will not impact the conclusion.
2.7 Stub Bus Protection (50SB):

The voltage source of 11L-1-Q35L (Areva-P546) relay is at the bus side of the MOD, so 50SB is not required.
2.8 Switch-On-To-Fault Protection (50SOTF)

50SOTF will only be armed when the circuit breakers are open and the asscoated line is de-energized.
While closing the first circuit breaker to energize the line this function shall only be in service for the first 15 cycles and will reset if no fault is detected. 50SOTF is fulfilled by SOTF tripping Zone 2 with 200 ms dropout timer, instead of 15 cycles or 250 ms drop-out timer, due to 100 ms step of the setting.

### 2.9 Directional Ground Overcurrent Backup Protection (67N)

67 N will be used to provide backup protection for ground faults on the system. 67 N pickup shall be higher than the worst unbalance and can be set at $1 / 3$ of maximum full load (1255Amp/600/3=0.7Amp). US inverse is the selected curve for this time delay element. It shall coordinate with primary protection with a proper CTI (Coordination Time Interval) and trip a ground fault at Farragut 345kV with 0.69 second time delays under normal and 0.52 second time delay when the Q35M line is out. Refer to Appendix 28 for TCC.
The instantaneous -overcurrent (IOC) function can be used to provide close-in ground fault detection if it can be set selectively.
Applying 2LG and 1LG faults at Farragut 345kV bus under four conditions of normal, B47 out, Line 48 out, and Q35M out, the maximum ground fault current seen by 11L-1-Q35L relay would be
a 2LG at Farragut 345kV bus with line 48 out, and is
6484.00
Amp

## Appendix 01 11L-1-Q35L (Areva-P546) Setting Calculation

With margin of $30 \% \quad I O C=8429.20 \quad$ Primary Amp

However, applying 1LG faults at AEII Generation station, Aspen voltage sag analysis shows 0.003 pu voltage or 0.2 V secondary at $11 \mathrm{~L}-1-\mathrm{Q} 35 \mathrm{~L}$ relay. With voltage below 1 V , directionality is in doubt. With fault level of more than 40kA at AEII Generation station 345kV bus, falsely tripping is possible. So, it is not recommended to use 67N-IOC.

## SYSTEM DATA:

CB CONTROL:

DATE AND TIME:

CONFIGURATION:

CB Control by = Disabled
Rst CB mon LO by = CB Close
CB mon Lo RstDly $=5.000 \mathrm{~S}$
CB1 Status Input $=52 \mathrm{~B} 3$ pole
CB Status Time $=5.000 \mathrm{~S}$
CB2 Status Input $=52 \mathrm{~B} 3$ pole

IRIG-B Sync = Enabled
Battery Alarm = Enabled
Other Time Settings = Default

| Setting Group = Select via Menu |  |
| :---: | :---: |
| Active Settings = Group 1 |  |
| Setting Group 1 = Enabled |  |
| Setting Group 2 = Disabled |  |
| Setting Group 3 = Disabled |  |
| Setting Group 4 = Disabled |  |
| Distance = Enabled | \# 21Z1,21Z2 |
| Directional E/F = Disabled | \# Not used |
| Phase Diff = Disabled | \# Not used |
| Overcurrent = Disabled | \# Not used |
| Neg Sequence O/C = Disabled | \# Not used |
| Broken Conductor = Disabled | \# Not used |
| Earth Fault = Enabled | \# 67N |
| Sensitive E/F = Disabled | \# Not used |
| Residual O/V NVD = Disabled | \# Not used |
| Thermal Overload = Disabled | \# Not used |
| PowerSwing Block = Disabled | \# Not used |
| Volt Protection $=$ Disabled | \# Not used |
| Freq Protection = Disabled | \# Not used |
| df/dt Protection $=$ Disabled | \# Not used |
| CB Fail $=$ Disabled | \# Not used |
| Supervision = Enabled |  |
| System Checks = Disabled |  |
| Auto-Reclose $=$ Disabled |  |
| Input Labels = Visible |  |
| Output Labels $=$ Visible |  |

## Appendix 01 <br> 11L-1-Q35L (Areva-P546) Setting Calculation

```
            CT & VT Ratios = Visible
            Record Control = Visible
    Disturb Recorder = Visible
    Measure't Setup = Visible
    Comms Settings = Visible
Commission Tests = Visible
            Setting Values = Secondary
            Control Inputs = Invisible
            Ctrl I/P Config = Invisible
            Ctrl I/P Labels = Invisible
            Direct Access = Enabled
            InterMiCOM 64 = Disabled
            Function Key = Invisible
            LCD Contrast = 11
CT AND VT RATIOS
    Main VT Primary = 345.0 kV
            Main VT Sec'y = 115.0 V
        CB1 CS VT Prim'y = 345.0 kV
        CB1 CS VT Sec'y = 115.0 V
        CB2 CS VT Prim'y = 345.0 kV
        CB2 CS VT Sec'y = 115.0 V
        Phase CT Primary = 3000 A
            Phase CT Sec'y = 5.000 A
            SEF CT Primary = 1.000 A
SEF CT Secondary =1.000 A
MComp CT Primary =1.000 A
    MComp CT Sec'y = 1.000 A
                    CS Input = A-N
                CT1 Polarity = Standard
                CT2 Polarity = Standard
            SEF CT Polarity = Standard
            M CT Polarity = Standard
            VT Connected = Yes
            CB1 CS VT PhShft = 0 deg
            CB1 CS VT Mag = 1
                    CB2 CS VT PhShft = 0 deg
                        CB2 CS VT Mag = 1
MEASURE'T SETUP:
                    Default Display = 3Ph + N Current
                        Local Values = Primary
            Remote Values = Primary
            Measurement Ref = VA
Measurement Mode = 0
                            Fix Dem Period = 30.00 min
                            Roll Sub Period = 30.00 min
Num Sub Periods = 1
                    Distance Unit = Miles
                        Fault Location = Distance

\section*{Appendix 01 \\ 11L-1-Q35L (Areva-P546) Setting Calculation}

Monitor Bit \(2=1062\)
Monitor Bit \(3=1064\)
Monitor Bit \(4=1066\)
Monitor Bit \(5=1068\)
Monitor Bit \(6=1070\)
Monitor Bit \(7=1072\)
Monitor Bit \(8=1074\)
All disabled
\# Red LED2
\# Red LED3
\# Red LED4
\# Red LED5
\# Red LED6
\# Red LED7
\# Red LED8
\# Not required

OPTO CONFIG:
Global Nominal V \(=110 / 125 \mathrm{~V}\)
Opto Filter Cntl \(=111111111111111111111111\)
Characteristic \(=\) Standard 60\%-80\%
CONTROL INPUTS:
Not used
CTRL I/P CONFIG:
Not used
CTRL I/P LABELS:
Not used

\section*{Group 1:}

GROUP 1 LINE PARAMETERS:
\[
\text { Line Length }=9.635 \mathrm{mi}
\]

Line Impedance \(=0.49 \quad\) Ohm
Line Angle \(=79.00 \quad\) deg
kZN Res Comp \(=0.73\)
kZN Res Angle \(=-34.00\)
Mutual Comp = Disabled
Phase Sequence \(=\) Standard \(A B C\)
CB1Tripping Mode \(=3\) Pole
CB2Tripping Mode \(=3\) Pole
GROUP 1 DISTANCE SETUP:
Setting Mode = Advanced
Phase Chars. = Quad
Zone 1 Ph Status = Enabled
Zone 2 Ph Status = Enabled
Zone 3 Ph Status = Disabled
Zone 4 Ph Status = Disabled
Ground Chars. = Quad
Zone 1 Gnd Stat = Enabled
Zone 2 Gnd Stat. = Enabled
Zone 3 Gnd Stat = Disabled
Zone P Gnd Stat. \(=\) Disabled
Zone 4 Gnd Stat. = Diabled
Digital Filter = Standard
CVT Filters = Disabled \# VT is used
Load Blinders = Disabled
\# Default
Dist. Polarizing \(=1\)
Dir. Status = Enabled
AidedDeltaStatus \(=\) Disabled
Dir. Char Angle \(=60.00\) deg \# Default

\section*{Appendix 01}

11L-1-Q35L (Areva-P546) Setting Calculation

\section*{GROUP 1 DIST. ELEMENTS:}
\begin{tabular}{rll} 
Z1 Ph. Reach & \(=420.000\) & mOhm \\
Z1 Ph. Angle & \(=79.00\) & deg \\
R1 Ph. Resistive & \(=5\) & Ohm \\
Z1 Tilt Top Line & \(=-3\) & deg \\
Z1 Sensit. Iph>1 & \(=0.25\) & A \\
Z2 Ph. Reach & \(=980\) & mOhm \\
Z2 Ph. Angle & \(=79.00\) & deg \\
R2 Ph. Resistive & \(=5\) & Ohm \\
Z2 Tilt Top Line & \(=-3\) & deg \\
Z2 Sensit. Iph>2 & \(=0.25\) & A \\
Z1 Gnd. Reach & \(=340\) & mOhm \\
Z1 Gnd. Angle & \(=79.00\) & deg \\
Z1 Dynamic Tilt & \(=\) Enabled & \\
Z1 Tilt Top Line & \(=-3\) & deg \\
kZN1 Res. Comp & \(=0.73\) & \\
kZN1 Res. Angle & \(=-34.00\) & deg \\
R1 Gnd Resistive & \(=5\) & Ohm \\
Z1 Sensit Ignd \(>1\) & \(=0.25\) & A \\
Z2 Gnd. Reach & \(=980\) & mOhm \\
Z2 Gnd. Angle & \(=79.00\) & deg \\
Z2 Dynamic Tilt & \(=\) Enabled & \\
Z2 Tilt Top Line & \(=-3\) & deg \\
kZN2 Res. Comp. & \(=0.73\) & \\
kZN2 Res. Angle & \(=-34.00\) & \\
R2 Gnd Resistive & \(=5\) & Ohm \\
Z2 Sensit Ignd \(>2\) & \(=0.25\) & A
\end{tabular}

GROUP 1 SCHEME LOGIC:
Zone1 Tripping = Phase And Ground
tZ1 Ph. Delay \(=0\) s
tZ1 Gnd. Delay \(=0 \quad s\)
Zone2 Tripping = Phase And Ground
tZ2 Ph. Delay \(=350 \mathrm{~ms}\)
tZ2 Gnd. Delay \(=600 \mathrm{~ms}\)
Zone3 Tripping = Disabled
ZoneP Tripping = Disabled
Zone4 Tripping = Disabled
Aid. 1 Selection = Disabled
Aid. 2 Selection = Disabled SOTF Status = Enabled PoleDead
SOTF Delay \(=600 \mathrm{~ms}\)
SOTF Tripping = \(100010 \quad\) \# Allow fast fault clearance and Zone 2
TOR Status = Disabled
TOC Reset Delay \(=200 \mathrm{~ms}\), \# In 100ms step, 250ms in 311L.
TOC Delay = 200
ms
Z1 Extension = Disabled
LOL Scheme = Disabled

\section*{Appendix 01 \\ 11L-1-Q35L (Areva-P546) Setting Calculation}

\section*{GROUP 1 EARTH FAULT:}
\begin{tabular}{|c|c|}
\hline IN>1 Status = Enabled & \\
\hline \(\mathrm{IN}>1\) Function = US Inverse & \\
\hline IN>1 Directional \(=\) Directional Fwd & \\
\hline \(\mathrm{IN}>1\) Current Set \(=700.00 \mathrm{~mA}\) & \# 67N \\
\hline \(\mathrm{IN}>1\) Time Dial \(=2.5\) & \\
\hline \(\mathrm{IN}>1\) Reset Char \(=\) DT & \\
\hline \(\mathrm{IN}>1\) tRESET \(=0\) s & \\
\hline IN>2 Status = Disabled & \\
\hline IN>3 Status = Disabled & \\
\hline IN>4 Status = Disabled & \\
\hline IN \(>\) Blocking \(=000001\) & \# Block IN>1 \\
\hline \(\mathrm{IN}>\) Char Angle \(=-60 \quad\) deg & \# Default \\
\hline \(\mathrm{IN} \times\) Polarisation \(=\) Zero Sequence & \\
\hline \(\mathrm{IN}>\) VNpol Set \(=1.000 \mathrm{~V}\) & \# Minimum \\
\hline D: & \\
\hline \(1<\) Current Set \(=250.0 \mathrm{~mA}\) & \# Default \\
\hline ISEF< Current \(=100.0 \mathrm{~mA}\) & \# Default \\
\hline \(\mathrm{V}<=10.0 \mathrm{~V}\) & \# Minimum \\
\hline
\end{tabular}

GROUP 1 SUPERVISION:
\[
\begin{aligned}
\text { VTS Mode } & =\text { Measured Only } \\
\text { VTS Status } & =\text { Blocking } \\
\text { VTS Reset Mode } & =\text { Auto } \\
\text { VTS Time Delay } & =5.000 \mathrm{~s} \\
\text { VTS I Inhibit } & =3.150 \mathrm{~A} \\
\text { VTS I2> Inhibit } & =250.0 \mathrm{~mA} \\
\text { I }>2 \text { nd Harmonic } & =10.00 \% \\
\text { WI Inhibit } & =\text { Disabled } \\
\text { CTS Mode } & =\text { Disabled }
\end{aligned}
\]

GROUP 1 INPUT LABELS:
Opto Input 1 Spare
Opto Input 2 Spare
Opto Input 3 Zone 2 Timer Byp
Opto Input 4 Spare
Opto Input 5 52b/1 status
Opto Input 6 52b/3 status
Opto Input 7 89b/FQ35L status
Opto Input 8 89b/F1 status
Opto Input 9 86TT-1/Q35L stat
Opto Input 10 86TT-1/Q35L alm
Opto Input 11 86-1/Q35L status
Opto Input 12 86-1/Q35L alm
Opto Input 13 11LTSS-1A/Q35L M
Opto Input 14 11LTSS-1B/Q35L M
Opto Input 15 89b/GS9/A status
Opto Input 16 89b/GS9/B status
Opto Input 17 89b/GS9/C status
Opto Input 18 11LTSR-1A/Q35L M
Opto Input 19 11LTSR-1B/Q35L M
Opto Input 20 Spare

\section*{Appendix 01}

11L-1-Q35L (Areva-P546) Setting Calculation
Opto Input 21 Spare
Opto Input 22 Spare Opto Input 23 Spare Opto Input 24 Spare
GROUP 1 OUTPUT LABELS:
Relay 1 Any Trip (SER)
Relay 2 67N TRIP
Relay 3 21(ZONE2) TRIP
Relay 4 21\&21G TRIP
Relay 5 50SOTF TRIP
Relay 6 Spare \#50HS
Relay 7 Spare
Relay 8 Spare
Relay 9 Spare
GROUP 1 OUTPUT LABELS:
Relay 10 Spare
Relay 11 Spare
Relay 12 Spare
Relay 13 Spare
Relay 14 Spare
Relay 15 Spare
Relay 16 Spare
Relay 17 Spare
Relay 18 Spare
Relay 19 Spare
Relay 20 Spare
Relay 21 Spare
Relay 22 Spare
Relay 23 Spare
Relay 24 Spare
Relay 25 Spare
Relay 26 Spare
Relay 27 Spare
Relay 28 Spare
Relay 29 Spare
Relay 30 Spare
Relay 31 Spare
Relay 32 Spare

\section*{Appendix 02 11L-2-Q35L (SEL-311L) Setting Calculation}
1. Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { MVA_Base = } \\
& \text { CTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 600
\end{aligned}
\] & \[
\begin{aligned}
& \text { kV_Base = } \\
& \text { PTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 3000
\end{aligned}
\] & \[
\begin{aligned}
& \text { Z_Base = } \\
& \text { CTR/PTR= }
\end{aligned}
\] & \[
\begin{aligned}
& 1190.25 \\
& 0.2
\end{aligned}
\] & ohms \\
\hline Line ID & From & To & R1(ohms) & X1(ohms) & R0(ohms) & X0(ohms) \\
\hline Q35L+B47 & Charles Poletti & FARRAGUT & 0.499905 & 2.3924025 & 4.308705 & 6.1297875 \\
\hline
\end{tabular}

Secondary Ohms = Primary Ohms • (CTR/PTR)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & R1(2nd ohm) & X1(2nd ohm) & R0(2nd ohm) & X0(2nd ohm) \\
\hline Q35L+B47 & Charles Poletti & FARRAGUT & 0.10 & 0.48 & 0.86 & 1.23 \\
\hline
\end{tabular}
Z1 = Sqrt (R1*R1 + X1*X1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Zine ID & From & To & Z1 \((2\) nd ohm \()\) & Z1Ang & Z0(2nd ohm) & Z0Ang \\
\hline Q35L+B47 & Charles Poletti & FARRAGUT & 0.49 & 78.20 & 1.50 & 54.90 \\
\hline
\end{tabular}
2. Setting Criteria
2.1 Set Zone 1 phase distance at \(87 \%\) of the line impedance with no time delay.
2.2 Set Zone 2 phase distance at \(200 \%\) of the line impedance with 0.35 second delay.
2.3 Set Zone 1 ground distance at \(70 \%\) of the line impedance with no time delay.
2.4 Set Zone 2 ground distance at \(200 \%\) of the line impedance with 0.6 second delay.
2.5 Line differential and other distance elements are not used.
2.6 High Set Fault Protection (50HS):

For 3LG fault at Charles Poletti 345kV bus, the fault contributions are as following.


\section*{Appendix 02 11L-2-Q35L (SEL-311L) Setting Calculation}


50 HS shall provide high spped direct trip for all internal close-in phase faults and must not operate for remote bus faults or reverse faults with appropriate operating margin. Based on the fault current contribution above, 50 HS if set to clear a fault of \(24,893 \mathrm{Amp}\), it may false trip for a reverse fault \((21,423\) Amp), especially when Q35M is out of service ( 33,943 Amp), so 50HS cannot be set securely and therefore is disabled.
Noted that the Aspen model (NYISO_2012_Q308_ON ) provided by NYISO shows a higher fault level due to consideration of future BERRIANS 3 station. However, it will not affect the conclusion.

\subsection*{2.7 Stub Bus Protection (50SB):}

The voltage source of \(11 \mathrm{~L}-2-\mathrm{Q} 35 \mathrm{~L}\) (SEL-311L) relay is at the line side of the MOD, so 50SB is required. 50 SB is to be enabled only when MOD is open, i.e. supervised by MOD's 89b, see 67P2TC setting. For normal load current or external fault current through the stub bus, the current will ideally be zero.
Set 50SB pickup at \(150 \%\) of the maximum full load current by considering all three GSUs with a possibility of one set of CT test switches left shorted.
Total MVA of all three GSUs = \(750 \quad\); Maximum full load current \((\mathrm{amps})=\quad 1255.11\) 2.8 Switch-On-To-Fault Protection (50SOTF)

50SOTF will only be armed when the circuit breakers are open and the asscoated line is de-energized.
While closing the first circuit breaker to energize the line this function shall only be in service for the first 15 cycles and will reset if no fault is detected. 50SOTF pickup can be set the same as 50SB.

\subsection*{2.9 Directional Ground Overcurrent Backup Protection (67N)}

67 N will be used to provide backup protection for ground faults on the system. 67 N pickup shall be higher than the worst unbalance and can be set at \(1 / 3\) of maximum full load (1255Amp/600/3=0.7Amp). US inverse is the selected curve for this time delay element. It shall coordinate with primary protection with a proper CTI (Coordination Time Interval) and trip a ground fault at Farragut 345kV with 0.69 second time delays under normal and 0.52 second time delay when the Q35M line is out. Refer to Appendix 28 for TCC.

The instantaneous -overcurrent (IOC) function can be used to provide close-in ground fault detection if it can be set selectively.

\section*{Appendix 02 \\ 11L-2-Q35L (SEL-311L) Setting Calculation}

Applying 2LG and 1LG faults at Farragut 345kV bus under four conditions of normal, B47 out, Line 48 out, and Q35M out, the maximum ground fault current seen by 11L-2-Q35L relay would be
a 2LG at Farragut 345 kV bus with line 48 out, and is
6484.00 Amp With margin of \(30 \% \quad\) IOC \(=8429.20 \quad\) Primary Amp

However, applying 1LG faults at AEII Generation station, Aspen voltage sag analysis shows 0.003 pu voltage or 0.2 V secondary at \(11 \mathrm{~L}-2-\mathrm{Q} 35 \mathrm{~L}\) relay. With voltage below 1 V , directionality is in doubt. With fault level of more than 40 kA at AEII Generation station 345 kV bus, falsely tripping is possible. So, it is not recommended to use \(67 \mathrm{~N}-\mathrm{IOC}\).

Group 1 - Set 1:
General Settings:

Relay ID
Terminal ID
CT Ratio
Application
Advanced Setting Enable
Line Current Differential Settings: Not used
All 87L settings are off or as default
Backup Protection and Line Parameters:
\begin{tabular}{lrl} 
Polarizing (IPOL) CT Ratio & CTRP \(=600\) & \# Not used \\
Phase PT Ratio & PTR \(=3000\) & \\
Synch Voltage (VS) PT Ratio & PTRS \(=3000\) & \# Not used
\end{tabular}

Pos-Seq Line Impedance Magnitude (Ohms secondary)
Pos-Seq Line Impedance Angle (degrees)
\[
\begin{aligned}
\text { Z1MAG } & =0.49 \\
\text { Z1ANG } & =78.20 \\
\text { ZOMAG } & =1.50 \\
\text { ZOANG } & =54.90 \\
\text { LL } & =100
\end{aligned}
\]

Zero-Seq Line Impedance Magnitude (Ohms secondary)
Zero-Seq Line Impedance Angle (degrees)
Line Length (unitless)
Fault Locator Enable

\section*{Phase Distance:}

Enable Mho Phase Distance Elements
CCVT Transient Detection Enable
Reach Zone 1 (Ohms secondary)
Reach Zone 2 (Ohms secondary)
Phase-Phase Overcurrent Fault Detector Zone 1 (2nd Amp)
Phase-Phase Overcurrent Fault Detector Zone 2 (2nd Amp)
\# Fault detectors can be set at the minimum if LOP (Loss Of Potential) is enabled.
Ground Distance Elements:
Enable Mho Ground Distance Elements Enable Quad Ground Distance Elements
XG1 Zone 1 Reactance (Ohms secondary)
XG2 Zone 2 Reactance (Ohms secondary)
Zone 1 Resistance (Ohms secondary)
Zone 2 Resistance (Ohms secondary)
Zone 1 Phase Current FD (Amps secondary)
\(\mathrm{E} 21 \mathrm{MG}=\mathrm{N}\)
E21XG = 2
XG1 \(=0.34 \quad \# 70 \%\) of line
XG2 \(=0.98 \quad \# 200 \%\) of line
RG1 \(=5.00\)
\(R G 2=5.00\)
50L1 \(=0.5 \quad\) \# minimum

\section*{Appendix 02 \\ 11L-2-Q35L (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Zone 2 Phase Current FD (Amps secondary) & \(50 \mathrm{~L} 2=0.5\) & \# minimum \\
\hline Zone 1 Residual Current FD (Amps secondary) & \(50 G Z 1=0.5\) & \# minimum \\
\hline Zone 2 Residual Current FD (Amps secondary) & \(50 \mathrm{GZ2}=0.5\) & \# minimum \\
\hline \multicolumn{3}{|l|}{\# Fault detectors can be set at the minimum if LOP (Loss Of Potential) is enabled.} \\
\hline Zone 1 ZSC Factor Mag (unitless) & k0M1 \(=0.73\) & \\
\hline Zone 1 ZSC Factor Ang (degrees) & k0A1 \(=-33.74\) & \\
\hline Zone 2,3,4 ZSC Factor Mag (Unitless) & kOM \(=0.73\) & \# As k0M1 \\
\hline Zone 2,3,4 ZSC Factor Ang (degrees) & \(k 0 A=-33.74\) & \# As k0A1 \\
\hline \multicolumn{3}{|r|}{k0M1 \(\angle \mathrm{k} 0 \mathrm{~A} 1=\frac{(\text { Z0MAG } \angle \mathrm{Z} 0 \mathrm{ANG})-(\text { Z1MAG } \angle \mathrm{Z} 1 \mathrm{ANG})}{}\)} \\
\hline
\end{tabular}

Mho Phase Distance Element Time Delay Settings:

Zone 1 Time Delay (cycles in 0.25 increments) Zone 2 Time Delay (cycles in 0.25 increments)

Z1PD \(=\) OFF
\(Z 2 P D=21 \quad \# 0.35\) second

Mho Ground Distance Element Time Delay Settings:
Zone 1 Time Delay (cycles in 0.25 increments)
Zone 2 Time Delay (cycles in 0.25 increments)

Phase Instantaneous Overcurrent Elements:
Enable Phase Overcurrent Elements
Phase Instantaneous Overcurrent Level 1 (Amps secondary)
Phase Instantaneous Overcurrent Level 2 (Amps secondary)
Phase Instantaneous Overcurrent Level 3 (Amps secondary)
Phase Definite-Time Overcurrent Element Level 1 ( cycles)
Phase Definite-Time Overcurrent Element Level 2 ( cycles)
Phase Definite-Time Overcurrent Element Level 3 ( cycles)
Z1GD = OFF
Z2GD \(=36 \quad \# 0.6\) second
\[
\mathrm{E} 50 \mathrm{P}=3
\]
\[
\text { 50P1P = OFF } \quad \# 50 \mathrm{HS} \text { OFF }
\]
\[
50 P 2 P=3.14 \quad \# 50 S B
\]
\[
\text { 50P3P }=3.14 \quad \# 50 S O T F
\]
\[
\text { 67P1D }=0 \quad \text { \# Not used }
\]
\[
\text { 67P2D }=0 \quad \text { \# Not used }
\]
\[
\text { 67P3D }=0 \quad \text { \# Not used }
\]

Residual Ground Instantaneous Overcurrent Elements:
Enable Residual Ground Overcurrent Elements E50G = 1

Residual Ground Inst O/C Level 1 (Amps secondary): 50G1P = OFF \# Section 2.9

Negative-Sequence Instantaneous Elements:
Enable Negative-Sequence Overcurrent Element

Phase Time-Overcurrent Elements:
\begin{tabular}{lll} 
Enable Phase Time-Overcurrent Elements & E51P \(=\mathrm{N}\) & \# Not used \\
Residual Ground Time-Overcurrent Elements: & & \\
\hline Enable Residual Ground Time Overcurrent Elements & E51G \(=\mathrm{Y}\) & \\
Residual Ground Time-Overcurrent Pickup (Amp secondary) & \(51 \mathrm{GP}=0.70\) & \# 67N-TOC \\
51GC Curve & \(51 \mathrm{GC}=\mathrm{U} 2\) & \\
51GTD Time Dial & \(52 \mathrm{GTD}=2.5\) & \\
51GRS Electromechanical Reset Delay & 51GRS \(=\mathrm{N}\) & \\
Negative-Sequence Time-Overcurrent Elements: & & \\
\hline Enable Negative-Sequence Time-Overcurrent Elements & E51Q \(=\mathrm{N}\) & \# Not used
\end{tabular}

\section*{Out-of-Step Settings:}

\section*{Appendix 02}

\section*{11L-2-Q35L (SEL-311L) Setting Calculation}

Enable Out-of-Step Elements
EOOS = N
\# NotRequired
Load-Encroachment Elements:
As per NERC Task Force requirement, phase distance settings and other applicable phase and ground distance zone settings must permit loading of the line without trip to \(150 \%\) of emergency line ampere rating, with 0.85 per unit bus voltage and a load angle of 30 degrees.
Loadability \(\mathrm{S}=(0.85 * \mathrm{kV}) *\left(0.85^{*} k V\right) /\left(Z s^{*} \cos (Z 1 A N G-30)^{*} \mathrm{CTR} / \mathrm{PTR}=26329.22 \quad\right.\) MVA
Where, Zsec is Z2P in this application, kV is 345 and Z1ANG is line angle.
Conclusion: Loadability is more than \(150 \%\) of maximum generation at AEII, no load encroachment.
Enable Load-Encroachment Element ELOAD = N \# Calc above

Directional Elements:
Enable Directional Elements E32 = AUTO
Loss-Of_Potential Enable ELOP = Y1
\# When ELOP = Y1 and a lop occurs, directional O/C elements are blocked.
Busbar PT LOP Logic Enable
\begin{tabular}{rlrl} 
EBBPT & \(=\mathrm{N}\) & & \# N/A \\
DIR3 & \(=\mathrm{F}\) & & \# Default \\
DIR4 & \(=\mathrm{F}\) & & \# Default
\end{tabular}

Level 4 Direction
Ground Directional Element Priority
ORDER \(=Q\)
Enable Voltage Elements:
Enable Voltage Elements
EVOLT \(=Y\)
27P \(=45 \quad\) \# Note below
\# Under-voltage setting is not required in NYPA PAD revision 1. The existing Poletti setting shows under-
voltage setting as 45 V secondary. This element is set in relay and for alarm ONLY unless a trip is required by NYPA/ConEd.
Other voltage elements are all OFF.
Synchronism Check Elements
Enable Synchronism Check Elements E25 = N \# Not used
Frequency Elements
Enable Frequency Elements E81 = N \# Not used
Relcosing Relay:
Enable Reclosing Relay Elements E79 = N \# Not used
Switch-Onto-Fault:
Enable Switch-Onto-Fault Elements
Close Enable Time Delay (cycles in 0.25 increments)
52A Eanble Tim Delay (cycles in 0.25 increments)
\begin{tabular}{rlrl} 
ESOTF & \(=Y\) & & \# Section 2.8 \\
CLOEND & \(=\) OFF & & \# Not used \\
52AEND & \(=36\) & & \# 0.6 second \\
SOTFD & \(=15\) & & \# Section 2.8
\end{tabular}

Commnunications Assisted Tripping Schemes:
Enable Communication Assisted Tripping Schemes
\(E C O M M=N \quad\) \# Not used
Zone 1 Extension Settings:
Enable Zone 1 Extension Elements EZ1EXT = N \# Not used
Demand Metering Settings:

\section*{Appendix 02}

11L-2-Q35L (SEL-311L) Setting Calculation

Enable Demand Metering Method
DMTC Time constant
Phase Pickup (Amps secondary)
Residual Ground Pickup (Amps secondary)
Negative-Sequence Pcikup (Amps secondary)
Other Setting:
Minimum Trip Duration Time (cycles in 0.25 increments)
Close Failure Time Delay (cycles in 0.25 increments)
Three-Pole Open Time Delay (cycles in 0.25 increments) Open Pole Option
Load Detection Phase Pickup (Ampes secondary)
SELogic Control Equation Variable Timers:
SELogic Latch Bits Enables
ELAT \(=\mathrm{N}\)
EDP = 8
ESV = N

Group 1 - Logic 1:
Trip/Comm.-Assisted Trip Logic:
Direct trip conditions TR = M1P+Z1G+M2PT+Z2GT+(M2P+Z2G)*IN103+67P2T+51GT \# For LED2 Target; IN103 - Zone 2 timer bypass; 67P2T is 50 SB ; 51 GT is \(67 \mathrm{~N}-\mathrm{TOC}\);
Switch-onto-fault trip conditions TRSOTF = 50P3 \# SOTF
Direct transfer trip conditions DTT \(=0 \quad\) \# Not used
Unlatch trip conditions
ULTR \(=!52 \mathrm{~A} \quad\) \# Default
Close Logic Equations:
Circuit breaker status
Close conditions
Unlatch close conditions
\begin{tabular}{rl} 
52A \(=\) ! ! IN104+!! 105 & CB1\&3 Status \\
\(C L=0\) & \# Not used \\
ULCL \(=0\) & \# Not used \\
& \\
& \# Not used
\end{tabular}

Torque Control Equations for Inst./Def.-Time Overcurrent Elemements:

SELogic Control Equation Variables: \# ESV = N

67P1TC Level 1 phase
67P2TC Level 1 phase
67P3TC Level 1 phase
67G1TC Level 1 phase
51GTC Residual Ground
Other Torque Controls are not enabled.

Output Contacts:
Output Contact 101
Output Contact 102
Output Contact 103
Output Contact 104
Output Contact 105
Output Contact 106

67P1TC = 1 \# Not used
67P2TC = IN106+IN301 \# MOD-89b
67P3TC = 1 \# See below
67G1TC = \(1 \quad\) \# Not used
51GTC = 32GF \# DIR = F

Out
\begin{tabular}{rlrl} 
OUT101 \(=\) TRIP & & \# Any Trip \\
OUT102 \(=\) 51GT & & \# 67N \\
OUT103 \(=\) M2PT + Z2GT+(M2P+Z2G)*IN103 & \# 21 Zone 2 \\
OUT104 & \(=\) M1P + Z1G & & \# 21 \& 21G \\
OUT105 & \(=\) SOTFT & & \# 50SOTF \\
OUT106 & \(=0\) & & \# Not used
\end{tabular}

\section*{Appendix 02 11L-2-Q35L (SEL-311L) Setting Calculation}
\begin{tabular}{llll} 
Output Contact 107 & OUT107 \(=67 \mathrm{P} 2 \mathrm{~T}\) & \# 50SB \\
Output Contact 201 & OUT201 \(=\) IN106 & \# DS Open \\
Output Contact & 201 & OUT2012 \(=!\) !N106 & \# DS Close
\end{tabular}

Output Contact \(203 \sim 206,301 \sim 312\) are all 0 .

Display Points:
Display Point 1
Display Point 2
Display Point 3
Display Point 4
Display Point 5
Display Point 6
Display Point 7
Display Point 8
Display Point \(9 \sim 16\)
\begin{tabular}{rlrl} 
DP1 & \(=0\) & & \\
DP2 & \(=0\) & & \\
DP3 & \(=\) IN103 & & \# Z2T Bypass \\
DP4 & \(=\) IN104 & & \# 52b/BKR1 \\
DP5 & \(=\) IN105 & & \# 52b/BKR3 \\
DP6 & \(=\) IN106 & & \# 89b/FQ35L \\
DP7 & \(=\) IN301 & & \# 89b/F1 \\
DP8 & \(=3 P 27\) & & \# Low Voltage \\
& & \# Not used
\end{tabular}

Setting Group Selection Equations:
Select Setting Group 1
Select Setting Group \(2 \sim 6\) are all 0
\begin{tabular}{rl} 
SS1 & \(=1\) \\
SS2~SS6 & \(=0 \quad\) \# Not used
\end{tabular}

Other Equations:
Event report trigger conditions ER \(=/ \mathrm{M} 2 \mathrm{P}+/ \mathrm{Z2G}+/ 50 \mathrm{P} 2+/ 51 \mathrm{G}+/ \mathrm{LOP}\)
Fault indication FAULT \(=\) M2P + Z2G \(+50 \mathrm{P} 2+51 G\)
Block synchronism check elements BSYNCH = 0 \# Not used
Close bus monitor CLMON = 0 \# Not used
Enable for V0 polarized and IN polarized elements
Stub Bus Logic Enable ESTUB = 0 \# Not used
\# 50SB is done by setting its torque control 67P2TC as MOD-89b. 87L is not used, ESTUB won't work.
\begin{tabular}{|c|c|c|}
\hline Mirrored Bits Transmit Equations: & & \# Not used \\
\hline 87L Transmit Equations: & & \# Not used \\
\hline \multicolumn{3}{|l|}{General Settings:} \\
\hline Group Change Delay (cycles in 0.25 increments) & TGR \(=0\) & \# Not used \\
\hline Nominal Frequency (Hz) & NFREQ = 60 & \\
\hline Phase Rotation & PHROT = ABC & \\
\hline Date Format & Date \(\mathrm{F}=\mathrm{MDY}\) & \\
\hline Front Panel Timeout (minutes) & FP_TO \(=5\) & \# 5 minutes \\
\hline Display Update Rate (seconds) & SCROLD \(=5\) & \# 5 seconds \\
\hline Length of Event Report (cycles) & LER \(=60\) & \\
\hline Cycle Length of Prefault in Event Report (cycles) & PRE \(=4\) & \\
\hline DC Battery LO Voltage Pickup (Vdc) & DCLOP = OFF & \\
\hline DC Battery HI Voltage Pickup (Vdc) & DCHIP = OFF & \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
Optoisolated Input Timers: & IN101D ~ IN106D, IN301D ~ IN308D \(=0.5\) & \# 0.5 cycle \\
\begin{tabular}{ll} 
Breaker Monitor Settings: & EBMON \(=N\)
\end{tabular} & \\
\hline Breaker Monitor Enable & \# Not used
\end{tabular}

\section*{Appendix 02}

\section*{11L-2-Q35L (SEL-311L) Setting Calculation}

Synchronized Phasor Settings:
Synchronized Phasor Measurement
EPMU = N \# Not used

SER:
SER1 = M1P, Z1G, M2P, M2PT, Z2G, Z2GT, 67P2T, SOTFT, 51G, 51GT, 3P27, LOP
SER2 = SV1T, SV2T, IN103, IN104, IN105, IN106, IN301, IN302, IN303, IN304, IN305, IN306, IN307
SER3 = OUT102, OUT103, OUT104, OUT105,OUT106, OUT107
Text:
Local Bit Labels \# Not used
Display-Point Labels
\begin{tabular}{ll} 
DP1_1 \(=\) & NA \\
DP1_0 \(=\) & NA \\
DP2_1 \(=\) & NA \\
DP2_0 \(=\) & NA \\
DP3_1 \(=\) & ZONE 2 T BYPASS \\
DP3_0 \(=\) & NA \\
DP4_1 \(=\) & BREAKER 1 OPEN \\
DP4_0 \(=\) & BREAKER 1 CLOSED \\
DP5_1 \(=\) & BREAKER 3 OPEN \\
DP5_0 \(=\) & BREAKER 3 CLOSED \\
DP6_1 \(=\) & MOD FQ35L OPEN \\
DP6_0 \(=\) & MOD FQ35L CLOSED \\
DP7_1 \(=\) & MOD F1 OPEN \\
DP7_0 \(=\) & MOD F1 CLOSED \\
DP8_1 \(=\) & LOW VOLTAGE \\
DP8_0 \(=\) & NA
\end{tabular}

\section*{Appendix 03 85-Q35L (SEL-311L) Setting Calculation}
\begin{tabular}{llllll} 
1. Data & & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=1190.25\) & ohms \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\) &
\end{tabular}
2. Setting Criteria
2.1 87LPP is to detect three-phase faults. It must be set above line charging current. Set 87LPP at its minimum of 1 secondary amp at 3000/5 CT.
2.2 87L2P is to detect all internal unbalanced faults. It must be set above expected maximum line charging current unbalance. Set 87L2P at its minimum of 0.5 secondary amp at 3000/5 CT.
2.3 87LGP is to detect all internal ground faults. It must be set above expected maximum line charging current unbalance. Set 87LGP at its minimum of 0.5 secondary amp at 3000/5 CT.
2.4 Settings of CTALRM, 87LP AND 87LANG can be at default.

Group 1 - Set 1:
General Settings:
Relay ID
\[
\begin{aligned}
\text { RID } & =85-\text { Q35L } \\
\text { TID } & =\text { CHARLES POLETTI } \\
\text { CTR } & =600 \\
\text { APP } & =87 \mathrm{~L} \\
\text { EADVS } & =\mathrm{N}
\end{aligned}
\]

CT Ratio
Advanced Setting Enable
Line Current Differential Settings:
Number of 87L Terminals
E87L = 2
High Speed Tripping
Enable High Speed Direct Transfer Trip
Enable Disturbance Current Detect
Tapped Load Coordination
Enable Open CT Logic
CTR at Terminal Connected to Channel X
Phase 87L (Amp secondary)
Negative Sequence 87L (Amp secondary)
Ground 87L (Amp secondary)
Ph. Diff. Current Alarm Pickup (Amp secondary)
Outer Radius
Angle (Degree)
\begin{tabular}{lr} 
Backup Protection and Line Parameters: & \# Not used \\
\hline Phase Distance: & \# Not used \\
\hline Ground Distance Elements: & \# Not used \\
\hline Phase Instantaneous Overcurrent Elements: & \# Not used \\
\hline Residual Ground Instantaneous Overcurrent Elements: & \# Not used \\
\hline Negative-Sequence Instantaneous Elements: & \# Not used \\
\hline Phase Time-Overcurrent Elements: & \# Not used \\
Residual Ground Time-Overcurrent Elements: & \# Not used \\
\hline Negative-Sequence Time-Overcurrent Elements: & \# Not used \\
\hline Out-of-Step Settings: & \# Not used \\
\hline Load-Encroachment Elements: & \# Not used \\
Directional Elements: & \# Not used \\
Enable Voltage Elements: & \# Not used
\end{tabular}

\section*{Appendix 03 85-Q35L (SEL-311L) Setting Calculation}


\section*{Appendix 03 85-Q35L (SEL-311L) Setting Calculation}

Group Change Delay (cycles in 0.25 increments)
Nominal Frequency (Hz)
\[
\begin{aligned}
\text { TGR } & =0 & & \text { \# Not used } \\
\text { NFREQ } & =60 & & \\
\text { PHROT } & =\text { ABC } & & \\
\text { Date_F } & =\text { MDY } & & \text { FP minutes } \\
\text { FP_TO } & =5 & & \# 5 \text { seconds } \\
\text { SCROLD } & =5 & & \\
\text { LER } & =60 & & =4 \\
\text { PREOP } & =\text { OFF } & & \\
\text { DCLOIP } & =\text { OFF } & &
\end{aligned}
\]

Phase Rotation
Date Format
Front Panel Timeout (minutes)
Display Update Rate (seconds)
Length of Event Report (cycles)
Cycle Length of Prefault in Event Report (cycles)
DC Battery LO Voltage Pickup (Vdc)
DC Battery HI Voltage Pickup (Vdc)

Optoisolated Input Timers: \(\quad\) IN101D ~ IN106D, IN301D ~ IN308D = \(0.5 \quad \# 0.5\) cycle

Breaker Monitor Settings:
Breaker Monitor Enable
\(E B M O N=N \quad \#\) Not used

Synchronized Phasor Settings:
Synchronized Phasor Measurement
\(E P M U=N \quad\) \# Not used

\author{
SER: \\ SER1 = TRIP87, 87L,87L2,87LG,87LA,87LB,87LC,R87L2,R87LG,R87LA,R87LB,R87LC \\ SER2 \(=\) IN101,IN102 \\ SER3 = OUT103
}

Text:
Reclosing Relay Labels \# Not used

\section*{Appendix 04 87B-BS1 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{1. Data} \\
\hline MVA_Base \(=100\) & kV_Base \(=\) & 345 & Z_Base = & 1190.25 & ohms \\
\hline CTR = 600 & PTR = & 3000 & CTR/PTR= & & \\
\hline Total MVA of all three GSUs = & 750 & ; Max & lll load curren & \(\mathrm{(amps})=\) & 1255.11 \\
\hline \multicolumn{6}{|l|}{2. Setting Criteria} \\
\hline \multicolumn{6}{|l|}{2.1 Differential Settings:} \\
\hline & & ximum & ormer MVA = & 750 & MVA \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 1 terminal voltage VWDG1 = 345} \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 2 terminal voltage VWDG2 = 345 kV} \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 3 terminal voltage VWDG3 = 345 kV} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 1---CTR1= 600} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 2---CTR2= 600} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 3---CTR3= 600} \\
\hline \multicolumn{6}{|l|}{Winding 1 Current Tap TAP1 \(=\) MVA/(Sqrt(3) \(\times\) VWDG1 \(\times\) CTR1) \(=2.09 \quad \mathrm{~A}\)} \\
\hline \multicolumn{6}{|l|}{Winding 2 Current Tap TAP2 \(=\) MVA/(Sqrt(3) \(\times\) VWDG2 \(\times\) CTR2) \(=2.09\) A} \\
\hline \multicolumn{6}{|l|}{Winding 3 Current Tap TAP3 = MVA/(Sqrt(3) \(\times\) VWDG3 \(\times\) CTR3) \(=2.09\) A} \\
\hline O87P \(\geq 0.1\) & 5A / TAPmin & 0.24 & Set 087P= & 0.24 & \# Per manual \\
\hline \multicolumn{6}{|l|}{Dual-Slop variable-percentage differential characteristic is used.} \\
\hline \multicolumn{6}{|c|}{Restraint Slop 1 Percentage (5-100\%) SLP \(1=25\)} \\
\hline \multicolumn{6}{|c|}{Restraint Slope 2 Percentage (OFF, 25-200\%) SLP2 = 50} \\
\hline \multicolumn{6}{|l|}{Restraint Current Slope 1 Limit ((1-20) multiple of tap) IRS1 = 6.8} \\
\hline \multicolumn{6}{|l|}{Unrestrained Element Current PU ((1-20) multiple of tap) U87P = 10.2} \\
\hline \multicolumn{6}{|l|}{Second-Harmonic Blocking Percentage (OFF, 5-100\%) PCT2 = OFF} \\
\hline \multicolumn{6}{|l|}{Fifth-Harmonic Blocking Percentage (OFF, 5-100\%) PCT5 = OFF} \\
\hline & Independe & Harm & cking \(\mathrm{IHBL}=\) & N & \\
\hline
\end{tabular}
2.2 Winding 1 Elems (for event triggering)
2.2.1 Set phase IOC element 50P11P at 7.3 CT secondary amp or 4,393 CT primary amp, i.e. 3.5 times of the maximum full load current (FLC).
2.2.2. Set phase TOC element 51P1P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.3. Set residual IOC element 51N11P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.4. Set residual TOC element 51N1P at 1.65 CT secondary amp or 1,004 CT primary amp, i.e. \(80 \%\) of the maximum FLC.

\section*{Group 1-Set 1:}

Config. Settings:
Relay Identifier
Terminal Identifier
Enable Wdg1 in Differential Element
Enable Wdg2 in Differential Element
Enable Wdg3 in Differential Element
Enable Wdg4 in Differential Element
\begin{tabular}{rl} 
RID & \(=87 B-\) BS1 \\
TID & \(=\mathrm{CH}\) ARLES POLETTI \\
E87W1 & \(=\mathrm{Y}\) \\
E87W2 & \(=\mathrm{Y}\) \\
E87W3 & \(=\mathrm{Y}\) \\
E87W4 & \(=\mathrm{N}\) \\
EOC1 & \(=Y\) \\
EOC2 & \(=\mathrm{N}\) \\
EOC3 & \(=\mathrm{N}\)
\end{tabular}

\section*{Appendix 04 87B-BS1 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Enable Wdg4 O/C Elements and Dmd. Thresholds & EOC4 \(=\) N & \\
\hline Enable Combined O/C Elements & EOCC \(=\mathrm{N}\) & \\
\hline Enable RTDA Elements & \(E 49 \mathrm{~A}=\mathrm{N}\) & \\
\hline Enable RTDB Elements & E49B \(=\mathrm{N}\) & \\
\hline Enable SELogic Set 1 & ESLS1 \(=\mathrm{Y}\) & \\
\hline Enable SELogic Set 2 & ESLS2 \(=\mathrm{N}\) & \\
\hline Enable SELogic Set 3 & ESLS3 \(=\mathrm{N}\) & \\
\hline \multicolumn{3}{|l|}{General Data:} \\
\hline Wdg1 CT Connection & \(\mathrm{W} 1 \mathrm{CT}=\mathrm{Y}\) & \\
\hline Wdg2 CT Connection & \(\mathrm{W} 2 \mathrm{CT}=\mathrm{Y}\) & \\
\hline Wdg3 CT Connection & \(\mathrm{W} 3 \mathrm{CT}=\mathrm{Y}\) & \\
\hline Wdg4 CT Connection & W4CT \(=\mathrm{Y}\) & \# Not Used \\
\hline Wdg1 CT Ratio & CTR1 \(=600\) & \\
\hline Wdg2 CT Ratio & CTR2 \(=600\) & \\
\hline Wdg3 CT Ratio & CTR3 \(=600\) & \\
\hline Wdg4 CT Ratio & CTR4 \(=600\) & \# Not Used \\
\hline Maximum Power Xfmr Capacity & MVA \(=750\) & \\
\hline Define Interal CT Connection Compensation & \(\mathrm{ICOM}=\mathrm{N}\) & \\
\hline Wdg 1 Line-to-Line Voltage & VWDG1 = 345 & \# kV \\
\hline Wdg 2 Line-to-Line Voltage & VWDG2 = 345 & \# kV \\
\hline Wdg 3 Line-to-Line Voltage & VWDG3 = 345 & \# kV \\
\hline Wdg 4 Line-to-Line Voltage & VWDG4 = 345 & \# Not used \\
\hline \multicolumn{3}{|l|}{Diff Elems:} \\
\hline Restrained Element Current PU & O87P \(=0.24\) & \\
\hline Restrain Slope 1 Percentage & SLP1 \(=25\) & \\
\hline Restrain Slope 2 Percentage & SLP2 \(=50\) & \\
\hline Restraint Current Slope 1 Limit & IRS1 \(=6.8\) & \\
\hline Unrestrained Element Current PU & U87P \(=10.2\) & \\
\hline 2nd Harmonic Blocking Percentage & PCT2 \(=\) OFF & \\
\hline 5th Hamronic Blocking Percentage & PCT5 = OFF & \\
\hline 5th Harmonic Alarm Threshold & TH5P = OFF & \\
\hline Independent Harmonic Blocking & \(\mathrm{lHBL}=\mathrm{N}\) & \\
\hline Restriced Earth Fault: & & \# Not Used \\
\hline \multicolumn{3}{|l|}{Winding 1 Elems:} \\
\hline Phase Def-Time O/C Level 1 PU & \(50 \mathrm{P} 11 \mathrm{P}=7.3\) & \# 3.5xFLC \\
\hline Phase Level 1 O/C Delay & \(50 \mathrm{P} 11 \mathrm{P}=0.5\) & \# cycle \\
\hline 50P11 Torque Control (SELogic Equation) & \(50 \mathrm{P} 11 \mathrm{TC}=1\) & \\
\hline Oher Phase Inst O/C elements & & \# Not used \\
\hline Phase Inv-Time O/C PU & \(51 \mathrm{P} 1 \mathrm{P}=2.95\) & \# 1.4xFLC \\
\hline Phase Inv-Time O/C Curve & \(51 \mathrm{P} 1 \mathrm{C}=\mathrm{C} 2\) & \\
\hline Phase Inv-Time O/C Time-Dial & 51P1TD \(=0.2\) & \\
\hline Phase Inv-Time O/C EM Reset & 51P1RS \(=\mathrm{N}\) & \\
\hline 51P1 Torque Control (SELogic Equation) & \(51 \mathrm{P} 1 \mathrm{TC}=1\) & \\
\hline Neg-Seq Def-Time O/C & & \# Not used \\
\hline Residual Def-Time O/C Level 1 PU & \(50 \mathrm{~N} 11 \mathrm{P}=2.95\) & \# 1.4xFLC \\
\hline Residual Level 1 O/C Delay & \(50 \mathrm{~N} 11 \mathrm{D}=0.5\) & \# cycle \\
\hline 50N11 Torque Control (SELogic Equation) & \(50 \mathrm{~N} 11 \mathrm{TC}=1\) & \\
\hline
\end{tabular}

\section*{Appendix 04 87B-BS1 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Other Residual Inst O/C elements & & \# Not used \\
\hline Residual Inv-Time O/C PU & \(51 \mathrm{~N} 1 \mathrm{P}=1.65\) & \# 80\% FLC \\
\hline Residual Inv-Time O/C Curve & \(51 \mathrm{~N} 1 \mathrm{C}=\mathrm{C} 2\) & \\
\hline Residual Inv-Time O/C Time-Dial & \(51 \mathrm{~N} 1 \mathrm{TD}=0.35\) & \\
\hline Residual Inv-Time O/C EM Reset & 51N1RS = N & \\
\hline 51N1 Torque Control (SELogic Equation) & 51N1TC = 1 & \\
\hline Demand Ammeter Time Constant & DATC1 \(=15\) & \# Default \\
\hline Phase Demand Ammeter Threshold & PDEM1P \(=7\) & \# Default \\
\hline Neg-Seq Demand Ammeter Threshold & QDEM1P = 1 & \# Default \\
\hline Residual Demand Ammeter Threshold & NDEM1P = 1 & \# Default \\
\hline Winding 2 Elems: & & \# Not Used \\
\hline Winding 3 Elems: & & \# Not Used \\
\hline Winding 4 Elems: & & \# Not Used \\
\hline Combined Elems: & & \# Not used \\
\hline RTD A Elems: & & \# Not used \\
\hline RTD B Elems: & & \# Not used \\
\hline Misc. Timers & & \# Default \\
\hline SELogic Set 1: & & \\
\hline Set 1 Variable 1 (SELogic Equation) & S1V1 \(=87 \mathrm{R}\) & \\
\hline S1V1 Timer Pickup & S1V1PU \(=0\) & \\
\hline S1V1 Timer Dropout & S1V1DO \(=24\) & \# 0.4 second \\
\hline Set 1 Variable 2 (SELogic Equation) & S1V2 \(=51 \mathrm{P} 1 \mathrm{~T}+51 \mathrm{~N} 1 \mathrm{~T}\) & \\
\hline S1V2 Timer Pickup & S1V2PU = 0 & \\
\hline S1V2 Timer Dropout & S1V2DO \(=0\) & \\
\hline Set 1 Variable 3 (SELogic Equation) & S1V3 = S1V2+87R & \\
\hline S1V3 Timer Pickup & S1V3PU \(=60\) & \# 1 second \\
\hline S1V3 Timer Dropout & S1V3DO \(=300\) & \# 5 seconds \\
\hline Set 1 Variable 4 (SELogic Equation) S1V4 = 87R+50N11T+50P1 & 11T+51P1T+51N1T & \# Event trigger \\
\hline S1V4 Timer Pickup & S1V4PU = 0 & \\
\hline S1V4 Timer Dropout & S1V4DO \(=0\) & \\
\hline Set 1 Latch Bits & & \# Not used \\
\hline SELogic Set 2: & & \# Not used \\
\hline SELogic Set 3: & & \# Not used \\
\hline
\end{tabular}

Trip Logic:
\[
\begin{aligned}
& \text { TR1 }=50 \mathrm{P} 11 \mathrm{~T}+51 \mathrm{P} 1 \mathrm{~T}+50 \mathrm{~N} 11 \mathrm{~T}+51 \mathrm{~N} 1 \mathrm{~T} \\
& \text { TR2 }=87 \mathrm{R}+87 \mathrm{U} \\
& \text { TR3 }=0 \\
& \text { TR4 }=0 \\
& \text { TR5 }=0 \\
& \text { ULTR1 }=!(51 \mathrm{P} 1+51 \mathrm{~N} 1) \\
& \text { ULTR2 }=!(87 \mathrm{R}+87 \mathrm{U}) \\
& \text { ULTR3 }=0 \\
& \text { ULTR4 }=0 \\
& \text { ULTR5 }=0 \\
& \text { ER }=/ \text { S1V4 } \\
& \text { \# Not used } \\
& \text { OUT101 }=\text { TRIP1+TRIP2 \# Any Trip } \\
& \text { OUT102 }=0 \quad \text { \# Not used }
\end{aligned}
\]

\section*{Appendix 04 87B-BS1 (SEL-387) Setting Calculation}
\begin{tabular}{lll} 
Output Contact 103 & OUT103 \(=0\) & \# Not used \\
Output Contact 104 & OUT104 \(=0\) & \# Not used \\
Output Contact 105 & OUT105 \(=\) S1V3T & \# Alarm \\
Output Contact 106 & OUT106 \(=0\) & \# Not used \\
Output Contact 107 & OUT107 \(=0\) & \# Not used \\
Output Contact \(201 \sim 212\) are all 0. & & \# Not used \\
Global & & \# Default
\end{tabular}

SER:
SER1 \(=87 R, 87 \mathrm{U}, 50 \mathrm{P} 11,50 \mathrm{P} 11 \mathrm{~T}, 51 \mathrm{P} 1,51 \mathrm{P} 1 \mathrm{~T}, 50 \mathrm{~N} 11,50 \mathrm{~N} 11 \mathrm{~T}, 51 \mathrm{~N} 1,51 \mathrm{~N} 1 \mathrm{~T}\)
SER2 = S1V1,S1V1T,S1V2,S1V3,OUT105,S1V4
SER3 \(=0\)
SER4 \(=0\)

\section*{Appendix 05 11L-1-Q35M (Areva-P546) Setting Calculation}
1. Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { MVA_Base = } \\
& \text { CTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 600
\end{aligned}
\] & \[
\begin{aligned}
& \text { kV_Base = } \\
& \text { PTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 3000
\end{aligned}
\] & \[
\begin{aligned}
& \text { Z_Base = } \\
& \text { CTR/PTR= }
\end{aligned}
\] & \[
\begin{aligned}
& 1190.25 \\
& 0.2
\end{aligned}
\] & ohms \\
\hline Line ID & From & To & R1(ohms) & X1(ohms) & R0(ohms) & X0(ohms) \\
\hline Q35M+48 & Charles Poletti & FARRAGUT & 0.499905 & 2.42811 & 4.38012 & 6.213105 \\
\hline
\end{tabular}

Secondary Ohms = Primary Ohms • (CTR/PTR)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & R1(2nd ohm) & X1(2nd ohm) & R0(2nd ohm) & X0(2nd ohm) \\
\hline Q35M+48 & Charles Poletti & FARRAGUT & 0.10 & 0.49 & 0.88 & 1.24 \\
\hline
\end{tabular}

Z1 = Sqrt (R1*R1 + X1*X1) \(\quad\) Z1Ang \(=\operatorname{Arctan}(X 1 / R 1) \quad\) Z0 equations are the same.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & Z1(2nd ohm) & Z1Ang & Z0(2nd ohm) & ZOAng \\
\hline Q35M+48 & Charles Poletti & FARRAGUT & 0.49 & 78.37 & 1.52 & 54.82 \\
\hline
\end{tabular}
2. Setting Criteria
2.1 Set Zone 1 phase distance at \(87 \%\) of the line impedance with no time delay.
2.2 Set Zone 2 phase distance at \(200 \%\) of the line impedance with 0.35 second delay.
(ConEd 0.3s)
2.3 Set Zone 1 ground distance at \(70 \%\) of the line impedance with no time delay.
2.4 Set Zone 2 ground distance at \(200 \%\) of the line impedance with 0.6 second delay.
(ConEd 0.3s)
2.5 Line differential and other distance elements are not used.
2.6 High Set Fault Protection (50HS):

For 3LG fault at Charles Poletti 345kV bus, the fault contributions are as following.


\section*{Appendix 05 11L-1-Q35M (Areva-P546) Setting Calculation}


50HS shall provide high spped direct trip for all internal close-in phase faults and must not operate for remote bus faults or reverse faults with appropriate operating margin. Based on the fault current contribution above, 50 HS if set to clear a fault of \(25,314 \mathrm{Amp}\), it may false trip for a reverse fault \((21,005\) Amp), especially when Q35L is out of service ( \(33,668 \mathrm{Amp}\) ), so 50 HS cannot be set securely and therefore is disabled.
Noted that the Aspen model (NYISO_2012_Q308_ON ) provided by NYISO shows a higher fault level due to consideration of future BERRIANS 3 station. However, it will not impact the conclusion.

\subsection*{2.7 Stub Bus Protection (50SB):}

The voltage source of 11L-1-Q35M (Areva-P546) relay is at the bus side of the MOD, so 50SB is not required.

\subsection*{2.8 Switch-On-To-Fault Protection (50SOTF)}

50SOTF will only be armed when the circuit breakers are open and the asscoated line is de-energized.
While closing the first circuit breaker to energize the line this function shall only be in service for the first 15 cycles and will reset if no fault is detected. 50SOTF is fulfilled by SOTF tripping Zone 2 with 200 ms dropout timer, instead of 15 cycles or 250 ms drop-out timer, due to 100 ms step of the setting. 2.9 Directional Ground Overcurrent Backup Protection (67N)

67 N will be used to provide backup protection for ground faults on the system. 67 N pickup shall be higher than the worst unbalance and can be set at \(1 / 3\) of maximum full load (1255Amp/600/3=0.7Amp). US inverse is the selected curve for this time delay element. It shall coordinate with primary protection with a proper CTI (Coordination Time Interval) and trip a ground fault at Farragut 345 kV with 0.68 second time delays under normal and 0.52 second time delay when the Q35L line is out. Refer to Appendix 28 for TCC.

The instantaneous -overcurrent (IOC) function can be used to provide close-in ground fault detection if it can be set selectively.

\section*{Appendix 05 \\ 11L-1-Q35M (Areva-P546) Setting Calculation}

Applying 2LG and 1LG faults at Farragut 345kV bus under four conditions of normal, B47 out, Line 48 out, and Q35L out, the maximum ground fault current seen by 11L-1-Q35M relay would be
a 2 LG at Farragut 345 kV bus with line 48 out, and is
With margin of
30\%
6484.00

Amp
However, applying 1LG faults at AEII Generation station, Aspen voltage sag analysis shows 0.003 pu voltage or 0.2 V secondary at \(11 \mathrm{~L}-1-\mathrm{Q} 35 \mathrm{M}\) relay. With voltage below 1 V , directionality is in doubt. With fault level of more than 40 kA at AEII Generation station 345 kV bus, falsely tripping is possible. So, it is not recommended to use \(67 \mathrm{~N}-\mathrm{IOC}\).

SYSTEM DATA:

CB CONTROL:

DATE AND TIME:
\[
\begin{aligned}
\text { CB Control by } & =\text { Disabled } \\
\text { Rst CB mon LO by } & =\mathrm{CB} \text { Close } \\
\text { CB mon Lo RstDly } & =5.000 \mathrm{~S} \\
\text { CB1 Status Input } & =52 \mathrm{~B} 3 \text { pole } \\
\text { CB Status Time } & 5.000 \mathrm{~S} \\
\text { CB2 Status Input } & =52 \mathrm{~B} 3 \text { pole }
\end{aligned}
\]

IRIG-B Sync = Enabled
Battery Alarm = Enabled Other Time Settings = Default
CONFIGURATION:
\# 21Z1,21Z2
\# Not used
\# 67N
\# Not used

Supervision = Enabled
System Checks = Disabled

\section*{Appendix 05 11L-1-Q35M (Areva-P546) Setting Calculation}

CT AND VT RATIOS
Auto-Reclose \(=\) Disabled
Input Labels = Visible
Output Labels \(=\) Visible
CT \& VT Ratios = Visible
Record Control \(=\) Visible
Disturb Recorder \(=\) Visible
Measure't Setup = Visible
Comms Settings = Visible
Commission Tests \(=\) Visible
Setting Values = Secondary
Control Inputs = Invisible
Ctrl I/P Config = Invisible
Ctrl I/P Labels = Invisible
Direct Access = Enabled
InterMiCOM 64 = Disabled
Function Key = Invisible
LCD Contrast = 11
Main VT Primary \(=345.0 \mathrm{kV}\)
Main VT Sec'y \(=115.0 \mathrm{~V}\)
CB1 CS VT Prim'y \(=345.0 \mathrm{kV}\)
CB1 CS VT Sec'y \(=115.0 \mathrm{~V}\)
CB2 CS VT Prim'y \(=345.0 \mathrm{kV}\)
CB2 CS VT Sec'y \(=115.0 \mathrm{~V}\)
Phase CT Primary \(=3000 \mathrm{~A}\)
Phase CT Sec'y \(=5.000 \mathrm{~A}\)
SEF CT Primary \(=1.000 \mathrm{~A}\)
SEF CT Secondary \(=1.000 \mathrm{~A}\)
MComp CT Primary \(=1.000 \mathrm{~A}\)
MComp CT Sec'y \(=1.000 \mathrm{~A}\)
CS Input \(=\mathrm{A}-\mathrm{N}\)
CT1 Polarity = Standard CT2 Polarity = Standard
SEF CT Polarity = Standard
M CT Polarity = Standard
VT Connected \(=\) Yes
CB1 CS VT PhShft = 0 deg
CB1 CS VT Mag = 1
CB2 CS VT PhShft \(=0 \mathrm{deg}\)
CB2 CS VT Mag = 1
MEASURE'T SETUP:
\[
\begin{aligned}
\text { Default Display } & =3 \mathrm{Ph}+\mathrm{N} \text { Current } \\
\text { Local Values } & =\text { Primary } \\
\text { Remote Values } & =\text { Primary } \\
\text { Measurement Ref } & =\text { VA } \\
\text { Measurement Mode } & =0 \\
\text { Fix Dem Period } & =30.00 \mathrm{~min} \\
\text { Roll Sub Period } & =30.00 \mathrm{~min} \\
\text { Num Sub Periods } & =1 \\
\text { Distance Unit } & =\text { Miles }
\end{aligned}
\]

\section*{Appendix 05 \\ 11L-1-Q35M (Areva-P546) Setting Calculation}

Fault Location = Distance
COMMISSION TESTS:
\begin{tabular}{lll} 
& Monitor Bit \(1=1060\) & \# Red LED1 \\
& Monitor Bit \(2=1062\) & \# Red LED2 \\
Monitor Bit \(3=1064\) & \# Red LED3 \\
& Monitor Bit \(4=1066\) & \# Red LED4 \\
& Monitor Bit \(5=1068\) & \# Red LED5 \\
& Monitor Bit \(6=1070\) & \# Red LED6 \\
& Monitor Bit \(7=1072\) & \# Red LED7 \\
CB MONITOR SETUP: & Monitor Bit \(8=1074\) & \# Red LED8 \\
& All disabled & \# Not required
\end{tabular}

OPTO CONFIG:
\[
\begin{aligned}
\text { Global Nominal } \mathrm{V}= & 110 / 125 \mathrm{~V} \\
\text { Opto Filter Cntl } & =11111111111111111111111 \\
\text { Characteristic }= & \text { Standard } 60 \%-80 \% \\
& \text { Not used } \\
& \text { Not used } \\
& \text { Not used }
\end{aligned}
\]

CONTROL INPUTS:
CTRL I/P CONFIG:
FUNCTION KEYS:
CTRL I/P LABELS:

\section*{Group 1:}

GROUP 1 LINE PARAMETERS:
\[
\begin{aligned}
\text { Line Length } & =9.635 \mathrm{mi} \\
\text { Line Impedance } & =0.49 \\
\text { Line Angle } & =79.00 \quad \text { Ohm } \\
\text { kZN Res Comp } & =0.73 \\
\text { kZN Res Angle } & =-34 \\
\text { Mutual Comp } & =\text { Disabled } \\
\text { Phase Sequence } & =\text { Standard ABC } \\
\text { CB1Tripping Mode } & =3 \text { Pole } \\
\text { CB2Tripping Mode } & =3 \text { Pole } \\
\text { UP: } & \\
\text { Setting Mode } & =\text { Advanced } \\
\text { Phase Chars. } & =\text { Quad } \\
\text { Zone } 1 \text { Ph Status } & =\text { Enabled } \\
\text { Zone } 2 \text { Ph Status } & =\text { Enabled } \\
\text { Zone } 3 \text { Ph Status } & =\text { Disabled } \\
\text { Zone } 4 \text { Ph Status } & =\text { Disabled } \\
\text { Ground Chars. } & =\text { Quad } \\
\text { Zone } 1 \text { Gnd Stat } & =\text { Enabled } \\
\text { Zone } 2 \text { Gnd Stat. } & =\text { Enabled } \\
\text { Zone } 3 \text { Gnd Stat } & =\text { Disabled } \\
\text { Zone P Gnd Stat. } & \text { Disabled } \\
\text { Zone } 4 \text { Gnd Stat. } & =\text { Diabled } \\
\text { Digital Filter } & =\text { Standard } \\
\text { CVT Filters } & =\text { Disabled } \\
\text { Load Blinders } & =\text { Disabled }
\end{aligned}
\]

GROUP 1 DISTANCE SETUP:

\section*{Appendix 05 \\ 11L-1-Q35M (Areva-P546) Setting Calculation}

AidedDeltaStatus = Disabled
Dir. Char Angle \(=60.00\) deg \# Default

GROUP 1 DIST. ELEMENTS:
0
Z1 Ph. Reach \(=420 \quad\) mOhm
Z1 Ph. Angle \(=79 \quad\) deg
R1 Ph. Resistive \(=5 \quad\) Ohm
Z1 Tilt Top Line \(=-3 \quad\) deg
Z1 Sensit. Iph>1 \(=0.25\) A
Z2 Ph. Reach \(=980 \quad \mathrm{mOhm}\)
Z2 Ph. Angle \(=79 \quad\) deg
R2 Ph. Resistive \(=5 \quad\) Ohm
Z2 Tilt Top Line \(=-3 \quad\) deg
Z2 Sensit. \(\mathrm{Iph}>2=0.25\) A
Z1 Gnd. Reach \(=340 \quad \mathrm{mOhm}\)
Z1 Gnd. Angle \(=79 \quad\) deg
Z1 Dynamic Tilt = Enabled
Z1 Tilt Top Line \(=-3 \quad\) deg
kZN1 Res. Comp \(=0.73\)
kZN1 Res. Angle \(=-34 \quad\) deg
R1 Gnd Resistive \(=5 \quad\) Ohm
Z1 Sensit Ignd>1 \(=0.25\) A
Z2 Gnd. Reach \(=980 \quad \mathrm{mOhm}\)
Z2 Gnd. Angle \(=79 \quad\) deg
Z2 Dynamic Tilt = Enabled
Z2 Tilt Top Line \(=-3 \quad\) deg
kZN2 Res. Comp. \(=0.73\)
kZN2 Res. Angle \(=-34\)
R2 Gnd Resistive \(=5 \quad\) Ohm
Z2 Sensit Ignd>2 \(=0.25\) A
GROUP 1 SCHEME LOGIC:
Zone1 Tripping \(=\stackrel{0}{ }\) Phase And Ground
tZ1 Ph. Delay = 0 s
tZ1 Gnd. Delay \(=0 \quad\) s
Zone2 Tripping = Phase And Ground
tZ2 Ph. Delay \(=350 \mathrm{~ms}\)
tZ2 Gnd. Delay = 600 ms
Zone3 Tripping = Disabled
ZoneP Tripping = Disabled
Zone4 Tripping = Disabled
Aid. 1 Selection = Disabled
Aid. 2 Selection = Disabled SOTF Status = Enabled PoleDead SOTF Delay \(=600 \quad \mathrm{~ms}\)
SOTF Tripping \(=100010 \quad\) \# Allow fast fault clearance and Zone 2
TOR Status = Disabled
TOC Reset Delay \(=200 \mathrm{~ms}\), \# In 100ms step, 250ms in 311L.
TOC Delay \(=200\)
Z1 Extension = Disabled
LOL Scheme = Disabled
ms

\section*{Appendix 05}

\section*{11L-1-Q35M (Areva-P546) Setting Calculation}

\section*{GROUP 1 EARTH FAULT:}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{IN}>1\) Status \(=\) Enabled} \\
\hline \(\mathrm{IN}>1\) Function = US Inverse & \\
\hline \multicolumn{2}{|l|}{IN>1 Directional \(=\) Directional Fwd} \\
\hline \(\mathrm{IN}>1\) Current Set \(=700 \mathrm{~mA}\) & \# 67N \\
\hline \(\mathrm{IN} \times 1\) Time Dial \(=2.5\) & \\
\hline \multicolumn{2}{|l|}{\(\mathrm{IN}>1\) Reset Char \(=\) DT} \\
\hline \(\mathrm{IN}>1\) tRESET \(=0\) s & \\
\hline IN>2 Status = Disabled & \\
\hline IN>3 Status = Disabled & \\
\hline IN>4 Status = Disabled & \\
\hline IN \(>\) Blocking \(=000001\) & \# Block IN>1 \\
\hline \(\mathrm{IN}>\) Char Angle \(=-60 \quad\) deg & \# Default \\
\hline \multicolumn{2}{|l|}{IN> Polarisation = Zero Sequence} \\
\hline \(\mathrm{IN}>\) VNpol Set \(=1.000 \mathrm{~V}\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{D:} \\
\hline \(1<\) Current Set \(=250.0 \mathrm{~mA}\) & \# Default \\
\hline ISEF \(<\) Current \(=100.0 \mathrm{~mA}\) & \# Default \\
\hline \(\mathrm{V}<=10.0 \mathrm{~V}\) & \# Minimum \\
\hline
\end{tabular}

GROUP 1 SUPERVISION:
\[
\begin{aligned}
\text { VTS Mode } & =\text { Measured Only } \\
\text { VTS Status } & =\text { Blocking } \\
\text { VTS Reset Mode } & =\text { Auto } \\
\text { VTS Time Delay } & =5.000 \mathrm{~s} \\
\text { VTS I> Inhibit } & =3.150 \mathrm{~A} \\
\text { VTS I } 2>\text { Inhibit } & =250.0 \mathrm{~mA} \\
\text { I }>2 \text { nd Harmonic } & =0.1 \\
\text { WI Inhibit } & =\text { Disabled } \\
\text { CTS Mode } & =\text { Disabled }
\end{aligned}
\]

GROUP 1 INPUT LABELS:
Opto Input 1 Spare
Opto Input 2 Spare
Opto Input 3 Zone 2 Timer Byp
Opto Input 4 Spare
Opto Input 5 52b/2 status
Opto Input 6 52b/5 status
Opto Input 7 89b/FQ35M status
Opto Input 8 89b/F5 status
Opto Input 9 86TT-1/Q35M stat
Opto Input 10 86TT-1/Q35M alm
Opto Input 11 86-1/Q35M status
Opto Input 12 86-1/Q35M alm
Opto Input 13 11LTSS-1A/Q35M M
Opto Input 14 11LTSS-1B/Q35M M
Opto Input 15 89b/GS29/A status
Opto Input 16 89b/GS29/B status
Opto Input 17 89b/GS29/C status
Opto Input 18 11LTSR-1A/Q35M M
Opto Input 19 11LTSR-1B/Q35M M
Opto Input 20 Spare

\section*{Appendix 05 \\ 11L-1-Q35M (Areva-P546) Setting Calculation}

Opto Input 21 Spare
Opto Input 22 Spare
Opto Input 23 Spare Opto Input 24 Spare
GROUP 1 OUTPUT LABELS:
Relay 1 Any Trip (SER)
Relay 2 67N TRIP
Relay 3 21(ZONE2) TRIP
Relay 4 21\&21G TRIP
Relay 5 Spare
Relay 6 Spare \#50HS
Relay 7 Spare
Relay 8 Spare
Relay 9 Spare
GROUP 1 OUTPUT LABELS:
Relay 10 Spare
Relay 11 Spare
Relay 12 Spare
Relay 13 Spare
Relay 14 Spare
Relay 15 Spare
Relay 16 Spare
Relay 17 Spare
Relay 18 Spare
Relay 19 Spare
Relay 20 Spare
Relay 21 Spare
Relay 22 Spare
Relay 23 Spare
Relay 24 Spare
Relay 25 Spare
Relay 26 Spare
Relay 27 Spare
Relay 28 Spare
Relay 29 Spare
Relay 30 Spare
Relay 31 Spare
Relay 32 Spare

\section*{Appendix 06 11L-2-Q35M (SEL-311L) Setting Calculation}
1. Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { MVA_Base = } \\
& \text { CTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 600 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { kV_Base = } \\
& \text { PTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 3000
\end{aligned}
\] & \[
\begin{aligned}
& \text { Z_Base = } \\
& \text { CTR/PTR= }
\end{aligned}
\] & \[
\begin{aligned}
& 1190.25 \\
& 0.2 \\
& \hline
\end{aligned}
\] & ohms \\
\hline Line ID & From & To & R1(ohms) & X1(ohms) & R0(ohms) & X0(ohms) \\
\hline Q35M+48 & Charles Poletti & FARRAGUT & 0.499905 & 2.42811 & 4.38012 & 6.213105 \\
\hline
\end{tabular}

Secondary Ohms = Primary Ohms • (CTR/PTR)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & R1(2nd ohm) & X1(2nd ohm) & R0(2nd ohm) & X0(2nd ohm) \\
\hline Q35M+48 & Charles Poletti & FARRAGUT & 0.10 & 0.49 & 0.88 & 1.24 \\
\hline
\end{tabular}

Z1 = Sqrt (R1*R1 + X1*X1) \(\quad\) Z1Ang \(=\operatorname{Arctan}(X 1 / R 1) \quad\) Z0 equations are the same.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & Z1(2nd ohm) & Z1Ang & Z0(2nd ohm) & ZOAng \\
\hline Q35M+48 & Charles Poletti & FARRAGUT & 0.49 & 78.37 & 1.52 & 54.82 \\
\hline
\end{tabular}
2. Setting Criteria
2.1 Set Zone 1 phase distace at \(87 \%\) of the line impedance with no time delay.
2.2 Set Zone 2 phase distace at \(200 \%\) of the line impedance with 0.35 second delay.
(ConEd 0.3s)
2.3 Set Zone 1 ground distance at \(70 \%\) of the line impedance with no time delay.
2.4 Set Zone 2 ground distance at \(200 \%\) of the line impedance with 0.6 second delay.
(ConEd 0.3s)
2.5 Line differential and other distance elements are not used.
2.6 High Set Fault Protection (50HS):

For 3LG fault at Charles Poletti 345kV bus, the fault contributions are as following.



50HS shall provide high spped direct trip for all internal close-in phase faults and must not operate for remote bus faults or reverse faults with appropriate operating margin. Based on the fault current contribution above, 50 HS if set to clear a fault of \(25,314 \mathrm{Amp}\), it may false trip for a reverse fault ( 21,005 Amp), especially when Q35L is out of service ( \(33,668 \mathrm{Amp}\) ), so 50 HS cannot be set securely and therefore is disabled.
Noted that the Aspen model (NYISO_2012_Q308_ON ) provided by NYISO shows a higher fault level due to consideration of future BERRIANS 3 station. However, it will not affect the conclusion.

\subsection*{2.7 Stub Bus Protection (50SB):}

The voltage source of 11L-2-Q35M (SEL-311L) relay is at the line side of the MOD, so 50SB is required. 50 SB is to be enabled only when MOD is open, i.e. supervised by MOD's 89b, see 67P2TC setting. For normal load current or external fault current through the stub bus, the current will ideally be zero. Set 50SB pickup at \(150 \%\) of the maximum full load current by considering all three GSUs with a possibility of one set of CT test switches left shorted.
\(\begin{array}{lll}\text { Total MVA of all three GSUs }= & 750 \quad \text {; Maximum full load current }(\mathrm{amps})= & 1255.11\end{array}\) 2.8 Switch-On-To-Fault Protection (50SOTF)

50SOTF will only be armed when the circuit breakers are open and the asscoated line is de-energized. While closing the first circuit breaker to energize the line this function shall only be in service for the first 15 cycles and will reset if no fault is detected. 50SOTF pickup can be set the same as 50SB.

\subsection*{2.9 Directional Ground Overcurrent Backup Protection (67N)}

67 N will be used to provide backup protection for ground faults on the system. 67 N pickup shall be higher than the worst unbalance and can be set at \(1 / 3\) of maximum full load (1255Amp/600/3=0.7Amp). US inverse is the selected curve for this time delay element. It shall coordinate with primary protection with a proper CTI (Coordination Time Interval) and trip a ground fault at Farragut 345 kV with 0.68 second time delays under normal and 0.52 second time delay when the Q35L line is out. Refer to Appendix 28 for TCC.

\section*{Appendix 06 11L-2-Q35M (SEL-311L) Setting Calculation}

The instantaneous -overcurrent (IOC) function can be used to provide close-in ground fault detection if it can be set selectively.
Applying 2LG and 1LG faults at Farragut 345kV bus under four conditions of normal, B47 out, Line 48 out, and Q35L out, the maximum ground fault current seen by \(11 \mathrm{~L}-2-\mathrm{Q} 35 \mathrm{M}\) relay would be
\begin{tabular}{lccl} 
a 2LG at Farragut 345 kV bus with line 48 out, and is & 6484.00 & Amp \\
With margin of & \(30 \%\) & IOC \(=\) & \(8429.20 \quad\) Primary Amp
\end{tabular}

However, applying 1LG faults at AEII Generation station, Aspen voltage sag analysis shows 0.003 pu voltage or 0.2 V secondary at \(11 \mathrm{~L}-2-\mathrm{Q} 35 \mathrm{M}\) relay. With voltage below 1 V , directionality is in doubt. With fault level of more than 40kA at AEII Generation station 345 kV bus, falsely tripping is possible. So, it is not recommended to use \(67 \mathrm{~N}-\mathrm{IOC}\).

Group 1 - Set 1:
General Settings:
Relay ID
Terminal ID
\[
\begin{aligned}
\mathrm{RID} & =11 \mathrm{~L}-2-\mathrm{Q} 35 \mathrm{M} \\
\mathrm{TID} & =\mathrm{CHARLES} \text { POLETTI } \\
\mathrm{CTR} & =600 \\
\mathrm{APP} & =311 \mathrm{~L} \\
\mathrm{EADVS} & =\mathrm{N}
\end{aligned}
\]

Line Current Differential Settings: Not used
All 87L settings are off or as default

Backup Protection and Line Parameters:
Polarizing (IPOL) CT Ratio CTRP \(=600\) \# Not used
Phase PT Ratio
PTR \(=3000\)
Synch Voltage (VS) PT Ratio
PTRS = 3000 \# Not used

Pos-Seq Line Impedance Magnitude (Ohms secondary)
Pos-Seq Line Impedance Angle (degrees)
Z1MAG \(=0.49\)

Zero-Seq Line Impedance Magnitude (Ohms secondary)
Z1ANG \(=78.37\)

Zero-Seq Line Impedance Angle (degrees)
ZOMAG \(=1.52\)
ZOANG \(=54.82\)
Line Length (unitless)
LL = 100
Fault Locator Enable
EFLOC = Y

Phase Distance:
Enable Mho Phase Distance Elements
E21P = 2
CCVT Transient Detection Enable ECCVT = N
Reach Zone 1 (Ohms secondary)
Reach Zone 2 (Ohms secondary)
Z1P = 0.42
Z2P = 0.98
\# VT is used

Phase-Phase Overcurrent Fault Detector Zone 1 (2nd Amp)
50PP1 \(=0.5\)
\# Fault detectors can be set at the minimum if LOP (Loss Of Potential) is enabled.

\section*{Ground Distance Elements:}

Enable Mho Ground Distance Elements Enable Quad Ground Distance Elements

E21MG = N

XG1 Zone 1 Reactance (Ohms secondary)
XG2 Zone 2 Reactance (Ohms secondary)
E21XG = 2
\(X G 1=0.34 \quad \# 70 \%\) of line
Zone 1 Resistance (Ohms secondary)
XG2 \(=0.98 \quad \# 200 \%\) of line

\section*{Appendix 06 11L-2-Q35M (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Zone 2 Resistance (Ohms secondary) & \multicolumn{2}{|l|}{\(R G 2=5.00\)} \\
\hline Zone 1 Phase Current FD (Amps secondary) & \(50 \mathrm{~L} 1=0.5\) & \# minimum \\
\hline Zone 2 Phase Current FD (Amps secondary) & 50L2 \(=0.5\) & \# minimum \\
\hline Zone 1 Residual Current FD (Amps secondary) & \(50 G Z 1=0.5\) & \# minimum \\
\hline Zone 2 Residual Current FD (Amps secondary) & \(50 \mathrm{GZ2}=0.5\) & \# minimum \\
\hline \multicolumn{3}{|l|}{\# Fault detectors can be set at the minimum if LOP (Loss Of Potential) is enabled.} \\
\hline Zone 1 ZSC Factor Mag (unitless) & \multicolumn{2}{|l|}{k0M1 \(=0.74\)} \\
\hline Zone 1 ZSC Factor Ang (degrees) & \multicolumn{2}{|l|}{k0A1 \(=-33.91\)} \\
\hline Zone 2,3,4 ZSC Factor Mag (Unitless) & kOM \(=0.74\) & \# As k0M1 \\
\hline Zone 2,3,4 ZSC Factor Ang (degrees) & kOA \(=-33.91\) & \# As k0A1 \\
\hline & \multicolumn{2}{|l|}{k0M1 \(\angle \mathrm{k} 0 \mathrm{~A} 1=\underline{\text { (Z0MAG } \angle \mathrm{Z} 0 \mathrm{ANG})-(\text { Z1MAG } \angle \mathrm{Z} 1 \mathrm{ANG})}\)} \\
\hline & \multicolumn{2}{|l|}{\(3 \cdot(\) Z1MAG \(\angle\) Z1ANG)} \\
\hline \multicolumn{3}{|l|}{Mho Phase Distance Element Time Delay Settings:} \\
\hline Zone 1 Time Delay (cycles in 0.25 increments) & Z1PD = OFF & \\
\hline Zone 2 Time Delay (cycles in 0.25 increments) & Z2PD \(=21\) & \# 0.35 second \\
\hline \multicolumn{3}{|l|}{Mho Ground Distance Element Time Delay Settings:} \\
\hline Zone 1 Time Delay (cycles in 0.25 increments) & Z1GD = OFF & \\
\hline Zone 2 Time Delay (cycles in 0.25 increments) & Z2GD \(=36\) & \# 0.6 second \\
\hline \multicolumn{3}{|l|}{Phase Instantaneous Overcurrent Elements:} \\
\hline Enable Phase Overcurrent Elements & E50P \(=3\) & \\
\hline Phase Instantaneous Overcurrent Level 1 (Amps secondary) & 50P1P = OFF & \# 50HS OFF \\
\hline Phase Instantaneous Overcurrent Level 2 (Amps secondary) & 50P2P \(=3.14\) & \# 50SB \\
\hline Phase Instantaneous Overcurrent Level 3 (Amps secondary) & 50P3P \(=3.14\) & \# 50SOTF \\
\hline Phase Definite-Time Overcurrent Element Level 1 ( cycles) & \(67 \mathrm{P} 1 \mathrm{D}=0\) & \# Not used \\
\hline Phase Definite-Time Overcurrent Element Level 2 ( cycles) & \(67 \mathrm{P} 2 \mathrm{D}=0\) & \# Not used \\
\hline Phase Definite-Time Overcurrent Element Level 3 ( cycles) & \(67 \mathrm{P} 3 \mathrm{D}=0\) & \# Not used \\
\hline \multicolumn{3}{|l|}{Residual Ground Instantaneous Overcurrent Elements:} \\
\hline Enable Residual Ground Overcurrent Elements & E50G = 1 & \\
\hline Residual Ground Inst O/C Level 1 (Amps secondary): & 50G1P = OFF & \# Section 2.9 \\
\hline \multicolumn{3}{|l|}{Negative-Sequence Instantaneous Elements:} \\
\hline Enable Negative-Sequence Overcurrent Element & \(E 50 \mathrm{Q}=\mathrm{N}\) & \# Not used. \\
\hline \multicolumn{3}{|l|}{Phase Time-Overcurrent Elements:} \\
\hline Enable Phase Time-Overcurrent Elements & \(E 51 P=N\) & \# Not used \\
\hline \multicolumn{3}{|l|}{Residual Ground Time-Overcurrent Elements:} \\
\hline Enable Residual Ground Time Overcurrent Elements & E51G = Y & \\
\hline Residual Ground Time-Overcurrent Pickup (Amp secondary) & 51GP \(=0.70\) & \# 67N-TOC \\
\hline 51GC Curve & 51GC = U2 & \\
\hline 51GTD Time Dial & 52GTD \(=2.5\) & \\
\hline 51GRS Electromechanical Reset Delay & \(51 \mathrm{GRS}=\mathrm{N}\) & \\
\hline
\end{tabular}

Negative-Sequence Time-Overcurrent Elements:

\section*{Appendix 06 11L-2-Q35M (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Enable Negative-Sequence Time-Overcurrent Elements & E51Q = N & \# Not used \\
\hline \multicolumn{3}{|l|}{Out-of-Step Settings:} \\
\hline Enable Out-of-Step Elements & EOOS \(=\mathrm{N}\) & \# NotRequired \\
\hline \multicolumn{3}{|l|}{Load-Encroachment Elements:} \\
\hline \multicolumn{3}{|l|}{As per NERC Task Froce requirement, phase distance settings and other applicable phase and ground distance zone settings must permit loading of the line without trip to \(150 \%\) of emergency line ampere rating, with 0.85 per unit bus voltage and a load angle} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Loadability S = (0.85*kV)*(0.85*kV)/(Zsec*cos(Z1ANG-30)*CTR/PTR = 26416.37 MVA Where, Zsec is \(\mathrm{Z2P}\) in this application, kV is 345 and Z1ANG is line angle.}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Conclusion: Loadability is more than 150\% of maximum generation at AEII, no load encroachment.} \\
\hline Enable Load-Encroachment Element & ELOAD \(=\mathrm{N}\) & \# Calc above \\
\hline \multicolumn{3}{|l|}{Directional Elements:} \\
\hline Enable Directional Elements & E32 = AUTO & \\
\hline Loss-Of_Potential Enable & ELOP = Y1 & \\
\hline \multicolumn{3}{|l|}{\# When ELOP = Y1 and a lop occurs, directional O/C elements are blocked.} \\
\hline Busbar PT LOP Logic Enable & EBBPT \(=\mathrm{N}\) & \# N/A \\
\hline Level 3 Direction & DIR3 \(=\mathrm{F}\) & \# Default \\
\hline Level 4 Direction & DIR4 \(=F\) & \# Default \\
\hline Ground Directional Element Priority & ORDER \(=\) Q & \\
\hline \multicolumn{3}{|l|}{Enable Voltage Elements:} \\
\hline Enable Voltage Elements & EVOLT \(=\mathrm{Y}\) & \\
\hline Phase Undervoltage Pickup (Volts secondary) & \(27 \mathrm{P}=45\) & \# Note below \\
\hline \# Under-voltage setting is not required in NYPA PAD revis voltage setting as 45 V secondary. This element is set in by NYPA/ConEd. & The existing Poletti set nd for alarm ONLY unle & shows undertrip is required \\
\hline \multicolumn{3}{|l|}{Other voltage elements are all OFF.} \\
\hline \multicolumn{3}{|l|}{Synchronism Check Elements} \\
\hline Enable Synchronism Check Elements & \(\mathrm{E} 25=\mathrm{N}\) & \# Not used \\
\hline \multicolumn{3}{|l|}{Frequency Elements} \\
\hline Enable Frequency Elements & E81 \(=\) N & \# Not used \\
\hline \multicolumn{3}{|l|}{Relcosing Relay:} \\
\hline Enable Reclosing Relay Elements & \(E 79=N\) & \# Not used \\
\hline \multicolumn{3}{|l|}{Switch-Onto-Fault:} \\
\hline Enable Switch-Onto-Fault Elements & ESOTF = Y & \# Section 2.8 \\
\hline Close Enable Time Delay (cycles in 0.25 increments) & CLOEND \(=\) OFF & \# Not used \\
\hline 52A Eanble Tim Delay (cycles in 0.25 increments) & 52AEND \(=36\) & \# 0.6 second \\
\hline SOTF Duration (cycles in 0.25 increments) & SOTFD \(=15\) & \# Section 2.8 \\
\hline \multicolumn{3}{|l|}{Commnunications Assisted Tripping Schemes:} \\
\hline Enable Communication Assisted Tripping Schemes & \(\mathrm{ECOMM}=\mathrm{N}\) & \# Not used \\
\hline
\end{tabular}

\section*{Zone 1 Extension Settings:}

\section*{Appendix 06 11L-2-Q35M (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Enable Zone 1 Extension Elements & EZ1EXT = N & \# Not used \\
\hline \multicolumn{3}{|l|}{Demand Metering Settings:} \\
\hline Enable Demand Metering Method & EDEM \(=\) THM & \\
\hline DMTC Time constant & DMTC = 15 & \\
\hline Phase Pickup (Amps secondary) & PDEMP = OFF & \# Not used \\
\hline Residual Ground Pickup (Amps secondary) & GDEMP = OFF & \# Not used \\
\hline Negative-Sequence Pcikup (Amps secondary) & QDEMP = OFF & \# Not used \\
\hline \multicolumn{3}{|l|}{Other Setting:} \\
\hline Minimum Trip Duration Time (cycles in 0.25 increments) & TDURD = 9 & \# Default \\
\hline Close Failure Time Delay (cycles in 0.25 increments) & CFD \(=0\) & \# Not used \\
\hline Three-Pole Open Time Delay (cycles in 0.25 increments) & \(3 \mathrm{POD}=0.5\) & \# Default \\
\hline Open Pole Option & \(\mathrm{OPO}=52\) & \# BKR status \\
\hline Load Detection Phase Pickup (Ampes secondary) & \(50 \mathrm{LP}=0.25\) & \# Minimum \\
\hline \multicolumn{3}{|l|}{SELogic Control Equation Variable Timers:} \\
\hline SELogic Latch Bits Enables & ELAT \(=\mathrm{N}\) & \\
\hline SELogic Display Points Enables & EDP \(=8\) & \\
\hline Enable SELogic Control Variable Timers & \(E S V=N\) & \\
\hline \multicolumn{3}{|l|}{Group 1 - Logic 1:} \\
\hline \multicolumn{3}{|l|}{Trip/Comm.-Assisted Trip Logic:} \\
\hline \multicolumn{3}{|l|}{Direct trip conditions TR = M1P+Z1G+M2PT+Z2GT+(M2P+Z2G)*IN103+67P} \\
\hline \multicolumn{3}{|l|}{\# For LED2 Target; IN103 - Zone 2 timer bypass; 67P2T is 50SB; 51GT is 67N-TOC;} \\
\hline Switch-onto-fault trip conditions & TRSOTF \(=50 \mathrm{P} 3\) & \# SOTF \\
\hline Direct transfer trip conditions & DTT \(=0\) & \# Not used \\
\hline Unlatch trip conditions & ULTR \(=\) !52A & \# Default \\
\hline \multicolumn{3}{|l|}{Close Logic Equations:} \\
\hline Circuit breaker status & 52A \(=\) ! IN104+! IN105 & CB2\&5 Status \\
\hline Close conditions & \(C L=0\) & \# Not used \\
\hline Unlatch close conditions & ULCL \(=0\) & \# Not used \\
\hline Latch Bits Set/Reset Equations: & & \# Not used \\
\hline \multicolumn{3}{|l|}{Torque Control Equations for Inst./Def.-Time Overcurrent Elemements:} \\
\hline 67P1TC Level 1 phase & 67P1TC = 1 & \# Not used \\
\hline 67P2TC Level 1 phase & 67P2TC = IN106+IN301 & \# MOD-89b \\
\hline 67P3TC Level 1 phase & 67P3TC = 1 & \# See below \\
\hline 67G1TC Level 1 phase & 67G1TC = 1 & \# Not used \\
\hline 51GTC Residual Ground & 51GTC \(=32 \mathrm{GF}\) & \# DIR \(=\) F \\
\hline Other Torque Controls are not enabled. & & \\
\hline SELogic Control Equation Variables: & & \# ESV \(=\) N \\
\hline \multicolumn{3}{|l|}{Output Contacts:} \\
\hline Output Contact 101 & OUT101 = TRIP & \# Any Trip \\
\hline Output Contact 102 & OUT102 = 51GT & \# 67N \\
\hline Output Contact 103 OUT103 = & +Z2GT+(M2P+Z2G)*IN103 & \# 21 Zone 2 \\
\hline
\end{tabular}

\section*{Appendix 06 11L-2-Q35M (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Output Contact 104 & OUT104 = M1P+Z1G & \# 21 \& 21G \\
\hline Output Contact 105 & OUT105 = SOTFT & \# 50SOTF \\
\hline Output Contact 106 & OUT106 \(=0\) & \# Not used \\
\hline Output Contact 107 & OUT107 = 67P2T & \# 50SB \\
\hline Output Contact 201 & OUT201 \(=\) IN106 & \# DS Open \\
\hline Output Contact 201 & OUT2012 = ! IN 106 & \# DS Close \\
\hline Output Contact 203 ~ 206, 301 ~ 312 are all 0 . & & \\
\hline Display Points: & & \\
\hline Display Point 1 & DP1 \(=0\) & \\
\hline Display Point 2 & DP2 \(=0\) & \\
\hline Display Point 3 & DP3 \(=\) IN103 & \# Z2T Bypass \\
\hline Display Point 4 & DP4 \(=\) IN104 & \# 52b/BKR2 \\
\hline Display Point 5 & DP5 \(=\) IN105 & \# 52b/BKR5 \\
\hline Display Point 6 & DP6 = IN106 & \# 89b/FQ35M \\
\hline Display Point 7 & DP7 = IN301 & \# 89b/F5 \\
\hline Display Point 8 & DP8 \(=3 \mathrm{P} 27\) & \# Low Voltage \\
\hline Display Point 9~16 & & \# Not used \\
\hline Setting Group Selection Equations: & & \\
\hline Select Setting Group 1 & SS1 = 1 & \\
\hline Select Setting Group \(2 \sim 6\) are all 0 & SS2~SS6 = 0 & \# Not used \\
\hline
\end{tabular}

Other Equations:
Event report trigger conditions ER \(=/ \mathrm{M} 2 \mathrm{P}+/ \mathrm{Z2G}+/ 50 \mathrm{P} 2+/ 51 \mathrm{G}+/ \mathrm{LOP}\)
Fault indication FAULT \(=\) M2P + Z2G \(+50 P 2+51 G\)
Block synchronism check elements BSYNCH = 0 Not used
Close bus monitor \(\quad\) CLMON \(=0\) Not used
Enable for V0 polarized and IN polarized elements
Stub Bus Logic Enable ESTUB = 0 \# Not used
\# 50SB is done by setting its torque control 67P2TC as MOD-89b. 87L is not used, ESTUB won't work.

Mirrored Bits Transmit Equations: \# Not used

87L Transmit Equations: \# Not used
General Settings:
\begin{tabular}{lrl} 
Group Change Delay (cycles in 0.25 increments) & TGR \(=0\) & \# Not used \\
Nominal Frequency (Hz) & NFREQ \(=60\) & \\
Phase Rotation & PHROT \(=\) ABC & \\
Date Format & Date_F \(=\) MDY & \\
Front Panel Timeout (minutes) & FP_TO \(=5\) & \# 5 minutes \\
Display Update Rate (seconds) & SCROLD \(=5\) & \# seconds \\
Length of Event Report (cycles) & LER \(=60\) & \\
Cycle Length of Prefault in Event Report (cycles) & PRE \(=4\) & \\
DC Battery LO Voltage Pickup (Vdc) & DCLOP \(=\) OFF & \\
DC Battery HI Voltage Pickup (Vdc) & DCHIP \(=\) OFF
\end{tabular}

Optoisolated Input Timers: \(\quad\) IN101D ~ IN106D, IN301D ~ IN308D = \(0.5 \quad\) \# 0.5 cycle

\section*{Appendix 06 11L-2-Q35M (SEL-311L) Setting Calculation}

Breaker Monitor Settings:
Breaker Monitor Enable
EBMON = N \# Not used
Synchronized Phasor Settings:
Synchronized Phasor Measurement EPMU = N \# Not used
SER:
SER1 = M1P, Z1G, M2P, M2PT, Z2G, Z2GT, 67P2T, SOTFT, 51G, 51GT, 3P27, LOP
SER2 = SV1T, SV2T, IN103, IN104, IN105, IN106, IN301, IN302, IN303, IN304, IN305, IN306, IN307
SER3 = OUT102, OUT103, OUT104, OUT105,OUT106, OUT107
Text:
Local Bit Labels \# Not used
Display-Point Labels

Reclosing Relay Labels
\begin{tabular}{ll} 
DP1_1 \(=\) & NA \\
DP1_0 \(=\) & NA \\
DP2_1 \(=\) & NA \\
DP2_0 \(=\) & NA \\
DP3_1 \(=\) & ZONE 2 T BYPASS \\
DP3_0 \(=\) & NA \\
DP4_1 \(=\) & BREAKER 2 OPEN \\
DP4_0 \(=\) & BREAKER 2 CLOSED \\
DP5_1 \(=\) & BREAKER5 OPEN \\
DP5_0 \(=\) & BREAKER5 CLOSED \\
DP6_1 \(=\) & MOD FQ35M OPEN \\
DP6_0 \(=\) & MOD FQ35M CLOSED \\
DP7_1 \(=\) & MOD F5 OPEN \\
DP7_0 \(=\) & MOD F5 CLOSED \\
DP8_1 \(=\) & LOW VOLTAGE \\
DP8_0 \(=\) & NA
\end{tabular}

\section*{Appendix 07 85-Q35M (SEL-311L) Setting Calculation}
\begin{tabular}{llllll} 
1. Data & & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=1190.25\) & ohms \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\)
\end{tabular}

\section*{2. Setting Criteria}
2.1 87LPP is to detect three-phase faults. It must be set above line charging current. Set 87LPP at its minimum of 1 secondary amp at 3000/5 CT.
2.2 87L2P is to detect all internal unbalanced faults. It must be set above expected maximum line charging current unbalance. Set 87L2P at its minimum of 0.5 secondary amp at 3000/5 CT.
2.3 87LGP is to detect all internal ground faults. It must be set above expected maximum line charging current unbalance. Set 87LGP at its minimum of 0.5 secondary amp at 3000/5 CT.

\subsection*{2.4 Settings of CTALRM, 87LP AND 87LANG can be at default.}

\section*{Group 1 - Set 1:}

General Settings:
Relay ID
\[
\begin{aligned}
\mathrm{RID} & =85-\mathrm{Q} 35 \mathrm{M} \\
\mathrm{TID} & =\mathrm{CHARLES} \text { POLETTI } \\
\mathrm{CTR} & =600 \\
\text { APP } & =87 \mathrm{~L} \\
\text { EADVS } & =\mathrm{N}
\end{aligned}
\]

Terminal ID
CT Ratio
Advanced Setting Enable

Line Current Differential Settings:
Number of 87L Terminals
E87L = 2
High Speed Tripping
Enable High Speed Direct Transfer Trip
Enable Disturbance Current Detect
Tapped Load Coordination
Enable Open CT Logic
CTR at Terminal Connected to Channel X
Phase 87L (Amp secondary)
Negative Sequence 87L (Amp secondary)
Ground 87L (Amp secondary)
Ph. Diff. Current Alarm Pickup (Amp secondary)
Outer Radius
Angle (Degree)
\[
\begin{array}{rlrl}
\text { EHST } & =\mathrm{N} & & \\
\text { EHSDTT } & =\mathrm{N} & & \\
\text { EDD } & =\mathrm{Y} & & \\
\text { ETAP } & =\mathrm{N} & & \\
\text { EOCTL } & =\mathrm{N} & & \text { \# 2000/5 CT } \\
\text { CTR_X } & =400 & & \text { \# Minimum } \\
\text { 87LPP } & =1 & & \text { \# Minimum } \\
\text { 87L2P } & =0.5 & & \text { \# Minimum } \\
\text { 87LGP } & =0.5 & & \text { \# Minimum } \\
\text { CTALRM } & =0.5 & \text { \# Default } \\
\text { 87LR } & =6 & & \text { \# Default }
\end{array}
\]
\begin{tabular}{lr} 
Backup Protection and Line Parameters: & \# Not used \\
\hline Phase Distance: & \# Not used \\
Ground Distance Elements: & \# Not used \\
\hline Phase Instantaneous Overcurrent Elements: & \# Not used \\
Residual Ground Instantaneous Overcurrent Elements: & \# Not used \\
\hline Negative-Sequence Instantaneous Elements: & \# Not used \\
\hline Phase Time-Overcurrent Elements: & \# Not used \\
Residual Ground Time-Overcurrent Elements: & \# Not used \\
\hline Negative-Sequence Time-Overcurrent Elements: & \# Not used \\
\hline Out-of-Step Settings: & \# Not used \\
Load-Encroachment Elements: & \# Not used \\
Directional Elements: & \# Not used \\
\hline Enable Voltage Elements: &
\end{tabular}

\section*{Appendix 07 \\ 85-Q35M (SEL-311L) Setting Calculation}


\section*{Appendix 07 \\ 85-Q35M (SEL-311L) Setting Calculation}

Group Change Delay (cycles in 0.25 increments)
Nominal Frequency (Hz)
\[
\begin{array}{rlrl}
\text { TGR } & =0 & & \text { \# Not used } \\
\text { NFREQ } & =60 & & \\
\text { PHROT } & =\text { ABC } & & \\
\text { Date_F } & =\text { MDY } & & \# 5 \text { minutes } \\
\text { FP_TO } & =5 & \# 5 \text { seconds } \\
\text { SCROLD } & =5 & & \\
\text { LER } & =60 & & \\
\text { PRE } & =4 & & \\
\text { DCLOP } & =\text { OFF } & & \\
\text { DCHIP } & =\text { OFF } & &
\end{array}
\]

Phase Rotation
Date Format
Front Panel Timeout (minutes)
Display Update Rate (seconds)
Length of Event Report (cycles)
Cycle Length of Prefault in Event Report (cycles)
DC Battery LO Voltage Pickup (Vdc)
DC Battery HI Voltage Pickup (Vdc)
Optoisolated Input Timers: \(\quad\) IN101D ~ IN106D, IN301D ~ IN308D \(=0.5 \quad \# 0.5\) cycle

Breaker Monitor Settings:
Breaker Monitor Enable EBMON = N \# Not used

Synchronized Phasor Settings:
Synchronized Phasor Measurement EPMU = N \# Not used

\author{
SER: \\ SER1 = TRIP87, 87L,87L2,87LG,87LA,87LB,87LC,R87L2,R87LG,R87LA,R87LB,R87LC \\ SER2 \(=\) IN101,IN102 \\ SER3 = OUT103
}

Text:
Reclosing Relay Labels \# Not used

\section*{Appendix 08 87B-BS5 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{1. Data} \\
\hline MVA_Base \(=100\) & kV_Base = & 345 & Z_Base = & . 25 & ohms \\
\hline CTR = 600 & PTR = & 3000 & CTR/PTR= & & \\
\hline Total MVA of all three GSUs = & 750 & ; Max & ll load curren & \(\mathrm{ps})=\) & 1255.11 \\
\hline \multicolumn{6}{|l|}{2. Setting Criteria} \\
\hline \multicolumn{6}{|l|}{2.1 Differential Settings:} \\
\hline & & ximum & rmer MVA = & 750 & MVA \\
\hline \multicolumn{5}{|l|}{The nominal transformer Winding 1 terminal voltage VWDG1 = 345 kV} & kV \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 2 terminal voltage VWDG2 = 345 kV} \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 3 terminal voltage VWDG3 = 345 kV} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 1---CTR1= 600} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 2---CTR2= 600} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 3---CTR3= 600} \\
\hline \multicolumn{6}{|l|}{Winding 1 Current Tap TAP1 \(=\) MVA/(Sqrt(3) \(\times\) VWDG1 \(\times\) CTR1) \(=2.09\) A} \\
\hline \multicolumn{6}{|l|}{Winding 2 Current Tap TAP2 \(=\) MVA/(Sqrt(3) \(\times\) VWDG2 \(\times\) CTR2) \(=2.09\) A} \\
\hline \multicolumn{6}{|l|}{Winding 3 Current Tap TAP3 \(=\) MVA/(Sqrt(3) \(\times\) VWDG3 \(\times\) CTR3 \()=2.09\)} \\
\hline O87P \(\geq 0.1\) & 5A / TAPmin & 0.24 & Set 087P= & 0.24 & \# Per manual \\
\hline \multicolumn{6}{|l|}{Dual-Slop variable-percentage differential characteristic is used.} \\
\hline \multicolumn{6}{|c|}{Restraint Slope 2 Percentage (OFF, 25-200\%) SLP2 = 50} \\
\hline \multicolumn{6}{|l|}{Restraint Current Slope 1 Limit ((1-20) multiple of tap) IRS1 = 6.8} \\
\hline \multicolumn{6}{|l|}{Unrestrained Element Current PU ((1-20) multiple of tap) U87P = 10.2} \\
\hline \multicolumn{6}{|l|}{Second-Harmonic Blocking Percentage (OFF, 5-100\%) PCT2 = OFF} \\
\hline \multicolumn{6}{|l|}{Fifth-Harmonic Blocking Percentage (OFF, 5-100\%) PCT5 = OFF} \\
\hline & Independe & Harm & king \(\mathrm{IHBL}=\) & N & \\
\hline
\end{tabular}
2.2 Winding 1 Elems (for event triggering)
2.2.1 Set phase IOC element 50P11P at 7.3 CT secondary amp or 4,393 CT primary amp, i.e. 3.5 times of the maximum full load current (FLC).
2.2.2. Set phase TOC element 51P1P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.3. Set residual IOC element 51N11P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.4. Set residual TOC element 51N1P at 1.65 CT secondary amp or 1,004 CT primary amp, i.e. \(80 \%\) of the maximum FLC.

\section*{Group 1-Set 1:}

Config. Settings:

Relay Identifier
Terminal Identifier
Enable Wdg1 in Differential Element
Enable Wdg2 in Differential Element
Enable Wdg3 in Differential Element
Enable Wdg4 in Differential Element
Enable Wdg1 O/C Elements and Dmd. Thresholds
Enable Wdg2 O/C Elements and Dmd. Thresholds
Enable Wdg3 O/C Elements and Dmd. Thresholds
\begin{tabular}{rl} 
RID & \(=87 B-\) BS5 \\
TID & \(=\) CHARLES POLETTI \\
E87W1 & \(=Y\) \\
E87W2 & \(=Y\) \\
E87W3 & \(=Y\) \\
E87W4 & \(=\mathrm{N}\) \\
EOC1 & \(=Y\) \\
EOC2 & \(=\mathrm{N}\) \\
EOC3 & \(=\mathrm{N}\)
\end{tabular}

RID \(=87 \mathrm{~B}-\mathrm{BS} 5\)
TID = CHARLES POLETTI
E87W1 = Y
E87W2 \(=Y\)
E87W3 \(=Y\)
E87W4 = N
EOC1 \(=Y\)
EOC3 \(=\mathrm{N}\)

\section*{Appendix 08 87B-BS5 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Enable Wdg4 O/C Elements and Dmd. Thresholds & EOC4 \(=\) N & \\
\hline Enable Combined O/C Elements & EOCC \(=\mathrm{N}\) & \\
\hline Enable RTDA Elements & E49A \(=\mathrm{N}\) & \\
\hline Enable RTDB Elements & E49B \(=\mathrm{N}\) & \\
\hline Enable SELogic Set 1 & ESLS1 \(=\mathrm{Y}\) & \\
\hline Enable SELogic Set 2 & ESLS2 \(=\mathrm{N}\) & \\
\hline Enable SELogic Set 3 & ESLS3 \(=\mathrm{N}\) & \\
\hline \multicolumn{3}{|l|}{General Data:} \\
\hline Wdg1 CT Connection & W1CT \(=\mathrm{Y}\) & \\
\hline Wdg2 CT Connection & W2CT \(=\mathrm{Y}\) & \\
\hline Wdg3 CT Connection & \(\mathrm{W} 3 \mathrm{CT}=\mathrm{Y}\) & \\
\hline Wdg4 CT Connection & \(\mathrm{W} 4 \mathrm{CT}=\mathrm{Y}\) & \# Not Used \\
\hline Wdg1 CT Ratio & CTR1 \(=600\) & \\
\hline Wdg2 CT Ratio & CTR2 \(=600\) & \\
\hline Wdg3 CT Ratio & CTR3 \(=600\) & \\
\hline Wdg4 CT Ratio & CTR4 \(=600\) & \# Not Used \\
\hline Maximum Power Xfmr Capacity & MVA \(=750\) & \\
\hline Define Interal CT Connection Compensation & ICOM \(=\mathrm{N}\) & \\
\hline Wdg 1 Line-to-Line Voltage & VWDG1 = 345 & \# kV \\
\hline Wdg 2 Line-to-Line Voltage & VWDG2 = 345 & \# kV \\
\hline Wdg 3 Line-to-Line Voltage & VWDG3 \(=345\) & \# kV \\
\hline Wdg 4 Line-to-Line Voltage & VWDG4 \(=345\) & \# Not used \\
\hline \multicolumn{3}{|l|}{Diff Elems:} \\
\hline Restrained Element Current PU & O87P \(=0.24\) & \\
\hline Restrain Slope 1 Percentage & SLP1 \(=25\) & \\
\hline Restrain Slope 2 Percentage & SLP2 \(=50\) & \\
\hline Restraint Current Slope 1 Limit & IRS1 \(=6.8\) & \\
\hline Unrestrained Element Current PU & U87P \(=10.2\) & \\
\hline 2nd Harmonic Blocking Percentage & PCT2 \(=\) OFF & \\
\hline 5th Hamronic Blocking Percentage & PCT5 = OFF & \\
\hline 5th Harmonic Alarm Threshold & TH5P = OFF & \\
\hline Independent Harmonic Blocking & \(\mathrm{lHBL}=\mathrm{N}\) & \\
\hline Restriced Earth Fault: & & \# Not Used \\
\hline \multicolumn{3}{|l|}{Winding 1 Elems:} \\
\hline Phase Def-Time O/C Level 1 PU & \(50 \mathrm{P} 11 \mathrm{P}=7.3\) & \# 3.5xFLC \\
\hline Phase Level 1 O/C Delay & \(50 \mathrm{P} 11 \mathrm{P}=0.5\) & \# cycle \\
\hline 50P11 Torque Control (SELogic Equation) & \(50 \mathrm{P} 11 \mathrm{TC}=1\) & \\
\hline Oher Phase Inst O/C elements & & \# Not used \\
\hline Phase Inv-Time O/C PU & 51P1P \(=2.95\) & \# 1.4xFLC \\
\hline Phase Inv-Time O/C Curve & 51P1C = C2 & \\
\hline Phase Inv-Time O/C Time-Dial & 51P1TD \(=0.2\) & \\
\hline Phase Inv-Time O/C EM Reset & 51P1RS = N & \\
\hline 51P1 Torque Control (SELogic Equation) & 51P1TC = 1 & \\
\hline Neg-Seq Def-Time O/C & & \# Not used \\
\hline Residual Def-Time O/C Level 1 PU & \(50 \mathrm{~N} 11 \mathrm{P}=2.95\) & \# 1.4xFLC \\
\hline Residual Level 1 O/C Delay & \(50 \mathrm{~N} 11 \mathrm{D}=0.5\) & \# cycle \\
\hline 50N11 Torque Control (SELogic Equation) & \(50 \mathrm{~N} 11 \mathrm{TC}=1\) & \\
\hline
\end{tabular}

\section*{Appendix 08 87B-BS5 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Other Residual Inst O/C elements & & \# Not used \\
\hline Residual Inv-Time O/C PU & \(51 \mathrm{~N} 1 \mathrm{P}=1.65\) & \# 80\% FLC \\
\hline Residual Inv-Time O/C Curve & \(51 \mathrm{~N} 1 \mathrm{C}=\mathrm{C} 2\) & \\
\hline Residual Inv-Time O/C Time-Dial & \(51 \mathrm{~N} 1 \mathrm{TD}=0.35\) & \\
\hline Residual Inv-Time O/C EM Reset & 51N1RS = N & \\
\hline 51N1 Torque Control (SELogic Equation) & 51N1TC = 1 & \\
\hline Demand Ammeter Time Constant & DATC1 \(=15\) & \# Default \\
\hline Phase Demand Ammeter Threshold & PDEM1P \(=7\) & \# Default \\
\hline Neg-Seq Demand Ammeter Threshold & QDEM1P = 1 & \# Default \\
\hline Residual Demand Ammeter Threshold & NDEM1P = 1 & \# Default \\
\hline Winding 2 Elems: & & \# Not Used \\
\hline Winding 3 Elems: & & \# Not Used \\
\hline Winding 4 Elems: & & \# Not Used \\
\hline Combined Elems: & & \# Not used \\
\hline RTD A Elems: & & \# Not used \\
\hline RTD B Elems: & & \# Not used \\
\hline Misc. Timers & & \# Default \\
\hline SELogic Set 1: & & \\
\hline Set 1 Variable 1 (SELogic Equation) & S1V1 \(=87 \mathrm{R}\) & \\
\hline S1V1 Timer Pickup & S1V1PU \(=0\) & \\
\hline S1V1 Timer Dropout & S1V1DO \(=24\) & \# 0.4 second \\
\hline Set 1 Variable 2 (SELogic Equation) & S1V2 \(=51 \mathrm{P} 1 \mathrm{~T}+51 \mathrm{~N} 1 \mathrm{~T}\) & \\
\hline S1V2 Timer Pickup & S1V2PU = 0 & \\
\hline S1V2 Timer Dropout & S1V2DO \(=0\) & \\
\hline Set 1 Variable 3 (SELogic Equation) & S1V3 = S1V2+87R & \\
\hline S1V3 Timer Pickup & S1V3PU \(=60\) & \# 1 second \\
\hline S1V3 Timer Dropout & S1V3DO \(=300\) & \# 5 seconds \\
\hline Set 1 Variable 4 (SELogic Equation) S1V4 = 87R+50N11T+50P1 & 11T+51P1T+51N1T & \# Event trigger \\
\hline S1V4 Timer Pickup & S1V4PU = 0 & \\
\hline S1V4 Timer Dropout & S1V4DO \(=0\) & \\
\hline Set 1 Latch Bits & & \# Not used \\
\hline SELogic Set 2: & & \# Not used \\
\hline SELogic Set 3: & & \# Not used \\
\hline
\end{tabular}

Trip Logic:
\[
\begin{aligned}
& \text { TR1 }=50 \mathrm{P} 11 \mathrm{~T}+51 \mathrm{P} 1 \mathrm{~T}+50 \mathrm{~N} 11 \mathrm{~T}+51 \mathrm{~N} 1 \mathrm{~T} \\
& \text { TR2 }=87 \mathrm{R}+87 \mathrm{U} \\
& \text { TR3 }=0 \\
& \text { TR4 }=0 \\
& \text { TR5 }=0 \\
& \text { ULTR1 }=!(51 \mathrm{P} 1+51 \mathrm{~N} 1) \\
& \text { ULTR2 }=!(87 \mathrm{R}+87 \mathrm{U}) \\
& \text { ULTR3 }=0 \\
& \text { ULTR4 }=0 \\
& \text { ULTR5 }=0
\end{aligned}
\]

Close Logic:
Event Trigger
Output Contact Logic:
Output Contact 101
Output Contact 102
\[
\begin{array}{ll}
\text { OUT101 }=\text { TRIP1+TRIP2 } & \text { \# Any Trip } \\
\text { OUT102 }=0 & \text { \# Not used }
\end{array}
\]

\section*{Appendix 08 87B-BS5 (SEL-387) Setting Calculation}
\begin{tabular}{lll} 
Output Contact 103 & OUT103 \(=0\) & \# Not used \\
Output Contact 104 & OUT104 \(=0\) & \# Not used \\
Output Contact 105 & OUT105 \(=\) S1V3T & \# Alarm \\
Output Contact 106 & OUT106 \(=0\) & \# Not used \\
Output Contact 107 & OUT107 \(=0\) & \# Not used \\
Output Contact \(201 \sim 212\) are all 0. & & \# Not used \\
Global & & \# Default
\end{tabular}

SER:
SER1 \(=87 R, 87 \mathrm{U}, 50 \mathrm{P} 11,50 \mathrm{P} 11 \mathrm{~T}, 51 \mathrm{P} 1,51 \mathrm{P} 1 \mathrm{~T}, 50 \mathrm{~N} 11,50 \mathrm{~N} 11 \mathrm{~T}, 51 \mathrm{~N} 1,51 \mathrm{~N} 1 \mathrm{~T}\)
SER2 = S1V1,S1V1T,S1V2,S1V3,OUT105,S1V4
SER3 \(=0\)
SER4 \(=0\)

\section*{Appendix 09 85-1-G13 (Areva P546) Setting Calculation}
1. Data
\begin{tabular}{l|l|c|c|c|l|c|} 
\\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=\) & 1190.25 & ohms \\
CTR = & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\) & \\
\hline Line ID & From & To & R1(ohms) & X1(ohms) & R0(ohms) & X0(ohms) \\
\hline G13 & Charles Poletti & AEII GEN & 0.01410275 & 0.1332769 & 0.038613481 & 0.32084775 \\
\hline
\end{tabular}

Secondary Ohms = Primary Ohms • (CTR/PTR)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & R1(2nd ohm) & X1(2nd ohm) & R0(2nd ohm) & X0(2nd ohm) \\
\hline G13 & Charles Poletti & AEII GEN & 0.00 & 0.03 & 0.01 & 0.06 \\
\hline
\end{tabular}

Z1 = Sqrt (R1*R1 + X1*X1) \(\quad\) Z1Ang \(=\operatorname{Arctan}(X 1 / R 1) \quad\) Z0 equations are the same.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & Z1(2nd ohm) & Z1Ang & Z0(2nd ohm) & ZOAng \\
\hline G13 & Charles Poletti & AEII GEN & 0.03 & 84.0 & 0.06 & 83.14 \\
\hline
\end{tabular}
2. Setting Criteria
2.1 Zone 1 phase distace:

Set Zone 1 phase distace at 0.05 secondary ohm, or \(167 \%\) of line impedance, same as the setting in 85-2-G13(SEL-311L). It may trip for a fault beyond the protected TL, such as a transformer fault. However, since there is no 345 kV breaker at G13 station, such overreach is not a concern.
2.2 Set Zone 2 phase distace at \(333 \%\) of the line impedance with 0.35 second delay.
2.3 Zone 1 ground distace:

Set Zone 1 ground distace at 0.05 secondary ohm, or \(167 \%\) of line impedance, same as the setting in 85-2-G13(SEL-311L). It may trip for a fault beyond the protected TL, such as a transformer fault. However, since there is no 345 kV breaker at G13 station, such overreach is not a concern.
2.4 Set Zone 2 ground distance at \(333 \%\) of the line impedance with 0.6 second delay.
2.5 Line differential element

Set Is1, Is2 at the minimum and k1 and k2 at the default. Ph CT Corr'tion \(=(3000 / 5) /(1200 / 5)=2.5\)
2.6 High Set Fault Protection (50HS):

50 HS must not operate for reverse faults (local line end) or transformer inrush with appropriate operating margin. It may trip for a fault beyond the protected TL, such as a transformer fault. However, since there is no 345 kV breaker at G13 station, such overreach is not a concern.
Both SEL-311L and Areva P546 can filter out 2nd harmonic etc major component of inrush current. Set 50 HS at 7,200 Primary Amp or 12 Amp at CT secondary. It will be well below the forward fault current but above the reverse fault level. Refer to Appendix 01 Section 2.6 fault current distribution.
2.7 Stub Bus Protection (50SB):

The voltage source of 85-1-G13 (Areva P546) relay is at the bus side of the MOD. 50SB is not required.
2.8 Switch-On-To-Fault Protection (50SOTF)

50SOTF will only be armed when the circuit breakers are open and the asscoated line is de-energized. While closing the first circuit breaker to energize the line this function shall only be in service for the first 15 cycles and will reset if no fault is detected. Noting that 15 cycles or 250 ms can not be set in Areva P546 due to 100 ms step in "TOC Reset Delay" setting. 200 ms is used.
Set 50SOTF pickup the same as 50HS.
2.9 Directional Ground Overcurrent Backup Protection (67N)

67 N will be used to provided backup protection for ground faults on the system. 67 N pickup shall be higher than the worst unbalance and can be set \(1 / 3\) of maximum full load \(1 / 3\) of \(\operatorname{FLC}=1 / 3 * 1,255\) Amp \(=418.33\) primary amp or 0.7 Amp at CT secondary.
Directional element is not necessary due to the strong utility source. Curve and time dial is set to provide security margin for reverse close-in faults.

\section*{Appendix 09 85-1-G13 (Areva P546) Setting Calculation}

The instantaneous -overcurrent (IOC) function can be used to provide close-in ground fault detection and shall not trip for reverse faults or transformer inrush. Set it at 20 Amp CT secondary or 12kA CT primary to prevent false tripping for reverse ground faults.

\section*{SYSTEM DATA:}

CB CONTROL:

DATE AND TIME:
\[
\begin{aligned}
\text { CB Control by } & =\text { Disabled } \\
\text { Rst CB mon LO by } & =\text { CB Close } \\
\text { CB mon Lo RstDly } & =5.000 \mathrm{~S} \\
\text { CB1 Status Input } & =52 \mathrm{~B} 3 \text { pole } \\
\text { CB Status Time } & =5.000 \mathrm{~S} \\
\text { CB2 Status Input } & =52 \mathrm{~B} 3 \text { pole }
\end{aligned}
\]

IRIG-B Sync = Enabled
Battery Alarm = Enabled
Other Time Settings = Default
CONFIGURATION:
\begin{tabular}{rl} 
Setting Group & \(=\) Select via Menu \\
Active Settings & \(=\) Group 1 \\
Setting Group 1 & \(=\) Enabled \\
Setting Group 2 & \(=\) Disabled \\
Setting Group 3 & \(=\) Disabled \\
Setting Group 4 & \(=\) Disabled \\
Distance & \(=\) Enabled \\
Directional E/F & \(=\) Disabled \\
Phase Diff & \(=\) Enabled \\
Overcurrent & \(=\) Enabled
\end{tabular} \# 21Z1,21Z2

\section*{Appendix 09 85-1-G13 (Areva P546) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline & ```
    Disturb Recorder = Visible
    Measure't Setup = Visible
    Comms Settings = Visible
Commission Tests = Visible
    Setting Values = Secondary
    Control Inputs = Invisible
    Ctrl I/P Config = Invisible
    Ctrl I/P Labels = Invisible
    Direct Access = Disabled
    InterMiCOM 64 = Disabled
        Function Key = Invisible
    LCD Contrast = 11
``` & \\
\hline \multicolumn{3}{|l|}{CT AND VT RATIOS} \\
\hline & Main VT Primary \(=345.0 \mathrm{kV}\) & \\
\hline & Main VT Sec'y \(=115.0 \mathrm{~V}\) & \\
\hline & CB1 CS VT Prim'y \(=345.0 \mathrm{kV}\) & \\
\hline & CB1 CS VT Sec'y \(=115.0 \mathrm{~V}\) & \\
\hline & CB2 CS VT Prim'y \(=345.0 \mathrm{kV}\) & \\
\hline & CB2 CS VT Sec'y \(=115.0 \mathrm{~V}\) & \\
\hline & Phase CT Primary \(=3000 \mathrm{~A}\) & \\
\hline & Phase CT Sec'y \(=5.000 \mathrm{~A}\) & \\
\hline & SEF CT Primary \(=3000 \mathrm{~A}\) & \\
\hline & SEF CT Secondary \(=5.000 \mathrm{~A}\) & \\
\hline & MComp CT Primary \(=1.000 \mathrm{~A}\) & \\
\hline & MComp CT Sec'y \(=1.000 \mathrm{~A}\) & \\
\hline & CS Input = A-N & \\
\hline & CT1 Polarity \(=\) Standard & \\
\hline & CT2 Polarity \(=\) Standard & \\
\hline & SEF CT Polarity = Standard & \\
\hline & M CT Polarity \(=\) Standard & \\
\hline & VT Connected = Yes & \\
\hline & CB1 CS VT PhShft \(=0 \mathrm{deg}\) & \\
\hline & CB1 CS VT Mag \(=1\) & \\
\hline & CB2 CS VT PhShft \(=0 \mathrm{deg}\) & \\
\hline & CB2 CS VT Mag = 1 & \\
\hline \multicolumn{3}{|l|}{MEASURE'T SETUP:} \\
\hline & ```
Default Display = Plant Reference
    Local Values = Primary
``` & \\
\hline & Remote Values = Primary & \\
\hline & Measurement Ref = VA & \\
\hline & Measurement Mode \(=0\) & \\
\hline & Fix Dem Period \(=30.00 \mathrm{~min}\) & \\
\hline & Roll Sub Period \(=30.00 \mathrm{~min}\) & \\
\hline & Num Sub Periods = 1 & \\
\hline & Distance Unit \(=\) Miles & \\
\hline & Fault Location \(=\) Distance & \\
\hline \multicolumn{3}{|l|}{COMMISSION TESTS:} \\
\hline & Monitor Bit \(1=1060\) & \# Red LED1 \\
\hline & Monitor Bit \(2=1062\) & \# Red LED2 \\
\hline & Monitor Bit \(3=1064\) & \# Red LED3 \\
\hline
\end{tabular}

\section*{Appendix 09 85-1-G13 (Areva P546) Setting Calculation}
\begin{tabular}{lll} 
& Monitor Bit \(4=1066\) & \# Red LED4 \\
& Monitor Bit \(5=1068\) & \# Red LED5 \\
& Monitor Bit \(6=1070\) & \# Red LED6 \\
& Monitor Bit \(7=1072\) & \# Red LED7 \\
CB MONITOR SETUP: & Monitor Bit \(8=1074\) & \# Red LED8 \\
& All disabled & \# Not required
\end{tabular}

OPTO CONFIG:
\[
\begin{aligned}
\text { Global Nominal } V= & 110 / 125 \mathrm{~V} \\
\text { Opto Filter Cntl }= & 111111111111111111111111 \\
\text { Characteristic }= & \text { Standard } 60 \%-80 \% \\
& \text { Not used }
\end{aligned}
\]

CONTROL INPUTS:

\section*{Group 1:}

GROUP 1 LINE PARAMETERS:
Line Length \(=0.35 \mathrm{mi}\)
Line Impedance \(=0.06 \quad\) Ohm
Line Angle \(=84.0 \quad \mathrm{deg}\)
kZN Res Comp \(=0.33\)
kZN Res Angle \(=-2\)
Mutual Comp = Disabled
Phase Sequence \(=\) Standard ABC
CB1Tripping Mode \(=3\) Pole
CB2Tripping Mode \(=3\) Pole
GROUP 1 DISTANCE SETUP:

> Setting Mode = Advanced

Phase Chars. = Quad
Zone 1 Ph Status = Enabled
Zone 2 Ph Status = Enabled
Zone 3 Ph Status = Disabled
Zone 4 Ph Status = Disabled
Ground Chars. = Quad
Zone 1 Gnd Stat = Enabled
Zone 2 Gnd Stat. = Enabled
Zone 3 Gnd Stat = Disabled
Zone P Gnd Stat. = Disabled
Zone 4 Gnd Stat. = Diabled
Digital Filter = Standard
CVT Filters = Disabled
Load Blinders = Disabled
Dist. Polarizing \(=1\)
Dir. Status = Enabled
AidedDeltaStatus \(=\) Disabled
Dir. Char Angle \(=60.00\) deg \# Default

GROUP 1 DIST. ELEMENTS:
\begin{tabular}{rlrl} 
Z1 Ph. Reach & \(=50.000\) & & mOhm \\
Z1 Ph. Angle & \(=84.0\) & & deg \\
R1 Ph. Resistive & \(=5\) & Ohm \\
Z1 Tilt Top Line & \(=-3\) & & deg \\
Z1 Sensit. Iph>1 & \(=0.25\) & & A
\end{tabular}
\# VT is used
\# Default

\section*{Appendix 09 85-1-G13 (Areva P546) Setting Calculation}
\begin{tabular}{rll} 
Z2 Ph. Reach & \(=100\) & mOhm \\
Z2 Ph. Angle & \(=84.0\) & deg \\
R2 Ph. Resistive & \(=5\) & Ohm \\
Z2 Tilt Top Line & \(=-3\) & deg \\
Z2 Sensit. Iph>2 & \(=0.25\) & A \\
Z1 Gnd. Reach & \(=50.000\) & mOhm \\
Z1 Gnd. Angle & \(=84.0\) & deg \\
Z1 Dynamic Tilt & \(=\) Enabled & \\
Z1 Tilt Top Line & \(=-3\) & deg \\
kZN1 Res. Comp & \(=0.33\) & Ohm \\
kZN1 Res. Angle & \(=-2\) & deg \\
R1 Gnd Resistive & \(=5\) & Ohm \\
Z1 Sensit Ignd>1 & \(=0.25\) & A \\
Z2 Gnd. Reach & \(=100\) & mOhm \\
Z2 Gnd. Angle & \(=84.0\) & deg \\
Z2 Dynamic Tilt & \(=\) Enabled & \\
Z2 Tilt Top Line & \(=-3\) & deg \\
kZN2 Res. Comp. & \(=0.33\) & \\
kZN2 Res. Angle & \(=-2\) & \\
R2 Gnd Resistive & \(=5\) & Ohm \\
Z2 Sensit Ignd \(>2\) & \(=0.25\) & A
\end{tabular}

GROUP 1 PHASE DIFF:
\begin{tabular}{rll} 
Phase Diff & \(=\) Enabled & \\
Phase Is1 & \(=1.000 \mathrm{~A}\) & \# Minimum \\
Phase Is2 & \(=10.00 \mathrm{~A}\) & \# Minimum \\
Phase k1 & \(=30.00 \%\) & \# Default \\
Phase k2 & \(=150.00 \%\) & \# Default \\
Phase Char & \(=\) DT & \# Default \\
Phase Time Delay & \(=0 \mathrm{~s}\) & \# Default \\
PIT Time & \(=200.0 \mathrm{~ms}\) & \# Default \\
Ph CT Corr'tion & \(=2.5\) & \# Section 2.5 \\
Compensation & \(=\) None & \# Default \\
PIT I selection & \(=\) Remote & \# Default
\end{tabular}

GROUP 1 SCHEME LOGIC:
Zone1 Tripping = Phase And Ground
tZ1 Ph. Delay \(=0 \quad\) s
tZ1 Gnd. Delay \(=0 \quad \mathrm{~s}\)
Zone2 Tripping = Phase And Ground
tZ2 Ph. Delay \(=350 \quad \mathrm{~ms}\)
tZ2 Gnd. Delay = 600 ms
Zone3 Tripping = Disabled
ZoneP Tripping = Disabled
Zone4 Tripping = Disabled
Aid. 1 Selection = Disabled
Aid. 2 Selection = Disabled
SOTF Status = Enabled PoleDead SOTF Delay \(=600 \mathrm{~ms}\)
SOTF Tripping = 000010 \# Zone 2

\section*{Appendix 09 85-1-G13 (Areva P546) Setting Calculation}
\begin{tabular}{rlrl} 
TOR Status & \(=\) Disabled & & \\
TOC Reset Delay & \(=200\) & ms, & \# 250ms in \(311 \mathrm{~L}, 100 \mathrm{~ms}\) step \\
TOC Delay & \(=200\) & ms & \\
Z1 Extension & \(=\) Disabled & & \\
LOL Scheme & \(=\) Disabled & &
\end{tabular}

GROUP 1 OVERCURRENT:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(1>1\) Status = Disabled} \\
\hline \multicolumn{2}{|l|}{1>2 Status = Disabled} \\
\hline \(1>3\) Status = Enabled & \\
\hline \(1>3\) Directional \(=\) Non-Directional & \# 50HS \\
\hline \(1>3\) Current Set \(=12.00 \mathrm{~A}\) & \# Section 2.6 \\
\hline \(1>3\) Time Delay \(=0 \mathrm{~s}\) & \\
\hline 1>4 Status = Disabled & \\
\hline \(1>\) Char Angle \(=30.00 \mathrm{deg}\) & \\
\hline \(1>\) Blocking \(=000000\) & \\
\hline
\end{tabular}

GROUP 1 EARTH FAULT:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{IN>1 Status = Enabled} \\
\hline & \\
\hline \multicolumn{2}{|l|}{IN>1 Directional = Directional Fwd} \\
\hline \(\mathrm{IN}>1\) Current Set \(=700.00 \mathrm{~mA}\) & \# 67N-TOC \\
\hline \(\mathrm{IN}>1\) Time Dial \(=3.5\) & \\
\hline \multicolumn{2}{|l|}{IN \(>1\) Reset Char \(=\) DT} \\
\hline IN>1 tRESET = 0 s & \\
\hline IN \(>2\) Status = Enabled & \# 67N-IOC \\
\hline \multicolumn{2}{|l|}{\(\mathrm{IN}>2\) Function \(=\) DT} \\
\hline \multicolumn{2}{|l|}{IN \(>2\) Directional \(=\) Non-Directional} \\
\hline \(\mathrm{IN}>2\) Current Set \(=20\) & \# Section 2.9 \\
\hline \multicolumn{2}{|l|}{\(\mathrm{IN}>2\) Time delay \(=0 \mathrm{~s}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{IN}>2\) Treset \(=0 \mathrm{~s}\)} \\
\hline \multicolumn{2}{|l|}{\(1 \mathrm{~N}>3\) Status = Disabled} \\
\hline \multicolumn{2}{|l|}{IN \(>4\) Status \(=\) Disabled} \\
\hline IN \(>\) Blocking \(=000001\) & \# Block IN>1 \\
\hline \(\mathrm{IN}>\) Char Angle \(=-60 \quad\) deg & \# Default \\
\hline \multicolumn{2}{|l|}{IN \(>\) Polarisation = Zero Sequence} \\
\hline \(\mathrm{IN}>\) VNpol Set \(=1.000 \mathrm{~V}\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{D:} \\
\hline \(1<\) Current Set \(=250.0 \mathrm{~mA}\) & \# Default \\
\hline ISEF \(<\) Current \(=100.0 \mathrm{~mA}\) & \# Default \\
\hline \(\mathrm{V}<=10.0 \mathrm{~V}\) & \# Minimum \\
\hline
\end{tabular}

GROUP 1 SUPERVISION:
\[
\begin{aligned}
\text { VTS Mode } & =\text { Measured Only } \\
\text { VTS Status } & =\text { Blocking } \\
\text { VTS Reset Mode } & =\text { Auto } \\
\text { VTS Time Delay } & =5.000 \mathrm{~s} \\
\text { VTS I I Inhibit } & =3.150 \mathrm{~A} \\
\text { VTS I2> Inhibit } & =250.0 \mathrm{~mA} \\
\text { I }>2 \text { nd Harmonic } & =10.00 \% \\
\text { WI Inhibit } & =\text { Disabled }
\end{aligned}
\]

\section*{Appendix 09 85-1-G13 (Areva P546) Setting Calculation}

CTS Mode \(=\) Disabled
GROUP 1 INPUT LABELS:

GROUP 1 OUTPUT LABELS:

GROUP 1 OUTPUT LABELS:

Opto Input 1 Spare
Opto Input 2 Spare
Opto Input 3 KEY DTT
Opto Input 4 Spare
Opto Input 5 52b/1-status
Opto Input 6 52b/2-status
Opto Input 7 89b/F2-status
Opto Input 8 Spare
Opto Input 9 86TT-1/G13-stat
Opto Input 10 86TT-1/G13-alm
Opto Input 11 86-1/G13-status
Opto Input 12 86-1/G13-alm
Opto Input 13 85TSS-1/G13 Mon
Opto Input 14 85TCO-1/G13 Mon
Opto Input 15 Spare
Opto Input 16 Spare
Opto Input 17 Spare
Opto Input 18 Spare
Opto Input 19 Spare
Opto Input 20 Spare
Opto Input 21 Spare
Opto Input 22 Spare
Opto Input 23 Spare
Opto Input 24 Spare
Relay 1 DTT RCVD
Relay 2 67N TRIP
Relay 3 21(ZONE2) TRIP
Relay 4 21\&21G TRIP
Relay 5 50SOTF TRIP
Relay 6 50HS TRIP
Relay 7 Spare
Relay 887 TRIP
Relay 9 Spare
Relay 10 General Alarm
Relay 11 Any Trip (SER)
Relay 12 Spare
Relay 13 Spare
Relay 14 Spare
Relay 15 Spare
Relay 16 Spare
Relay 17 Spare
Relay 18 Spare
Relay 19 Spare
Relay 20 Spare
Relay 21 Spare
Relay 22 Spare

\section*{Appendix 09 \\ 85-1-G13 (Areva P546) Setting Calculation}

Relay 23 Spare
Relay 24 Spare Relay 25 Spare Relay 26 Spare Relay 27 Spare Relay 28 Spare Relay 29 Spare Relay 30 Spare Relay 31 Spare Relay 32 Spare

\section*{Appendix 10 85-2-G13 (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{1. Data} \\
\hline MVA_Base = & \multirow[t]{2}{*}{\[
\begin{aligned}
& 100 \\
& 600
\end{aligned}
\]} & V_Base = & 345 & Z_Base = & 1190.25 & \multirow[t]{2}{*}{ohms} \\
\hline CTR = & & TR = & 3000 & CTR/PTR= & 0.2 & \\
\hline Line ID & From & To & R1(ohms) & X1(ohms) & R0(ohms) & X0(ohms) \\
\hline G13 & Charles Poletti & AEII GEN & 0.01410275 & 0.1332769 & 0.038613481 & 0.32084775 \\
\hline
\end{tabular}

Secondary Ohms = Primary Ohms • (CTR/PTR)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & R1(2nd ohm) & X1(2nd ohm) & R0(2nd ohm) & X0(2nd ohm) \\
\hline G13 & Charles Poletti & AEII GEN & 0.00 & 0.03 & 0.01 & 0.06 \\
\hline
\end{tabular}

Z1 \(=\) Sqrt (R1*R1 \(+X 1 *\) X1) \(\quad\) Z1Ang \(=\operatorname{Arctan}(X 1 / R 1) \quad\) Z0 equations are the same.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & Z1(2nd ohm) & Z1Ang & Z0(2nd ohm) & Z0Ang \\
\hline G13 & Charles Poletti & AEII GEN & 0.03 & 83.96 & 0.06 & 83.14 \\
\hline
\end{tabular}

Note: Line Z1 is less than the minimum 0.05 of Z1MAG setting. Two times of real Z1 and Z0 will be used in Z1MAG and ZOMAG settings.

\section*{2. Setting Criteria}
2.1 Zone 1 phase distace:

Set Zone 1 phase distace at minimum setting of 0.05 secondary ohm, or \(167 \%\) of line impedance. It may trip for a fault beyond the protected TL, such as a transformer fault. However, since there is no 345 kV breaker at G13 station, such overreach is not a concern.
2.2 Set Zone 2 phase distace at \(333 \%\) of the line impedance with 0.35 second delay.
2.3 Zone 1 ground distace:

Set Zone 1 ground distace at minimum setting of 0.05 secondary ohm, or \(167 \%\) of line impedance. It may trip for a fault beyond the protected TL, such as a transformer fault. However, since there is no 345 kV breaker at G13 station, such overreach is not a concern.
2.4 Set Zone 2 ground distance at 333\% of the line impedance with 0.6 second delay.
2.5 Line differential element

Set 87LPP at the minimum setting of 1 Amp secondary; Set 87L2P and 87LGP at the minimum setting of 0.5 Amp secondary, or 300 Amp Primary, which should be above expected line charging current unbalance. 87LR and 87LANG can be set as default per SEL manual.
2.6 High Set Fault Protection (50HS):

50HS must not operate for reverse faults (local line end) or transformer inrush with appropriate operating margin. It may trip for a fault beyond the protected TL, such as a transformer fault. However, since there is no 345kV breaker at G13 station, such overreach is not a concern.
Both SEL-311L and Areva P546 can filter out 2nd harmonic etc major component of inrush current. Set 50HS at 7,200 Primary Amp or 12 Amp at CT secondary. It will well below the forward fault current but above the reverse fault level. Refer to Appendix 01 Section 2.6 fault current distribution.
2.7 Stub Bus Protection (50SB):

The voltage source of 85-2-G13 (SEL-311L) relay is at the line side of the MOD, so 50SB is required.
50SB is to be enabled only when MOD is open, i.e. supervised by MOD's 89b, see 67P2TC setting.
For normal load current or external fault current through the stub bus, the current will ideally be zero.
Set 50 SB pickup at \(150 \%\) of the maximum full load current by considering all three GSUs with a possibility of one set of CT test switches left shorted.
Total MVA of all three GSUs = 750 ; Maximum full load current (amps) =
1255.11
2.8 Switch-On-To-Fault Protection (50SOTF)

50SOTF will only be armed when the circuit breakers are open and the asscoated line is de-energized. While closing the first circuit breaker to energize the line this function shall only be in service for the first 15 cycles and will reset if no fault is detected. Set 50SOTF pickup the same as 50 HS .

\section*{Appendix 10 85-2-G13 (SEL-311L) Setting Calculation}

\subsection*{2.9 Directional Ground Overcurrent Backup Protection (67N)}

67 N will be used to provided backup protection for ground faults on the system. 67 N pickup shall be higher than the worst unbalance and can be set \(1 / 3\) of maximum full load
\(1 / 3\) of \(\operatorname{FLC}=1 / 3 * 1,255 \mathrm{Amp}=418.33\) primary amp or 0.7 Amp at CT secondary.
Directional element is not necessary due to the strong utility source. Curve and time dial is set to provide security margin for reverse close-in faults.
The instantaneous -overcurrent (IOC) function can be used to provide close-in ground fault detection and shall not trip for reverse faults or transformer inrush. Set it at 20 Amp CT secondary or 12kA CT primary to prevent false tripping for reverse ground faults.

\section*{Group 1 - Set 1:}

General Settings:
Relay ID
\[
\begin{aligned}
\text { RID } & =85-2-\text {-G13 } \\
\text { TID } & =\text { CHARLES POLETTI } \\
\text { CTR } & =600 \\
\text { APP } & =311 \mathrm{~L} \\
\text { EADVS } & =N
\end{aligned}
\]

Line Current Differential Settings:
Number of 87L Terminals
\[
\begin{aligned}
\text { E87L } & =2 & & \\
\text { EHST } & =1 & & \\
\text { EHSDTT } & =Y & & \\
\text { EDD } & =Y & & \\
\text { ETAP } & =N & & \\
\text { EOCTL } & =N & & \text { \# 1200/5 CT } \\
\text { CTR_X } & =240 & & \text { \# Minimum } \\
\text { 87LPP } & =1 & & \text { \# Minimum } \\
\text { 87L2P } & =0.5 & & \text { \# Minimum } \\
\text { 87LGP } & =0.5 & & \text { \# Minimum } \\
\text { CTALRM } & =0.5 & & \text { \# Default } \\
\text { 87LR } & =6 & & \text { \# Default }
\end{aligned}
\]

High Speed Tripping
Enable High Speed Direct Transfer Trip
Enable Disturbance Current Detect
Tapped Load Coordination
Enable Open CT Logic
CTR at Terminal Connected to Channel X
Phase 87L (Amp secondary)
Negative Sequence 87L (Amp secondary)
Ground 87L (Amp secondary)
Ph. Diff. Current Alarm Pickup (Amp secondary)
Outer Radius
Angle (Degree)
Backup Protection and Line Parameters:
\(\left.\begin{array}{lrl}\text { Polarizing (IPOL) CT Ratio } & \begin{array}{rl}\text { CTRP }=600 \\ \text { Phase PT Ratio } & \text { PTR }\end{array} & \text { \# Not used } \\ \text { Synch Voltage (VS) PT Ratio } & \text { PTRS }=3000\end{array}\right)\)

\section*{Phase Distance:}

Enable Mho Phase Distance Elements
CCVT Transient Detection Enable
Reach Zone 1 (Ohms secondary)
\begin{tabular}{rlrl} 
E21P & \(=2\) & \\
ECCVT & \(=N\) & & \#VT is used \\
Z1P & \(=0.05\) & & \# Minimum
\end{tabular}

\section*{Appendix 10 85-2-G13 (SEL-311L) Setting Calculation}
\begin{tabular}{lll} 
Reach Zone 2 (Ohms secondary) & Z2P \(=0.10\) & \# 333\% of line \\
Phase-Phase Overcurrent Fault Detector Zone 1 (2nd Amp) & \(50 P P 1=0.5\) & \# Minimum \\
Phase-Phase Overcurrent Fault Detector Zone 2 (2nd Amp) & \(50 P P 2=0.5\) & \# Minimum
\end{tabular}
\# Fault detectors can be set at the minimum if LOP (Loss Of Potential) is enabled.

\section*{Ground Distance Elements:}

Enable Mho Ground Distance Elements
\(\mathrm{E} 21 \mathrm{MG}=\mathrm{N}\)
Enable Quad Ground Distance Elements
E21XG = 2
XG1 Zone 1 Reactance (Ohms secondary)
XG1 \(=0.05\) \# Minimum
XG2 Zone 2 Reactance (Ohms secondary)
\(X G 2=0.1 \quad \# 333 \%\) of line
Zone 1 Resistance (Ohms secondary)
\(R G 1=5.00\)
Zone 2 Resistance (Ohms secondary)
\(R G 2=5.00\)
Zone 1 Phase Current FD (Amps secondary) 50L1 = 0.5 \# Minimum
Zone 2 Phase Current FD (Amps secondary)
50L2 \(=0.5 \quad\) \# Minimum
Zone 1 Residual Current FD (Amps secondary)
50GZ1 \(=0.5\) \# Minimum
Zone 2 Residual Current FD (Amps secondary)
50GZ2 = \(0.5 \quad\) \# Minimum
\# Fault detectors can be set at the minimum if LOP (Loss Of Potential) is enabled.
k0M1 \(=0.33\)
Zone 1 ZSC Factor Ang (degrees)
k0A1 \(=-1.64\)
\(\mathrm{kOM}=0.33 \quad\) \# As kOM1
k0A \(=-1.64 \quad\) \# As k0A1
\[
\text { k0M1 } \angle \mathrm{k} 0 \mathrm{~A} 1=\frac{(\text { Z0MAG } \angle \mathrm{Z} 0 \mathrm{ANG})-(\text { Z1MAG } \angle \mathrm{Z} 1 \mathrm{ANG})}{3 \cdot(\mathrm{Z} 1 \mathrm{MAG} \angle \mathrm{Z} 1 \mathrm{ANG})}
\]

Mho Phase Distance Element Time Delay Settings:
Zone 1 Time Delay (cycles in 0.25 increments)
Z1PD = OFF
Zone 2 Time Delay (cycles in 0.25 increments)
Z2PD \(=21 \quad \# 0.35\) second

Mho Ground Distance Element Time Delay Settings:
Zone 1 Time Delay (cycles in 0.25 increments)
Z1GD = OFF
Zone 2 Time Delay (cycles in 0.25 increments)
Z2GD = 36
\# 0.6 second

Phase Instantaneous Overcurrent Elements:

Enable Phase Overcurrent Elements
Phase Instantaneous Overcurrent Level 1 (Amps secondary)
Phase Instantaneous Overcurrent Level 2 (Amps secondary)
Phase Instantaneous Overcurrent Level 3 (Amps secondary)
Phase Definite-Time Overcurrent Element Level 1 ( cycles)
Phase Definite-Time Overcurrent Element Level 2 ( cycles)
Phase Definite-Time Overcurrent Element Level 3 ( cycles)

E50P = 3
50P1P = 12 \# 50HS
50P2P = \(3.14 \quad \# 50 S B\)
50P3P = 12 \# 50SOTF
67P1D = 0 \# Not used
67P2D \(=0\) \# Not used
67P3D = 0 \# Not used

Negative-Sequence Instantaneous Elements:
Enable Negative-Sequence Overcurrent Element E50Q = N \# Not required

\section*{Appendix 10 85-2-G13 (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Phase Time-Overcurrent Elements:} \\
\hline Enable Phase Time-Overcurrent Elements & E51P = N & \# Not used \\
\hline \multicolumn{3}{|l|}{Residual Ground Time-Overcurrent Elements:} \\
\hline Enable Residual Ground Time Overcurrent Elements & E51G = Y & \\
\hline Residual Ground Time-Overcurrent Pickup (Amp secondary) & 51GP \(=0.70\) & \# 67N-TOC \\
\hline 51GC Curve & 51GC = U2 & \\
\hline 51GTD Time Dial & 52GTD \(=3.5\) & \\
\hline 51GRS Electromechanical Reset Delay & 51GRS \(=\mathrm{N}\) & \\
\hline \multicolumn{3}{|l|}{Negative-Sequence Time-Overcurrent Elements:} \\
\hline Enable Negative-Sequence Time-Overcurrent Elements & \(E 51 Q=N\) & \# Not required \\
\hline \multicolumn{3}{|l|}{Out-of-Step Settings:} \\
\hline Enable Out-of-Step Elements & EOOS \(=\mathrm{N}\) & \# Not required \\
\hline \multicolumn{3}{|l|}{Load-Encroachment Elements:} \\
\hline \multicolumn{3}{|l|}{As per NERC Task Froce requirement, phase distance settings and other applicable phase and ground distance zone settings must permit loading of the line without trip to \(150 \%\) of emergency line ampere rating, with 0.85 per unit bus voltage and a load angle} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
292325.87
\] \\
Loadability S = (0.85*kV)*(0.85*kV)/(Zsec*cos(Z1ANG-30)*CTR/PTR = 292325.87 Where, Zsec is Z2P in this application, kV is 345 and Z1ANG is line angle.
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Conclusion: Loadability is more than 150\% of maximum generation at AEII, no load encroachment.} \\
\hline Enable Load-Encroachment Element & ELOAD = N & \# Calc above \\
\hline \multicolumn{3}{|l|}{Directional Elements:} \\
\hline Enable Directional Elements & \(\mathrm{E} 32=\mathrm{Y}\) & \\
\hline Loss-Of_Potential Enable & ELOP = Y1 & \\
\hline \multicolumn{3}{|l|}{\# When ELOP = Y1 and a lop occurs, directional O/C elements are blocked.} \\
\hline Busbar PT LOP Logic Enable & EBBPT \(=\mathrm{N}\) & \# N/A \\
\hline Level 3 Direction & DIR3 \(=\mathrm{F}\) & \# Default \\
\hline Level 4 Direction & DIR4 \(=\mathrm{F}\) & \# Default \\
\hline Ground Directional Element Priority & ORDER = Q & \\
\hline Forward Dir. Z2 Threshold (Ohms secondary) & \(Z 2 F=0.01\) & \# Real Z1/2 \\
\hline Reverse Dir. Z2 Threshold (Ohms secondary) & Z2R \(=0.11\) & \# Z2F+0.1 \\
\hline Forward Dir. 312 Pickup (Amps secondary) & 50QFP \(=0.25\) & \# Minimum \\
\hline Reverse Dir. 312 Pickup (Amps secondary) & 50QRP \(=0.5\) & \# 24\% max FLC \\
\hline Pos-Seq Restraint Factor I2/I1 (unitless) & \(\mathrm{a} 2=0.1\) & \# Default \\
\hline Zero-Seq Restraint Factor, I2/IO (unitless) & \(\mathrm{k} 2=0.2\) & \# Default \\
\hline \multicolumn{3}{|l|}{Enable Voltage Elements:} \\
\hline Enable Voltage Elements & EVOLT \(=\) N & \\
\hline \multicolumn{3}{|l|}{Synchronism Check Elements} \\
\hline Enable Synchronism Check Elements & \(E 25=N\) & \# Not required \\
\hline \multicolumn{3}{|l|}{Frequency Elements} \\
\hline Enable Frequency Elements & E81 \(=\) N & \# Not required \\
\hline
\end{tabular}

\section*{Appendix 10 85-2-G13 (SEL-311L) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Relcosing Relay:} \\
\hline Enable Reclosing Relay Elements & \(\mathrm{E} 79=\mathrm{N}\) & \# Not required \\
\hline \multicolumn{3}{|l|}{Switch-Onto-Fault:} \\
\hline Enable Switch-Onto-Fault Elements & ESOTF = Y & \# Section 2.8 \\
\hline Close Enable Time Delay (cycles in 0.25 increments) & CLOEND \(=\) OFF & \# Not used \\
\hline 52A Eanble Tim Delay (cycles in 0.25 increments) & \(52 \mathrm{AEND}=36\) & \# 0.6 second \\
\hline SOTF Duration (cycles in 0.25 increments) & SOTFD \(=15\) & \# Section 2.8 \\
\hline \multicolumn{3}{|l|}{Commnunications Assisted Tripping Schemes:} \\
\hline Enable Communication Assisted Tripping Schemes & \(E C O M M=N\) & \# Not used \\
\hline \multicolumn{3}{|l|}{Zone 1 Extension Settings:} \\
\hline Enable Zone 1 Extension Elements & EZ1EXT \(=\) N & \# Not used \\
\hline \multicolumn{3}{|l|}{Demand Metering Settings:} \\
\hline Enable Demand Metering Method & EDEM \(=\) THM & \\
\hline DMTC Time constant & DMTC \(=15\) & \\
\hline Phase Pickup (Amps secondary) & PDEMP = OFF & \# Not used \\
\hline Residual Ground Pickup (Amps secondary) & GDEMP = OFF & \# Not used \\
\hline Negative-Sequence Pcikup (Amps secondary) & QDEMP = OFF & \# Not used \\
\hline \multicolumn{3}{|l|}{Other Setting:} \\
\hline Minimum Trip Duration Time (cycles in 0.25 increments) & TDURD \(=9\) & \# Default \\
\hline Close Failure Time Delay (cycles in 0.25 increments) & CFD \(=0\) & \# Not used \\
\hline Three-Pole Open Time Delay (cycles in 0.25 increments) & \(3 \mathrm{POD}=0.5\) & \# Default \\
\hline Open Pole Option & \(\mathrm{OPO}=52\) & \# BKR status \\
\hline Load Detection Phase Pickup (Ampes secondary) & \(50 \mathrm{LP}=0.25\) & \# Minimum \\
\hline \multicolumn{3}{|l|}{SELogic Control Equation Variable Timers:} \\
\hline SELogic Latch Bits Enables & ELAT \(=\mathrm{N}\) & \\
\hline SELogic Display Points Enables & EDP \(=8\) & \\
\hline Enable SELogic Control Variable Timers & \(E S V=N\) & \\
\hline \multicolumn{3}{|l|}{Group 1 - Logic 1:} \\
\hline \multicolumn{3}{|l|}{Trip/Comm.-Assisted Trip Logic:} \\
\hline \multicolumn{3}{|l|}{Direct trip conditions TR = TRIP87+M1P+Z1G+M2PT+Z2GT+67P1T+67P2T+67G1T+51GT} \\
\hline \multicolumn{3}{|l|}{\#LED2 Target. 67P1T is 50 HS ; 67P2T is 50 SB ; 50 P 3 is 50 SOTF ; 67 G 1 T is \(67 \mathrm{~N}-\mathrm{IOC} ; 51 \mathrm{GT}\) is \(67 \mathrm{~N}-\mathrm{TOC}\);} \\
\hline Switch-onto-fault trip conditions & TRSOTF = 50P3 & \# SOTF \\
\hline Direct transfer trip conditions & DTT \(=0\) & \# Not used \\
\hline Unlatch trip conditions & ULTR \(=152 \mathrm{~A}\) & \\
\hline \multicolumn{3}{|l|}{Close Logic Equations:} \\
\hline Circuit breaker status & 52A \(=\) ! ! \(1104+!\) IN105 & CB1\&2 Status \\
\hline Close conditions & \(C L=0\) & \# Not used \\
\hline Unlatch close conditions & ULCL \(=0\) & \# Not used \\
\hline Latch Bits Set/Reset Equations: & & \# Not used \\
\hline
\end{tabular}

Torque Control Equations for Inst./Def.-Time Overcurrent Elemements:
\begin{tabular}{|c|c|c|}
\hline Appendix 10 85-2 & 311L) Setting Calculation & \\
\hline 67P1TC Level 1 phase & 67P1TC = 1 & \# nondirectiona \\
\hline 67P2TC Level 1 phase & 67P2TC = IN106 & \# MOD-89b \\
\hline 67P3TC Level 1 phase & 67P3TC = 1 & \# nondirectiona \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\# SOTF is enabled when breaker open \(52 \mathrm{~b}=1\) and the supervision is in relay internal logic. \\
\# SOTF is irrelevant with MOD-89b since there is a possility of switching on a bus fault.
\end{tabular}}} \\
\hline & & \\
\hline 67G1TC Level 1 phase & 67G1TC = 1 & \# nondirectiona \\
\hline 51GTC Residual Ground & \(51 \mathrm{GTC}=1\) & \# nondirectiona \\
\hline \multicolumn{3}{|l|}{Other Torque Controls are not enabled.} \\
\hline SELogic Control Equation Variables: & & \# ESV \(=\) N \\
\hline \multicolumn{3}{|l|}{Output Contacts:} \\
\hline Output Contact 101 & OUT101 \(=\) R1X*ROKX & \# DTT Trip \\
\hline Output Contact 102 & OUT102 \(=67 \mathrm{G} 1 \mathrm{~T}+51 \mathrm{GT}\) & \# 67N \\
\hline Output Contact 103 & OUT103 = M2PT+Z2GT & \# 21 Zone 2 \\
\hline Output Contact 104 & OUT104 = M1P+Z1G & \# 21 \& 21G \\
\hline Output Contact 105 & OUT105 = SOTFT & \# 50SOTF \\
\hline Output Contact 106 & OUT106 \(=67 \mathrm{P} 1 \mathrm{~T}\) & \# 50HS \\
\hline Output Contact 107 & OUT107 = 67P2T & \# 50SB \\
\hline Output Contact 201 & OUT201 = TRIP87 & \# 87 Trip \\
\hline Output Contact 202 & OUT202 \(=\) TRIP+R1X*ROKX & \# Any Trip \\
\hline \multicolumn{3}{|l|}{Output Contact 203~206, \(301 \sim 312\) are all 0 .} \\
\hline \multicolumn{3}{|l|}{Display Points:} \\
\hline Display Point 1 & DP1 \(=0\) & \# Not used \\
\hline Display Point 2 & DP2 \(=0\) & \# Not used \\
\hline Display Point 3 & DP3 \(=0\) & \# Not used \\
\hline Display Point 4 & DP4 \(=1\) N104 & \# 52b/BKR1 \\
\hline Display Point 5 & DP5 \(=\) IN105 & \# 52b/BKR2 \\
\hline Display Point 6 & DP6 \(=\) IN106 & \# 89b/FQ35L \\
\hline Display Point 7 & DP7 \(=0\) & \# Not used \\
\hline Display Point 8 & DP8 \(=0\) & \# Not used \\
\hline Display Point 9 ~16 & & \# Not used \\
\hline \multicolumn{3}{|l|}{Setting Group Selection Equations:} \\
\hline Select Setting Group 1 & SS1 \(=1\) & \\
\hline Select Setting Group 2-6 are all 0 & SS2~SS6 = 0 & \# Not used \\
\hline \multicolumn{3}{|l|}{Other Equations:} \\
\hline \multicolumn{3}{|l|}{Event report trigger conditions ER = /87L+/M2P+/Z2G++/50P2+/51G+/R1X+/LOP} \\
\hline \multicolumn{3}{|l|}{Fault indication FAULT \(=87 \mathrm{~L}+\mathrm{M} 2 \mathrm{P}+\mathrm{Z2G}+50 \mathrm{P} 2+51 \mathrm{G}+\mathrm{R} 1 \mathrm{X}\)} \\
\hline Block synchronism check elements & BSYNCH \(=0\) & \# Not used \\
\hline Close bus monitor & CLMON \(=0\) & \# Not used \\
\hline Enable for V0 polarized and IN polarized elements & E32V = 1 & \\
\hline Stub Bus Logic Enable & ESTUB \(=0\) & \# Not used \\
\hline \multicolumn{3}{|l|}{\# 50SB is done by setting its torque control 67P2TC as MOD-89b.} \\
\hline Mirrored Bits Transmit Equations: & & \# Not used \\
\hline 87L Transmit Equations: & & \\
\hline
\end{tabular}

\section*{Appendix 10 \\ 85-2-G13 (SEL-311L) Setting Calculation}


\section*{Appendix 11 87B-BS2 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{1. Data} \\
\hline MVA_Base \(=100\) & kV_Base = & 345 & Z_Base = & 1190.25 & ohms \\
\hline CTR = 600 & PTR = & 3000 & CTR/PTR= & & \\
\hline Total MVA of all three GSUs = & 750 & & ll load curren & \(\mathrm{t}(\mathrm{mpss})=\) & 1255.11 \\
\hline \multicolumn{6}{|l|}{2. Setting Criteria} \\
\hline \multicolumn{6}{|l|}{2.1 Differential Settings:} \\
\hline & & ximum & rmer MVA = & 750 & MVA \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 1 terminal voltage VWDG1 = 345 kV} \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 2 terminal voltage VWDG2 = 345 kV} \\
\hline \multicolumn{6}{|l|}{The nominal transformer Winding 3 terminal voltage VWDG3 = 345 kV} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 1---CTR1= 600} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 2---CTR2= 600} \\
\hline \multicolumn{6}{|c|}{CT ratio for winding 3---CTR3= 600} \\
\hline \multicolumn{6}{|l|}{Winding 1 Current Tap TAP1 \(=\) MVA/(Sqrt(3) \(\times\) VWDG1 \(\times\) CTR1) \(=2.09 \mathrm{~A}\)} \\
\hline \multicolumn{6}{|l|}{Winding 2 Current Tap TAP2 \(=\) MVA/(Sqrt(3) \(\times\) VWDG2 \(\times\) CTR2) \(=2.09 \mathrm{~A}\)} \\
\hline \multicolumn{6}{|l|}{Winding 3 Current Tap TAP3 \(=\) MVA/(Sqrt(3) \(\times\) VWDG3 \(\times\) CTR3 \()=2.09\)} \\
\hline O87P \(\geq 0.1\) & 5A / TAPmin & 0.24 & Set 087P= & 0.24 & \# Per manual \\
\hline \multicolumn{6}{|l|}{Dual-Slop variable-percentage differential characteristic is used.} \\
\hline \multicolumn{6}{|c|}{Restraint Slop 1 Percentage (5-100\%) SLP \(1=25\)} \\
\hline \multicolumn{6}{|c|}{Restraint Slope 2 Percentage (OFF, 25-200\%) SLP2 = 50} \\
\hline \multicolumn{6}{|l|}{Restraint Current Slope 1 Limit ((1-20) multiple of tap) IRS1 = 6.8} \\
\hline \multicolumn{6}{|l|}{Unrestrained Element Current PU ((1-20) multiple of tap) U87P = 10.2} \\
\hline \multicolumn{6}{|l|}{Second-Harmonic Blocking Percentage (OFF, 5-100\%) PCT2 = OFF} \\
\hline \multicolumn{6}{|l|}{Fifth-Harmonic Blocking Percentage (OFF, 5-100\%) PCT5 = OFF} \\
\hline & Independe & Harm & king IHBL = & N & \\
\hline
\end{tabular}
2.2 Winding 1 Elems (for event triggering)
2.2.1 Set phase IOC element 50P11P at 7.3 CT secondary amp or 4,393 CT primary amp, i.e. 3.5 times of the maximum full load current (FLC).
2.2.2. Set phase TOC element 51P1P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.3. Set residual IOC element 51N11P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.4. Set residual TOC element 51N1P at 1.65 CT secondary amp or 1,004 CT primary amp, i.e. \(80 \%\) of the maximum FLC.

\section*{Group 1-Set 1:}

Config. Settings:

Relay Identifier
Terminal Identifier
Enable Wdg1 in Differential Element
Enable Wdg2 in Differential Element
Enable Wdg3 in Differential Element
Enable Wdg4 in Differential Element
Enable Wdg1 O/C Elements and Dmd. Thresholds
Enable Wdg2 O/C Elements and Dmd. Thresholds
Enable Wdg3 O/C Elements and Dmd. Thresholds
\begin{tabular}{rl} 
RID & \(=87 B-\) BS2 \\
TID & \(=\) CHARLES POLETTI \\
E87W1 & \(=Y\) \\
E87W2 & \(=Y\) \\
E87W3 & \(=Y\) \\
E87W4 & \(=\mathrm{N}\) \\
EOC1 & \(=Y\) \\
EOC2 & \(=\mathrm{N}\) \\
EOC3 & \(=\mathrm{N}\)
\end{tabular}

RID = 87B-BS2
TID = CHARLES POLETTI
E87W1 \(=Y\)
E87W2 \(=Y\)
E87W3 \(=Y\)
E87W4 = N
EOC1 \(=\mathrm{Y}\)
EOC3 \(=\mathrm{N}\)

\section*{Appendix 11 87B-BS2 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Enable Wdg4 O/C Elements and Dmd. Thresholds & EOC4 \(=\) N & \\
\hline Enable Combined O/C Elements & EOCC \(=\mathrm{N}\) & \\
\hline Enable RTDA Elements & \(E 49 \mathrm{~A}=\mathrm{N}\) & \\
\hline Enable RTDB Elements & E49B \(=\mathrm{N}\) & \\
\hline Enable SELogic Set 1 & ESLS1 \(=\) Y & \\
\hline Enable SELogic Set 2 & ESLS2 \(=\mathrm{N}\) & \\
\hline Enable SELogic Set 3 & ESLS3 \(=\mathrm{N}\) & \\
\hline \multicolumn{3}{|l|}{General Data:} \\
\hline Wdg1 CT Connection & \(\mathrm{W} 1 \mathrm{CT}=\mathrm{Y}\) & \\
\hline Wdg2 CT Connection & \(\mathrm{W} 2 \mathrm{CT}=\mathrm{Y}\) & \\
\hline Wdg3 CT Connection & \(\mathrm{W} 3 \mathrm{CT}=\mathrm{Y}\) & \\
\hline Wdg4 CT Connection & \(\mathrm{W} 4 \mathrm{CT}=\mathrm{Y}\) & \# Not Used \\
\hline Wdg1 CT Ratio & CTR1 \(=600\) & \\
\hline Wdg2 CT Ratio & CTR2 \(=600\) & \\
\hline Wdg3 CT Ratio & CTR3 \(=600\) & \\
\hline Wdg4 CT Ratio & CTR4 \(=600\) & \# Not Used \\
\hline Maximum Power Xfmr Capacity & MVA \(=750\) & \\
\hline Define Interal CT Connection Compensation & ICOM \(=\mathrm{N}\) & \\
\hline Wdg 1 Line-to-Line Voltage & VWDG1 = 345 & \# kV \\
\hline Wdg 2 Line-to-Line Voltage & VWDG2 = 345 & \# kV \\
\hline Wdg 3 Line-to-Line Voltage & VWDG3 = 345 & \# kV \\
\hline Wdg 4 Line-to-Line Voltage & VWDG4 = 345 & \# Not used \\
\hline \multicolumn{3}{|l|}{Diff Elems:} \\
\hline Restrained Element Current PU & O87P \(=0.24\) & \\
\hline Restrain Slope 1 Percentage & SLP1 \(=25\) & \\
\hline Restrain Slope 2 Percentage & SLP2 \(=50\) & \\
\hline Restraint Current Slope 1 Limit & IRS1 \(=6.8\) & \\
\hline Unrestrained Element Current PU & U87P \(=10.2\) & \\
\hline 2nd Harmonic Blocking Percentage & \(\mathrm{PCT} 2=\mathrm{OFF}\) & \\
\hline 5th Hamronic Blocking Percentage & PCT5 \(=\) OFF & \\
\hline 5th Harmonic Alarm Threshold & TH5P = OFF & \\
\hline Independent Harmonic Blocking & \(\mathrm{lHBL}=\mathrm{N}\) & \\
\hline Restriced Earth Fault: & & \# Not Used \\
\hline \multicolumn{3}{|l|}{Winding 1 Elems:} \\
\hline Phase Def-Time O/C Level 1 PU & \(50 \mathrm{P} 11 \mathrm{P}=7.3\) & \# 3.5xFLC \\
\hline Phase Level 1 O/C Delay & \(50 \mathrm{P} 11 \mathrm{P}=0.5\) & \# cycle \\
\hline 50P11 Torque Control (SELogic Equation) & \(50 \mathrm{P} 11 \mathrm{TC}=1\) & \\
\hline Oher Phase Inst O/C elements & & \# Not used \\
\hline Phase Inv-Time O/C PU & \(51 \mathrm{P} 1 \mathrm{P}=2.95\) & \# 1.4xFLC \\
\hline Phase Inv-Time O/C Curve & 51P1C = C2 & \\
\hline Phase Inv-Time O/C Time-Dial & 51P1TD \(=0.2\) & \\
\hline Phase Inv-Time O/C EM Reset & 51P1RS = N & \\
\hline 51P1 Torque Control (SELogic Equation) & \(51 \mathrm{P} 1 \mathrm{TC}=1\) & \\
\hline Neg-Seq Def-Time O/C & & \# Not used \\
\hline Residual Def-Time O/C Level 1 PU & \(50 \mathrm{~N} 11 \mathrm{P}=2.95\) & \# 1.4xFLC \\
\hline Residual Level 1 O/C Delay & \(50 \mathrm{~N} 11 \mathrm{D}=0.5\) & \# cycle \\
\hline 50N11 Torque Control (SELogic Equation) & \(50 \mathrm{~N} 11 \mathrm{TC}=1\) & \\
\hline
\end{tabular}

\section*{Appendix 11 \\ 87B-BS2 (SEL-387) Setting Calculation}

Other Residual Inst O/C elements
\# Not used
Residual Inv-Time O/C PU 51N1P = 1.65 \# 80\% FLC
Residual Inv-Time O/C Curve
Residual Inv-Time O/C Time-Dial
\(51 \mathrm{~N} 1 \mathrm{C}=\mathrm{C} 2\)
Residual Inv-Time O/C EM Reset
51N1 Torque Control (SELogic Equation)
Demand Ammeter Time Constant
Phase Demand Ammeter Threshold
Neg-Seq Demand Ammeter Threshold
Residual Demand Ammeter Threshold
Winding 2 Elems:
51N1TD \(=0.35\)
51N1RS \(=\mathrm{N}\)
51N1TC = 1
DATC1 = \(15 \quad\) \# Default
PDEM1P = 7 \# Default
QDEM1P = 1 \# Default
NDEM1P = 1 \# Default
\# Not Used
Winding 3 Elems: \# Not Used
Winding 4 Elems: \# Not Used
Combined Elems: \# Not used
RTD A Elems: \# Not used
RTD B Elems: \# Not used
Misc. Timers \# Default
SELogic Set 1:
Set 1 Variable 1 (SELogic Equation)
S1V1 Timer Pickup
S1V1 \(=87 R\)
S1V1 Timer Dropout
Set 1 Variable 2 (SELogic Equation)
S1V2 Timer Pickup
S1V1PU \(=0\)
S1V1DO \(=24 \quad \# 0.4\) second
S1V2 \(=51 \mathrm{P} 1 \mathrm{~T}+51 \mathrm{~N} 1 \mathrm{~T}\)
S1V2 Timer Dropout
Set 1 Variable 3 (SELogic Equation)
S1V3 Timer Pickup
S1V3 Timer Dropout
S1V2PU \(=0\)
S1V2DO \(=0\)
S1V3 \(=\) S1V2+87R
S1V3PU \(=60 \quad\) \# 1 second
Set 1 Variable 4 (SELogic Equation) S1V4 \(=87 R+50 \mathrm{~N} 11 \mathrm{~T}+50 \mathrm{P} 11 \mathrm{~T}+51 \mathrm{P} 1 \mathrm{~T}+51 \mathrm{~N} 1 \mathrm{~T} \quad\) \# Event trigger
S1V4 Timer Pickup
S1V4 Timer Dropout
Set 1 Latch Bits
SELogic Set 2:
\# Not used
SELogic Set 3:
\# Not used
Trip Logic:
\[
\begin{aligned}
& \text { TR1 }=50 \mathrm{P} 11 \mathrm{~T}+51 \mathrm{P} 1 \mathrm{~T}+50 \mathrm{~N} 11 \mathrm{~T}+51 \mathrm{~N} 1 \mathrm{~T} \\
& \text { TR2 }=87 \mathrm{R}+87 \mathrm{U} \\
& \text { TR3 }=0 \\
& \text { TR4 }=0 \\
& \text { TR5 }=0 \\
& \text { ULTR1 }=!(51 \mathrm{P} 1+51 \mathrm{~N} 1) \\
& \text { ULTR2 }=!(87 \mathrm{R}+87 \mathrm{U}) \\
& \text { ULTR3 }=0 \\
& \text { ULTR4 }=0 \\
& \text { ULTR }=0 \quad
\end{aligned}
\]
\(E R=/ S 1 V 4\)
OUT101 = TRIP1+TRIP2 \# Any Trip
OUT102 \(=0\)
\# Not used

\section*{Appendix 11 87B-BS2 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Output Contact 103 & OUT103 \(=0\) & \# Not used \\
\hline Output Contact 104 & OUT104 \(=0\) & \# Not used \\
\hline Output Contact 105 & OUT105 = S1V3T & \# Alarm \\
\hline Output Contact 106 & OUT106 \(=0\) & \# Not used \\
\hline Output Contact 107 & OUT107 \(=0\) & \# Not used \\
\hline Output Contact \(201 \sim 212\) are all 0 . & & \# Not used \\
\hline Global & & \# Default \\
\hline \multicolumn{3}{|l|}{SER:} \\
\hline \multicolumn{3}{|l|}{SER1 = 87R,87U,50P11,50P11T,51P1,51P1T,50N11,50N11T,51N1,51N1T} \\
\hline \multicolumn{3}{|l|}{SER2 = S1V1,S1V1T,S1V2,S1V3,OUT105,S1V4} \\
\hline \multicolumn{3}{|l|}{SER3 \(=0\)} \\
\hline \multicolumn{3}{|l|}{SER4 = 0} \\
\hline
\end{tabular}

\section*{Appendix 12 87B-1-BS3 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{1. Data} \\
\hline MVA_Base \(=100\) & kV_Base = & 345 & Z_Base = & . 25 & ohms \\
\hline CTR = 600 & PTR = & 3000 & CTR/PTR= & & \\
\hline Total MVA of all three GSUs = & 750 & ; Max & ll load current & s) \(=\) & 1255.11 \\
\hline \multicolumn{6}{|l|}{2. Setting Criteria} \\
\hline \multicolumn{6}{|l|}{2.1 Differential Settings:} \\
\hline \multicolumn{4}{|r|}{Maximum Transformer MVA =} & 750 & MVA \\
\hline \multicolumn{4}{|l|}{The nominal transformer Winding 1 terminal voltage VWDG1 =} & 345 & \# Not Used \\
\hline \multicolumn{4}{|l|}{The nominal transformer Winding 2 terminal voltage VWDG2 =} & 345 & kV \\
\hline \multicolumn{4}{|l|}{The nominal transformer Winding 3 terminal voltage VWDG3 =} & 345 & kV \\
\hline \multicolumn{4}{|r|}{CT ratio for winding 1---CTR1=} & 600 & \# Not Used \\
\hline \multicolumn{4}{|r|}{CT ratio for winding 2---CTR2=} & 600 & \\
\hline \multicolumn{4}{|r|}{CT ratio for winding 3---CTR3=} & 600 & \\
\hline \multicolumn{4}{|l|}{Winding 1 Current Tap TAP1 \(=\) MVA/(Sqrt(3) \(\times\) VWDG1 \(\times\) CTR1) \(=\)} & 2.09 & \# Not Used \\
\hline \multicolumn{4}{|l|}{Winding 2 Current Tap TAP2 = MVA/(Sqrt(3) \(\times\) VWDG2 \(\times\) CTR2 \()=\)} & 2.09 & A \\
\hline \multicolumn{4}{|l|}{Winding 3 Current Tap TAP3 = MVA/(Sqrt(3) \(\times\) VWDG3 \(\times\) CTR3) \(=\)} & 2.09 & A \\
\hline O87P \(\geq 0.1\) & 5A / TAPmin & & Set 087P= & 0.24 & \# Per manual \\
\hline \multicolumn{6}{|l|}{Dual-Slop variable-percentage differential characteristic is used.} \\
\hline \multicolumn{4}{|r|}{Restraint Slop 1 Percentage (5-100\%) SLP \(1=\)} & 25 & \\
\hline \multicolumn{4}{|r|}{Restraint Slope 2 Percentage (OFF, 25-200\%) SLP2 =} & 50 & \\
\hline \multicolumn{4}{|l|}{Restraint Current Slope 1 Limit ((1-20) multiple of tap) IRS1 =} & 6.8 & \\
\hline \multicolumn{4}{|l|}{Unrestrained Element Current PU ((1-20) multiple of tap) U87P =} & 10.2 & \\
\hline \multicolumn{4}{|l|}{Second-Harmonic Blocking Percentage (OFF, 5-100\%) PCT2 =} & OFF & \\
\hline \multicolumn{4}{|l|}{Fifth-Harmonic Blocking Percentage (OFF, 5-100\%) PCT5 =} & OFF & \\
\hline \multicolumn{4}{|r|}{Independent Harmonic Blocking IHBL =} & N & \\
\hline
\end{tabular}
2.2 Winding 2 Elems (for event triggering)
2.2.1 Set phase IOC element 50P21P at 7.3 CT secondary amp or 4,380 CT primary amp, i.e. 3.5 times of the maximum full load current (FLC).
2.2.2. Set phase TOC element 51P2P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.3. Set residual IOC element 51N21P at 2.95 CT secondary amp or 1,770 CT primary amp, i.e. 1.4 times of the maximum FLC.
2.2.4. Set residual TOC element 51N2P at 1.65 CT secondary amp or 990 CT primary amp, i.e. \(79 \%\) of the maximum FLC.

\section*{Group 1 - Set 1:}

Config. Settings:

Relay Identifier
Terminal Identifier
Enable Wdg1 in Differential Element
Enable Wdg2 in Differential Element
Enable Wdg3 in Differential Element
Enable Wdg4 in Differential Element
Enable Wdg1 O/C Elements and Dmd. Thresholds
Enable Wdg2 O/C Elements and Dmd. Thresholds
Enable Wdg3 O/C Elements and Dmd. Thresholds
\begin{tabular}{rl} 
RID & \(=87 B-1-\) BS3 \\
TID & \(=\) CHARLES POLETTI \\
E87W1 & \(=\mathrm{N} \quad\) \# Not Used \\
E87W2 & \(=\mathrm{Y}\) \\
E87W3 & \(=\mathrm{Y}\) \\
E87W4 & \(=\mathrm{N}\) \\
EOC1 & \(=\mathrm{N}\) \\
EOC2 & \(=\mathrm{Y}\) \\
EOC3 & \(=\mathrm{N}\)
\end{tabular}

RID = 87B-1-BS3
TID = CHARLES POLETTI
E87W1 = N \# Not Used
E87W2 = Y
E87W3 = Y
E87W4 = N
EOC1 = N

EOC3 = N

\section*{Appendix 12 87B-1-BS3 (SEL-387) Setting Calculation}
Enable Wdg4 O/C Elements and Dmd. Thresh
Enable Combined O/C Elements
Enable RTDA Elements
Enable RTDB Elements
Enable SELogic Set 1
Enable SELogic Set 2
Enable SELogic Set 3

General Data:
Wdg1 CT Connection
Wdg2 CT Connection
Wdg3 CT Connection
Wdg4 CT Connection
Wdg1 CT Ratio
Wdg2 CT Ratio
Wdg3 CT Ratio
Wdg4 CT Ratio
Maximum Power Xfmr Capacity
Define Interal CT Connection Compensation
Wdg 1 Line-to-Line Voltage
Wdg 2 Line-to-Line Voltage
Wdg 3 Line--o-Line Voltage
Wdg 4 Line-to-Line Voltage

\section*{Diff Elems:}

Restrained Element Current PU
Restrain Slope 1 Percentage
Restrain Slope 2 Percentage
Restraint Current Slope 1 Limit
Unrestrained Element Current PU
2nd Harmonic Blocking Percentage
5th Hamronic Blocking Percentage
5th Harmonic Alarm Threshold
Independent Harmonic Blocking
\begin{tabular}{|c|c|c|}
\hline Restriced Earth Fault: & & \# Not Used \\
\hline \multicolumn{2}{|l|}{Winding 1 Elems:} & \# Not Used \\
\hline \multicolumn{3}{|l|}{Winding 2 Elems:} \\
\hline Phase Def-Time O/C Level 1 PU & 50P21P = 7.3 & \# 3.5xFLC \\
\hline Phase Level 1 O/C Delay & \(50 \mathrm{P} 21 \mathrm{P}=0.5\) & \# cycle \\
\hline 50P21 Torque Control (SELogic Equation) & \(50 \mathrm{P} 21 \mathrm{TC}=1\) & \\
\hline Oher Phase Inst O/C elements & & \# Not used \\
\hline Phase Inv-Time O/C PU & \(51 \mathrm{P} 2 \mathrm{P}=2.95\) & \# 1.4xFLC \\
\hline Phase Inv-Time O/C Curve & 51P2C = C2 & \\
\hline Phase Inv-Time O/C Time-Dial & 51P2TD \(=0.2\) & \\
\hline Phase Inv-Time O/C EM Reset & 51P2RS \(=\mathrm{N}\) & \\
\hline 51P2 Torque Control (SELogic Equation) & 51P2TC = 1 & \\
\hline Neg-Seq Def-Time O/C & & \# Not used \\
\hline Residual Def-Time O/C Level 1 PU & \(50 \mathrm{~N} 21 \mathrm{P}=2.95\) & \# 1.4xFLC \\
\hline Residual Level 1 O/C Delay & \(50 \mathrm{~N} 21 \mathrm{D}=0.5\) & \# cycle \\
\hline
\end{tabular}

\section*{Appendix 12 \\ 87B-1-BS3 (SEL-387) Setting Calculation}

50N21 Torque Control (SELogic Equation)
Other Residual Inst O/C elements
Residual Inv-Time O/C PU 51N2P = 1.65
Residual Inv-Time O/C Curve
Residual Inv-Time O/C Time-Dial
Residual Inv-Time O/C EM Reset
51N2 Torque Control (SELogic Equation)
Demand Ammeter Time Constant
Phase Demand Ammeter Threshold
Neg-Seq Demand Ammeter Threshold
Residual Demand Ammeter Threshold
Winding 3 Elems:
Winding 4 Elems:
Combined Elems:
RTD A Elems:
RTD B Elems:
Misc. Timers
SELogic Set 1:
Set 1 Variable 1 (SELogic Equation)
S1V1 Timer Pickup
S1V1 Timer Dropout
Set 1 Variable 2 (SELogic Equation)
S1V2 Timer Pickup
S1V2 Timer Dropout
Set 1 Variable 3 (SELogic Equation)
S1V3 Timer Pickup
S1V3 Timer Dropout
Set 1 Variable 4 (SELogic Equation)

S1V4 Timer Dropout
Set 1 Latch Bits
SELogic Set 2:
SELogic Set 3:
Trip Logic:

50N21TC = 1

51N2P = 1.65 \# 80\% FLC
51N2C \(=\) C2
51N2TD \(=0.35\)
51N2RS = N
51N2TC = 1
DATC2 \(=15\) \# Default
PDEM2P = 7 \# Default
QDEM2P = 1 \# Default
NDEM2P \(=1\) \# Default \# Not Used \# Default
S1V1 = TRIP2

S1V1PU = 0
S1V1DO \(=24 \quad \# 0.4\) second
\(\mathrm{S} 1 \mathrm{~V} 2=51 \mathrm{P} 2 \mathrm{~T}\)
S1V2PU = 0
S1V2DO \(=24 \quad \# 0.4\) second
S1V3 \(=51 \mathrm{~N} 2 \mathrm{~T}\)
S1V3PU = 0
S1V3DO = \(24 \quad \# 0.4\) second
\# Event trigger
\# Not used
\# Not used
\# Not used

TR1 = 50P21T + 51P2T +50N21T +51N2T
\(T R 2=87 R+87 U\)
TR3 \(=0\)
TR4 \(=0\)
TR5 = 0
ULTR1 = !(51P2 + 51N2)
ULTR2 \(=\) ! ( \(87 \mathrm{R}+87 \mathrm{U}\) )
ULTR3 \(=0\)
ULTR4 \(=0\)
ULTR5 \(=0\)
\# Not used
\(E R=/ S 1 V 4\)

OUT101 = TRIP1+TRIP2 \# Any Trip
OUT102 \(=0\)
\# Not used

\section*{Appendix 12 \\ 87B-1-BS3 (SEL-387) Setting Calculation}
\begin{tabular}{lll} 
Output Contact 103 & OUT103 \(=0\) & \# Not used \\
Output Contact 104 & OUT104 \(=0\) & \# Not used \\
Output Contact 105 & OUT105 \(=\) S1V1T & \# Alarm \\
Output Contact 106 & OUT106 \(=\) S1V2T & \# Alarm \\
Output Contact 107 & OUT107 \(=\) S1V3T & \# Alarm \\
Output Contact \(201 \sim 212\) are all 0. & & \# Not used \\
& & \# Default \\
\(\underline{\text { Global }}\) & & \\
SER: & & \\
SER1 \(=87 R, 87 U, 50 P 21,50 P 21 T, 51 P 2,51 P 2 T, 50 N 21,50 N 21 T, 51 N 2,51 N 2 T\) & \\
SER2 \(=\) S1V1,S1V1T,S1V2,S1V3,OUT105,S1V4 & & \\
SER3 \(=0\) & &
\end{tabular}

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}
1. Data
\begin{tabular}{lclcc} 
MVA_Base \(=100\) & kV_Base \(=\) & 345 & Z_Base \(=1190.25\) & ohms \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\)
\end{tabular}
2. Setting Criteria
2.1 Differential Settings: refer to "MottHaven_345kV_87B_100906.doc" for setting criteria.

Pickup \(\quad=\quad 0.170 \mathrm{pu} \quad \# 40 \%\) of FLC
Low Slope \(=\quad 25 \%\)
Low Bpnt \(=\quad 1.70 \mathrm{pu} \quad \# 4 \mathrm{x}\) of FLC
High Slope \(\quad=\quad 50 \%\)
High Bpnt \(=6.80\) pu \# 16x of FLC
2.2 Overcurrent Elements (for event triggering)
2.2.1 Set phase IOC element at 1.46 pu or CT primary amp 4,380, i.e. 3.5 times of the maximum full load
2.2.2. Set phase TOC element at 0.59 pu or CT primary amp 1,770 , i.e. 1.4 times of the maximum FLC.
2.2.3. Set ground IOC element at 0.6 pu or CT primary amp 1,770 , i.e. 1.4 times of the maximum FLC.
2.2.4. Set ground TOC element at 0.33 pu or CT primary amp 990 , i.e. \(79 \%\) of the maximum FLC.

Device Definition:
Product Setup:
Security: \# Default
Display Properties:
Clear Relay Records:
Communications:
Modbus User Map:
Real Time Clock:
\# Default
\# Default
\# All OFF
\# Default
\# Not used
\begin{tabular}{rll} 
IRIG-B Signal Type & \(=\) & DC Shift \\
All other settings & \(=\) & Default
\end{tabular}

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}

User-Programmable Fault Report:
\begin{tabular}{rll} 
Prefault Trigger & \(=\) & ON \\
Fault Trigger & \(=\) & Bus Diff Op On (VO1)
\end{tabular}
Analog Channel \(1=\) SRC1 la Mag
Analog Channel \(2=\) SRC1 lb Mag
Analog Channel \(3 \quad=\quad\) SRC1 Ic Mag
Analog Channel \(4=\) SRC2 la Mag
Analog Channel \(5 \quad=\quad\) SRC2 lb Mag
Analog Channel \(6=\) SRC2 Ic Mag
Analog Channel \(7=\) SRC1 la Angle
Analog Channel \(8=\) SRC1 lb Angle

Analog Channel \(9=\) SRC1 Ic Angle
Analog Channel \(10=\) SRC2 la Angle
Analog Channel \(11=\) SRC2 lb Angle
Analog Channel \(12=\) SRC2 Ic Angle

Analog Channel \(13=\) Bus 1 Diff A Mag
Analog Channel \(14=\quad\) Bus 1 Diff A Ang
Analog Channel \(15=\quad\) Bus 1 Diff B Mag
Analog Channel \(16=\quad\) Bus 1 Diff B Ang
Analog Channel \(17=\) Bus 1 Diff C Mag
Analog Channel \(18=\quad\) Bus 1 Diff C Ang
Analog Channel \(19=\) Bus 1 Rest A Mag
Analog Channel \(20=\) Bus 1 Rest A Ang
Analog Channel \(21=\) Bus 1 Rest B Mag
Analog Channel \(22=\) Bus 1 Rest B Ang
Analog Channel \(23=\) Bus 1 Rest C Mag
Analog Channel \(24=\) Bus 1 Rest C Ang
Oscillography:
SETTING = PARAMETER
Number Of Records \(=6\)
Trigger Mode \(=\quad\) Automatic Overwrite
Trigger Position
Trigger Source
AC Input Waveforms
Digital Channel 1
Digital Channel 2
Digital Channel 3
Digital Channel 4
Digital Channel \(5=\) Trig Oscill On (VO4)
Digital Channel \(6=\) CT Trouble On (VO5)
Digital Channel \(7=\) BUS 1 BIASED PKP A
Digital Channel \(8=\) BUS 1 BIASED OP A
Digital Channel \(9=\) BUS 1 BIASED PKP B
Digital Channel \(10 \quad=\quad\) BUS 1 BIASED OP B
Digital Channel \(11=\) BUS 1 BIASED PKP C
Digital Channel \(12=\) BUS 1 BIASED OP C
Digital Channel \(13=\) BUS 1 DIR A
Digital Channel \(14 \quad=\quad\) BUS 1 DIR B
Digital Channel \(15 \quad=\quad\) BUS 1 DIR C
Digital Channel \(16 \quad=\quad\) BUS 1 SAT A

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Digital Channel 17 & = & BUS 1 SAT B \\
\hline Digital Channel 18 & = & BUS 1 SAT C \\
\hline Digital Channel 19 & = & BUS 1 UNBIASED OP A \\
\hline Digital Channel 20 & = & BUS 1 UNBIASED OP B \\
\hline Digital Channel 21 & \(=\) & BUS 1 UNBIASED OP C \\
\hline Digital Channel 22 & \(=\) & PHASE TOC1 PKP A \\
\hline Digital Channel 23 & = & PHASE TOC1 OP A \\
\hline Digital Channel 24 & = & PHASE TOC1 PKP B \\
\hline Digital Channel 25 & = & PHASE TOC1 OP B \\
\hline Digital Channel 26 & = & PHASE TOC1 PKP C \\
\hline Digital Channel 27 & = & PHASE TOC1 OP C \\
\hline Digital Channel 28 & = & NEUTRAL TOC1 PKP \\
\hline Digital Channel 29 & = & NEUTRAL TOC1 OP \\
\hline Digital Channel 30 & = & NEUTRAL IOC1 PKP \\
\hline Digital Channel 31 & = & NEUTRAL IOC1 OP \\
\hline Digital Channel 32 & \(=\) & PHASE IOC1 PKP A \\
\hline Digital Channel 33 & = & PHASE IOC1 PKP B \\
\hline Digital Channel 34 & = & PHASE IOC1 PKP C \\
\hline Digital Channel 35 & = & Trip_LED On (VO9) \\
\hline Digital Channel 36 & = & 51 On (VO8) \\
\hline Digital Channel 37 & = & 871 On (VO7) \\
\hline Digital Channel 38 & = & OFF \\
\hline Digital Channel 39 & = & OFF \\
\hline Digital Channel 40 & = & OFF \\
\hline Digital Channel 41 & = & OFF \\
\hline Digital Channel 42 & = & OFF \\
\hline Digital Channel 43 & = & OFF \\
\hline Digital Channel 44 & = & OFF \\
\hline Digital Channel 45 & = & OFF \\
\hline Digital Channel 46 & = & OFF \\
\hline Digital Channel 47 & = & OFF \\
\hline Digital Channel 48 & = & OFF \\
\hline Digital Channel 49 & = & OFF \\
\hline Digital Channel 50 & = & OFF \\
\hline Digital Channel 51 & = & OFF \\
\hline Digital Channel 52 & = & OFF \\
\hline Digital Channel 53 & = & OFF \\
\hline Digital Channel 54 & = & OFF \\
\hline Digital Channel 55 & = & OFF \\
\hline Digital Channel 56 & = & OFF \\
\hline Digital Channel 57 & = & OFF \\
\hline Digital Channel 58 & \(=\) & OFF \\
\hline Digital Channel 59 & = & OFF \\
\hline Digital Channel 60 & \(=\) & OFF \\
\hline Digital Channel 61 & = & OFF \\
\hline Digital Channel 62 & = & OFF \\
\hline Digital Channel 63 & \(=\) & OFF \\
\hline Analog Channel 1 & = & SRC1 la Mag \\
\hline Analog Channel 2 & = & SRC1 lb Mag \\
\hline Analog Channel 3 & \(=\) & SRC1 Ic Mag \\
\hline
\end{tabular}

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}
\begin{tabular}{rlll} 
Analog Channel 4 & \(=\) & SRC1 & Ia Angle \\
Analog Channel 5 & \(=\) & SRC1 & Ib Angle \\
Analog Channel 6 & \(=\) & SRC1 & Ic Angle \\
Analog Channel 7 & \(=\) & SRC2 & Ia Mag \\
Analog Channel 8 & \(=\) & SRC2 & Ib Mag \\
Analog Channel 9 & \(=\) & SRC2 Ic Mag \\
Analog Channel 10 & \(=\) & Bus 1 Diff A Mag \\
Analog Channel 11 & \(=\) & Bus 1 Diff B Mag \\
Analog Channel 12 & \(=\) & Bus 1 Diff C Mag \\
Analog Channel 13 & \(=\) & SRC2 & I I Angle \\
Analog Channel 14 & \(=\) & SRC2 & Ib Angle \\
Analog Channel 15 & \(=\) & SRC2 & Ic Angle \\
Analog Channel 16 & \(=\) & SRC1 & Frequency
\end{tabular}

User-Programmable Leds: LED Test:

Trip and Alarms Leds:
\begin{tabular}{|c|c|c|c|}
\hline Function & = & \multicolumn{2}{|l|}{Enabled} \\
\hline Control & = & \multicolumn{2}{|l|}{CONTROL PUSHBUTTON 1 ON} \\
\hline Trip LED Input & = & Trip_LED On (VO9) & \\
\hline Alarm LED Input & = & Alarm On (VO3) & \\
\hline LED 1 & = & Bus Diff Op On (VO1) & Latched \\
\hline LED 2 & = & 51 On (VO8) & Latched \\
\hline LED 3 & = & 871 On (VO7) & Latched \\
\hline LED 4 & = & OFF & Self-Reset \\
\hline LED 5 & = & BUS 1 BIASED OP A & Latched \\
\hline LED 6 & = & BUS 1 BIASED OP B & Latched \\
\hline LED 7 & = & BUS 1 BIASED OP C & Latched \\
\hline LED 8 & = & OFF & Self-Reset \\
\hline LED 9 & = & PHASE TOC1 OP A & Latched \\
\hline LED 10 & = & PHASE TOC1 OP B & Latched \\
\hline LED 11 & = & PHASE TOC1 OP C & Latched \\
\hline LED 12 & = & OFF & Self-Reset \\
\hline LED 13 & = & NEUTRAL TOC1 OP & Latched \\
\hline LED 14 & = & OFF & Self-Reset \\
\hline LED 15 & = & CT Trouble On (VO5) & Latched \\
\hline LED 16 & = & OFF & Self-Reset \\
\hline LED 17 & = & BUS 1 UNBIASED OP A & Latched \\
\hline LED 18 & = & BUS 1 UNBIASED OP B & Latched \\
\hline LED 19 & = & BUS 1 UNBIASED OP C & Latched \\
\hline LED 20 & = & OFF & Self-Reset \\
\hline LED 21 & = & OFF & Self-Reset \\
\hline LED 22 & = & OFF & Self-Reset \\
\hline LED 23 & = & OFF & Self-Reset \\
\hline LED 24 & = & OFF & Self-Reset \\
\hline LED 25 & = & BUS 1 BIASED PKP A & Self-Reset \\
\hline LED 26 & = & BUS 1 BIASED PKP B & Self-Reset \\
\hline LED 27 & = & BUS 1 BIASED PKP C & Self-Reset \\
\hline LED 28 & = & OFF & Self-Reset \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Appendix 13 & \multicolumn{4}{|l|}{87B-2-BS3 (GE-B30) Setting Calculation} \\
\hline & & LED 29 & = & PHASE TOC1 PKP A & Self-Reset \\
\hline & & LED 30 & \(=\) & PHASE TOC1 PKP B & Self-Reset \\
\hline & & LED 31 & \(=\) & PHASE TOC1 PKP C & Self-Reset \\
\hline & & LED 32 & \(=\) & OFF & Self-Reset \\
\hline & & LED 33 & \(=\) & NEUTRAL TOC1 PKP & Self-Reset \\
\hline & & LED 34 & \(=\) & OFF & Self-Reset \\
\hline & & LED 35 & = & OFF & Self-Reset \\
\hline & & LED 36 & \(=\) & BUS 1 DIR A & Self-Reset \\
\hline & & LED 37 & \(=\) & BUS 1 DIR B & Self-Reset \\
\hline & & LED 38 & \(=\) & BUS 1 DIR C & Self-Reset \\
\hline & & LED 39 & \(=\) & OFF & Self-Reset \\
\hline & & LED 40 & \(=\) & BUS 1 SAT A & Self-Reset \\
\hline & & LED 41 & \(=\) & BUS 1 SAT B & Self-Reset \\
\hline & & LED 42 & \(=\) & BUS 1 SAT C & Self-Reset \\
\hline & & LED 43 & \(=\) & OFF & Self-Reset \\
\hline & & LED 44 & \(=\) & OFF & Self-Reset \\
\hline & & LED 45 & \(=\) & OFF & Self-Reset \\
\hline & & LED 46 & \(=\) & OFF & Self-Reset \\
\hline & & LED 47 & \(=\) & OFF & Self-Reset \\
\hline & & LED 48 & \(=\) & OFF & Self-Reset \\
\hline \multicolumn{6}{|l|}{User-Programmable Self Tests:} \\
\hline & Remote Devic & Function & = & Enabled & \\
\hline & Pri Etherne & Function & \(=\) & Disabled & \\
\hline & Batter & I Function & \(=\) & Enabled & \\
\hline & & Function & \(=\) & Enabled & \\
\hline & IRIG & Function & = & Enabled & \\
\hline \multicolumn{6}{|l|}{Control Pushbuttons:} \\
\hline PARAMETER & CPB 1 & & CPB 3 & & \\
\hline Function & Disabled & bled & Enabled & & \\
\hline Events & Disabled & bled & Enabled & & \\
\hline Flex States: & & & & & \# All OFF \\
\hline User-definable & displays: & & & & \# Not used \\
\hline Direct 1/O: & & & & & \# Not used \\
\hline Teleprotection: & & & & & \# Not used \\
\hline \multicolumn{6}{|l|}{Installation:} \\
\hline & & lay Name & \(=\) & 87B-2/BS3 & \\
\hline \multicolumn{6}{|l|}{System Setup:} \\
\hline \multicolumn{6}{|l|}{AC Inputs} \\
\hline Current: & & AMETER & & CT F1 CT F5 & \\
\hline & & T Primary & = & 3000 A 3000 A & \\
\hline & Phase & Secondary & \(=\) & \(5 \mathrm{~A} \quad 5 \mathrm{~A}\) & \\
\hline & Grou & T Primary & \(=\) & 3000 A 3000 A & \\
\hline & Ground & econdary & \(=\) & \(5 \mathrm{~A} \quad 5 \mathrm{~A}\) & \\
\hline \multicolumn{6}{|l|}{Power System:} \\
\hline & Nom & requency & = & 60 Hz & \\
\hline & & Rotation & \(=\) & ABC & \\
\hline & Frequency And Ph & Reference & \(=\) & SRC 1 (SRC 1) & \\
\hline & Frequency Tra & Function & \(=\) & Enabled & \\
\hline Signal Sources: & : & AMETER & & SOURCE 1 SOURCE 2 & \\
\hline
\end{tabular}

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Name & \(=\) & SRC 1 & SRC 2 & \\
\hline & Phase CT & = & F1 & F5 & \\
\hline & Ground CT & = & None & None & \\
\hline & Phase VT & = & None & None & \\
\hline & Aux VT & = & None & None & \\
\hline Breakers: & & & & & \# Not used \\
\hline Switches & & & & & \# Not used \\
\hline FlexCurves: & & & & & \# Not used \\
\hline Bus: & PARAMETER & & BUS ZO & & \\
\hline & Source A & \(=\) & SRC 1 (SR & 1) & \\
\hline & Status A & = & ON & & \\
\hline & Source B & = & SRC 2 (SR & 2) & \\
\hline & Status B & \(=\) & ON & & \\
\hline & Source C & = & SRC 1 (SR & 1) & \\
\hline & Status C & = & OFF & & \\
\hline & Source D & = & SRC 1 (SR & 1) & \\
\hline & Status D & = & OFF & & \\
\hline & Source E & = & SRC 1 (SR & 1) & \\
\hline & Status E & = & OFF & & \\
\hline & Source F & = & SRC 1 (SR & 1) & \\
\hline & Status F & = & OFF & & \\
\hline FlexLogic: & & & & \# See & S3-logic-r0.pdf \\
\hline Grouped Elemen & & & & & \\
\hline Group 1: & & & & & \\
\hline Bus Differential: & & & & & \\
\hline & Operating Characteristc Graph & \(=\) & View & & \\
\hline & Function & = & Enabled & & \\
\hline & Pickup & = & 0.170 pu & & \# 40\% of FLC \\
\hline & Low Slope & = & 25\% & & \\
\hline & Low Bpnt & \(=\) & 1.70 pu & & \# 4x of FLC \\
\hline & High Slope & = & 50\% & & \\
\hline & High Bpnt & \(=\) & 6.80 pu & & \# 16x of FLC \\
\hline & High Set & = & 10.20 pu & & \# 24x of FLC \\
\hline & Seal-In & = & 0.400 s & & \\
\hline & Block & = & OFF & & \\
\hline & Target & = & Latched & & \\
\hline & Events & = & Enabled & & \\
\hline Phase Current: & & & & & \\
\hline Phase TOC: & & & & & \\
\hline & Function & \(=\) & Enabled & & \\
\hline & Signal Source & = & SRC 1 ( & & \\
\hline & Input & = & RMS & & \\
\hline & Pickup & = & 0.590 pu & & \# 1.4x of FLC \\
\hline & Curve & = & IEC Curv & & \\
\hline & TD Multiplier & \(=\) & 0.2 & & \\
\hline & Reset & = & Timed & & \\
\hline & Voltage Restraint & = & Disabled & & \\
\hline & Block A & = & OFF & & \\
\hline & Block B & = & OFF & & \\
\hline & Block C & = & OFF & & \\
\hline
\end{tabular}

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline & Target Events & \(=\)
\(=\) & Latched Enabled & \\
\hline \multicolumn{5}{|l|}{Phase IOC:} \\
\hline & Function & \(=\) & Enabled & \\
\hline & Source & = & SRC 1 (SRC 1) & \\
\hline & Pickup & = & 1.460 pu & \# 3.5x of FLC \\
\hline & Delay & = & 0.01 s & \\
\hline & Reset Delay & = & 0.00 s & \\
\hline & Block A & = & OFF & \\
\hline & Block B & = & OFF & \\
\hline & Block C & \(=\) & OFF & \\
\hline & Target & \(=\) & Self-reset & \\
\hline & Events & \(=\) & Enabled & \\
\hline \multicolumn{5}{|l|}{Neutral Current:} \\
\hline \multicolumn{5}{|l|}{Neutral TOC:} \\
\hline & Function & \(=\) & Enabled & \\
\hline & Source & = & SRC 1 (SRC 1) & \\
\hline & Input & = & RMS & \\
\hline & Pickup & = & 0.330 pu & \# 80\% of FLC \\
\hline & Curve & = & IEC Curve B & \\
\hline & TD Multiplier & \(=\) & 0.35 & \\
\hline & Reset & = & Timed & \\
\hline & Block & = & OFF & \\
\hline & Target & \(=\) & Latched & \\
\hline & Events & = & Enabled & \\
\hline \multicolumn{5}{|l|}{Neutral IOC:} \\
\hline & Function & \(=\) & Enabled & \\
\hline & Source & = & SRC 1 (SRC 1) & \\
\hline & Pickup & = & \[
0.600 \mathrm{pu}
\] & \# 1.4x of FLC \\
\hline & Delay & = & \[
0.01 \mathrm{~s}
\] & \\
\hline & Reset Delay & = & \[
0.00 \mathrm{~s}
\] & \\
\hline & Block & = & OFF & \\
\hline & Target & \(=\) & Self-reset & \\
\hline & Events & \(=\) & Enabled & \\
\hline \multicolumn{5}{|l|}{Ground Current:} \\
\hline Ground TOC & & & & \# Not used \\
\hline Ground IOC & & & & \# Not used \\
\hline Breaker Failure: & & & & \# Not used \\
\hline \multicolumn{5}{|l|}{Control Elements:} \\
\hline Trip Bus: & & & & \# Not used \\
\hline Setting Groups: & & & & \# Not used \\
\hline Selector Switches: & & & & \# Not used \\
\hline Digital Elements: & & & & \# Not used \\
\hline Digital Counters: & & & & \# Not used \\
\hline \multicolumn{5}{|l|}{Monitoring Elements:} \\
\hline Breaker Flashover: & & & & \# Not used \\
\hline \multicolumn{5}{|l|}{CT Trouble:} \\
\hline & Function & \(=\) & Enabled & \\
\hline & Pickup & = & 0.084 pu & \\
\hline & Delay & \(=\) & 10.0 s & \\
\hline
\end{tabular}

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}
\begin{tabular}{lll} 
Target & \(=\) & Disabled \\
Events & \(=\) & Enabled
\end{tabular}

Inputs/Outputs:
Contact inputs: \# Not used
Contact Inputs Thresholds:
Cont Ip 1, Cont Ip 2, Cont Ip 3, Cont Ip 4(H5A, H5C, H6A, H6C) = 84 Vdc
Cont Ip 5, Cont Ip 6, Cont Ip 7, Cont Ip 8(H7A, H7C, H8A, H8C) \(=84 \mathrm{Vdc}\)
Cont Ip 9, Cont Ip 10, Cont Ip 11, Cont Ip 12(L5A, L5C, L6A, L6C) \(=84 \mathrm{Vdc}\)
Cont Ip 13, Cont Ip 14, Cont Ip 15, Cont Ip 16(L7A, L7C, L8A, L8C) = 84 Vdc
Virtual Inputs:
Contact Outputs:
[H1] Contact Output 1 ID \(=87\) Trip [H1] Contact Output 1 Operate \(\quad=\quad\) Bus Diff Op On (VO1) [H1] Contact Output 1 Seal-In \(=\quad\) Bus Diff Op On (VO1) [H1] Contact Output 1 Events \(=\) Enabled
[H2] Contact Output 2 ID \(=51\) TRIP (SP) [H2] Contact Output 2 Operate \(=\) OFF [H2] Contact Output 2 Seal-In \(=\) OFF [H2] Contact Output 2 Events \(=\) Disabled
[H3] Contact Output 3 ID \(=\) NOT USED [H3] Contact Output 3 Operate \(=\) OFF [H3] Contact Output 3 Seal-In \(=\) OFF [H3] Contact Output 3 Events \(=\) Disabled
[H4] Contact Output 4 ID \(=\) NOT USED [H4] Contact Output 4 Operate \(=\) OFF [H4] Contact Output 4 Seal-In = OFF [H4] Contact Output 4 Events \(=\) Disabled
[L1] Contact Output 5 ID \(=\) Any Trip
[L1] Contact Output 5 Operate \(=\) FOR TESTING On (VO11)
[L1] Contact Output 5 Seal-In \(=\) OFF
[L1] Contact Output 5 Events = Enabled
[L2] Contact Output 6 ID \(=50\) 51P Trip
[L2] Contact Output 6 Operate \(=50\) 51P TRIP On (VO2)
[L2] Contact Output 6 Seal-In \(=\) OFF
[L2] Contact Output 6 Events = Enabled
[L3] Contact Output 7 ID \(\quad=\quad 5051 \mathrm{~N}\) Trip
[L3] Contact Output 7 Operate \(=5051 \mathrm{~N}\) TRIP On (VO12) [L3] Contact Output 7 Seal-In \(=\) OFF [L3] Contact Output 7 Events = Enabled
[L4] Contact Output 8 ID \(=\) NOT USED
[L4] Contact Output 8 Operate \(=\) OFF
[L4] Contact Output 8 Seal-In = OFF
[L4] Contact Output 8 Events \(=\) Disabled

\section*{Appendix 13 87B-2-BS3 (GE-B30) Setting Calculation}

Virtual Outputs:


Remote Devices:
Remote Inputs:
Remote Outputs DNA Bit Pairs
\# Not used

Remote Outputs UserSt Bit Pairs:
\# Not used

Resetting:
\# Not used

Direct Inputs:
\# Not used

Direct Outputs:
\# Not used

Teleprotection:
\# Not used

IEC 61850 GOOSE Analogs Inputs
\# Not used
\# Not used
\# Not used

\section*{Appendix 14 87-51-1-R1 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{1. Data} \\
\hline MVA_Base \(=100\) & kV_Base = & 345 & & \\
\hline CTR = 240 & & & & \\
\hline MVA rating of Reactor R1 = & 150 & ; Max & \(\mathrm{ps})=\) & 251.02 \\
\hline \multicolumn{5}{|l|}{2. Setting Criteria} \\
\hline \multicolumn{5}{|l|}{2.1 Differential Settings:} \\
\hline & & ximum & 150 & MVA \\
\hline \multicolumn{5}{|l|}{The nominal transformer Winding 1 terminal voltage VWDG1 = 345 kV} \\
\hline \multicolumn{5}{|l|}{The nominal transformer Winding 2 terminal voltage VWDG2 = 345 kV} \\
\hline \multicolumn{5}{|c|}{CT ratio for winding 1---CTR1= 240} \\
\hline \multicolumn{5}{|c|}{CT ratio for winding 2---CTR2= 240} \\
\hline \multicolumn{5}{|l|}{Winding 1 Current Tap TAP1 \(=\) MVA/(Sqrt(3) \(\times\) VWDG1 \(\times\) CTR1) \(=1.05\)} \\
\hline \multicolumn{5}{|l|}{Winding 2 Current Tap TAP2 \(=\) MVA/(Sqrt(3) \(\times\) VWDG2 \(\times\) CTR2 \()=1.05\)} \\
\hline O87P \(\geq\) & 5A / TAPmin & 0.48 & 0.50 & \# Per manual \\
\hline \multicolumn{5}{|l|}{Dual-Slop variable-percentage differential characteristic is used.} \\
\hline \multicolumn{5}{|c|}{Restraint Slop 1 Percentage (5-100\%) SLP \(1=25\)} \\
\hline \multicolumn{5}{|c|}{Restraint Slope 2 Percentage (OFF, 25-200\%) SLP2 = 50} \\
\hline \multicolumn{5}{|l|}{Restraint Current Slope 1 Limit ((1-20) multiple of tap) IRS1 =} \\
\hline \multicolumn{5}{|l|}{Unrestrained Element Current PU ((1-20) multiple of tap) U87P = 10} \\
\hline \multicolumn{5}{|l|}{Second-Harmonic Blocking Percentage (OFF, 5-100\%) PCT2 = 10 \# Inrush inhibit} \\
\hline \multicolumn{5}{|l|}{Fifth-Harmonic Blocking Percentage (OFF, 5-100\%) PCT5 = OFF} \\
\hline & Independe & Harm & N & \\
\hline
\end{tabular}
2.2 Winding 1 Elems
2.2.1 Set phase IOC element 50P12P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.2.2. Set phase TOC element 51P1P at 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. 2nd harmonic ( \(2 \mathrm{HB} 1+2 \mathrm{HB} 2+2 \mathrm{HB} 3\) ) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.2.3 Set residual IOC element 50N12P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.2.4. Set residual TOC element 51 N 1 P at 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. 2nd harmonic ( \(2 \mathrm{HB} 1+2 \mathrm{HB} 2+2 \mathrm{HB} 3\) ) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.3 Winding 2 Elems
2.3.1 Set phase IOC element 50P22P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.3.2. Set phase TOC element 51P2P at 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve. 2.3.3 Set residual IOC element 50N12P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.3.4 Set residual TOC element 51 N 1 P at 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve.

Group 1-Set 1:
Config. Settings:

\section*{Appendix 14 87-51-1-R1 (SEL-387) Setting Calculation}

Relay Identifier
Terminal Identifier
Enable Wdg1 in Differential Element
Enable Wdg2 in Differential Element
Enable Wdg3 in Differential Element
Enable Wdg4 in Differential Element
Enable Wdg1 O/C Elements and Dmd. Thresholds
Enable Wdg2 O/C Elements and Dmd. Thresholds
Enable Wdg3 O/C Elements and Dmd. Thresholds
Enable Wdg4 O/C Elements and Dmd. Thresholds
Enable Combined O/C Elements
Enable RTDA Elements
Enable RTDB Elements
Enable SELogic Set 1
Enable SELogic Set 2
Enable SELogic Set 3
General Data:
Wdg1 CT Connection
Wdg2 CT Connection
Wdg3 CT Connection
Wdg4 CT Connection
Wdg1 CT Ratio
Wdg2 CT Ratio
Wdg3 CT Ratio
Wdg4 CT Ratio
Maximum Power Xfmr Capacity
Define Interal CT Connection Compensation
Wdg1 CT Conn. Compensation
Wdg2 CT Conn. Compensation
Wdg 1 Line-to-Line Voltage
Wdg 2 Line-to-Line Voltage
Wdg 3 Line-to-Line Voltage
Wdg 4 Line-to-Line Voltage

\section*{Diff Elems:}

Restrained Element Current PU
Restrain Slope 1 Percentage
Restrain Slope 2 Percentage
Restraint Current Slope 1 Limit
Unrestrained Element Current PU
2nd Harmonic Blocking Percentage
5th Hamronic Blocking Percentage
5th Harmonic Alarm Threshold
Independent Harmonic Blocking
Restriced Earth Fault:
Winding 1 Elems:
Phase Def-Time O/C Level 1 PU
Phase Level 1 O/C Delay

RID = 87-51-1-R1
TID = CHARLES POLETT
E87W1 = Y
E87W2 \(=\mathrm{Y}\)
E87W3 = \(N\)
E87W4 = N
EOC1 \(=Y\)
EOC2 \(=Y\)
EOC3 \(=\mathrm{N}\)
EOC4 \(=\mathrm{N}\)
EOCC \(=\mathrm{N}\)
E49A \(=\mathrm{N}\)
E49B \(=\mathrm{N}\)
ESLS1 = Y
ESLS2 \(=\mathrm{N}\)
ESLS3 \(=\mathrm{N}\)
\begin{tabular}{rlr} 
W1CT & \(=Y\) & \\
W2CT & \(=Y\) & \\
W3CT & \(=Y\) & \\
W4CT & \(=Y\) & \# Not Used \\
CTR1 & \(=240\) & \\
CTR2 & \(=240\) & \\
CTR3 & \(=240\) & \\
CTR & \(=240\) & \# Not Used Used \\
MVA & \(=150\) & \\
ICOM & \(=Y\) & \\
W1CTC & \(=12\) & \\
W2CTC & \(=12\) & \\
VWDG1 & \(=345\) & \\
VWDG2 & \(=345\) & \\
\# kV \\
VWDG3 & \(=345\) & \# kV \\
VWDG4 & \(=345\) & \\
& \# Not Used \\
& \# Not used
\end{tabular}
\[
\begin{aligned}
\mathrm{O} 87 \mathrm{P} & =0.50 \\
\text { SLP1 } & =25 \\
\text { SLP2 } & =50 \\
\text { IRS1 } & =3 \\
\text { U87P } & =10 \\
\text { PCT2 } & =10 \\
\text { PCT5 } & =\text { OFF } \\
\text { TH5P } & =\text { OFF } \\
\text { IHBL } & =N
\end{aligned}
\]

50P11P = OFF
50P11P = \(5 \quad\) \# Not used

\section*{Appendix 14 87-51-1-R1 (SEL-387) Setting Calculation}

50P11 Torque Control (SELogic Equation)
Phase Def-Time O/C Level 2 PU
50P12 Torque Control (SELogic Equation)
Oher Phase Inst O/C elements
Phase Inv-Time O/C PU
Phase Inv-Time O/C Curve
Phase Inv-Time O/C Time-Dial
Phase Inv-Time O/C EM Reset
51P1 Torque Control (SELogic Equation)
Neg-Seq Def-Time O/C
Residual Def-Time O/C Level 1 PU
Residual Level 1 O/C Delay 50N11 Torque Control (SELogic Equation)
Residual Def-Time O/C Level 1 PU
50N12 Torque Control (SELogic Equation)
Other Residual Inst O/C elements
Residual Inv-Time O/C PU
Residual Inv-Time O/C Curve
Residual Inv-Time O/C Time-Dial
Residual Inv-Time O/C EM Reset
51N2 Torque Control (SELogic Equation)
Demand Ammeter Time Constant Phase Demand Ammeter Threshold Neg-Seq Demand Ammeter Threshold Residual Demand Ammeter Threshold Winding 2 Elems:
Phase Def-Time O/C Level 1 PU Phase Level 1 O/C Delay 50P21 Torque Control (SELogic Equation)
Phase Def-Time O/C Level 2 PU
50P22 Torque Control (SELogic Equation)
Oher Phase Inst O/C elements
Phase Inv-Time O/C PU
Phase Inv-Time O/C Curve
Phase Inv-Time O/C Time-Dial
Phase Inv-Time O/C EM Reset
51P2 Torque Control (SELogic Equation)
Neg-Seq Def-Time O/C
Residual Def-Time O/C Level 1 PU
Residual Level 1 O/C Delay
50N21 Torque Control (SELogic Equation)
Residual Def-Time O/C Level 1 PU
50N22 Torque Control (SELogic Equation)
Other Residual Inst O/C elements
Residual Inv-Time O/C PU
Residual Inv-Time O/C Curve
Residual Inv-Time O/C Time-Dial
Residual Inv-Time O/C EM Reset
51N2 Torque Control (SELogic Equation)
Demand Ammeter Time Constant
\begin{tabular}{|c|c|}
\hline 50P11TC = 1 & \# Not used \\
\hline 50P12P \(=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{P} 12 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline \(51 \mathrm{P} 1 \mathrm{P}=2\) & \# 1.91xFLC \\
\hline \multicolumn{2}{|l|}{51P1C = U1} \\
\hline \multicolumn{2}{|l|}{51P1TD \(=0.5\)} \\
\hline \multicolumn{2}{|l|}{51P1RS \(=\mathrm{N}\)} \\
\hline \multicolumn{2}{|l|}{51P1TC \(=\) ! \(2 \mathrm{HB} 1+2 \mathrm{HB} 2+2 \mathrm{HB} 3)\)} \\
\hline & \# Not used \\
\hline \multicolumn{2}{|l|}{50N11P = OFF} \\
\hline \(50 \mathrm{~N} 11 \mathrm{D}=5\) & \# Not used \\
\hline \(50 \mathrm{~N} 11 \mathrm{TC}=1\) & \# Not used \\
\hline \(50 \mathrm{~N} 12 \mathrm{P}=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{~N} 12 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline \(51 \mathrm{~N} 1 \mathrm{P}=1\) & \# 95.6\% FLC \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 1 \mathrm{C}=\mathrm{U} 1\)} \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 1 \mathrm{TD}=0.5\)} \\
\hline \multicolumn{2}{|l|}{51N1RS \(=\) N} \\
\hline \multicolumn{2}{|l|}{51N2TC = ! (2HB1 + 2HB2 + 2HB3)} \\
\hline DATC1 \(=15\) & \# Default \\
\hline PDEM1P = 7 & \# Default \\
\hline QDEM1P = 1 & \# Default \\
\hline \multicolumn{2}{|l|}{NDEM1P = 1 \# Default} \\
\hline 50P21P = OFF & \# Not used \\
\hline 50P21P = 5 & \# Not used \\
\hline 50P21TC = 1 & \# Not used \\
\hline 50P22P \(=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{P} 22 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline 51P2P = 2 & \# 1.91xFLC \\
\hline \multicolumn{2}{|l|}{51P2C = U1} \\
\hline \multicolumn{2}{|l|}{51P2TD \(=0.5\)} \\
\hline \multicolumn{2}{|l|}{51P2RS \(=\mathrm{N}\)} \\
\hline \multicolumn{2}{|l|}{51P2TC = 1} \\
\hline & \# Not used \\
\hline 50N21P = OFF & \# Not used \\
\hline 50N21D \(=5\) & \# Not used \\
\hline \(50 \mathrm{~N} 21 \mathrm{TC}=1\) & \# Not used \\
\hline 50N22P \(=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{~N} 22 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline \(51 \mathrm{~N} 2 \mathrm{P}=1\) & \# 95.6\% FLC \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{C}=\mathrm{U} 1\)} \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{TD}=0.5\)} \\
\hline \multicolumn{2}{|l|}{51N2RS \(=\mathrm{N}\)} \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{TC}=1\)} \\
\hline DATC2 \(=15\) & \# Default \\
\hline
\end{tabular}

\section*{Appendix 14 \\ 87-51-1-R1 (SEL-387) Setting Calculation}


\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}
1. Data
MVA_Base \(=100 \quad\) kV_Base \(=345\)

CTR = \(\quad 240\)
MVA rating of Reactor R1 =
150 ; Maximum full load current \((\mathrm{amps})=\)
251.02
2. Setting Criteria
2.1 Differential Settings:
\begin{tabular}{rlrl} 
Differential Pickup in per unit & \(=0.50\) & & \# APP14-2.1 \\
Differential Slope 1 in \(\%=25 \%\) & & \# APP14-2.1 \\
Differential Break 1 in per unit & \(=2\) & \\
Differential Break 2 in per unit & \(=3\) & & \# APP14-2.1 \\
Differential Slope 2 in \(\%\) & \(=50 \%\) & & \# APP14-2.1 \\
Inrush Inhibit Function & \(=\) Adapt. 2nd & \# APP14-2.1 \\
Inrush Inhibit Mode & \(=\) Per Phase & & \# APP14-2.1 \\
Inrush Inhibit Level & \(=10 \%\) & & \# APP14-2.1 \\
Instantaneous Differential Pickup in per unit & \(=10\) & & \# APP14-2.1
\end{tabular}
2.2 Winding 1 Elements
2.2.1. Set phase TOC element at 0.4 pu, or 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. 2nd harmonic (XFMR PCNT DIFF 2ND A, XFMR PCNT DIFF 2ND B, XFMR PCNT
DIFF 2ND C) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.2.2. Set residual TOC element at 0.2 pu or 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. 2nd harmonic (XFMR PCNT DIFF 2ND A, XFMR PCNT DIFF 2ND B, XFMR PCNT DIFF 2ND C) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.3 Winding 2 Elements
2.3.1. Set phase TOC element at 0.4 pu, or 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve.
2.3.2 Set residual TOC element at 0.2 pu or 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Device Definition:} & \# Default \\
\hline \multicolumn{4}{|l|}{Product Setup:} \\
\hline \multicolumn{3}{|l|}{Security:} & \# Default \\
\hline \multicolumn{3}{|l|}{Display Properties:} & \# Default \\
\hline \multicolumn{3}{|l|}{Clear Relay Records:} & \# All OFF \\
\hline \multicolumn{3}{|l|}{Communications:} & \# Default \\
\hline \multicolumn{3}{|l|}{Modbus User Map:} & \# Not used \\
\hline \multicolumn{4}{|l|}{Real Time Clock:} \\
\hline IRIG-B Signal Type & = & DC Shift & \\
\hline All other settings & = & Default & \\
\hline User-Programmable Fault Report: & & & \\
\hline PARAMETER & & FAULT REPORT 1 & \\
\hline Function & \(=\) & Enabled & \\
\hline Prefault Trigger & = & Osc Trigger On (VO3) & \\
\hline Fault Trigger & = & FR-Trigger On (VO5) & \\
\hline Analog Channel 1 & = & SRC1 la Mag & \\
\hline Analog Channel 2 & = & SRC1 lb Mag & \\
\hline
\end{tabular}

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline Analog Channel 3 & = & SRC1 & Ic Mag \\
\hline Analog Channel 4 & = & SRC2 & Ia Mag \\
\hline Analog Channel 5 & = & SRC2 & lb Mag \\
\hline Analog Channel 6 & = & SRC2 & Ic Mag \\
\hline Analog Channel 7 & \(=\) & SRC1 & la Angle \\
\hline Analog Channel 8 & = & SRC1 & Ib Angle \\
\hline Analog Channel 9 & \(=\) & SRC1 & Ic Angle \\
\hline Analog Channel 10 & = & SRC2 & la Angle \\
\hline Analog Channel 11 & \(=\) & SRC2 & lb Angle \\
\hline Analog Channel 12 & \(=\) & SRC2 & Ic Angle \\
\hline Analog Channel 13 & = & Xfmr lad & \\
\hline Analog Channel 14 & = & Xfmr Ibd & Mag \\
\hline Analog Channel 15 & = & Xfmr Icd & Mag \\
\hline Analog Channel 16 & = & Xfmr & Angle \\
\hline Analog Channel 17 & = & Xfmr & Angle \\
\hline Analog Channel 18 & = & Xfmr & Angle \\
\hline Analog Channel 19 & = & Xfmr H & 22 lad Mag \\
\hline Analog Channel 20 & = & Xfmr & 2 Ibd Mag \\
\hline Analog Channel 21 & = & Xfmr H & 22 Icd Mag \\
\hline Analog Channel 22 & = & Xfmr H & 22 Iad Angle \\
\hline Analog Channel 23 & = & Xfmr H & 2 Ibd Angle \\
\hline Analog Channel 24 & = & Xfmr H & 2 Icd Angle \\
\hline Analog Channel 25 & = & Xfmr H & m5 Iad Mag \\
\hline Analog Channel 26 & = & Xfmr & m5 Ibd Mag \\
\hline Analog Channel 27 & = & Xfmr H & m5 Icd Mag \\
\hline Analog Channel 28 & = & Xfmr H & 5 Iad Angle \\
\hline Analog Channel 29 & = & Xfmr H & m Ibd Angle \\
\hline Analog Channel 30 & = & Xfmr H & m5 Icd Angle \\
\hline Analog Channel 31 & = & SRC1 & Frequency \\
\hline Analog Channel 32 & \(=\) & SRC1 & Q \\
\hline
\end{tabular}

Oscillography:
SETTING
Number Of Records
Trigger Mode
Trigger Position
Trigger Source
AC Input Waveforms Digital Channel 1 Digital Channel 2 Digital Channel 3 Digital Channel 4 Digital Channel 5 Digital Channel \(6=\) XFMR INST DIFF OP B Digital Channel \(7 \quad=\quad\) XFMR INST DIFF OP C Digital Channel \(8 \quad=\quad\) XFMR PCNT DIFF 2ND A Digital Channel \(9 \quad=\quad\) XFMR PCNT DIFF 2ND B Digital Channel \(10 \quad=\quad\) XFMR PCNT DIFF 2ND C Digital Channel \(11 \quad=\quad\) XFMR PCNT DIFF OP A Digital Channel \(12 \quad=\quad\) XFMR PCNT DIFF OP B

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Digital Channel 13 & = & XFMR PCNT DIFF OP C \\
\hline Digital Channel 14 & = & XFMR PCNT DIFF 5TH A \\
\hline Digital Channel 15 & = & XFMR PCNT DIFF 5TH B \\
\hline Digital Channel 16 & = & XFMR PCNT DIFF 5TH C \\
\hline Digital Channel 17 & = & OFF \\
\hline Digital Channel 18 & = & OFF \\
\hline Digital Channel 19 & = & OFF \\
\hline Digital Channel 20 & = & OFF \\
\hline Digital Channel 21 & = & OFF \\
\hline Digital Channel 22 & = & OFF \\
\hline Digital Channel 23 & \(=\) & OFF \\
\hline Digital Channel 24 & = & OFF \\
\hline Digital Channel 25 & = & OFF \\
\hline Digital Channel 26 & = & OFF \\
\hline Digital Channel 27 & = & OFF \\
\hline Digital Channel 28 & \(=\) & OFF \\
\hline Digital Channel 29 & = & OFF \\
\hline Digital Channel 30 & = & OFF \\
\hline Digital Channel 31 & = & OFF \\
\hline Digital Channel 32 & = & OFF \\
\hline Digital Channel 33 & = & OFF \\
\hline Digital Channel 34 & = & OFF \\
\hline Digital Channel 35 & \(=\) & OFF \\
\hline Digital Channel 36 & \(=\) & OFF \\
\hline Digital Channel 37 & \(=\) & OFF \\
\hline Digital Channel 38 & \(=\) & OFF \\
\hline Digital Channel 39 & \(=\) & OFF \\
\hline Digital Channel 40 & = & OFF \\
\hline Digital Channel 41 & \(=\) & OFF \\
\hline Digital Channel 42 & = & OFF \\
\hline Digital Channel 43 & = & OFF \\
\hline Digital Channel 44 & = & OFF \\
\hline Digital Channel 45 & \(=\) & OFF \\
\hline Digital Channel 46 & \(=\) & OFF \\
\hline Digital Channel 47 & = & OFF \\
\hline Digital Channel 48 & = & OFF \\
\hline Digital Channel 49 & = & OFF \\
\hline Digital Channel 50 & = & OFF \\
\hline Digital Channel 51 & = & OFF \\
\hline Digital Channel 52 & \(=\) & OFF \\
\hline Digital Channel 53 & = & OFF \\
\hline Digital Channel 54 & = & OFF \\
\hline Digital Channel 55 & \(=\) & OFF \\
\hline Digital Channel 56 & = & OFF \\
\hline Digital Channel 57 & = & OFF \\
\hline Digital Channel 58 & = & OFF \\
\hline Digital Channel 59 & \(=\) & OFF \\
\hline Digital Channel 60 & \(=\) & OFF \\
\hline Digital Channel 61 & \(=\) & OFF \\
\hline Digital Channel 62 & = & OFF \\
\hline
\end{tabular}

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline & Digital Channel 63 & = & OFF & \\
\hline & Analog Channel 1 & = & Xfmr lad Mag & \\
\hline & Analog Channel 2 & = & Xfmr lar Mag & \\
\hline & Analog Channel 3 & = & Xfmr Harm2 lad Mag & \\
\hline & Analog Channel 4 & = & Xfmr Ibd Mag & \\
\hline & Analog Channel 5 & = & Xfmr Ibr Mag & \\
\hline & Analog Channel 6 & \(=\) & Xfmr Harm2 Ibd Mag & \\
\hline & Analog Channel 7 & = & Xfmr Icd Mag & \\
\hline & Analog Channel 8 & = & Xfmr Icr Mag & \\
\hline & Analog Channel 9 & = & Xfmr Harm2 Icd Mag & \\
\hline & Analog Channel 10 & = & Xfmr Harm5 lad Mag & \\
\hline & Analog Channel 11 & = & Xfmr Harm5 Ibd Mag & \\
\hline & Analog Channel 12 & = & Xfmr Harm5 Icd Mag & \\
\hline & Analog Channel 13 & = & Off & \\
\hline & Analog Channel 14 & = & Off & \\
\hline & Analog Channel 15 & = & Off & \\
\hline & Analog Channel 16 & \(=\) & Tracking Frequency & \\
\hline Data Logger: & & & & \# Default \\
\hline Demand: & & & & \# Default \\
\hline User-Programmable Leds: & & & & \\
\hline LED Test: & & & & \\
\hline & Function & = & Enabled & \\
\hline & Control & = & CONTROL PUSHBUTTO & 1 ON \\
\hline Trip and Alarms Leds: & & & & \\
\hline & Trip LED Input & = & 87Trip On (VO1) & \\
\hline & Alarm LED Input & \(=\) & 51Trip On (VO2) & \\
\hline & LED 1 & = & 87Trip On (VO1) & Latched \\
\hline & LED 2 & = & 51 Trip On (VO2) & Latched \\
\hline & LED 3 & = & XFMR INST DIFF OP & Latched \\
\hline & LED 4 & = & XFMR PCNT DIFF OP & Latched \\
\hline & LED 5 & = & XFMR INST DIFF OP A & Latched \\
\hline & LED 6 & = & XFMR INST DIFF OP B & Latched \\
\hline & LED 7 & = & XFMR INST DIFF OP C & Latched \\
\hline & LED 8 & = & XFMR PCNT DIFF OP A & Latched \\
\hline & LED 9 & = & XFMR PCNT DIFF OP B & Latched \\
\hline & LED 10 & = & XFMR PCNT DIFF OP C & Latched \\
\hline & LED 11 & = & PHASE TOC1 OP & Latched \\
\hline & LED 12 & = & PHASE TOC2 OP & Latched \\
\hline & LED 13 & = & NEUTRAL TOC1 OP & Latched \\
\hline & LED 14 & \(=\) & NEUTRAL TOC2 OP & Latched \\
\hline & LED 15 & = & PHASE TOC1 OP A & Latched \\
\hline & LED 16 & = & PHASE TOC1 OP B & Latched \\
\hline & LED 17 & = & PHASE TOC1 OP C & Latched \\
\hline & LED 18 & = & PHASE TOC2 OP A & Latched \\
\hline & LED 19 & \(=\) & PHASE TOC2 OP B & Latched \\
\hline & LED 20 & \(=\) & PHASE TOC2 OP C & Latched \\
\hline & LED 21 & = & OFF & Self-Reset \\
\hline & LED 22 & \(=\) & OFF & Self-Reset \\
\hline & LED 23 & = & OFF & Self-Reset \\
\hline
\end{tabular}

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}
\begin{tabular}{llll} 
LED 24 & \(=\) & OFF & Self-Reset \\
LED 25 & \(=\) & OFF & Self-Reset \\
LED 26 & \(=\) & OFF & Self-Reset \\
LED 27 & \(=\) & OFF & Self-Reset \\
LED 28 & \(=\) & OFF & Self-Reset \\
LED 29 & \(=\) & OFF & Self-Reset \\
LED 30 & \(=\) & OFF & Self-Reset \\
LED 31 & \(=\) & OFF & Self-Reset \\
LED 32 & \(=\) & OFF & Self-Reset \\
LED 33 & \(=\) & OFF & Self-Reset \\
LED 34 & \(=\) & OFF & Self-Reset \\
LED 35 & \(=\) & OFF & Self-Reset \\
LED 36 & \(=\) & OFF & Self-Reset \\
LED 37 & \(=\) & OFF & Self-Reset \\
LED 38 & \(=\) & OFF & Self-Reset \\
LED 39 & \(=\) & OFF & Self-Reset \\
LED 40 & \(=\) & OFF & Self-Reset \\
LED 41 & \(=\) & OFF & Self-Reset \\
LED 42 & \(=\) & OFF & Self-Reset \\
LED 43 & \(=\) & OFF & Self-Reset \\
LED 44 & \(=\) & OFF & Sesf-Reset \\
LED 45 & \(=\) & OFF & Self-Reset \\
LED 46 & \(=\) & OFF & Self-Reset \\
LED 47 & \(=\) & OFF & Self-Reset
\end{tabular}

\section*{User-Programmable Self Tests:}

Remote Device Off Function
Pri Ethernet Fail Function
Battery Fail Function
IRIG B Fail Function \(=\quad\) Enabled
Control Pushbuttons:
PARAMETER CPB 1
Function Enabled
Events Disabled
Disabled
Disabled
Disabled
Flex States:
User-definable displays:
Direct I/O:
Teleprotection:
Installation:
Relay Name \(=\quad\) 87-51-2-R1
System Setup:
AC Inputs
Current:

PARAMETER
Phase CT Primary \(=1200\) A 1200 A
Phase CT Secondary Ground CT Primary \(=1200\) A 1200 A

Power System:

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Appendix 15 87-51-2-R1 (GE} & \multicolumn{2}{|l|}{) Setting Calculation} \\
\hline & Inrush Inhibit Level & = & 10\% & \\
\hline Overex & Ion Inhibit Function & \(=\) & Disabled & \\
\hline Ove & citation Inhibit Level & = & 10.0 \% fo & \\
\hline & Block & = & OFF & \\
\hline & Target & \(=\) & Self-reset & \\
\hline & Events & = & Enabled & \\
\hline Instantaneous Differential & SETTING & & PARAMETER & \\
\hline & Function & = & Enabled & \\
\hline & Pickup & \(=\) & 10 & \\
\hline & Block & = & OFF & \\
\hline & Target & = & Self-reset & \\
\hline & Events & = & Enabled & \\
\hline Hottest Spot & & & & \# Not Used \\
\hline Aging Factor & & & & \# Not Used \\
\hline Loss of Life & & & & \# Not Used \\
\hline \multicolumn{5}{|l|}{Phase Current:} \\
\hline Phase TOC: & PARAMETER & & PHASE TOC1 & PHASE TOC2 \\
\hline & Function & = & Enabled & Enabled \\
\hline & Signal Source & \(=\) & SRC 1 (SRC 1) & SRC 2 (SRC2) \\
\hline & Input & = & Phasor & Phasor \\
\hline & Pickup & = & 0.400 pu & 0.400 pu \\
\hline & Curve & = & IEEE Mod Inv & IEEE Mod Inv \\
\hline & TD Multiplier & = & 0.5 & 0.5 \\
\hline & Reset & = & Instantaneous & Instantaneous \\
\hline & Voltage Restraint & = & Disabled & Disabled \\
\hline & Block A & = & XFMR PCNT DIFF 2ND A & OFF \\
\hline & Block B & = & XFMR PCNT DIFF 2ND B & OFF \\
\hline & Block C & = & XFMR PCNT DIFF 2ND C & OFF \\
\hline & Target & = & Self-reset & Self-reset \\
\hline & Events & = & Enabled & Enabled \\
\hline \multicolumn{5}{|l|}{Neutral Current:} \\
\hline Neutral TOC: & PARAMETER & & NEUTRAL TOC1 & Neutral TOC2 \\
\hline & Function & = & Enabled & Enabled \\
\hline & Source & = & SRC 1 (SRC 1) & SRC 2 (SRC2) \\
\hline & Input & = & Phasor & Phasor \\
\hline & Pickup & = & 0.200 pu & 0.200 pu \\
\hline & Curve & = & IEEE Mod Inv & IEEE Mod Inv \\
\hline & TD Multiplier & = & 0.5 & 0.5 \\
\hline & Reset & = & Instantaneous & Instantaneous \\
\hline & Block & = & Hamornic BIK On (VO4) & OFF \\
\hline & Target & = & Self-reset & Self-reset \\
\hline & Events & \(=\) & Enabled & Enabled \\
\hline \multicolumn{5}{|l|}{Ground Current:} \\
\hline Ground TOC & & & & \# Not used \\
\hline Ground IOC & & & & \# Not used \\
\hline Breaker Failure: & & & & \# Not used \\
\hline \multicolumn{5}{|l|}{Control Elements:} \\
\hline Trip Bus: & & & & \# Not used \\
\hline Setting Groups: & & & & \# Not used \\
\hline Selector Switches: & & & & \# Not used \\
\hline
\end{tabular}

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}

Underfrequency:
\# Not used
Overfrequency:
Synchrocheck:
Digital Elements:
Digital Counters:
Monitoring Elements:
Pilot Schemes:
Inputs/Outputs:
Contact inputs: \# Not used
Contact Inputs Thresholds:
Cont Ip 1, Cont Ip 2, Cont Ip 3, Cont Ip 4(H5A, H5C, H6A, H6C) \(=84 \mathrm{Vdc}\)
Cont Ip5, Cont Ip 6, Cont Ip 7, Cont Ip 8(H7A, H7C, H8A, H8C) \(=84 \mathrm{Vdc}\)
Cont Ip 9, Cont Ip 10, Cont Ip 11, Cont Ip 12(M5A, M5C, M6A, M6C) = 84 Vdc
Cont Ip 13, Cont Ip 14, Cont Ip 15, Cont Ip 16(M7A, M7C, M8A, M8C) \(=84 \mathrm{Vdc}\)
Virtual Inputs:
\# Not used
Contact Outputs:
[H1] Contact Output 1 ID [H1] Contact Output 1 Operate
\(=\quad\) FR-Trigger On (VO5) [H1] Contact Output 1 Seal-In
\(=\) OFF [H1] Contact Output 1 Events
\(=\quad\) Enabled
[H2] Contact Output 2 ID [H2] Contact Output 2 Operate
\(=52 \mathrm{~b} / \mathrm{DS}-\mathrm{R} 1 \mathrm{On}(\mathrm{H} 8 \mathrm{~A})\)
[H2] Contact Output 2 Seal-In
= OFF [H2] Contact Output 2 Events
\(=\quad\) Enabled
[H3] Contact Output 3 ID [H3] Contact Output 3 Operate

DS-R1 CLOSE [H3] Contact Output 3 Seal-In
\(=\quad 52 \mathrm{~b} / \mathrm{DS}-\mathrm{R} 1\) Off(H8A) [H3] Contact Output 3 Events
= OFF
\(=\quad\) Enabled
[H4] Contact Output 4 ID [H4] Contact Output 4 Operate
\begin{tabular}{ll} 
& CB-R1 TRIP \\
\(=\) & \(52 \mathrm{~b} / \mathrm{CB}-\mathrm{R1}\) On(H7C)
\end{tabular}
[H4] Contact Output 4 Seal-In
= OFF [H4] Contact Output 4 Events
[M1] Contact Output 5 ID
[M1] Contact Output 5 Operate \(=\) 87Trip On (VO1)
87 TRIP
[M1] Contact Output 5 Seal-In = OFF
[M1] Contact Output 5 Events \(=\) Enabled
[M2] Contact Output 6 ID 51P TRIP
[M2] Contact Output 6 Operate
\(=\quad\) 51P Trip On (VO2)
[M2] Contact Output 6 Seal-In
= OFF
[M2] Contact Output 6 Events
[M3] Contact Output 7 ID [M3] Contact Output 7 Operate

51N TRIP
\(=\quad 51 \mathrm{~N}\) Trip On (VO6)
[M3] Contact Output 7 Seal-In
= OFF
[M3] Contact Output 7 Events

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}

\section*{Virtual Outputs:}
[M4] Contact Output 8 ID
[M4] Contact Output 8 Operate [M4] Contact Output 8 Seal-In [M4] Contact Output 8 Events

SETTING
Virtual Output 1 ID Virtual Output 1 Events

Virtual Output 2 ID \(=51 \mathrm{P}\) Trip Virtual Output 2 Events

Virtual Output 3 ID \(=\) Osc Trigger Virtual Output 3 Events

Virtual Output 4 ID \(=\quad\) Hamornic BIK
Virtual Output 4 Events
Virtual Output 5 ID \(=\) FR-Trigger
Virtual Output 5 Events
Virtual Output 6 ID \(=51 \mathrm{~N}\) Trip
Virtual Output 6 Events \(=\) Enabled
Virtual Output 7 ID \(\quad=\quad\) Virt Op 7
Virtual Output 7 Events \(=\) Disabled
Virtual Output 8 ID \(=\quad\) Virt Op 8
Virtual Output 8 Events \(=\) Disabled
Virtual Output 9 ID \(=\quad\) Virt Op 9
Virtual Output 9 Events = Disabled
Virtual Output 10 ID \(=\quad\) Virt Op 10
Virtual Output 10 Events = Disabled
Virtual Output 11 ID \(=\quad\) Virt Op 11
Virtual Output 11 Events \(=\) Disabled
Virtual Output 12 ID \(\quad=\quad\) Virt Op 12
Virtual Output 12 Events \(=\) Disabled
Virtual Output 13 ID \(=\quad\) Virt Op 13
Virtual Output 13 Events = Disabled

Virtual Output 14 ID \(=\quad\) Virt Op 14
Virtual Output 14 Events = Disabled
Virtual Output 15 ID \(=\quad\) Virt Op 15

\section*{Appendix 15 87-51-2-R1 (GE-T60) Setting Calculation}

Virtual Output 15 Events = Disabled
Virtual Output 16 ID \(=\quad\) Virt Op 16
Virtual Output 16 Events \(=\) Disabled
\begin{tabular}{lr} 
Remote Devices: & \# Not used \\
Remote Inputs: & \# Not used \\
Remote Outputs DNA Bit Pairs & \# Not used \\
Remote Outputs UserSt Bit Pairs: & \# Not used \\
Resetting: & \# Not used \\
\hline Direct Inputs: & \# Not used \\
\hline Direct Outputs: & \# Not used \\
\hline Teleprotection: & \# Not used \\
IEC 61850 GOOSE Analogs Inputs & \# Not used
\end{tabular}

\section*{Appendix 16 87-51-1-R2 (SEL-387) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{1. Data} \\
\hline MVA_Base \(=100\) & \multirow[t]{2}{*}{kV_Base =} & \multicolumn{2}{|l|}{345} & \\
\hline CTR = 240 & & & & \\
\hline MVA rating of Reactor \(\mathrm{R} 1=\) & 150 & \multicolumn{2}{|l|}{Maximum full load current (amps) =} & 251.02 \\
\hline \multicolumn{5}{|l|}{2. Setting Criteria} \\
\hline \multicolumn{5}{|l|}{2.1 Differential Settings:} \\
\hline & & ximum & 150 & MVA \\
\hline \multicolumn{2}{|l|}{The nominal transformer Winding} & termin & 345 & kV \\
\hline \multicolumn{2}{|l|}{The nominal transformer Winding} & termin & 345 & kV \\
\hline \multicolumn{5}{|c|}{CT ratio for winding 1---CTR1= 240} \\
\hline \multicolumn{5}{|c|}{CT ratio for winding 2---CTR2 \(=240\)} \\
\hline \multicolumn{3}{|l|}{Winding 1 Current Tap TAP1 \(=\) MVA/(Sqrt(3) \(\times\) VWDG1 \(\times\) CTR1) \(=\)} & 1.05 & A \\
\hline \multicolumn{3}{|l|}{Winding 2 Current Tap TAP2 \(=\) MVA/(Sqrt(3) \(\times\) VWDG2 \(\times\) CTR2 \()=\)} & 1.05 & A \\
\hline O87P \(\geq\) & 5A / TAPmin & 0.48 & 0.50 & \# Per manual \\
\hline \multicolumn{5}{|l|}{Dual-Slop variable-percentage differential characteristic is used.} \\
\hline \multicolumn{5}{|c|}{Restraint Slop 1 Percentage (5-100\%) SLP \(1=25\)} \\
\hline \multicolumn{5}{|c|}{Restraint Slope 2 Percentage (OFF, 25-200\%) SLP2 = 50} \\
\hline \multicolumn{5}{|l|}{Restraint Current Slope 1 Limit ((1-20) multiple of tap) IRS1 =} \\
\hline \multicolumn{5}{|l|}{Unrestrained Element Current PU ((1-20) multiple of tap) U87P = 10} \\
\hline \multicolumn{5}{|l|}{Second-Harmonic Blocking Percentage (OFF, 5-100\%) PCT2 = 10 \# Inrush inhibit} \\
\hline \multicolumn{5}{|l|}{Fifth-Harmonic Blocking Percentage (OFF, 5-100\%) PCT5 = OFF} \\
\hline & Independ & Harm & N & \\
\hline
\end{tabular}
2.2 Winding 1 Elements
2.2.1 Set phase IOC element 50P12P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.2.2. Set phase TOC element 51P1P at 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. 2nd harmonic ( \(2 \mathrm{HB} 1+2 \mathrm{HB} 2+2 \mathrm{HB} 3\) ) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.2.3 Set residual IOC element 50N12P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.2.4. Set residual TOC element 51 N 1 P at 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. 2nd harmonic ( \(2 \mathrm{HB} 1+2 \mathrm{HB} 2+2 \mathrm{HB} 3\) ) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.3 Winding 2 Elements
2.3.1 Set phase IOC element 50P22P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.3.2. Set phase TOC element 51P2P at 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve. 2.3.3 Set residual IOC element 50N12P at 0.25 CT secondary amp (minimum) for unlatch trip setting ULTR.
2.3.4. Set residual TOC element 51 N1P at 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve.

Group 1-Set 1:
Config. Settings:

\section*{Appendix 16 87-51-1-R2 (SEL-387) Setting Calculation}

Relay Identifier
Terminal Identifier
Enable Wdg1 in Differential Element
Enable Wdg2 in Differential Element
Enable Wdg3 in Differential Element
Enable Wdg4 in Differential Element
Enable Wdg1 O/C Elements and Dmd. Thresholds
Enable Wdg2 O/C Elements and Dmd. Thresholds
Enable Wdg3 O/C Elements and Dmd. Thresholds
Enable Wdg4 O/C Elements and Dmd. Thresholds
Enable Combined O/C Elements
Enable RTDA Elements
Enable RTDB Elements
Enable SELogic Set 1
Enable SELogic Set 2
Enable SELogic Set 3
General Data:
Wdg1 CT Connection
Wdg2 CT Connection
Wdg3 CT Connection
Wdg4 CT Connection
Wdg1 CT Ratio
Wdg2 CT Ratio
Wdg3 CT Ratio
Wdg4 CT Ratio
Maximum Power Xfmr Capacity
Define Interal CT Connection Compensation
Wdg1 CT Conn. Compensation
Wdg2 CT Conn. Compensation
Wdg 1 Line-to-Line Voltage
Wdg 2 Line-to-Line Voltage
Wdg 3 Line-to-Line Voltage
Wdg 4 Line-to-Line Voltage

\section*{Diff Elems:}

Restrained Element Current PU
Restrain Slope 1 Percentage
Restrain Slope 2 Percentage
Restraint Current Slope 1 Limit
Unrestrained Element Current PU
2nd Harmonic Blocking Percentage
5th Hamronic Blocking Percentage
5th Harmonic Alarm Threshold
Independent Harmonic Blocking

\section*{Restriced Earth Fault:}

Winding 1 Elems:
Phase Def-Time O/C Level 1 PU
Phase Level 1 O/C Delay

RID \(=87-51-1-\) R2
TID \(=\) CHARLES POLETTI
E87W1 = Y
E87W2 \(=Y\)
E87W3 \(=\mathrm{N}\)
E87W4 = N
EOC1 \(=Y\)
EOC2 \(=Y\)
EOC3 \(=\mathrm{N}\)
EOC4 \(=\mathrm{N}\)
\(\mathrm{EOCC}=\mathrm{N}\)
\(E 49 A=N\)
\(E 49 B=N\)
ESLS1 \(=\mathrm{Y}\)
ESLS2 \(=\mathrm{N}\)
ESLS3 \(=\mathrm{N}\)
\begin{tabular}{rlrl} 
W1CT & \(=Y\) & \\
W2CT & \(=Y\) & \\
W3CT & \(=Y\) & & \# Not Used \\
W4CT & \(=Y\) & & \# Not Used \\
CTR1 & \(=240\) & \\
CTR2 & \(=240\) & \\
CTR3 & \(=240\) & & \# Not Used \\
CTR4 & \(=240\) & & \# Not Used \\
MVA & \(=150\) & & \\
ICOM & \(=Y\) & & \\
W1CTC & \(=12\) & & \\
W2CTC & \(=12\) & & \# kV \\
VWDG1 & \(=345\) & & \# kV \\
VWDG2 & \(=345\) & & \# Not Used \\
VWDG3 & \(=345\) & \# Not used
\end{tabular}
\[
\begin{aligned}
\mathrm{O} 87 \mathrm{P} & =0.50 \\
\text { SLP1 } & =25 \\
\text { SLP2 } & =50 \\
\text { IRS1 } & =3 \\
\text { U87P } & =10 \\
\text { PCT2 } & =10 \\
\text { PCT5 } & =\text { OFF } \\
\text { TH5P } & =\text { OFF } \\
\text { IHBL } & =N
\end{aligned}
\]

50P11P = OFF
50P11P = \(5 \quad\) \# Not used

\section*{Appendix 16 87-51-1-R2 (SEL-387) Setting Calculation}

50P11 Torque Control (SELogic Equation)
Phase Def-Time O/C Level 2 PU
50P12 Torque Control (SELogic Equation)
Oher Phase Inst O/C elements
Phase Inv-Time O/C PU
Phase Inv-Time O/C Curve
Phase Inv-Time O/C Time-Dial
Phase Inv-Time O/C EM Reset
51P1 Torque Control (SELogic Equation)
Neg-Seq Def-Time O/C
Residual Def-Time O/C Level 1 PU
Residual Level 1 O/C Delay 50N11 Torque Control (SELogic Equation)
Residual Def-Time O/C Level 1 PU
50N12 Torque Control (SELogic Equation)
Other Residual Inst O/C elements
Residual Inv-Time O/C PU
Residual Inv-Time O/C Curve
Residual Inv-Time O/C Time-Dial
Residual Inv-Time O/C EM Reset
51N2 Torque Control (SELogic Equation)
Demand Ammeter Time Constant Phase Demand Ammeter Threshold Neg-Seq Demand Ammeter Threshold Residual Demand Ammeter Threshold Winding 2 Elems:
Phase Def-Time O/C Level 1 PU Phase Level 1 O/C Delay 50P21 Torque Control (SELogic Equation)
Phase Def-Time O/C Level 2 PU
50P22 Torque Control (SELogic Equation)
Oher Phase Inst O/C elements
Phase Inv-Time O/C PU
Phase Inv-Time O/C Curve
Phase Inv-Time O/C Time-Dial
Phase Inv-Time O/C EM Reset
51P2 Torque Control (SELogic Equation)
Neg-Seq Def-Time O/C
Residual Def-Time O/C Level 1 PU
Residual Level 1 O/C Delay
50N21 Torque Control (SELogic Equation)
Residual Def-Time O/C Level 1 PU
50N22 Torque Control (SELogic Equation)
Other Residual Inst O/C elements
Residual Inv-Time O/C PU
Residual Inv-Time O/C Curve
Residual Inv-Time O/C Time-Dial
Residual Inv-Time O/C EM Reset
51N2 Torque Control (SELogic Equation)
Demand Ammeter Time Constant
\begin{tabular}{|c|c|}
\hline 50P11TC = 1 & \# Not used \\
\hline 50P12P \(=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{P} 12 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline \(51 \mathrm{P} 1 \mathrm{P}=2\) & \# 1.91xFLC \\
\hline \multicolumn{2}{|l|}{51P1C = U1} \\
\hline \multicolumn{2}{|l|}{51P1TD \(=0.5\)} \\
\hline \multicolumn{2}{|l|}{51P1RS = N} \\
\hline \multicolumn{2}{|l|}{51P1TC \(=\) ! \((2 \mathrm{HB} 1+2 \mathrm{HB} 2+2 \mathrm{HB} 3)\)} \\
\hline & \# Not used \\
\hline \multicolumn{2}{|l|}{50N11P = OFF} \\
\hline 50N11D \(=5\) & \# Not used \\
\hline \(50 \mathrm{~N} 11 \mathrm{TC}=1\) & \# Not used \\
\hline \(50 \mathrm{~N} 12 \mathrm{P}=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{~N} 12 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline \(51 \mathrm{~N} 1 \mathrm{P}=1\) & \# 95.6\% FLC \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 1 \mathrm{C}=\mathrm{U} 1\)} \\
\hline \multicolumn{2}{|l|}{51 N 1 TD \(=0.5\)} \\
\hline 51N1RS = N & \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{TC}=!(2 \mathrm{HB} 1+2 \mathrm{HB} 2+2 \mathrm{HB} 3)\)} \\
\hline DATC1 \(=15\) & \# Default \\
\hline PDEM1P = 7 & \# Default \\
\hline QDEM1P = 1 & \# Default \\
\hline \multicolumn{2}{|l|}{NDEM1P = 1 \# Default} \\
\hline 50P21P = OFF & \# Not used \\
\hline 50P21P = 5 & \# Not used \\
\hline 50P21TC = 1 & \# Not used \\
\hline 50P22P \(=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{P} 22 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline \(51 \mathrm{P} 2 \mathrm{P}=2\) & \# 1.91xFLC \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{P} 2 \mathrm{C}=\mathrm{U} 1\)} \\
\hline \multicolumn{2}{|l|}{51P2TD \(=0.5\)} \\
\hline \multicolumn{2}{|l|}{51P2RS \(=\mathrm{N}\)} \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{P} 2 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline \(50 \mathrm{~N} 21 \mathrm{P}=\) OFF & \# Not used \\
\hline \(50 \mathrm{~N} 21 \mathrm{D}=5\) & \# Not used \\
\hline \(50 \mathrm{~N} 21 \mathrm{TC}=1\) & \# Not used \\
\hline \(50 \mathrm{~N} 22 \mathrm{P}=0.25\) & \# Minimum \\
\hline \multicolumn{2}{|l|}{\(50 \mathrm{~N} 22 \mathrm{TC}=1\)} \\
\hline & \# Not used \\
\hline 51N2P = 1 & \# 95.6\% FLC \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{C}=\mathrm{U} 1\)} \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{TD}=0.5\)} \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{RS}=\mathrm{N}\)} \\
\hline \multicolumn{2}{|l|}{\(51 \mathrm{~N} 2 \mathrm{TC}=1\)} \\
\hline DATC2 \(=15\) & \# Default \\
\hline
\end{tabular}

\section*{Appendix 16 \\ 87-51-1-R2 (SEL-387) Setting Calculation}


\section*{Appendix 17 87-51-2-R2 (GE-T60) Setting Calculation}
1. Data
MVA_Base \(=100 \quad\) kV_Base \(=345\)

CTR \(=\quad 240\)
MVA rating of Reactor R1 =
150 ; Maximum full load current \((\mathrm{amps})=\)
251.02
2. Setting Criteria
2.1 Differential Settings:
\begin{tabular}{rlr} 
Differential Pickup in per unit \(=0.50\) & \# APP14-2.1 \\
Differential Slope 1 in \(\%=25 \%\) & \# APP14-2.1 \\
Differential Break 1 in per unit \(=2\) & \\
Differential Break 2 in per unit \(=3\) & \# APP14-2.1 \\
Differential Slope 2 in \(\%=50 \%\) & \# APP14-2.1 \\
Inrush Inhibit Function & \(=\) Adapt. 2nd & \# APP14-2.1 \\
Inrush Inhibit Mode & \(=\) Per Phase & \# APP14-2.1 \\
Inrush Inhibit Level & \(=10 \%\) & \# APP14-2.1 \\
Instantaneous Differential Pickup in per unit & \(=10\) & \# APP14-2.1
\end{tabular}
2.2 Winding 1 Elements
2.2.1. Set phase TOC element at 0.4 pu, or 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. 2nd harmonic (XFMR PCNT DIFF 2ND A, XFMR PCNT DIFF 2ND B, XFMR PCNT
DIFF 2ND C) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.2.2. Set residual TOC element at 0.2 pu or 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. 2nd harmonic (XFMR PCNT DIFF 2ND A, XFMR PCNT DIFF 2ND B, XFMR PCNT DIFF 2ND C) is used to block operation to prevent inrush false trip. Curve and time dial are set to make the curve to match the existing setting curve.
2.3 Winding 2 Elements
2.3.1. Set phase TOC element at 0.4 pu, or 2 CT secondary amp or 480 CT primary amp, i.e. 1.91 times of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve.
2.3.2 Set residual TOC element at 0.2 pu or 1 CT secondary amp or 240 CT primary amp, i.e. \(95.6 \%\) of the maximum FLC. Curve and time dial are set to make the curve to match the existing setting curve.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Device Definition:} & \# Default \\
\hline \multicolumn{4}{|l|}{Product Setup:} \\
\hline \multicolumn{3}{|l|}{Security:} & \# Default \\
\hline \multicolumn{3}{|l|}{Display Properties:} & \# Default \\
\hline \multicolumn{3}{|l|}{Clear Relay Records:} & \# All OFF \\
\hline \multicolumn{3}{|l|}{Communications:} & \# Default \\
\hline \multicolumn{3}{|l|}{Modbus User Map:} & \# Not used \\
\hline \multicolumn{4}{|l|}{Real Time Clock:} \\
\hline IRIG-B Signal Type & = & DC Shift & \\
\hline All other settings & = & Default & \\
\hline User-Programmable Fault Report: & & & \\
\hline PARAMETER & & FAULT REPORT 1 & \\
\hline Function & = & Enabled & \\
\hline Prefault Trigger & = & Osc Trigger On (VO3) & \\
\hline Fault Trigger & = & FR-Trigger On (VO5) & \\
\hline Analog Channel 1 & = & SRC1 la Mag & \\
\hline Analog Channel 2 & = & SRC1 lb Mag & \\
\hline
\end{tabular}

\section*{Appendix 17 87-51-2-R2 (GE-T60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline Analog Channel 3 & = & SRC1 & Ic Mag \\
\hline Analog Channel 4 & = & SRC2 & Ia Mag \\
\hline Analog Channel 5 & = & SRC2 & Ib Mag \\
\hline Analog Channel 6 & = & SRC2 & Ic Mag \\
\hline Analog Channel 7 & = & SRC1 & Ia Angle \\
\hline Analog Channel 8 & = & SRC1 & lb Angle \\
\hline Analog Channel 9 & = & SRC1 & Ic Angle \\
\hline Analog Channel 10 & \(=\) & SRC2 & Ia Angle \\
\hline Analog Channel 11 & \(=\) & SRC2 & lb Angle \\
\hline Analog Channel 12 & = & SRC2 & Ic Angle \\
\hline Analog Channel 13 & = & Xfmr la & Mag \\
\hline Analog Channel 14 & = & Xfmr lb & Mag \\
\hline Analog Channel 15 & = & Xfmr Icd & Mag \\
\hline Analog Channel 16 & = & Xfmr la & Angle \\
\hline Analog Channel 17 & = & Xfmr lb & Angle \\
\hline Analog Channel 18 & = & Xfmr Ic & Angle \\
\hline Analog Channel 19 & = & Xfmr H & m2 lad Mag \\
\hline Analog Channel 20 & = & Xfmr H & m2 lbd Mag \\
\hline Analog Channel 21 & = & Xfmr H & m2 Icd Mag \\
\hline Analog Channel 22 & = & Xfmr H & m2 Iad Angle \\
\hline Analog Channel 23 & = & Xfmr H & m2 Ibd Angle \\
\hline Analog Channel 24 & = & Xfmr H & m2 Icd Angle \\
\hline Analog Channel 25 & = & Xfmr H & m5 lad Mag \\
\hline Analog Channel 26 & = & Xfmr H & m5 Ibd Mag \\
\hline Analog Channel 27 & = & Xfmr H & m5 Icd Mag \\
\hline Analog Channel 28 & = & Xfmr H & m5 Iad Angle \\
\hline Analog Channel 29 & \(=\) & Xfmr H & m5 Ibd Angle \\
\hline Analog Channel 30 & = & Xfmr H & m5 Icd Angle \\
\hline Analog Channel 31 & = & SRC1 & Frequency \\
\hline Analog Channel 32 & = & SRC1 & Q \\
\hline
\end{tabular}

Oscillography:
SETTING
Number Of Records
Trigger Mode
Trigger Position
Trigger Source
AC Input Waveforms Digital Channel 1 Digital Channel 2 Digital Channel 3 Digital Channel 4 Digital Channel 5 Digital Channel \(6=\) XFMR INST DIFF OP B Digital Channel \(7 \quad=\quad\) XFMR INST DIFF OP C Digital Channel \(8 \quad=\quad\) XFMR PCNT DIFF 2ND A Digital Channel \(9 \quad=\quad\) XFMR PCNT DIFF 2ND B Digital Channel \(10 \quad=\quad\) XFMR PCNT DIFF 2ND C Digital Channel \(11 \quad=\quad\) XFMR PCNT DIFF OP A Digital Channel \(12 \quad=\quad\) XFMR PCNT DIFF OP B

\section*{Appendix 17 87-51-2-R2 (GE-T60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Digital Channel 13 & = & XFMR PCNT DIFF OP C \\
\hline Digital Channel 14 & = & XFMR PCNT DIFF 5TH A \\
\hline Digital Channel 15 & = & XFMR PCNT DIFF 5TH B \\
\hline Digital Channel 16 & = & XFMR PCNT DIFF 5TH C \\
\hline Digital Channel 17 & = & OFF \\
\hline Digital Channel 18 & = & OFF \\
\hline Digital Channel 19 & = & OFF \\
\hline Digital Channel 20 & = & OFF \\
\hline Digital Channel 21 & = & OFF \\
\hline Digital Channel 22 & = & OFF \\
\hline Digital Channel 23 & = & OFF \\
\hline Digital Channel 24 & = & OFF \\
\hline Digital Channel 25 & = & OFF \\
\hline Digital Channel 26 & = & OFF \\
\hline Digital Channel 27 & = & OFF \\
\hline Digital Channel 28 & = & OFF \\
\hline Digital Channel 29 & = & OFF \\
\hline Digital Channel 30 & = & OFF \\
\hline Digital Channel 31 & = & OFF \\
\hline Digital Channel 32 & = & OFF \\
\hline Digital Channel 33 & = & OFF \\
\hline Digital Channel 34 & = & OFF \\
\hline Digital Channel 35 & = & OFF \\
\hline Digital Channel 36 & = & OFF \\
\hline Digital Channel 37 & = & OFF \\
\hline Digital Channel 38 & = & OFF \\
\hline Digital Channel 39 & = & OFF \\
\hline Digital Channel 40 & = & OFF \\
\hline Digital Channel 41 & = & OFF \\
\hline Digital Channel 42 & = & OFF \\
\hline Digital Channel 43 & = & OFF \\
\hline Digital Channel 44 & = & OFF \\
\hline Digital Channel 45 & = & OFF \\
\hline Digital Channel 46 & = & OFF \\
\hline Digital Channel 47 & = & OFF \\
\hline Digital Channel 48 & = & OFF \\
\hline Digital Channel 49 & = & OFF \\
\hline Digital Channel 50 & = & OFF \\
\hline Digital Channel 51 & = & OFF \\
\hline Digital Channel 52 & = & OFF \\
\hline Digital Channel 53 & = & OFF \\
\hline Digital Channel 54 & = & OFF \\
\hline Digital Channel 55 & = & OFF \\
\hline Digital Channel 56 & = & OFF \\
\hline Digital Channel 57 & = & OFF \\
\hline Digital Channel 58 & = & OFF \\
\hline Digital Channel 59 & = & OFF \\
\hline Digital Channel 60 & = & OFF \\
\hline Digital Channel 61 & = & OFF \\
\hline Digital Channel 62 & = & OFF \\
\hline
\end{tabular}

\section*{Appendix 17 87-51-2-R2 (GE-T60) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline & Digital Channel 63 & = & OFF & \\
\hline & Analog Channel 1 & = & Xfmr lad Mag & \\
\hline & Analog Channel 2 & = & Xfmr lar Mag & \\
\hline & Analog Channel 3 & = & Xfmr Harm2 lad Mag & \\
\hline & Analog Channel 4 & = & Xfmr Ibd Mag & \\
\hline & Analog Channel 5 & = & Xfmr Ibr Mag & \\
\hline & Analog Channel 6 & \(=\) & Xfmr Harm2 Ibd Mag & \\
\hline & Analog Channel 7 & = & Xfmr Icd Mag & \\
\hline & Analog Channel 8 & = & Xfmr Icr Mag & \\
\hline & Analog Channel 9 & = & Xfmr Harm2 Icd Mag & \\
\hline & Analog Channel 10 & = & Xfmr Harm5 lad Mag & \\
\hline & Analog Channel 11 & = & Xfmr Harm5 Ibd Mag & \\
\hline & Analog Channel 12 & = & Xfmr Harm5 Icd Mag & \\
\hline & Analog Channel 13 & = & Off & \\
\hline & Analog Channel 14 & = & Off & \\
\hline & Analog Channel 15 & = & Off & \\
\hline & Analog Channel 16 & \(=\) & Tracking Frequency & \\
\hline Data Logger: & & & & \# Default \\
\hline Demand: & & & & \# Default \\
\hline User-Programmable Leds: & & & & \\
\hline LED Test: & & & & \\
\hline & Function & = & Enabled & \\
\hline & Control & = & CONTROL PUSHBUTTO & 1 ON \\
\hline Trip and Alarms Leds: & & & & \\
\hline & Trip LED Input & = & 87Trip On (VO1) & \\
\hline & Alarm LED Input & \(=\) & 51Trip On (VO2) & \\
\hline & LED 1 & = & 87Trip On (VO1) & Latched \\
\hline & LED 2 & = & 51 Trip On (VO2) & Latched \\
\hline & LED 3 & = & XFMR INST DIFF OP & Latched \\
\hline & LED 4 & = & XFMR PCNT DIFF OP & Latched \\
\hline & LED 5 & = & XFMR INST DIFF OP A & Latched \\
\hline & LED 6 & = & XFMR INST DIFF OP B & Latched \\
\hline & LED 7 & = & XFMR INST DIFF OP C & Latched \\
\hline & LED 8 & = & XFMR PCNT DIFF OP A & Latched \\
\hline & LED 9 & = & XFMR PCNT DIFF OP B & Latched \\
\hline & LED 10 & = & XFMR PCNT DIFF OP C & Latched \\
\hline & LED 11 & = & PHASE TOC1 OP & Latched \\
\hline & LED 12 & = & PHASE TOC2 OP & Latched \\
\hline & LED 13 & = & NEUTRAL TOC1 OP & Latched \\
\hline & LED 14 & \(=\) & NEUTRAL TOC2 OP & Latched \\
\hline & LED 15 & = & PHASE TOC1 OP A & Latched \\
\hline & LED 16 & = & PHASE TOC1 OP B & Latched \\
\hline & LED 17 & = & PHASE TOC1 OP C & Latched \\
\hline & LED 18 & = & PHASE TOC2 OP A & Latched \\
\hline & LED 19 & \(=\) & PHASE TOC2 OP B & Latched \\
\hline & LED 20 & \(=\) & PHASE TOC2 OP C & Latched \\
\hline & LED 21 & = & OFF & Self-Reset \\
\hline & LED 22 & \(=\) & OFF & Self-Reset \\
\hline & LED 23 & = & OFF & Self-Reset \\
\hline
\end{tabular}

\section*{Appendix 17 \\ 87-51-2-R2 (GE-T60) Setting Calculation}
\begin{tabular}{lll} 
LED 24 & \(=\) & OFF \\
LED 25 & \(=\) & OFF \\
LED 26 & \(=\) & OFF \\
LED 27 & \(=\) & OFF \\
LED 28 & \(=\) & OFF \\
LED 29 & \(=\) & OFF \\
LED 30 & \(=\) & OFF \\
LED 31 & \(=\) & OFF \\
LED 32 & \(=\) & OFF \\
LED 33 & \(=\) & OFF \\
LED 34 & \(=\) & OFF \\
LED 35 & \(=\) & OFF \\
LED 36 & \(=\) & OFF \\
LED 37 & \(=\) & OFF \\
LED 38 & \(=\) & OFF \\
LED 39 & \(=\) & OFF \\
LED 40 & \(=\) & OFF \\
LED 41 & \(=\) & OFF \\
LED 42 & \(=\) & OFF \\
LED 43 & \(=\) & OFF \\
LED 44 & \(=\) & OFF \\
LED 45 & \(=\) & OFF \\
LED 46 & \(=\) & OFF \\
LED 47 & \(=\) & OFF \\
LED 48 & \(=\) & OFF
\end{tabular}

Self-Reset

\section*{User-Programmable Self Tests:}

Remote Device Off Function
Pri Ethernet Fail Function
Battery Fail Function
SNTP Fail Function
RIG Fail Function
IRIG B Fail Function \(=\quad\) Enabled
Control Pushbuttons:
PARAMETER CPB 1
Function Enabled
Events Disabled
Disabled
Flex States:
User-definable displays:
Direct I/O:
Teleprotection:
Installation:
Relay Name \(=\quad\) 87-51-2-R2
System Setup:
AC Inputs
Current:

PARAMETER
Phase CT Primary \(=1200\) A 1200 A
Phase CT Secondary \(=5\) A 5 A Ground CT Primary \(=1200\) A 1200 A
Ground CT Secondary \(=5\) A 5 A

Power System:

\section*{Appendix 17 \\ 87-51-2-R2 (GE-T60) Setting Calculation}



\section*{Appendix 17 87-51-2-R2 (GE-T60) Setting Calculation}

Underfrequency:
Overfrequency:
Synchrocheck:
Digital Elements:
Digital Counters:
Monitoring Elements:
Pilot Schemes:
Inputs/Outputs:
Contact inputs: \# Not used
Contact Inputs Thresholds:
Cont Ip 1, Cont Ip 2, Cont Ip 3, Cont Ip 4(H5A, H5C, H6A, H6C) = 84 Vdc
Cont Ip5, Cont Ip 6, Cont Ip 7, Cont Ip 8(H7A, H7C, H8A, H8C) \(=84 \mathrm{Vdc}\)
Cont Ip 9, Cont Ip 10, Cont Ip 11, Cont Ip 12(M5A, M5C, M6A, M6C) = 84 Vdc
Cont Ip 13, Cont Ip 14, Cont Ip 15, Cont Ip 16(M7A, M7C, M8A, M8C) = 84 Vdc
Virtual Inputs:
Contact Outputs:
[H1] Contact Output 1 ID [H1] Contact Output 1 Operate \(=\quad\) FR-Trigger On (VO5) [H1] Contact Output 1 Seal-In \(=\) OFF [H1] Contact Output 1 Events \(=\) Enabled
[H2] Contact Output 2 ID DS-R2 OPEN [H2] Contact Output 2 Operate \(=\quad\) 52b/DS-R2 On(H8A) [H2] Contact Output 2 Seal-In \(=\) OFF [H2] Contact Output 2 Events \(=\) Enabled
[H3] Contact Output 3 ID [H3] Contact Output 3 Operate \(=\) 52b/DS-R2 Off(H8A) [H3] Contact Output 3 Seal-In = OFF [H3] Contact Output 3 Events \(=\) Enabled
[H4] Contact Output 4 ID CB-R2 TRIP [H4] Contact Output 4 Operate
\(=52 \mathrm{~b} / \mathrm{CB}-\mathrm{R} 2 \mathrm{On}(\mathrm{H} 7 \mathrm{C})\)
[H4] Contact Output 4 Seal-In
= OFF
[H4] Contact Output 4 Events
[M1] Contact Output 5 ID
[M1] Contact Output 5 Operate = 87Trip On (VO1)
87 TRIP
[M1] Contact Output 5 Seal-In = OFF
[M1] Contact Output 5 Events = Enabled
[M2] Contact Output 6 ID 51P TRIP
[M2] Contact Output 6 Operate \(=\) 51P Trip On (VO2)
[M2] Contact Output 6 Seal-In = OFF
[M2] Contact Output 6 Events \(=\) Enabled
[M3] Contact Output 7 ID 51N TRIP
[M3] Contact Output 7 Operate \(\quad=\quad 51 \mathrm{~N}\) Trip On (VO6)
[M3] Contact Output 7 Seal-In \(=\) OFF
[M3] Contact Output 7 Events = Enabled

\section*{Appendix 17 \\ 87-51-2-R2 (GE-T60) Setting Calculation}

\section*{Virtual Outputs:}
[M4] Contact Output 8 ID
[M4] Contact Output 8 Operate [M4] Contact Output 8 Seal-In [M4] Contact Output 8 Events
\begin{tabular}{ll} 
& CB-R2 CLOSE \\
\(=\) & \(52 \mathrm{~b} / \mathrm{CB}-\) R2 Off(H7C \()\) \\
\(=\) & OFF \\
\(=\) & Enabled
\end{tabular}

SETTING
Virtual Output 1 ID = 87Trip Virtual Output 1 Events

Virtual Output 2 ID = 51P Trip
Virtual Output 2 Events \(=\) Enabled
Virtual Output 3 ID = Osc Trigger
Virtual Output 3 Events \(=\) Enabled
Virtual Output 4 ID = Hamornic BIK
Virtual Output 4 Events \(=\) Enabled
Virtual Output 5 ID \(=\) FR-Trigger
Virtual Output 5 Events \(=\) Enabled
Virtual Output 6 ID \(=51 \mathrm{~N}\) Trip
Virtual Output 6 Events \(=\) Enabled
Virtual Output 7 ID \(\quad=\quad\) Virt Op 7
Virtual Output 7 Events \(=\) Disabled
Virtual Output 8 ID \(=\quad\) Virt Op 8
Virtual Output 8 Events \(=\) Disabled
Virtual Output 9 ID \(=\quad\) Virt Op 9
Virtual Output 9 Events \(=\) Disabled
Virtual Output 10 ID \(=\quad\) Virt Op 10
Virtual Output 10 Events = Disabled
Virtual Output 11 ID = Virt Op 11
Virtual Output 11 Events = Disabled
Virtual Output 12 ID \(=\quad\) Virt Op 12
Virtual Output 12 Events = Disabled
Virtual Output 13 ID \(=\quad\) Virt Op 13
Virtual Output 13 Events = Disabled
Virtual Output 14 ID \(=\quad\) Virt Op 14
Virtual Output 14 Events \(=\) Disabled
Virtual Output 15 ID \(=\quad\) Virt Op 15

\section*{Appendix 17 87-51-2-R2 (GE-T60) Setting Calculation}

Virtual Output 15 Events = Disabled
Virtual Output 16 ID \(=\quad\) Virt Op 16
Virtual Output 16 Events \(=\) Disabled
\begin{tabular}{lr} 
Remote Devices: & \# Not used \\
Remote Inputs: & \# Not used \\
Remote Outputs DNA Bit Pairs & \# Not used \\
Remote Outputs UserSt Bit Pairs: & \# Not used \\
\hline Resetting: & \# Not used \\
\hline Direct Inputs: & \# Not used \\
\hline Direct Outputs: & \# Not used \\
\hline Teleprotection: & \# Not used \\
IEC 61850 GOOSE Analogs Inputs & \# Not used
\end{tabular}

\section*{Appendix 18 \\ 50-62-1-BKR1 (Areva P141) Setting Calculation}
1. Data
\begin{tabular}{lclcc} 
MVA_Base \(=100\) & kV_Base \(=\) & 345 & Z_Base \(=1190.25\) & ohms \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\)
\end{tabular}

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of 1,349 Amp or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance , but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary amp, 300 CT primary amp, or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.

SYSTEM DATA:

CB CONTROL:

DATE AND TIME:
\[
\begin{aligned}
\text { CB Control by } & =\text { Disabled } \\
\text { Reset Lockout by } & =\text { CB Close } \\
\text { Man Close RstDly } & =5.000 \mathrm{~s} \\
\text { CB2 Status Input } & =52 \mathrm{~A}
\end{aligned}
\]

IRIG-B Sync = Enabled
Battery Alarm = Enabled
Other Time Settings = Default
\[
\begin{aligned}
\text { Setting Group } & =\text { Select via Menu } \\
\text { Active Settings } & =\text { Group } 1 \\
\text { Setting Group } 1 & =\text { Enabled } \\
\text { Setting Group } 2 & =\text { Disabled } \\
\text { Setting Group } 3 & =\text { Disabled } \\
\text { Setting Group } 4 & =\text { Disabled } \\
\text { System Config } & =\text { Invisible }
\end{aligned}
\]

\section*{Appendix 18 \\ 50-62-1-BKR1 (Areva P141) Setting Calculation}
\begin{tabular}{|c|c|}
\hline Overcurrent = Enabled & \# 50FD-P \\
\hline Neg Sequence O/C = Enabled & \# Unbalance \\
\hline Broken Conductor = Disabled & \# Not used \\
\hline Earth Fault 1 = Disabled & \# Not used \\
\hline Earth Fault 2 = Enabled & \# 50FD-G \\
\hline Sensitive E/F Prot'n = Disabled & \# Not used \\
\hline Residual O/V NVD = Disabled & \# Not used \\
\hline Thermal Overload = Disabled & \# Not used \\
\hline Neg Sequence O/V = Disabled & \# Not used \\
\hline Cold Load Pickup = Disabled & \# Not used \\
\hline Selective Logic = Disabled & \# Not used \\
\hline Admit Protection = Disabled & \# Not used \\
\hline Volt Protection = Disabled & \# Not used \\
\hline Freq Protection = Disabled & \# Not used \\
\hline df/dt Protection = Disabled & \# Not used \\
\hline CB Fail = Enabled & \\
\hline Supervision = Enabled & \\
\hline Fault Locator = Disabled & \\
\hline Input Labels = Visible & \\
\hline Output Labels = Visible & \\
\hline CT \& VT Ratios = Visible & \\
\hline Record Control = Invisible & \\
\hline Disturb Recorder = Visible & \\
\hline Measure't Setup = Visible & \\
\hline Comms Settings = Visible & \\
\hline Commission Tests = Visible & \\
\hline Setting Values = Secondary & \\
\hline Control Inputs = Invisible & \\
\hline Ctrl I/P Config = Invisible & \\
\hline Ctrl I/P Labels = Invisible & \\
\hline Direct Access = Disabled & \\
\hline LCD Contrast = 11 & \\
\hline Main VT Primary \(=110.0 \mathrm{~V}\) & \# Not used \\
\hline Main VT Sec'y \(=110.0\) V & \# Not used \\
\hline Phase CT Primary \(=3000 \mathrm{~A}\) & \\
\hline Phase CT Sec'y \(=5.000 \mathrm{~A}\) & \\
\hline E/F CT Primary \(=3000 \mathrm{~A}\) & \\
\hline E/F CT Secondary \(=5.000 \mathrm{~A}\) & \\
\hline SEF CT Primary \(=1.000 \mathrm{~A}\) & \\
\hline SEF CT Secondary \(=1.000 \mathrm{~A}\) & \\
\hline See setting file for detail & \\
\hline Default Display \(=\) Description & \\
\hline Local Values \(=\) Primary & \\
\hline Remote Values = Primary & \\
\hline Measurement Ref = VA & \\
\hline Measurement Mode \(=0\) & \\
\hline Fix Dem Period \(=30.00 \mathrm{~min}\) & \\
\hline Roll Sub Period \(=30.00 \mathrm{~min}\) & \\
\hline
\end{tabular}

\section*{Appendix 18}

\section*{50-62-1-BKR1 (Areva P141) Setting Calculation}

COMMISSION TESTS:
Num Sub Periods = 1
\begin{tabular}{|c|c|c|}
\hline & Monitor Bit \(1=64\) & \\
\hline & Monitor Bit \(2=65\) & \\
\hline & Monitor Bit \(3=66\) & \\
\hline & Monitor Bit 4 \(=67\) & \\
\hline & Monitor Bit \(5=68\) & \\
\hline & Monitor Bit \(6=69\) & \\
\hline & Monitor Bit \(7=70\) & \\
\hline & Monitor Bit \(8=71\) & \\
\hline CB MONITOR SETUP: & & \\
\hline & Broken \(1^{\wedge}=2.000\) & \\
\hline & \(\wedge^{\wedge}\) Maintenance \(=\) Alarm Disabled & \\
\hline & \(1^{\wedge}\) Lockout \(=\) Alarm Disabled & \\
\hline & No. CB Ops Maint = Alarm Disabled & \\
\hline & No. CB Ops Lock \(=\) Alarm Disabled & \\
\hline & CB Time Maint = Alarm Disabled & \\
\hline & CB Time Lockout \(=\) Alarm Disabled & \\
\hline & Fault Freq Lock = Alarm Disabled & \\
\hline OPTO CONFIG: & & \\
\hline & Global Nominal V \(=110 / 125 \mathrm{~V}\) & \\
\hline & Opto Filter Cntl \(=11111111\) & \\
\hline & Characteristic \(=\) Standard 60\%-80\% & \\
\hline Group 1: & & \\
\hline GROUP 1 OVERCURRENT: & & \\
\hline & \(1>1\) Function = DT & \\
\hline & |>1 Direction \(=\) Non-Directional & \\
\hline & \(1>1\) Current Set \(=0.75\) & \# 50FD-P \\
\hline & \(1>1\) Time Delay \(=0\) & \\
\hline & \(1>1\) tRESET \(=0\) s & \\
\hline & \(1>2\) Status \(=\) Disabled & \\
\hline & 1>3 Status = Disabled & \\
\hline & \(1>4\) Status = Disabled & \\
\hline & \(1>\) Blocking \(=000000000\) & \\
\hline & \(1>\) Char Angle \(=45 \quad \mathrm{deg}\) & \# Default \\
\hline & VC0 Status \(=\) Disabled & \\
\hline GROUP 1 NEG SEQ O/C & & \\
\hline & \(12>1\) Status \(=\) Enabled & \\
\hline & \(12>1\) Function \(=\) DT & \\
\hline & \(12>1\) Directional \(=\) Non-Directional & \\
\hline & \(12>1\) Current Set \(=500.0 \mathrm{~mA}\) & \\
\hline & \(12>1\) Time Delay \(=0 \mathrm{~s}\) & \\
\hline & \(12>1\) Treset \(=0 \mathrm{~s}\) & \\
\hline & \(12>2\) Status \(=\) Disabled & \\
\hline & \(12>3\) Status \(=\) Disabled & \\
\hline & \(12>4\) Status \(=\) Disabled & \\
\hline & \(12>\) Blocking \(=00000000\) & \\
\hline & \(12>\) Char Angle \(=-60.00 \mathrm{deg}\) & \\
\hline & I2> V2pol Set \(=5.000 \mathrm{~V}\) & \\
\hline GROUP 1 EARTH FAULT 2 & & \\
\hline
\end{tabular}

\section*{Appendix 18}

\section*{50-62-1-BKR1 (Areva P141) Setting Calculation}
\[
\begin{aligned}
\text { IN2> Input } & =\text { Derived } \\
\text { IN2>1 Function } & =\text { DT } \\
\text { IN2 }>1 \text { Direction } & =\text { Non-Directional } \\
\text { IN2>1 Current } & =500.0 \mathrm{~mA} \\
\text { IN2>1 Time Delay } & =0 \mathrm{~s} \\
\text { IN2>1 tRESET } & =0 \mathrm{~s} \\
\text { IN2>2 Function } & =\text { Disabled } \\
\text { IN2>3 Status } & =\text { Disabled } \\
\text { IN2>4 Status } & =\text { Disabled } \\
\text { IN2> Blocking } & =00000000 \\
\text { IN2> } & =\text { POL } \\
\text { IN2> Char Angle } & =-45.00 \text { deg } \\
\text { IN2> Pol } & =\text { Zero Sequence } \\
\text { IN2> VNpol Set } & =5.000 \mathrm{~V}
\end{aligned}
\]

GROUP 1 CB FAIL \& \(\mathrm{I}<\) :
CB Fail 1 Status = Enabled
GB Fail 1 Timer \(=0 \mathrm{~s}\)
CB Fail 2 Status \(=\) Enabled
CB Fail 2 Timer \(=130.0 \mathrm{~ms}\)
Volt Prot Reset \(=1<\) only
Ext Prot Reset \(=1<\) only
\(\mathrm{l}<\) Current Set \(=500.0 \mathrm{~mA}\)
\(\mathrm{IN}<\) Current Set \(=500.0 \mathrm{~mA}\)
ISEF<Current \(=20.00 \mathrm{~mA}\)
Remove l> Start = Disabled
Remove IN> Start = Disabled
GROUP 1 SUPERVISION:
\[
\begin{aligned}
\text { VTS Status } & =\text { Indication } \\
\text { VTS Reset Mode } & =\text { Manual } \\
\text { VTS Time Delay } & =5.000 \mathrm{~s} \\
\text { VTS I> Inhibit } & =50.0 \mathrm{~A} \\
\text { VTS I } 2>\text { Inhibit } & =250.0 \mathrm{~mA} \\
\text { CTS Mode } & =\text { Disabled }
\end{aligned}
\]

\section*{GROUP 1 INPUT LABELS:}

Opto Input 1 Input L1
Opto Input 2 Input L2
Opto Input 3 30-TC2/1 ALM
Opto Input 4 86BF-1/1 TRIP
Opto Input 5 30-86BF-1/1 ALM
Opto Input 6 BF Initiation
Opto Input 7 Input L7
Opto Input 8 Input L8
GROUP 1 OUTPUT LABELS:
Relay 1 Trip 86BF
Relay 2 ReTrip BkrTC2
Relay 3 Any Trip
Relay 4 Output R4
Relay 5 Output R5
Relay 6 Output R6
Relay 7 Output R7

\section*{Appendix 19 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{lclll} 
1. Data & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=\) \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\) \\
Total MVA of all three GSUs \(=\) & 750 & ; Maximum full load current (amps) \(=\) & 1255.11
\end{tabular}

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of 1,349 Amp or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance, but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary \(\mathrm{amp}, 300\) CT primary amp , or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Device Definition:} & \# Default \\
\hline \multicolumn{4}{|l|}{Product Setup:} \\
\hline \multicolumn{3}{|l|}{Security:} & \# Default \\
\hline \multicolumn{3}{|l|}{Display Properties:} & \# Default \\
\hline \multicolumn{3}{|l|}{Clear Relay Records:} & \# All OFF \\
\hline \multicolumn{3}{|l|}{Communications:} & \# Default \\
\hline \multicolumn{3}{|l|}{Modbus User Map:} & \# Not used \\
\hline \multicolumn{4}{|l|}{Real Time Clock:} \\
\hline IRIG-B Signal Type & \(=\) & DC Shift & \\
\hline All other settings & = & Default & \\
\hline \multicolumn{2}{|l|}{Fault Report: SETTING} & PARAMETER & \\
\hline Fault Report 1 Source & = & SRC 1 (SRC 1) & \\
\hline Fault Report 1 Trigger & = & Trig Oscill On (VO4) & \\
\hline Fault Report 1 Positive Seq (Z1) Mag & = & 0.49 ohms & \# See data \\
\hline Fault Report 1 Positive Seq (Z1) Angle & \(=\) & 78 deg & \# at Appendix \\
\hline Fault Report 1 Zero Seq (Z0) Mag & = & 1.50 ohms & \# 01 or 05 \\
\hline Fault Report 1 Zero Seq (Z0) Angle & = & 54 deg & \# Section 1 \\
\hline Fault Report 1 Line Length Units & = & mile & \\
\hline Fault Report 1 Line Length & = & 7.74 & \\
\hline Fault Report 1 VT Substitution & = & None & \\
\hline Fault Report 1 System Z0 Mag & = & 0.49 ohms & \\
\hline Fault Report 1 System Z0 Angle & \(=\) & 78 deg & \\
\hline \multicolumn{4}{|l|}{Oscillography:} \\
\hline SETTING & & PARAMETER & \\
\hline
\end{tabular}

\section*{Appendix 19 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Number Of Records & = & 6 \\
\hline Trigger Mode & = & Automatic Overwrite \\
\hline Trigger Position & = & 30\% \\
\hline Trigger Source & = & Trig Oscill On (VO4) \\
\hline AC Input Waveforms & = & 32 samples/cycle \\
\hline Digital Channel 1 & = & OFF \\
\hline Digital Channel 2 & = & OFF \\
\hline Digital Channel 3 & = & OFF \\
\hline Digital Channel 4 & = & OFF \\
\hline Digital Channel 5 & = & OFF \\
\hline Digital Channel 6 & \(=\) & 86BF TRIP On (VO1) \\
\hline Digital Channel 7 & = & RETRIP BKR On (VO2) \\
\hline Digital Channel 8 & = & UNIT ALARM On (VO3) \\
\hline Digital Channel 9 & = & OFF \\
\hline Digital Channel 10 & = & NEUTRAL IOC1 PKP \\
\hline Digital Channel 11 & = & NEUTRAL IOC1 OP \\
\hline Digital Channel 12 & = & PHASE IOC1 PKP A \\
\hline Digital Channel 13 & = & PHASE IOC1 OP A \\
\hline Digital Channel 14 & = & PHASE IOC1 PKP B \\
\hline Digital Channel 15 & = & PHASE IOC1 OP B \\
\hline Digital Channel 16 & = & PHASE IOC1 PKP C \\
\hline Digital Channel 17 & = & PHASE IOC1 OP C \\
\hline Digital Channel 18 & = & Bkr Fail Int On(H7c) \\
\hline Digital Channel 19 & = & BKR FAIL 1 TRIP OP \\
\hline Digital Channel 20 & = & BKR FAIL 2 TRIP OP \\
\hline Digital Channel 21 & = & BKR FAIL 1 T2 OP \\
\hline Digital Channel 22 & = & BKR FAIL 2 T2 OP \\
\hline Digital Channel 23 & \(=\) & 86BF TRIP On (VO1) \\
\hline Digital Channel 24 & \(=\) & RETRIP BKR On (VO2) \\
\hline Digital Channel 25 & = & BKR FAIL 1 RETRIPA \\
\hline Digital Channel 26 & = & BKR FAIL 1 RETRIPB \\
\hline Digital Channel 27 & = & BKR FAIL 1 RETRIPC \\
\hline Digital Channel 28 & = & OFF \\
\hline Digital Channel 29 & = & OFF \\
\hline Digital Channel 30 & = & OFF \\
\hline Digital Channel 31 & = & OFF \\
\hline Digital Channel 32 & = & OFF \\
\hline Digital Channel 33 & = & OFF \\
\hline Digital Channel 34 & = & OFF \\
\hline Digital Channel 35 & = & OFF \\
\hline Digital Channel 36 & = & OFF \\
\hline Digital Channel 37 & = & OFF \\
\hline Digital Channel 38 & = & OFF \\
\hline Digital Channel 39 & = & OFF \\
\hline Digital Channel 40 & = & OFF \\
\hline Digital Channel 41 & = & OFF \\
\hline Digital Channel 42 & = & OFF \\
\hline Digital Channel 43 & = & OFF \\
\hline Digital Channel 44 & = & OFF \\
\hline Digital Channel 45 & = & OFF \\
\hline
\end{tabular}

\section*{Appendix 19 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline Digital Channel 46 & = & OFF & \\
\hline Digital Channel 47 & = & OFF & \\
\hline Digital Channel 48 & = & OFF & \\
\hline Digital Channel 49 & = & OFF & \\
\hline Digital Channel 50 & = & OFF & \\
\hline Digital Channel 51 & = & OFF & \\
\hline Digital Channel 52 & = & OFF & \\
\hline Digital Channel 53 & = & OFF & \\
\hline Digital Channel 54 & = & OFF & \\
\hline Digital Channel 55 & = & OFF & \\
\hline Digital Channel 56 & = & OFF & \\
\hline Digital Channel 57 & = & OFF & \\
\hline Digital Channel 58 & = & OFF & \\
\hline Digital Channel 59 & = & OFF & \\
\hline Digital Channel 60 & = & OFF & \\
\hline Digital Channel 61 & = & OFF & \\
\hline Digital Channel 62 & = & OFF & \\
\hline Digital Channel 63 & = & OFF & \\
\hline Analog Channel 1 & = & SRC1 & Ia Mag \\
\hline Analog Channel 2 & = & SRC2 & la Mag \\
\hline Analog Channel 3 & = & SRC1 & lb Mag \\
\hline Analog Channel 4 & = & SRC2 & lb Mag \\
\hline Analog Channel 5 & = & SRC1 & Ic Mag \\
\hline Analog Channel 6 & = & SRC2 & Ic Mag \\
\hline Analog Channel 7 & = & SRC1 & In Mag \\
\hline Analog Channel 8 & = & SRC2 & In Mag \\
\hline Analog Channel 9 & = & SRC1 & Ia Angle \\
\hline Analog Channel 10 & = & SRC2 & Ia Angle \\
\hline Analog Channel 11 & = & SRC1 & Ib Angle \\
\hline Analog Channel 12 & = & SRC2 & Ib Angle \\
\hline Analog Channel 13 & = & SRC1 & Ic Angle \\
\hline Analog Channel 14 & = & SRC2 & Ic Angle \\
\hline Analog Channel 15 & = & Off & \\
\hline Analog Channel 16 & = & Off & \\
\hline
\end{tabular}

Data Logger:
\# Default
Demand: \# Default
User-Programmable Leds: LED Test:
\begin{tabular}{|c|c|c|c|}
\hline Function & = & \multicolumn{2}{|l|}{Enabled} \\
\hline Control & \(=\) & \multicolumn{2}{|l|}{CONTROL PUSHBUTTON 1 ON} \\
\hline Trip LED Input & \(=\) & 86BF TRIP On (VO1) & \\
\hline Alarm LED Input & \(=\) & UNIT ALARM On (VO3) & \\
\hline LED 1 & \(=\) & 86BF TRIP On (VO1) & Latched \\
\hline LED 2 & = & BKR FAIL 1 TRIP OP & Latched \\
\hline LED 3 & = & BKR FAIL 2 TRIP OP & Latched \\
\hline LED 4 & = & Retrip LED On (VO9) & Latched \\
\hline LED 5 & = & OFF & Latched \\
\hline LED 6 & \(=\) & OFF & Self-Re \\
\hline
\end{tabular}

Trip and Alarms Leds:

\section*{Appendix 19 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline LED 7 & = & OFF & Self-Reset \\
\hline LED 8 & = & OFF & Self-Reset \\
\hline LED 9 & = & Phase A Trip On (VO10) & Latched \\
\hline LED 10 & = & Phase B Trip On (VO11) & Latched \\
\hline LED 11 & = & Phase C Trip On (VO12) & Latched \\
\hline LED 12 & \(=\) & Ground Trip On (VO13) & Latched \\
\hline LED 13 & \(=\) & OFF & Self-Reset \\
\hline LED 14 & = & OFF & Self-Reset \\
\hline LED 15 & = & OFF & Self-Reset \\
\hline LED 16 & \(=\) & OFF & Self-Reset \\
\hline LED 17 & = & OFF & Self-Reset \\
\hline LED 18 & = & OFF & Self-Reset \\
\hline LED 19 & = & OFF & Self-Reset \\
\hline LED 20 & \(=\) & OFF & Self-Reset \\
\hline LED 21 & = & OFF & Self-Reset \\
\hline LED 22 & = & Bkr Fail Int On(M7a) & Self-Reset \\
\hline LED 23 & = & BKR FAIL 1 T2 OP & Self-Reset \\
\hline LED 24 & = & BKR FAIL 2 T2 OP & Self-Reset \\
\hline LED 25 & \(=\) & OFF & Self-Reset \\
\hline LED 26 & = & OFF & Self-Reset \\
\hline LED 27 & = & OFF & Self-Reset \\
\hline LED 28 & = & OFF & Self-Reset \\
\hline LED 29 & = & OFF & Self-Reset \\
\hline LED 30 & = & OFF & Self-Reset \\
\hline LED 31 & = & OFF & Self-Reset \\
\hline LED 32 & = & OFF & Self-Reset \\
\hline LED 33 & = & OFF & Self-Reset \\
\hline LED 34 & = & OFF & Self-Reset \\
\hline LED 35 & = & OFF & Self-Reset \\
\hline LED 36 & = & OFF & Self-Reset \\
\hline LED 37 & = & OFF & Self-Reset \\
\hline LED 38 & = & OFF & Self-Reset \\
\hline LED 39 & = & OFF & Self-Reset \\
\hline LED 40 & = & OFF & Self-Reset \\
\hline LED 41 & = & OFF & Self-Reset \\
\hline LED 42 & = & OFF & Self-Reset \\
\hline LED 43 & = & OFF & Self-Reset \\
\hline LED 44 & = & OFF & Self-Reset \\
\hline LED 45 & = & OFF & Self-Reset \\
\hline LED 46 & = & OFF & Self-Reset \\
\hline LED 47 & = & OFF & Self-Reset \\
\hline LED 48 & = & OFF & Self-Reset \\
\hline
\end{tabular}

User-Programmable Self Tests:
\begin{tabular}{rll} 
Remote Device Off Function & \(=\) & Enabled \\
Pri Ethernet Fail Function & \(=\) & Enabled \\
Battery Fail Function & \(=\) & Enabled \\
SNTP Fail Function & \(=\) & Enabled \\
IRIG B Fail Function & \(=\) & Enabled \\
s: & & \\
PB 1 & CPB 2 & CPB 3
\end{tabular}

\section*{Appendix 19 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{llll} 
Function & Enabled & Disabled & Disabled \\
Events & Disabled & Disabled & Disabled
\end{tabular}

Flex States:
User-definable displays:
Direct I/O:
Teleprotection:
Installation:
Relay Name \(=\quad\) 50/62-2 Breaker 1
System Setup:
AC Inputs
Current:
\begin{tabular}{rll} 
PARAMETER & & CT F1 \\
Phase CT Primary & \(=\) & 3000 A \\
Phase CT Secondary & \(=\) & 5 A \\
Ground CT Primary & \(=\) & 3000 A \\
Ground CT Secondary & \(=\) & 5 A
\end{tabular}

Voltage:
Power System:
\begin{tabular}{|c|c|c|}
\hline Nominal Frequency & \(=\) & 60 Hz \\
\hline Phase Rotation & = & ABC \\
\hline Frequency And Phase Reference & = & SRC 1 (SRC 1) \\
\hline Frequency Tracking Function & \(=\) & Enabled \\
\hline Signal Sources: PARAMETER & & SOURCE 1 SOURCE 2 \\
\hline Name & \(=\) & SRC 1 SRC 2 \\
\hline Phase CT & = & F1 None \\
\hline Ground CT & = & None None \\
\hline Phase VT & = & None None \\
\hline Aux VT & = & None None \\
\hline Breakers: SETTING & & PARAMETER \\
\hline Breaker 1 Function & = & Disabled \\
\hline Breaker 1 Push Button Control & = & Disabled \\
\hline Breaker 1 Name & = & Bkr 1 \\
\hline Breaker 1 Mode & = & 3-Pole \\
\hline Breaker 1 Open & = & OFF \\
\hline Breaker 1 Block Open & = & OFF \\
\hline Breaker 1 Close & = & OFF \\
\hline Breaker 1 Block Close & = & OFF \\
\hline Breaker 1 Phase A/3-Pole Closed & = & OFF \\
\hline Breaker 1 Phase A/3-Pole Opened & = & OFF \\
\hline Breaker 1 Phase B Closed & = & OFF \\
\hline Breaker 1 Phase B Opened & = & OFF \\
\hline Breaker 1 Phase C Closed & = & OFF \\
\hline Breaker 1 Phase C Opened & = & OFF \\
\hline Breaker 1 Toperate & = & 0.070 s \\
\hline Breaker 1 External Alarm & = & OFF \\
\hline Breaker 1 Alarm Delay & = & 0.000 s \\
\hline Breaker 1 Manual Close Recal Time & = & 0.000 s \\
\hline Breaker 1 Out Of Service & = & OFF \\
\hline Breaker 1 Events & = & Disabled \\
\hline Breaker 2 Function & \(=\) & Disabled \\
\hline
\end{tabular}

\section*{Appendix 19 50-62-2-BKR1 (GE-C60) Setting Calculation}


\section*{Appendix 19 50-62-2-BKR1 (GE-C60) Setting Calculation}


\section*{Appendix 19 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline [H5A] Contact Input 1 Events & = & Enabled \\
\hline [H5C] Contact Input 2 ID & = & CSM-2 (TIE) \\
\hline [H5C] Contact Input 2 Debounce Time & = & 2.0 ms \\
\hline [H5C] Contact Input 2 Events & = & Enabled \\
\hline [H6A] Contact Input 3 ID & = & Bkr TC1 Mont \\
\hline [H6A] Contact Input 3 Debounce Time & = & 2.0 ms \\
\hline [H6A] Contact Input 3 Events & = & Enabled \\
\hline [H6C] Contact Input 4 ID & = & 86BF-2 Oper \\
\hline [ \(\mathrm{H6C]}\) Contact Input 4 Debounce Time & = & 2.0 ms \\
\hline \([\mathrm{H6C]}\) Contact Input 4 Events & = & Enabled \\
\hline [H7A] Contact Input 5 ID & = & 86BF-2 Mont \\
\hline [H7A] Contact Input 5 Debounce Time & = & 2.0 ms \\
\hline [H7A] Contact Input 5 Events & = & Enabled \\
\hline [H7C] Contact Input 6 ID & = & 43L/R \\
\hline [H7C] Contact Input 6 Debounce Time & = & 2.0 ms \\
\hline [H7C] Contact Input 6 Events & = & Enabled \\
\hline [H8A] Contact Input 7 ID & = & CSM-2 (OFF) \\
\hline [H8A] Contact Input 7 Debounce Time & = & 2.0 ms \\
\hline [H8A] Contact Input 7 Events & = & Enabled \\
\hline [H8C] Contact Input 8 ID & = & CSM-2 (FARR) \\
\hline [H8C] Contact Input 8 Debounce Time & = & 2.0 ms \\
\hline [H8C] Contact Input 8 Events & = & Enabled \\
\hline [M5A] Contact Input 9 ID & = & 11LTSR-2A \\
\hline [M5A] Contact Input 9 Debounce Time & = & 2.0 ms \\
\hline [M5A] Contact Input 9 Events & = & Enabled \\
\hline [M5C] Contact Input 10 ID & = & 11LTSR-2B \\
\hline [M5C] Contact Input 10 Debounce Time & = & 2.0 ms \\
\hline [M5C] Contact Input 10 Events & = & Enabled \\
\hline [M6A] Contact Input 11 ID & = & Cont Ip 11 \\
\hline [M6A] Contact Input 11 Debounce Time & = & 2.0 ms \\
\hline [M6A] Contact Input 11 Events & = & Disabled \\
\hline [M6C] Contact Input 12 ID & = & spare \\
\hline [M6C] Contact Input 12 Debounce Time & = & 2.0 ms \\
\hline [M6C] Contact Input 12 Events & = & Disabled \\
\hline [M7A] Contact Input 13 ID & = & Bkr Fail Int \\
\hline [M7A] Contact Input 13 Debounce Time & = & 2.0 ms \\
\hline [M7A] Contact Input 13 Events & = & Enabled \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Appendix 19 50-62-2-B} & \multicolumn{4}{|l|}{(GE-C60) Setting Calculation} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{[M7C] Contact Input 14 ID
[M7C] Contact Input 14 Debounce Time}} & \multicolumn{3}{|l|}{\(=\quad\) Cont lp 14} & \\
\hline & & \multirow[b]{2}{*}{\(=\)} & \multicolumn{2}{|l|}{2.0 ms} & \\
\hline \multicolumn{2}{|r|}{[M7C] Contact Input 14 Events} & & \multicolumn{2}{|l|}{Disabled} & \\
\hline \multicolumn{2}{|r|}{[M8A] Contact Input 15 ID} & \(=\) & \multicolumn{2}{|l|}{Cont Ip 15} & \\
\hline \multicolumn{2}{|r|}{[M8A] Contact Input 15 Debounce Time} & = & \multicolumn{2}{|l|}{2.0 ms} & \\
\hline & [M8A] Contact Input 15 Events & \(=\) & \multicolumn{2}{|l|}{Disabled} & \\
\hline & [M8C] Contact Input 16 ID & \(=\) & Cont Ip 16 & & \\
\hline [M8C & ] Contact Input 16 Debounce Time & = & 2.0 ms & & \\
\hline & [M8C] Contact Input 16 Events & = & Disabled & & \\
\hline \multicolumn{6}{|l|}{Contact Inputs Thresholds:} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Cont Ip 1, Cont Ip 2, Cont Ip 3, Cont Ip
Cont Ip5, Cont ip 6, Cont Ip 7, Cont}} & \multicolumn{2}{|l|}{H5A, H5C, H6A, H6C)} & = & 84 Vdc \\
\hline & & 7A, & C, H8A, H8C) & & 84 Vdc \\
\hline \multicolumn{4}{|r|}{Cont Ip 9, Cont Ip 10, Cont Ip 11, Cont Ip 12(M5A, M5C, M6A, M6C)} & = & 84 Vdc \\
\hline \multicolumn{4}{|r|}{Cont Ip 13, Cont Ip 14, Cont Ip 15, Cont Ip 16(M7A, M7C, M8A, M8C)} & = & 84 Vdc \\
\hline \multirow[t]{5}{*}{Virtual Inputs:} & SETTING & & \multicolumn{3}{|l|}{PARAMETER} \\
\hline & Virtual Input 1 Function & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 1 ID & = & \multicolumn{3}{|l|}{Bkr Trip} \\
\hline & Virtual Input 1 Type & = & \multicolumn{3}{|l|}{Self-Reset} \\
\hline & Virtual Input 1 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 2 Function & = & Enabled & & \\
\hline & Virtual Input 2 ID & = & Bkr Close & & \\
\hline & Virtual Input 2 Type & = & Self-Reset & & \\
\hline & Virtual Input 2 Events & = & Enabled & & \\
\hline \multicolumn{6}{|l|}{\multirow[b]{2}{*}{Contact Outputs: \({ }^{\text {a }}\)}} \\
\hline & & & & & \\
\hline & [H1] Contact Output 1 ID & = & \multicolumn{3}{|l|}{Any Trip} \\
\hline & [H1] Contact Output 1 Operate & = & \multicolumn{3}{|l|}{TRIP LED On (VO6)} \\
\hline & [H1] Contact Output 1 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H1] Contact Output 1 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & [H2] Contact Output 2 ID & = & \multicolumn{3}{|l|}{spare} \\
\hline & [H2] Contact Output 2 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H3] Contact Output 3 ID & = & \multicolumn{3}{|l|}{Not Used} \\
\hline & [H3] Contact Output 3 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H4] Contact Output 4 ID & = & \multicolumn{3}{|l|}{NOT USED} \\
\hline & [H4] Contact Output 4 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M1] Contact Output 5 ID & = & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
BF TRIP \\
86BF TRIP On (VO1)
\end{tabular}}} \\
\hline & [M1] Contact Output 5 Operate & = & & & \\
\hline
\end{tabular}

\section*{Appendix 19 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}

Virtual Outputs:
[M1] Contact Output 5 Seal-In \(=\quad\) 86BF TRIP On (VO1)
[M1] Contact Output 5 Events \(=\quad\) Enabled
[M2] Contact Output 6 ID \(=\) RETRIP BKR
[M2] Contact Output 6 Operate \(=\quad\) RETRIP BKR On (VO2)
[M2] Contact Output 6 Seal-In = RETRIP BKR On (VO2) [M2] Contact Output 6 Events \(=\) Enabled
[M3] Contact Output 7 ID = Bkr Trip
[M3] Contact Output 7 Operate \(\quad=\quad\) Bkr Trip On (VO7)
[M3] Contact Output 7 Seal-In = OFF
[M3] Contact Output 7 Events = Enabled
[M4] Contact Output 8 ID \(=\) Bkr Close
[M4] Contact Output 8 Operate \(=\quad\) Bkr Close On (VO8) [M4] Contact Output 8 Seal-In = OFF [M4] Contact Output 8 Events \(=\) Enabled

SETTING PARAMETER
Virtual Output 1 ID \(=\quad\) 86BF TRIP
Virtual Output 1 Events \(=\) Enabled
Virtual Output 2 ID = RETRIP BKR
Virtual Output 2 Events \(=\) Enabled
Virtual Output 3 ID = JNIT ALARM
Virtual Output 3 Events \(=\) Enabled
Virtual Output 4 ID = Trig Oscill
Virtual Output 4 Events \(=\) Enabled
Virtual Output 5 ID = ALARM NC
Virtual Output 5 Events \(=\) Enabled
Virtual Output 6 ID = TRIP LED
Virtual Output 6 Events \(=\) Enabled
Virtual Output 7 ID \(=\quad\) Bkr Trip
Virtual Output 7 Events \(=\) Enabled
Virtual Output 8 ID \(=\quad\) Bkr Close
Virtual Output 8 Events \(=\) Enabled
\begin{tabular}{cll} 
Virtual Output 9 ID & \(=\) & Retrip LED \\
Virtual Output 9 Events & \(=\) & Enabled \\
Virtual Output 10 ID & \(=\) & Phase A Trip \\
Virtual Output 10 Events & \(=\) & Enabled \\
Virtual Output 11 ID & \(=\) & Phase B Trip \\
Virtual Output 11 Events & \(=\) & Enabled
\end{tabular}

\section*{Appendix 19 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Virtual Output 12 ID \\
Virtual Output 12 Events
\end{tabular} & = & Phase C Trip Enabled & \\
\hline Virtual Output 13 ID & = & Ground Trip & \\
\hline Virtual Output 13 Events & = & Enabled & \\
\hline Other Virtual Outputs (from VO14 to VO96) & & & \# Not used \\
\hline Remote Devices: & & & \# Not used \\
\hline Remote Inputs: & & & \# Not used \\
\hline Remote Outputs DNA Bit Pairs & & & \# Not used \\
\hline Remote Outputs UserSt Bit Pairs: & & & \# Not used \\
\hline Resetting: & & & \# Not used \\
\hline Direct Inputs: & & & \# Not used \\
\hline Direct Outputs: & & & \# Not used \\
\hline Teleprotection: & & & \# Not used \\
\hline IEC 61850 GOOSE Analogs Inputs & & & \# Not used \\
\hline
\end{tabular}

\section*{Appendix 20 \\ 50-62-1-BKR2 (Areva P141) Setting Calculation}
\begin{tabular}{llllll} 
1. Data & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=\) & 1190.25
\end{tabular}\(\quad\) ohms

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of 1,349 Amp or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance, but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary amp, 300 CT primary amp, or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.

SYSTEM DATA:

DATE AND TIME:
\[
\begin{aligned}
\text { CB Control by } & =\text { Disabled } \\
\text { Reset Lockout by } & =\text { CB Close } \\
\text { Man Close RstDly } & =5.000 \mathrm{~s} \\
\text { CB2 Status Input } & =52 \mathrm{~A} \\
\text { IRIG-B Sync } & =\text { Enabled } \\
\text { Battery Alarm } & =\text { Enabled } \\
\text { Other Time Settings } & =\text { Default } \\
\text { Setting Group } & =\text { Select via Menu } \\
\text { Active Settings } & =\text { Group 1 } \\
\text { Setting Group 1 } & =\text { Enabled } \\
\text { Setting Group } 2 & =\text { Disabled } \\
\text { Setting Group } 3 & =\text { Disabled } \\
\text { Setting Group } 4 & =\text { Disabled } \\
\text { System Config } & =\text { Invisible }
\end{aligned}
\]

\section*{Appendix 20}

\section*{50-62-1-BKR2 (Areva P141) Setting Calculation}
\begin{tabular}{|c|c|}
\hline Overcurrent = Enabled & \# 50FD-P \\
\hline Neg Sequence O/C = Enabled & \# Unbalance \\
\hline Broken Conductor = Disabled & \# Not used \\
\hline Earth Fault 1 = Disabled & \# Not used \\
\hline Earth Fault 2 = Enabled & \# 50FD-G \\
\hline Sensitive E/F Prot' \(\mathrm{n}=\) Disabled & \# Not used \\
\hline Residual O/V NVD = Disabled & \# Not used \\
\hline Thermal Overload = Disabled & \# Not used \\
\hline Neg Sequence O/V = Disabled & \# Not used \\
\hline Cold Load Pickup = Disabled & \# Not used \\
\hline Selective Logic = Disabled & \# Not used \\
\hline Admit Protection \(=\) Disabled & \# Not used \\
\hline Volt Protection \(=\) Disabled & \# Not used \\
\hline Freq Protection = Disabled & \# Not used \\
\hline df/dt Protection \(=\) Disabled & \# Not used \\
\hline CB Fail = Enabled & \\
\hline Supervision = Enabled & \\
\hline \begin{tabular}{l}
Fault Locator = Disabled \\
Input Labels = Visible
\end{tabular} & \\
\hline Output Labels \(=\) Visible & \\
\hline CT \& VT Ratios = Visible & \\
\hline Record Control = Invisible & \\
\hline Disturb Recorder \(=\) Visible & \\
\hline Measure't Setup = Visible & \\
\hline Comms Settings = Visible & \\
\hline Commission Tests \(=\) Visible & \\
\hline Setting Values = Secondary & \\
\hline Control Inputs = Invisible & \\
\hline Ctrl I/P Config = Invisible & \\
\hline Ctrl I/P Labels = Invisible & \\
\hline Direct Access \(=\) Disabled & \\
\hline LCD Contrast = 11 & \\
\hline Main VT Primary \(=110.0 \mathrm{~V}\) & \# Not used \\
\hline Main VT Sec'y \(=110.0 \mathrm{~V}\) & \# Not used \\
\hline Phase CT Primary \(=3000 \mathrm{~A}\) & \\
\hline Phase CT Sec'y \(=5.000 \mathrm{~A}\) & \\
\hline E/F CT Primary \(=3000\) A & \\
\hline E/F CT Secondary \(=5.000 \mathrm{~A}\) & \\
\hline SEF CT Primary \(=1.000 \mathrm{~A}\) & \\
\hline SEF CT Secondary \(=1.000 \mathrm{~A}\) & \\
\hline See setting file for detail & \\
\hline Default Display \(=\) Description & \\
\hline Local Values = Primary & \\
\hline Remote Values = Primary & \\
\hline Measurement Ref = VA & \\
\hline Measurement Mode \(=0\) & \\
\hline Fix Dem Period \(=30.00 \mathrm{~min}\) & \\
\hline Roll Sub Period \(=30.00 \mathrm{~min}\) & \\
\hline
\end{tabular}

\section*{Appendix 20}

\section*{50-62-1-BKR2 (Areva P141) Setting Calculation}

COMMISSION TESTS:
Num Sub Periods = 1
\begin{tabular}{|c|c|c|}
\hline & Monitor Bit \(1=64\) & \\
\hline & Monitor Bit \(2=65\) & \\
\hline & Monitor Bit \(3=66\) & \\
\hline & Monitor Bit 4 \(=67\) & \\
\hline & Monitor Bit \(5=68\) & \\
\hline & Monitor Bit \(6=69\) & \\
\hline & Monitor Bit \(7=70\) & \\
\hline & Monitor Bit \(8=71\) & \\
\hline CB MONITOR SETUP: & & \\
\hline & Broken \(1^{\wedge}=2.000\) & \\
\hline & \(\wedge^{\wedge}\) Maintenance \(=\) Alarm Disabled & \\
\hline & \(1^{\wedge}\) Lockout \(=\) Alarm Disabled & \\
\hline & No. CB Ops Maint = Alarm Disabled & \\
\hline & No. CB Ops Lock \(=\) Alarm Disabled & \\
\hline & CB Time Maint = Alarm Disabled & \\
\hline & CB Time Lockout \(=\) Alarm Disabled & \\
\hline & Fault Freq Lock = Alarm Disabled & \\
\hline OPTO CONFIG: & & \\
\hline & Global Nominal V \(=110 / 125 \mathrm{~V}\) & \\
\hline & Opto Filter Cntl \(=11111111\) & \\
\hline & Characteristic \(=\) Standard 60\%-80\% & \\
\hline Group 1: & & \\
\hline GROUP 1 OVERCURRENT: & & \\
\hline & \(1>1\) Function = DT & \\
\hline & |>1 Direction \(=\) Non-Directional & \\
\hline & \(1>1\) Current Set \(=0.75\) & \# 50FD-P \\
\hline & \(1>1\) Time Delay \(=0\) & \\
\hline & \(1>1\) tRESET \(=0\) s & \\
\hline & \(1>2\) Status \(=\) Disabled & \\
\hline & 1>3 Status = Disabled & \\
\hline & \(1>4\) Status = Disabled & \\
\hline & \(1>\) Blocking \(=000000000\) & \\
\hline & \(1>\) Char Angle \(=45 \quad \mathrm{deg}\) & \# Default \\
\hline & VC0 Status \(=\) Disabled & \\
\hline GROUP 1 NEG SEQ O/C & & \\
\hline & \(12>1\) Status \(=\) Enabled & \\
\hline & \(12>1\) Function \(=\) DT & \\
\hline & \(12>1\) Directional \(=\) Non-Directional & \\
\hline & \(12>1\) Current Set \(=500.0 \mathrm{~mA}\) & \\
\hline & \(12>1\) Time Delay \(=0 \mathrm{~s}\) & \\
\hline & \(12>1\) Treset \(=0 \mathrm{~s}\) & \\
\hline & \(12>2\) Status \(=\) Disabled & \\
\hline & \(12>3\) Status \(=\) Disabled & \\
\hline & \(12>4\) Status \(=\) Disabled & \\
\hline & \(12>\) Blocking \(=00000000\) & \\
\hline & \(12>\) Char Angle \(=-60.00 \mathrm{deg}\) & \\
\hline & I2> V2pol Set \(=5.000 \mathrm{~V}\) & \\
\hline GROUP 1 EARTH FAULT 2 & & \\
\hline
\end{tabular}

\section*{Appendix 20}

\section*{50-62-1-BKR2 (Areva P141) Setting Calculation}
\[
\begin{aligned}
\text { IN2> Input } & =\text { Derived } \\
\text { IN2>1 Function } & =\text { DT } \\
\text { IN2 }>1 \text { Direction } & =\text { Non-Directional } \\
\text { IN2>1 Current } & =500.0 \mathrm{~mA} \\
\text { IN2>1 Time Delay } & =0 \mathrm{~s} \\
\text { IN2>1 tRESET } & =0 \mathrm{~s} \\
\text { IN2>2 Function } & =\text { Disabled } \\
\text { IN2>3 Status } & =\text { Disabled } \\
\text { IN2>4 Status } & =\text { Disabled } \\
\text { IN2> Blocking } & =00000000 \\
\text { IN2> } & =\text { POL } \\
\text { IN2> Char Angle } & =-45.00 \text { deg } \\
\text { IN2> Pol } & =\text { Zero Sequence } \\
\text { IN2> VNpol Set } & =5.000 \mathrm{~V}
\end{aligned}
\]

GROUP 1 CB FAIL \& \(\mathrm{I}<:\)
CB Fail 1 Status = Enabled
GB Fail 1 Timer \(=0 \mathrm{~s}\)
CB Fail 2 Status \(=\) Enabled
CB Fail 2 Timer \(=130.0 \mathrm{~ms}\)
Volt Prot Reset \(=1<\) only
Ext Prot Reset \(=1<\) only
\(\mathrm{l}<\) Current Set \(=500.0 \mathrm{~mA}\)
\(\mathrm{IN}<\) Current Set \(=500.0 \mathrm{~mA}\)
ISEF<Current \(=20.00 \mathrm{~mA}\)
Remove l> Start = Disabled
Remove IN> Start = Disabled
GROUP 1 SUPERVISION:
\[
\begin{aligned}
\text { VTS Status } & =\text { Indication } \\
\text { VTS Reset Mode } & =\text { Manual } \\
\text { VTS Time Delay } & =5.000 \mathrm{~s} \\
\text { VTS I }>\text { Inhibit } & =50.0 \mathrm{~A} \\
\text { VTS I }>\text { Inhibit } & =250.0 \mathrm{~mA} \\
\text { CTS Mode } & =\text { Disabled }
\end{aligned}
\]

GROUP 1 INPUT LABELS:
Opto Input 1 Input L1
Opto Input 2 Input L2
Opto Input 3 30-TC2/1 ALM
Opto Input 4 86BF-1/1 TRIP
Opto Input 5 30-86BF-1/1 ALM
Opto Input 6 BF Initiation
Opto Input 7 Input L7
Opto Input 8 Input L8
GROUP 1 OUTPUT LABELS:
Relay 1 Trip 86BF
Relay 2 ReTrip BkrTC2
Relay 3 Any Trip
Relay 4 Output R4
Relay 5 Output R5
Relay 6 Output R6
Relay 7 Output R7

\section*{Appendix 21 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{lllll} 
1. Data & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=\) \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\) \\
Total MVA of all three GSUs \(=\) & 750 & ; Maximum full load current (amps) \(=\) & 1255.11
\end{tabular}

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of 1,349 Amp or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance, but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary \(\mathrm{amp}, 300\) CT primary amp , or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Device Definition:} \\
\hline \multicolumn{3}{|l|}{Product Setup:} \\
\hline \multicolumn{3}{|l|}{Security:} \\
\hline \multicolumn{3}{|l|}{Display Properties:} \\
\hline \multicolumn{3}{|l|}{Clear Relay Records:} \\
\hline \multicolumn{3}{|l|}{Communications:} \\
\hline \multicolumn{3}{|l|}{Modbus User Map:} \\
\hline \multicolumn{3}{|l|}{Real Time Clock:} \\
\hline IRIG-B Signal Type & = & DC Shift \\
\hline All other settings & = & Default \\
\hline Fault Report: SETTING & & PARAMETER \\
\hline Fault Report 1 Source & = & SRC 1 (SRC 1) \\
\hline Fault Report 1 Trigger & \(=\) & Trig Oscill On (VO4) \\
\hline Fault Report 1 Positive Seq (Z1) Mag & \(=\) & 0.49 ohms \\
\hline Fault Report 1 Positive Seq (Z1) Angle & = & 78 deg \\
\hline Fault Report 1 Zero Seq (Z0) Mag & = & 1.50 ohms \\
\hline Fault Report 1 Zero Seq (Z0) Angle & = & 54 deg \\
\hline Fault Report 1 Line Length Units & = & mile \\
\hline Fault Report 1 Line Length & = & 7.74 \\
\hline Fault Report 1 VT Substitution & = & None \\
\hline Fault Report 1 System Z0 Mag & = & 0.49 ohms \\
\hline Fault Report 1 System Z0 Angle & = & 78 deg \\
\hline \multicolumn{3}{|l|}{Oscillography:} \\
\hline SETTING & & PARAMETER \\
\hline
\end{tabular}

\section*{Appendix 21 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline Number Of Records & = & 6 \\
\hline Trigger Mode & = & Automatic Overwrite \\
\hline Trigger Position & \(=\) & 30\% \\
\hline Trigger Source & = & Trig Oscill On (VO4) \\
\hline AC Input Waveforms & = & 32 samples/cycle \\
\hline Digital Channel 1 & = & OFF \\
\hline Digital Channel 2 & = & OFF \\
\hline Digital Channel 3 & = & OFF \\
\hline Digital Channel 4 & = & OFF \\
\hline Digital Channel 5 & = & OFF \\
\hline Digital Channel 6 & = & 86BF TRIP On (VO1) \\
\hline Digital Channel 7 & = & RETRIP BKR On (VO2) \\
\hline Digital Channel 8 & = & UNIT ALARM On (VO3) \\
\hline Digital Channel 9 & = & OFF \\
\hline Digital Channel 10 & = & NEUTRAL IOC1 PKP \\
\hline Digital Channel 11 & = & NEUTRAL IOC1 OP \\
\hline Digital Channel 12 & = & PHASE IOC1 PKP A \\
\hline Digital Channel 13 & = & PHASE IOC1 OP A \\
\hline Digital Channel 14 & = & PHASE IOC1 PKP B \\
\hline Digital Channel 15 & = & PHASE IOC1 OP B \\
\hline Digital Channel 16 & = & PHASE IOC1 PKP C \\
\hline Digital Channel 17 & = & PHASE IOC1 OP C \\
\hline Digital Channel 18 & = & Bkr Fail Int On(H7c) \\
\hline Digital Channel 19 & = & BKR FAIL 1 TRIP OP \\
\hline Digital Channel 20 & \(=\) & BKR FAIL 2 TRIP OP \\
\hline Digital Channel 21 & = & BKR FAIL 1 T2 OP \\
\hline Digital Channel 22 & = & BKR FAIL 2 T2 OP \\
\hline Digital Channel 23 & \(=\) & 86BF TRIP On (VO1) \\
\hline Digital Channel 24 & = & RETRIP BKR On (VO2) \\
\hline Digital Channel 25 & = & BKR FAIL 1 RETRIPA \\
\hline Digital Channel 26 & = & BKR FAIL 1 RETRIPB \\
\hline Digital Channel 27 & = & BKR FAIL 1 RETRIPC \\
\hline Digital Channel 28 & = & OFF \\
\hline Digital Channel 29 & \(=\) & OFF \\
\hline Digital Channel 30 & \(=\) & OFF \\
\hline Digital Channel 31 & = & OFF \\
\hline Digital Channel 32 & = & OFF \\
\hline Digital Channel 33 & = & OFF \\
\hline Digital Channel 34 & = & OFF \\
\hline Digital Channel 35 & = & OFF \\
\hline Digital Channel 36 & \(=\) & OFF \\
\hline Digital Channel 37 & = & OFF \\
\hline Digital Channel 38 & = & OFF \\
\hline Digital Channel 39 & \(=\) & OFF \\
\hline Digital Channel 40 & = & OFF \\
\hline Digital Channel 41 & = & OFF \\
\hline Digital Channel 42 & = & OFF \\
\hline Digital Channel 43 & = & OFF \\
\hline Digital Channel 44 & = & OFF \\
\hline Digital Channel 45 & = & OFF \\
\hline
\end{tabular}

\section*{Appendix 21 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline Digital Channel 46 & = & OFF & \\
\hline Digital Channel 47 & = & OFF & \\
\hline Digital Channel 48 & = & OFF & \\
\hline Digital Channel 49 & = & OFF & \\
\hline Digital Channel 50 & = & OFF & \\
\hline Digital Channel 51 & = & OFF & \\
\hline Digital Channel 52 & = & OFF & \\
\hline Digital Channel 53 & = & OFF & \\
\hline Digital Channel 54 & = & OFF & \\
\hline Digital Channel 55 & = & OFF & \\
\hline Digital Channel 56 & = & OFF & \\
\hline Digital Channel 57 & = & OFF & \\
\hline Digital Channel 58 & = & OFF & \\
\hline Digital Channel 59 & = & OFF & \\
\hline Digital Channel 60 & = & OFF & \\
\hline Digital Channel 61 & = & OFF & \\
\hline Digital Channel 62 & = & OFF & \\
\hline Digital Channel 63 & = & OFF & \\
\hline Analog Channel 1 & = & SRC1 & Ia Mag \\
\hline Analog Channel 2 & = & SRC2 & la Mag \\
\hline Analog Channel 3 & = & SRC1 & lb Mag \\
\hline Analog Channel 4 & = & SRC2 & lb Mag \\
\hline Analog Channel 5 & = & SRC1 & Ic Mag \\
\hline Analog Channel 6 & = & SRC2 & Ic Mag \\
\hline Analog Channel 7 & = & SRC1 & In Mag \\
\hline Analog Channel 8 & = & SRC2 & In Mag \\
\hline Analog Channel 9 & = & SRC1 & Ia Angle \\
\hline Analog Channel 10 & = & SRC2 & Ia Angle \\
\hline Analog Channel 11 & = & SRC1 & Ib Angle \\
\hline Analog Channel 12 & = & SRC2 & Ib Angle \\
\hline Analog Channel 13 & = & SRC1 & Ic Angle \\
\hline Analog Channel 14 & = & SRC2 & Ic Angle \\
\hline Analog Channel 15 & = & Off & \\
\hline Analog Channel 16 & = & Off & \\
\hline
\end{tabular}

Data Logger:
\# Default
Demand: \# Default
User-Programmable Leds: LED Test:
\(\left.\left.\begin{array}{rlll}\text { Function } & = & \begin{array}{l}\text { Enabled } \\ \text { Control }\end{array} & = \\ \text { CONTROL PUSHBUTTON } 1 \text { ON }\end{array}\right] \begin{array}{lll} \\ \text { Trip LED Input } & = & \text { 86BF TRIP On (VO1) } \\ \text { Alarm LED Input } & = & \text { UNIT ALARM On (VO3) }\end{array}\right]\)

Trip and Alarms Leds:

\section*{Appendix 21 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline LED 7 & = & OFF & Self-Reset \\
\hline LED 8 & = & OFF & Self-Reset \\
\hline LED 9 & = & Phase A Trip On (VO10) & Latched \\
\hline LED 10 & = & Phase B Trip On (VO11) & Latched \\
\hline LED 11 & = & Phase C Trip On (VO12) & Latched \\
\hline LED 12 & \(=\) & Ground Trip On (VO13) & Latched \\
\hline LED 13 & \(=\) & OFF & Self-Reset \\
\hline LED 14 & = & OFF & Self-Reset \\
\hline LED 15 & = & OFF & Self-Reset \\
\hline LED 16 & \(=\) & OFF & Self-Reset \\
\hline LED 17 & = & OFF & Self-Reset \\
\hline LED 18 & = & OFF & Self-Reset \\
\hline LED 19 & = & OFF & Self-Reset \\
\hline LED 20 & \(=\) & OFF & Self-Reset \\
\hline LED 21 & = & OFF & Self-Reset \\
\hline LED 22 & = & Bkr Fail Int On(M7a) & Self-Reset \\
\hline LED 23 & = & BKR FAIL 1 T2 OP & Self-Reset \\
\hline LED 24 & = & BKR FAIL 2 T2 OP & Self-Reset \\
\hline LED 25 & \(=\) & OFF & Self-Reset \\
\hline LED 26 & = & OFF & Self-Reset \\
\hline LED 27 & = & OFF & Self-Reset \\
\hline LED 28 & = & OFF & Self-Reset \\
\hline LED 29 & = & OFF & Self-Reset \\
\hline LED 30 & = & OFF & Self-Reset \\
\hline LED 31 & = & OFF & Self-Reset \\
\hline LED 32 & = & OFF & Self-Reset \\
\hline LED 33 & = & OFF & Self-Reset \\
\hline LED 34 & = & OFF & Self-Reset \\
\hline LED 35 & = & OFF & Self-Reset \\
\hline LED 36 & = & OFF & Self-Reset \\
\hline LED 37 & = & OFF & Self-Reset \\
\hline LED 38 & = & OFF & Self-Reset \\
\hline LED 39 & = & OFF & Self-Reset \\
\hline LED 40 & = & OFF & Self-Reset \\
\hline LED 41 & = & OFF & Self-Reset \\
\hline LED 42 & = & OFF & Self-Reset \\
\hline LED 43 & = & OFF & Self-Reset \\
\hline LED 44 & = & OFF & Self-Reset \\
\hline LED 45 & = & OFF & Self-Reset \\
\hline LED 46 & = & OFF & Self-Reset \\
\hline LED 47 & = & OFF & Self-Reset \\
\hline LED 48 & = & OFF & Self-Reset \\
\hline
\end{tabular}

User-Programmable Self Tests:
\begin{tabular}{rll} 
Remote Device Off Function & \(=\) & Enabled \\
Pri Ethernet Fail Function & \(=\) & Enabled \\
Battery Fail Function & \(=\) & Enabled \\
SNTP Fail Function & \(=\) & Enabled \\
IRIG B Fail Function & \(=\) & Enabled \\
s: & & \\
PB 1 & CPB 2 & CPB 3
\end{tabular}

\section*{Appendix 21 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{llll} 
Function & Enabled & Disabled & Disabled \\
Events & Disabled & Disabled & Disabled
\end{tabular}

Flex States:
User-definable displays:
Direct I/O:
Teleprotection:
Installation:
Relay Name \(=\quad\) 50/62-2 Breaker 2
System Setup:
AC Inputs
Current:
\begin{tabular}{rll} 
PARAMETER & & CT F1 \\
Phase CT Primary & \(=\) & 3000 A \\
Phase CT Secondary & \(=\) & 5 A \\
Ground CT Primary & \(=\) & 3000 A \\
Ground CT Secondary & \(=\) & 5 A
\end{tabular}

Voltage:
Power System:
\begin{tabular}{|c|c|c|}
\hline Nominal Frequency & \(=\) & 60 Hz \\
\hline Phase Rotation & = & ABC \\
\hline Frequency And Phase Reference & = & SRC 1 (SRC 1) \\
\hline Frequency Tracking Function & \(=\) & Enabled \\
\hline Signal Sources: PARAMETER & & SOURCE 1 SOURCE 2 \\
\hline Name & \(=\) & SRC 1 SRC 2 \\
\hline Phase CT & = & F1 None \\
\hline Ground CT & = & None None \\
\hline Phase VT & = & None None \\
\hline Aux VT & = & None None \\
\hline Breakers: SETTING & & PARAMETER \\
\hline Breaker 1 Function & = & Disabled \\
\hline Breaker 1 Push Button Control & = & Disabled \\
\hline Breaker 1 Name & = & Bkr 1 \\
\hline Breaker 1 Mode & = & 3-Pole \\
\hline Breaker 1 Open & = & OFF \\
\hline Breaker 1 Block Open & = & OFF \\
\hline Breaker 1 Close & = & OFF \\
\hline Breaker 1 Block Close & = & OFF \\
\hline Breaker 1 Phase A/3-Pole Closed & = & OFF \\
\hline Breaker 1 Phase A/3-Pole Opened & = & OFF \\
\hline Breaker 1 Phase B Closed & = & OFF \\
\hline Breaker 1 Phase B Opened & = & OFF \\
\hline Breaker 1 Phase C Closed & = & OFF \\
\hline Breaker 1 Phase C Opened & = & OFF \\
\hline Breaker 1 Toperate & = & 0.070 s \\
\hline Breaker 1 External Alarm & = & OFF \\
\hline Breaker 1 Alarm Delay & = & 0.000 s \\
\hline Breaker 1 Manual Close Recal Time & = & 0.000 s \\
\hline Breaker 1 Out Of Service & = & OFF \\
\hline Breaker 1 Events & = & Disabled \\
\hline Breaker 2 Function & \(=\) & Disabled \\
\hline
\end{tabular}

\section*{Appendix 21 50-62-2-BKR1 (GE-C60) Setting Calculation}


\section*{Appendix 21 50-62-2-BKR1 (GE-C60) Setting Calculation}


\section*{Appendix 21 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline [H5A] Contact Input 1 Events & = & Disabled \\
\hline [H5C] Contact Input 2 ID & = & Spare \\
\hline [H5C] Contact Input 2 Debounce Time & = & 2.0 ms \\
\hline [H5C] Contact Input 2 Events & = & Disabled \\
\hline [H6A] Contact Input 3 ID & = & Bkr TC1 Mont \\
\hline [H6A] Contact Input 3 Debounce Time & = & 2.0 ms \\
\hline [H6A] Contact Input 3 Events & = & Enabled \\
\hline [H6C] Contact Input 4 ID & = & 86BF-2 Oper \\
\hline [ \(\mathrm{H6C]}\) Contact Input 4 Debounce Time & = & 2.0 ms \\
\hline [H6C] Contact Input 4 Events & = & Enabled \\
\hline [H7A] Contact Input 5 ID & = & 86BF-2 Mont \\
\hline [H7A] Contact Input 5 Debounce Time & = & 2.0 ms \\
\hline [H7A] Contact Input 5 Events & = & Enabled \\
\hline [H7C] Contact Input 6 ID & = & 43L/R \\
\hline [H7C] Contact Input 6 Debounce Time & = & 2.0 ms \\
\hline [H7C] Contact Input 6 Events & = & Enabled \\
\hline [H8A] Contact Input 7 ID & = & Spare \\
\hline [H8A] Contact Input 7 Debounce Time & = & 2.0 ms \\
\hline [H8A] Contact Input 7 Events & = & Disabled \\
\hline [H8C] Contact Input 8 ID & = & Spare \\
\hline [H8C] Contact Input 8 Debounce Time & = & 2.0 ms \\
\hline [H8C] Contact Input 8 Events & = & Disabled \\
\hline [M5A] Contact Input 9 ID & = & Spare \\
\hline [M5A] Contact Input 9 Debounce Time & = & 2.0 ms \\
\hline [M5A] Contact Input 9 Events & = & Disabled \\
\hline [M5C] Contact Input 10 ID & = & Spare \\
\hline [M5C] Contact Input 10 Debounce Time & = & 2.0 ms \\
\hline [M5C] Contact Input 10 Events & = & Disabled \\
\hline [M6A] Contact Input 11 ID & = & Cont lp 11 \\
\hline [M6A] Contact Input 11 Debounce Time & = & 2.0 ms \\
\hline [M6A] Contact Input 11 Events & = & Disabled \\
\hline [M6C] Contact Input 12 ID & = & spare \\
\hline [M6C] Contact Input 12 Debounce Time & = & 2.0 ms \\
\hline [M6C] Contact Input 12 Events & = & Disabled \\
\hline [M7A] Contact Input 13 ID & = & Bkr Fail Int \\
\hline [M7A] Contact Input 13 Debounce Time & = & 2.0 ms \\
\hline [M7A] Contact Input 13 Events & = & Enabled \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Appendix 21 50-62-2-B} & \multicolumn{4}{|l|}{(GE-C60) Setting Calculation} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
[M7C] Contact Input 14 ID \\
[M7C] Contact Input 14 Debounce Time
\end{tabular}}} & \multicolumn{3}{|l|}{\(=\quad\) Cont Ip 14} & \\
\hline & & \multirow[b]{2}{*}{=} & \multicolumn{2}{|l|}{2.0 ms} & \\
\hline \multicolumn{2}{|r|}{[M7C] Contact Input 14 Events} & & \multicolumn{2}{|l|}{Disabled} & \\
\hline \multicolumn{2}{|r|}{[M8A] Contact Input 15 ID} & = & \multicolumn{2}{|l|}{Cont Ip 15} & \\
\hline \multicolumn{2}{|r|}{[M8A] Contact Input 15 Debounce Time} & \(=\) & \multicolumn{2}{|l|}{2.0 ms} & \\
\hline \multicolumn{2}{|r|}{[M8A] Contact Input 15 Events} & = & \multicolumn{2}{|l|}{Disabled} & \\
\hline \multicolumn{2}{|r|}{[M8C] Contact Input 16 ID} & \(=\) & \multicolumn{2}{|l|}{Cont Ip 16} & \\
\hline [M8C & C] Contact Input 16 Debounce Time & = & 2.0 ms & & \\
\hline \multicolumn{2}{|r|}{[M8C] Contact Input 16 Events} & = & \multicolumn{3}{|l|}{Disabled} \\
\hline \multicolumn{6}{|l|}{Contact Inputs Thresholds:} \\
\hline \multicolumn{4}{|r|}{Cont Ip 1, Cont Ip 2, Cont Ip 3, Cont Ip 4(H5A, H5C, H6A, H6C)} & = & 84 Vdc \\
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{Cont lp5, Cont ip 6, Cont Ip 7, Cont Ip 8(H7A, H7C, H8A, H8C) Cont ip 9, Cont Ip 10, Cont Ip 11, Cont Ip 12(M5A, M5C, M6A, M6C)}} & = & 84 Vdc \\
\hline & & & & = & 84 Vdc \\
\hline \multicolumn{4}{|l|}{Cont Ip 13, Cont Ip 14, Cont Ip 15, Cont Ip 16(M7A, M7C, M8A, M8C)} & = & 84 Vdc \\
\hline \multirow[t]{5}{*}{Virtual Inputs:} & SETTING & & \multicolumn{3}{|l|}{PARAMETER} \\
\hline & Virtual Input 1 Function & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 1 ID & = & \multicolumn{3}{|l|}{Bkr Trip} \\
\hline & Virtual Input 1 Type & = & \multicolumn{3}{|l|}{Self-Reset} \\
\hline & Virtual Input 1 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 2 Function & = & Enabled & & \\
\hline & Virtual Input 2 ID & = & Bkr Close & & \\
\hline & Virtual Input 2 Type & = & Self-Reset & & \\
\hline & Virtual Input 2 Events & = & Enabled & & \\
\hline Othe & er Virtual Inputs (from VI03 to VI64) & & & & \# Not used \\
\hline \multicolumn{6}{|l|}{Contact Outputs:} \\
\hline & [H1] Contact Output 1 ID & = & \multicolumn{3}{|l|}{Any Trip} \\
\hline & [H1] Contact Output 1 Operate & = & \multicolumn{3}{|l|}{TRIP LED On (VO6)} \\
\hline & [H1] Contact Output 1 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H1] Contact Output 1 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & [H2] Contact Output 2 ID & = & \multicolumn{3}{|l|}{spare} \\
\hline & [H2] Contact Output 2 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H3] Contact Output 3 ID & = & \multicolumn{3}{|l|}{Not Used} \\
\hline & [H3] Contact Output 3 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H4] Contact Output 4 ID & = & \multicolumn{3}{|l|}{NOT USED} \\
\hline & [H4] Contact Output 4 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M1] Contact Output 5 ID & = & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
BF TRIP \\
86BF TRIP On (VO1)
\end{tabular}}} \\
\hline & [M1] Contact Output 5 Operate & = & & & \\
\hline
\end{tabular}

\section*{Appendix 21 \\ 50-62-2-BKR1 (GE-C60) Setting Calculation}

Virtual Outputs:
[M1] Contact Output 5 Seal-In \(=\quad\) 86BF TRIP On (VO1)
[M1] Contact Output 5 Events \(=\quad\) Enabled
[M2] Contact Output 6 ID \(=\) RETRIP BKR
[M2] Contact Output 6 Operate \(=\quad\) RETRIP BKR On (VO2)
[M2] Contact Output 6 Seal-In = RETRIP BKR On (VO2) [M2] Contact Output 6 Events \(=\) Enabled
[M3] Contact Output 7 ID = Bkr Trip
[M3] Contact Output 7 Operate \(\quad=\quad\) Bkr Trip On (VO7)
[M3] Contact Output 7 Seal-In = OFF
[M3] Contact Output 7 Events = Enabled
[M4] Contact Output 8 ID \(=\) Bkr Close
[M4] Contact Output 8 Operate \(=\quad\) Bkr Close On (VO8) [M4] Contact Output 8 Seal-In = OFF [M4] Contact Output 8 Events \(=\) Enabled

SETTING PARAMETER
Virtual Output 1 ID \(=\quad\) 86BF TRIP
Virtual Output 1 Events \(=\) Enabled
Virtual Output 2 ID = RETRIP BKR
Virtual Output 2 Events \(=\) Enabled
Virtual Output 3 ID = JNIT ALARM
Virtual Output 3 Events \(=\) Enabled
Virtual Output 4 ID = Trig Oscill
Virtual Output 4 Events = Enabled
Virtual Output 5 ID = ALARM NC
Virtual Output 5 Events \(=\) Enabled
Virtual Output 6 ID = TRIP LED
Virtual Output 6 Events \(=\) Enabled
Virtual Output 7 ID \(=\quad\) Bkr Trip
Virtual Output 7 Events \(=\) Enabled
Virtual Output 8 ID \(=\quad\) Bkr Close
Virtual Output 8 Events \(=\) Enabled
\begin{tabular}{rll} 
Virtual Output 9 ID & \(=\) & Retrip LED \\
Virtual Output 9 Events & \(=\) & Enabled \\
Virtual Output 10 ID & \(=\) & Phase A Trip \\
Virtual Output 10 Events & \(=\) & Enabled \\
Virtual Output 11 ID & \(=\) & Phase B Trip \\
Virtual Output 11 Events & \(=\) & Enabled
\end{tabular}

\section*{Appendix 21 50-62-2-BKR1 (GE-C60) Setting Calculation}


\section*{Appendix 22}

\section*{50-62-1-BKR3 (Areva P141) Setting Calculation}
1. Data
\begin{tabular}{lclll} 
MVA_Base \(=100\) & kV_Base \(=\) & 345 & Z_Base \(=1190.25\) & ohms \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\)
\end{tabular}

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of 1,349 Amp or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance , but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary amp, 300 CT primary amp, or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.

\section*{SYSTEM DATA:}

CB CONTROL:
\[
\begin{aligned}
\text { CB Control by } & =\text { Disabled } \\
\text { Reset Lockout by } & =\text { CB Close } \\
\text { Man Close RstDly } & =5.000 \mathrm{~s} \\
\text { CB2 Status Input } & =52 \mathrm{~A}
\end{aligned}
\]

DATE AND TIME:
\[
\begin{aligned}
\text { IRIG-B Sync } & =\text { Enabled } \\
\text { Battery Alarm } & =\text { Enabled } \\
\text { Other Time Settings } & =\text { Default }
\end{aligned}
\]

CONFIGURATION:
\[
\begin{aligned}
& \text { Setting Group }=\text { Select via Menu } \\
& \text { Active Settings }=\text { Group } 1 \\
& \text { Setting Group } 1=\text { Enabled } \\
& \text { Setting Group } 2 \text { = Disabled } \\
& \text { Setting Group } 3 \text { = Disabled } \\
& \text { Setting Group } 4 \text { = Disabled } \\
& \text { System Config }=\text { Invisible }
\end{aligned}
\]

\section*{Appendix 22}

\section*{50-62-1-BKR3 (Areva P141) Setting Calculation}
\begin{tabular}{|c|c|}
\hline Overcurrent = Enabled & \# 50FD-P \\
\hline Neg Sequence O/C = Enabled & \# Unbalance \\
\hline Broken Conductor = Disabled & \# Not used \\
\hline Earth Fault 1 = Disabled & \# Not used \\
\hline Earth Fault 2 = Enabled & \# 50FD-G \\
\hline Sensitive E/F Prot' \(\mathrm{n}=\) Disabled & \# Not used \\
\hline Residual O/V NVD = Disabled & \# Not used \\
\hline Thermal Overload = Disabled & \# Not used \\
\hline Neg Sequence O/V = Disabled & \# Not used \\
\hline Cold Load Pickup = Disabled & \# Not used \\
\hline Selective Logic = Disabled & \# Not used \\
\hline Admit Protection \(=\) Disabled & \# Not used \\
\hline Volt Protection \(=\) Disabled & \# Not used \\
\hline Freq Protection = Disabled & \# Not used \\
\hline df/dt Protection \(=\) Disabled & \# Not used \\
\hline CB Fail = Enabled & \\
\hline Supervision = Enabled & \\
\hline Fault Locator = Disabled & \\
\hline Input Labels = Visible & \\
\hline Output Labels = Visible & \\
\hline CT \& VT Ratios = Visible & \\
\hline Record Control = Invisible & \\
\hline Disturb Recorder \(=\) Visible & \\
\hline Measure't Setup = Visible & \\
\hline Comms Settings \(=\) Visible & \\
\hline Commission Tests \(=\) Visible & \\
\hline Setting Values = Secondary & \\
\hline Control Inputs = Invisible & \\
\hline Ctrl I/P Config = Invisible & \\
\hline Ctrl I/P Labels = Invisible & \\
\hline Direct Access \(=\) Disabled & \\
\hline LCD Contrast = 11 & \\
\hline Main VT Primary \(=110.0 \mathrm{~V}\) & \# Not used \\
\hline Main VT Sec'y \(=110.0 \mathrm{~V}\) & \# Not used \\
\hline Phase CT Primary \(=3000\) A & \\
\hline Phase CT Sec'y \(=5.000 \mathrm{~A}\) & \\
\hline E/F CT Primary \(=3000\) A & \\
\hline E/F CT Secondary \(=5.000 \mathrm{~A}\) & \\
\hline SEF CT Primary \(=1.000 \mathrm{~A}\) & \\
\hline SEF CT Secondary \(=1.000 \mathrm{~A}\) & \\
\hline See setting file for detail & \\
\hline Default Display \(=\) Description & \\
\hline Local Values = Primary & \\
\hline Remote Values = Primary & \\
\hline Measurement Ref = VA & \\
\hline Measurement Mode \(=0\) & \\
\hline Fix Dem Period \(=30.00 \mathrm{~min}\) & \\
\hline Roll Sub Period \(=30.00 \mathrm{~min}\) & \\
\hline
\end{tabular}

\section*{Appendix 22}

\section*{50-62-1-BKR3 (Areva P141) Setting Calculation}

COMMISSION TESTS:
Num Sub Periods = 1

> Monitor Bit \(1=64\)
> Monitor Bit \(2=65\)
> Monitor Bit \(3=66\)
> Monitor Bit \(4=67\)
> Monitor Bit \(5=68\)
> Monitor Bit \(6=69\)
> Monitor Bit \(7=70\)
> Monitor Bit \(8=71\)

CB MONITOR SETUP:
\[
\text { Broken } I^{\wedge}=2.000
\]
\({ }^{\wedge}\) Maintenance \(=\) Alarm Disabled
\({ }^{\wedge}\) Lockout = Alarm Disabled
No. CB Ops Maint = Alarm Disabled
No. CB Ops Lock = Alarm Disabled
CB Time Maint = Alarm Disabled
CB Time Lockout \(=\) Alarm Disabled
Fault Freq Lock = Alarm Disabled
OPTO CONFIG:
Global Nominal V \(=110 / 125 \mathrm{~V}\)
Opto Filter Cntl = 11111111
Characteristic = Standard 60\%-80\%

\section*{Group 1:}

GROUP 1 OVERCURRENT:
\begin{tabular}{rlr} 
1>1 Function & \(=\) DT & \\
\(1>1\) Direction & \(=\) Non-Directional & \\
\(1>1\) Current Set & \(=0.75\) & \\
\(1>1\) Time Delay & \(=0\) & \\
\(1>1\) tRESET & \(=0\) & \\
\(1>2\) Status & \(=\) Disabled & \\
\(1>3\) Status & \(=\) Disabled & \\
\(1>4\) Status & \(=\) Disabled & \\
\(1>\) Blocking & \(=000000000\) & \\
\(1>\) Char Angle & \(=45\) & \\
VC0 Status & \(=\) Disabled &
\end{tabular}
\[
\begin{aligned}
12>1 \text { Status } & =\text { Enabled } \\
12>1 \text { Function } & =\mathrm{DT} \\
12>1 \text { Directional } & =\text { Non-Directional } \\
12>1 \text { Current Set } & =500.0 \mathrm{~mA} \\
12>1 \text { Time Delay } & =0 \mathrm{~s} \\
12>1 \text { Treset } & =0 \mathrm{~s} \\
12>2 \text { Status } & =\text { Disabled } \\
12>3 \text { Status } & =\text { Disabled } \\
12>4 \text { Status } & =\text { Disabled } \\
12>\text { Blocking } & =00000000 \\
12>\text { Char Angle } & =-60.00 \mathrm{deg} \\
12>\text { V2pol Set } & =5.000 \mathrm{~V}
\end{aligned}
\]

GROUP 1 EARTH FAULT 2

\section*{Appendix 22}

\section*{50-62-1-BKR3 (Areva P141) Setting Calculation}
\begin{tabular}{rl} 
IN2 \(>\) Input & \(=\) Derived \\
IN2 \(>1\) Function & \(=\) DT \\
IN2 \(>1\) Direction & \(=\) Non-Directional \\
IN2 \(>1\) Current & \(=500.0 \mathrm{~mA}\) \\
IN2>1 Time Delay & \(=0 \mathrm{~s}\) \\
IN2 \(>1\) tRESET & \(=0 \mathrm{~s}\) \\
IN2 \(>2\) Function & \(=\) Disabled \\
IN2 \(>3\) Status & \(=\) Disabled \\
IN2 \(>4\) Status & \(=\) Disabled \\
IN2> Blocking & \(=00000000\) \\
IN2> & \(=\) POL \\
IN2 \(>\) Char Angle & \(=-45.00\) deg \\
IN2> Pol & \(=\) Zero Sequence \\
IN2 \(>\) VNpol Set & \(=5.000 \mathrm{~V}\)
\end{tabular}

GROUP 1 CB FAIL \& \(\mathrm{I}<:\)
CB Fail 1 Status = Enabled
GB Fail 1 Timer \(=0 \mathrm{~s}\)
CB Fail 2 Status \(=\) Enabled
CB Fail 2 Timer \(=130.0 \mathrm{~ms}\)
Volt Prot Reset \(=1<\) only
Ext Prot Reset \(=1<\) only
\(\mathrm{I}<\) Current Set \(=500.0 \mathrm{~mA}\)
\(\mathrm{IN}<\) Current Set \(=500.0 \mathrm{~mA}\)
ISEF<Current \(=20.00 \mathrm{~mA}\)
Remove l> Start = Disabled
Remove IN> Start = Disabled
GROUP 1 SUPERVISION:
\[
\begin{aligned}
\text { VTS Status } & =\text { Indication } \\
\text { VTS Reset Mode } & =\text { Manual } \\
\text { VTS Time Delay } & =5.000 \mathrm{~s} \\
\text { VTS I> Inhibit } & =50.0 \mathrm{~A} \\
\text { VTS I } 2>\text { Inhibit } & =250.0 \mathrm{~mA} \\
\text { CTS Mode } & =\text { Disabled }
\end{aligned}
\]

\section*{GROUP 1 INPUT LABELS:}

Opto Input 1 Input L1
Opto Input 2 Input L2
Opto Input 3 30-TC2/1 ALM
Opto Input 4 86BF-1/1 TRIP
Opto Input 5 30-86BF-1/1 ALM
Opto Input 6 BF Initiation
Opto Input 7 Input L7
Opto Input 8 Input L8
GROUP 1 OUTPUT LABELS:
Relay 1 Trip 86BF
Relay 2 ReTrip BkrTC2
Relay 3 Any Trip
Relay 4 Output R4
Relay 5 Output R5
Relay 6 Output R6
Relay 7 Output R7

\section*{Appendix 23 50-62-2-BKR3 (GE-C60) Setting Calculation}
\begin{tabular}{lclll} 
1. Data & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=\) \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\) \\
Total MVA of all three GSUs \(=\) & 750 & ; Maximum full load current (amps) \(=\) & 1255.11
\end{tabular}

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of 1,349 Amp or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance , but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary amp, 300 CT primary amp, or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.
\begin{tabular}{ll} 
Device Definition: & \# Default \\
Product Setup: & \# Default \\
Security: & \# Default \\
Display Properties: & \# All OFF \\
Clear Relay Records: & \# Default \\
Communications: & \# Not used \\
\hline Modbus User Map: &
\end{tabular}

IRIG-B Signal Type
\(=\quad\) DC Shift
All other settings \(=\) Default
SETTING PARAMETER
Fault Report 1 Source \(\quad=\quad\) SRC 1 (SRC 1)
Fault Report 1 Trigger \(=\quad\) Trig Oscill On (VO4)
Fault Report 1 Positive Seq (Z1) Mag
\(=\quad 0.49\) ohms
Fault Report 1 Positive Seq (Z1) Angle
\(=78 \mathrm{deg}\)
Fault Report 1 Zero Seq (Z0) Mag
\(=\quad 1.50\) ohms
Fault Report 1 Zero Seq (ZO) Angle
\(=54 \mathrm{deg}\)
Fault Report 1 Line Length Units
\(=\quad\) mile
Fault Report 1 Line Length
\(=\quad 7.74\)
Fault Report 1 VT Substitution
\(=\quad\) None
Fault Report 1 System Z0 Mag \(=0.49\) ohms
Fault Report 1 System Z0 Angle \(=78\) deg
Oscillography:

\section*{Appendix 23 \\ 50-62-2-BKR3 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline SETTING & & PARAMETER \\
\hline Number Of Records & \(=\) & 6 \\
\hline Trigger Mode & = & Automatic Overwrite \\
\hline Trigger Position & = & 30\% \\
\hline Trigger Source & = & Trig Oscill On (VO4) \\
\hline AC Input Waveforms & = & 32 samples/cycle \\
\hline Digital Channel 1 & = & OFF \\
\hline Digital Channel 2 & = & OFF \\
\hline Digital Channel 3 & = & OFF \\
\hline Digital Channel 4 & = & OFF \\
\hline Digital Channel 5 & = & OFF \\
\hline Digital Channel 6 & = & 86BF TRIP On (VO1) \\
\hline Digital Channel 7 & = & RETRIP BKR On (VO2) \\
\hline Digital Channel 8 & = & UNIT ALARM On (VO3) \\
\hline Digital Channel 9 & = & OFF \\
\hline Digital Channel 10 & = & NEUTRAL IOC1 PKP \\
\hline Digital Channel 11 & = & NEUTRAL IOC1 OP \\
\hline Digital Channel 12 & = & PHASE IOC1 PKP A \\
\hline Digital Channel 13 & = & PHASE IOC1 OP A \\
\hline Digital Channel 14 & \(=\) & PHASE IOC1 PKP B \\
\hline Digital Channel 15 & = & PHASE IOC1 OP B \\
\hline Digital Channel 16 & = & PHASE IOC1 PKP C \\
\hline Digital Channel 17 & = & PHASE IOC1 OP C \\
\hline Digital Channel 18 & = & Bkr Fail Int On(H7c) \\
\hline Digital Channel 19 & = & BKR FAIL 1 TRIP OP \\
\hline Digital Channel 20 & = & BKR FAIL 2 TRIP OP \\
\hline Digital Channel 21 & = & BKR FAIL 1 T2 OP \\
\hline Digital Channel 22 & \(=\) & BKR FAIL 2 T2 OP \\
\hline Digital Channel 23 & = & 86BF TRIP On (VO1) \\
\hline Digital Channel 24 & = & RETRIP BKR On (VO2) \\
\hline Digital Channel 25 & = & BKR FAIL 1 RETRIPA \\
\hline Digital Channel 26 & \(=\) & BKR FAIL 1 RETRIPB \\
\hline Digital Channel 27 & = & BKR FAIL 1 RETRIPC \\
\hline Digital Channel 28 & \(=\) & OFF \\
\hline Digital Channel 29 & = & OFF \\
\hline Digital Channel 30 & = & OFF \\
\hline Digital Channel 31 & = & OFF \\
\hline Digital Channel 32 & = & OFF \\
\hline Digital Channel 33 & \(=\) & OFF \\
\hline Digital Channel 34 & \(=\) & OFF \\
\hline Digital Channel 35 & = & OFF \\
\hline Digital Channel 36 & \(=\) & OFF \\
\hline Digital Channel 37 & = & OFF \\
\hline Digital Channel 38 & = & OFF \\
\hline Digital Channel 39 & = & OFF \\
\hline Digital Channel 40 & \(=\) & OFF \\
\hline Digital Channel 41 & = & OFF \\
\hline Digital Channel 42 & \(=\) & OFF \\
\hline Digital Channel 43 & = & OFF \\
\hline Digital Channel 44 & = & OFF \\
\hline
\end{tabular}

\section*{Appendix 23 \\ 50-62-2-BKR3 (GE-C60) Setting Calculation}
\begin{tabular}{rlll} 
Digital Channel 45 & \(=\) & OFF \\
Digital Channel 46 & \(=\) & OFF \\
Digital Channel 47 & \(=\) & OFF & \\
Digital Channel 48 & \(=\) & OFF & \\
Digital Channel 49 & \(=\) & OFF & \\
Digital Channel 50 & \(=\) & OFF & \\
Digital Channel 51 & \(=\) & OFF & \\
Digital Channel 52 & \(=\) & OFF & \\
Digital Channel 53 & \(=\) & OFF & \\
Digital Channel 54 & \(=\) & OFF & \\
Digital Channel 55 & \(=\) & OFF & \\
Digital Channel 56 & \(=\) & OFF & \\
Digital Channel 57 & \(=\) & OFF & \\
Digital Channel 58 & \(=\) & OFF & \\
Digital Channel 59 & \(=\) & OFF & \\
Digital Channel 60 & \(=\) & OFF & \\
Digital Channel 61 & \(=\) & OFF & \\
Digital Channel 62 & \(=\) & OFF & \\
Digital Channel 63 & \(=\) & OFF & \\
Analog Channel 1 & \(=\) & SRC1 & la Mag \\
Analog Channel 2 & \(=\) & SRC2 & la Mag \\
Analog Channel 3 & \(=\) & SRC1 & Ib Mag \\
Analog Channel 4 & \(=\) & SRC2 & Ib Mag \\
Analog Channel 5 & \(=\) & SRC1 & Ic Mag \\
Analog Channel 6 & \(=\) & SRC2 & Ic Mag \\
Analog Channel 7 & \(=\) & SRC1 & In Mag \\
Analog Channel 8 & \(=\) & SRC2 & In Mag \\
Analog Channel 9 & \(=\) & SRC1 & la Angle \\
Analog Channel 10 & \(=\) & SRC2 & la Angle \\
Analog Channel 11 & \(=\) & SRC1 & Ib Angle \\
Analog Channel 12 & \(=\) & SRC2 & Ib Angle \\
Analog Channel 13 & \(=\) & SRC1 & Ic Angle \\
Analog Channel 14 & \(=\) & SRC2 & Ic Angle \\
Analog Channel 15 & \(=\) & Off & \\
Analog Channel 16 & \(=\) & Off & \\
& & &
\end{tabular}

Data Logger:
Demand: \# Default
User-Programmable Leds: LED Test:
\begin{tabular}{rll} 
Function & \(=\) & Enabled \\
Control & \(=\) & CONTROL PUSHBUTTON 1 ON
\end{tabular}

Trip and Alarms Leds:
\begin{tabular}{rlll} 
Trip LED Input & \(=\) & 86BF TRIP On (VO1) & \\
Alarm LED Input & \(=\) & UNIT ALARM On (VO3) & \\
& & & \\
LED 1 & \(=\) & 86BF TRIP On (VO1) & Latched \\
LED 2 & \(=\) & BKR FAIL 1 TRIP OP & Latched \\
LED 3 & \(=\) & BKR FAIL 2 TRIP OP & Latched \\
LED 4 & \(=\) & Retrip LED On (VO9) & Latched \\
LED 5 & \(=\) & OFF & Latched
\end{tabular}

\section*{Appendix 23 \\ 50-62-2-BKR3 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline LED 6 & = & OFF & Self-Reset \\
\hline LED 7 & \(=\) & OFF & Self-Reset \\
\hline LED 8 & = & OFF & Self-Reset \\
\hline LED 9 & = & Phase A Trip On (VO10) & Latched \\
\hline LED 10 & \(=\) & Phase B Trip On (VO11) & Latched \\
\hline LED 11 & = & Phase C Trip On (VO12) & Latched \\
\hline LED 12 & = & Ground Trip On (VO13) & Latched \\
\hline LED 13 & = & OFF & Self-Reset \\
\hline LED 14 & = & OFF & Self-Reset \\
\hline LED 15 & = & OFF & Self-Reset \\
\hline LED 16 & = & OFF & Self-Reset \\
\hline LED 17 & \(=\) & OFF & Self-Reset \\
\hline LED 18 & = & OFF & Self-Reset \\
\hline LED 19 & = & OFF & Self-Reset \\
\hline LED 20 & \(=\) & OFF & Self-Reset \\
\hline LED 21 & \(=\) & OFF & Self-Reset \\
\hline LED 22 & = & Bkr Fail Int On(H7c) & Self-Reset \\
\hline LED 23 & \(=\) & BKR FAIL 1 T2 OP & Self-Reset \\
\hline LED 24 & \(=\) & BKR FAIL 2 T2 OP & Self-Reset \\
\hline LED 25 & \(=\) & OFF & Self-Reset \\
\hline LED 26 & \(=\) & OFF & Self-Reset \\
\hline LED 27 & = & OFF & Self-Reset \\
\hline LED 28 & \(=\) & OFF & Self-Reset \\
\hline LED 29 & \(=\) & OFF & Self-Reset \\
\hline LED 30 & \(=\) & OFF & Self-Reset \\
\hline LED 31 & \(=\) & OFF & Self-Reset \\
\hline LED 32 & \(=\) & OFF & Self-Reset \\
\hline LED 33 & \(=\) & OFF & Self-Reset \\
\hline LED 34 & = & OFF & Self-Reset \\
\hline LED 35 & = & OFF & Self-Reset \\
\hline LED 36 & = & OFF & Self-Reset \\
\hline LED 37 & \(=\) & OFF & Self-Reset \\
\hline LED 38 & = & OFF & Self-Reset \\
\hline LED 39 & \(=\) & OFF & Self-Reset \\
\hline LED 40 & = & OFF & Self-Reset \\
\hline LED 41 & = & OFF & Self-Reset \\
\hline LED 42 & = & OFF & Self-Reset \\
\hline LED 43 & = & OFF & Self-Reset \\
\hline LED 44 & = & OFF & Self-Reset \\
\hline LED 45 & \(=\) & OFF & Self-Reset \\
\hline LED 46 & = & OFF & Self-Reset \\
\hline LED 47 & = & OFF & Self-Reset \\
\hline LED 48 & = & OFF & Self-Reset \\
\hline
\end{tabular}

User-Programmable Self Tests:
\begin{tabular}{rll} 
Remote Device Off Function & \(=\) & Enabled \\
Pri Ethernet Fail Function & \(=\) & Enabled \\
Battery Fail Function & \(=\) & Enabled \\
SNTP Fail Function & \(=\) & Enabled \\
IRIG B Fail Function & \(=\) & Enabled
\end{tabular}

Control Pushbuttons:

\section*{Appendix 23 \\ 50-62-2-BKR3 (GE-C60) Setting Calculation}


\section*{Appendix 23 50-62-2-BKR3 (GE-C60) Setting Calculation}


\section*{Ground Current:}

\section*{Appendix 23 50-62-2-BKR3 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\frac{\text { Ground TOC }}{\text { Ground IOC }}\) & & & & \begin{tabular}{l}
\# Not used \\
\# Not used
\end{tabular} \\
\hline Breaker Failure: & PARAMETER & & BF1 & BF2 \\
\hline & Function & = & Enabled & Enabled \\
\hline & Mode & = & 3-Pole & 3-Pole \\
\hline & Source & = & SRC 1 (SRC 1) & SRC 1 (SRC1) \\
\hline & Current Supervision & \(=\) & Yes & Yes \\
\hline & Use Seal-In & \(=\) & No & No \\
\hline & Three Pole Initiate & = & Bkr Fail Int On(H7c); & Cont lp 2 On(H5c) \\
\hline & Block & = & NEUTRAL IOC1 PKP & OFF \\
\hline & Phase Current Supv Pickup & = & 0.15 pu & \# 50FD-P \\
\hline & Neutral Current Supv Pickup & = & 0.100 pu & \# 50FD-G \\
\hline & Use Timer 1 & = & No & No \\
\hline & Timer 1 Pickup Delay & = & 0.000 s & 0.000 s \\
\hline & Use Timer 2 & = & Yes & Yes \\
\hline & Timer 2 Pickup Delay & = & 0.130 s & 0.160 s \\
\hline & Use Timer 3 & \(=\) & No & No \\
\hline & Timer 3 Pickup Delay & \(=\) & 0.000 s & 0.000 s \\
\hline & Breaker Pos1 Phase A/3P & \(=\) & OFF & OFF \\
\hline & Breaker Pos2 Phase A/3P & = & OFF & OFF \\
\hline & Breaker Test On & = & OFF & OFF \\
\hline & Phase Current HiSet Pickup & = & 0.15 pu & 0.15 pu \\
\hline & Neutral Current HiSet Pickup & \(=\) & 0.100 pu & 0.100 pu \\
\hline & Phase Current LoSet Pickup & = & 0.15 pu & 0.15 pu \\
\hline & Neutral Current LoSet Pickup & = & 0.100 pu & 0.100 pu \\
\hline & LoSet Time Delay & = & 0.000 s & 0.000 s \\
\hline & Trip Dropout Delay & \(=\) & 0.000 s & 0.000 s \\
\hline & Target & \(=\) & Latched & Latched \\
\hline & Events & \(=\) & Enabled & Enabled \\
\hline & Phase A Initiate & = & OFF & OFF \\
\hline & Phase B Initiate & = & OFF & OFF \\
\hline & Phase C Initiate & \(=\) & OFF & OFF \\
\hline & Breaker Pos1 Phase B & \(=\) & OFF & OFF \\
\hline & Breaker Pos1 Phase C & \(=\) & OFF & OFF \\
\hline & Breaker Pos2 Phase B & \(=\) & OFF & OFF \\
\hline & Breaker Pos2 Phase C & = & OFF & OFF \\
\hline Voltage Elements: & & & & \# Not used \\
\hline Power: & & & & \# Not used \\
\hline \multicolumn{5}{|l|}{Control Elements:} \\
\hline Trip Bus: & & & & \# Not used \\
\hline Setting Groups: & & & & \# Not used \\
\hline Selector Switches: & & & & \# Not used \\
\hline Synchrocheck: & & & & \# Not used \\
\hline Digital Elements: & & & & \# Not used \\
\hline Digital Counters: & & & & \# Not used \\
\hline Monitoring Elements: & & & & \# Not used \\
\hline Autoreclose 1P & & & & \# Not used \\
\hline \multicolumn{5}{|l|}{Inputs/Outputs:} \\
\hline Contact inputs: & SETTING & & PARAMETER & \\
\hline & [H5A] Contact Input 1 ID & \(=\) & Spare & \\
\hline
\end{tabular}

\section*{Appendix 23 50-62-2-BKR3 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline [H5A] Contact Input 1 Debounce Time & = & 2.0 ms \\
\hline [H5A] Contact Input 1 Events & \(=\) & Disabled \\
\hline [H5C] Contact Input 2 ID & = & Spare \\
\hline [H5C] Contact Input 2 Debounce Time & \(=\) & 2.0 ms \\
\hline [H5C] Contact Input 2 Events & \(=\) & Disabled \\
\hline [H6A] Contact Input 3 ID & = & Bkr TC1 Mont \\
\hline [H6A] Contact Input 3 Debounce Time & = & 2.0 ms \\
\hline [H6A] Contact Input 3 Events & = & Enabled \\
\hline [H6C] Contact Input 4 ID & = & 86BF-2 Oper \\
\hline [H6C] Contact Input 4 Debounce Time & = & 2.0 ms \\
\hline [H6C] Contact Input 4 Events & \(=\) & Enabled \\
\hline [H7A] Contact Input 5 ID & = & 86BF-2 Mont \\
\hline [H7A] Contact Input 5 Debounce Time & = & 2.0 ms \\
\hline [H7A] Contact Input 5 Events & \(=\) & Enabled \\
\hline [H7C] Contact Input 6 ID & = & 43L/R \\
\hline [H7C] Contact Input 6 Debounce Time & = & 2.0 ms \\
\hline [H7C] Contact Input 6 Events & \(=\) & Enabled \\
\hline [H8A] Contact Input 7 ID & = & Spare \\
\hline [H8A] Contact Input 7 Debounce Time & \(=\) & 2.0 ms \\
\hline [H8A] Contact Input 7 Events & \(=\) & Disabled \\
\hline [H8C] Contact Input 8 ID & = & Spare \\
\hline [H8C] Contact Input 8 Debounce Time & = & 2.0 ms \\
\hline [H8C] Contact Input 8 Events & = & Disabled \\
\hline [M5A] Contact Input 9 ID & = & Spare \\
\hline [M5A] Contact Input 9 Debounce Time & = & 2.0 ms \\
\hline [M5A] Contact Input 9 Events & \(=\) & Disabled \\
\hline [M5C] Contact Input 10 ID & = & Spare \\
\hline [M5C] Contact Input 10 Debounce Time & \(=\) & 2.0 ms \\
\hline [M5C] Contact Input 10 Events & \(=\) & Disabled \\
\hline [M6A] Contact Input 11 ID & = & Cont Ip 11 \\
\hline [M6A] Contact Input 11 Debounce Time & \(=\) & 2.0 ms \\
\hline [M6A] Contact Input 11 Events & \(=\) & Disabled \\
\hline [M6C] Contact Input 12 ID & = & spare \\
\hline [M6C] Contact Input 12 Debounce Time & = & 2.0 ms \\
\hline [M6C] Contact Input 12 Events & \(=\) & Disabled \\
\hline [M7A] Contact Input 13 ID & = & Bkr Fail Int \\
\hline [M7A] Contact Input 13 Debounce Time & = & 2.0 ms \\
\hline [M7A] Contact Input 13 Events & = & Enabled \\
\hline
\end{tabular}

\section*{Appendix 23 50-62-2-BKR3 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & [M7C] Contact Input 14 ID & = & \multicolumn{3}{|l|}{Cont lp 14} \\
\hline [M7C] & Contact Input 14 Debounce Time & = & \multicolumn{3}{|l|}{2.0 ms} \\
\hline & [M7C] Contact Input 14 Events & \(=\) & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M8A] Contact Input 15 ID & \(=\) & \multicolumn{3}{|l|}{Cont Ip 15} \\
\hline [M8A] & Contact Input 15 Debounce Time & = & \multicolumn{3}{|l|}{2.0 ms} \\
\hline & [M8A] Contact Input 15 Events & \(=\) & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M8C] Contact Input 16 ID & \(=\) & \multicolumn{3}{|l|}{Cont Ip 16} \\
\hline [M8C] & Contact Input 16 Debounce Time & = & \multicolumn{3}{|l|}{2.0 ms} \\
\hline & [M8C] Contact Input 16 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline \multicolumn{6}{|l|}{Contact Inputs Thresholds:} \\
\hline \multicolumn{6}{|r|}{Cont Ip 1, Cont Ip 2, Cont Ip 3, Cont Ip 4(H5A, H5C, H6A, H6C) \(=84 \mathrm{Vdc}\)} \\
\hline \multicolumn{6}{|r|}{Cont Ip5, Cont Ip 6, Cont Ip 7, Cont lp 8(H7A, H7C, H8A, H8C) = 84 Vdc} \\
\hline \multicolumn{6}{|r|}{Cont Ip 9, Cont lp 10, Cont lp 11, Cont Ip 12(M5A, M5C, M6A, M6C) = 84 Vdc} \\
\hline \multicolumn{6}{|l|}{Cont lp 13, Cont lp 14, Cont lp 15, Cont lp 16(M7A, M7C, M8A, M8C) = 84 Vdc} \\
\hline \multirow[t]{5}{*}{Virtual Inputs:} & SETTING & & \multicolumn{3}{|l|}{PARAMETER} \\
\hline & Virtual Input 1 Function & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 1 ID & = & \multicolumn{3}{|l|}{Bkr Trip} \\
\hline & Virtual Input 1 Type & = & \multicolumn{3}{|l|}{Self-Reset} \\
\hline & Virtual Input 1 Events & \(=\) & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 2 Function & \(=\) & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 2 ID & = & \multicolumn{3}{|l|}{Bkr Close} \\
\hline & Virtual Input 2 Type & = & \multicolumn{3}{|l|}{Self-Reset} \\
\hline & Virtual Input 2 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline Other & Virtual Inputs (from VI03 to VI64) & & & & \# Not used \\
\hline \multicolumn{6}{|l|}{Contact Outputs:} \\
\hline & [H1] Contact Output 1 ID & \(=\) & \multicolumn{3}{|l|}{Any Trip} \\
\hline & [H1] Contact Output 1 Operate & = & \multicolumn{3}{|l|}{TRIP LED On (VO6)} \\
\hline & [H1] Contact Output 1 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H1] Contact Output 1 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & [H2] Contact Output 2 ID & = & \multicolumn{3}{|l|}{spare} \\
\hline & [H2] Contact Output 2 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H3] Contact Output 3 ID & = & \multicolumn{3}{|l|}{Not Used} \\
\hline & [H3] Contact Output 3 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H4] Contact Output 4 ID & = & \multicolumn{3}{|l|}{NOT USED} \\
\hline & [H4] Contact Output 4 Operate & \(=\) & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M1] Contact Output 5 ID & \(=\) & \multicolumn{3}{|l|}{BF TRIP} \\
\hline
\end{tabular}

\section*{Appendix 23}

\section*{50-62-2-BKR3 (GE-C60) Setting Calculation}

Virtual Outputs:
\begin{tabular}{cll} 
[M1] Contact Output 5 Operate & \(=\) & \(86 B F\) TRIP On (VO1) \\
[M1] Contact Output 5 Seal-In & \(=\) & \(86 B F\) TRIP On (VO1)
\end{tabular}
[M1] Contact Output 5 Events \(=\) Enabled
[M2] Contact Output 6 ID \(=\) RETRIP BKR
[M2] Contact Output 6 Operate \(=\) RETRIP BKR On (VO2)
[M2] Contact Output 6 Seal-In \(=\quad\) RETRIP BKR On (VO2) [M2] Contact Output 6 Events \(=\) Enabled
[M3] Contact Output 7 ID \(\quad=\quad\) Bkr Trip
[M3] Contact Output 7 Operate \(\quad=\quad\) Bkr Trip On (VO7) [M3] Contact Output 7 Seal-In \(=\) OFF [M3] Contact Output 7 Events \(=\) Enabled
[M4] Contact Output 8 ID \(=\quad\) Bkr Close
[M4] Contact Output 8 Operate \(\quad=\quad\) Bkr Close On (VO8) [M4] Contact Output 8 Seal-In = OFF [M4] Contact Output 8 Events \(=\) Enabled SETTING PARAMETER
Virtual Output 1 ID \(=\) 86BF TRIP
Virtual Output 1 Events \(=\quad\) Enabled
Virtual Output 2 ID \(=\) RETRIP BKR
Virtual Output 2 Events \(=\) Enabled

Virtual Output 3 ID \(=\) JNIT ALARM
Virtual Output 3 Events \(=\) Enabled

Virtual Output 4 ID \(=\quad\) Trig Oscill
Virtual Output 4 Events \(=\quad\) Enabled
Virtual Output 5 ID \(=\quad\) ALARM NC
Virtual Output 5 Events \(=\quad\) Enabled
Virtual Output 6 ID \(=\quad\) TRIP LED
Virtual Output 6 Events \(=\quad\) Enabled
Virtual Output 7 ID \(=\quad\) Bkr Trip
Virtual Output 7 Events \(\quad=\quad\) Enabled
Virtual Output 8 ID \(=\quad\) Bkr Close
Virtual Output 8 Events \(=\quad\) Enabled
\begin{tabular}{rll} 
Virtual Output 9 ID & \(=\) & Retrip LED \\
Virtual Output 9 Events & \(=\) & Enabled \\
& & \\
Virtual Output 10 ID & \(=\) & Phase A Trip \\
Virtual Output 10 Events & \(=\) & Enabled \\
Virtual Output 11 ID & \(=\) & Phase B Trip
\end{tabular}

\section*{Appendix 23 \\ 50-62-2-BKR3 (GE-C60) Setting Calculation}

Virtual Output 11 Events
Virtual Output 12 ID \(=\quad\) Phase C Trip Virtual Output 12 Events \(=\) Enabled

Virtual Output 13 ID \(\quad=\quad\) Ground Trip
Virtual Output 13 Events \(=\) Enabled
Other Virtual Outputs (from VO14 to VO96)
Remote Devices:
Remote Inputs:
Remote Outputs DNA Bit Pairs
Remote Outputs UserSt Bit Pairs:
Resetting:
Direct Inputs:
Direct Outputs:
Teleprotection:
IEC 61850 GOOSE Analogs Inputs
\# Not used

\section*{Appendix 24 \\ 50-62-1-BKR5 (Areva P141) Setting Calculation}
\begin{tabular}{llllll} 
1. Data & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=\) & 1190.25
\end{tabular}\(\quad\) ohms

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of \(1,349 \mathrm{Amp}\) or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance, but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary amp, 300 CT primary amp, or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.

\section*{SYSTEM DATA:}

CB CONTROL:
\[
\begin{aligned}
\text { CB Control by } & =\text { Disabled } \\
\text { Reset Lockout by } & =\text { CB Close } \\
\text { Man Close RstDly } & =5.000 \mathrm{~s} \\
\text { CB2 Status Input } & =52 \mathrm{~A}
\end{aligned}
\]

DATE AND TIME:
\[
\begin{aligned}
\text { IRIG-B Sync } & =\text { Enabled } \\
\text { Battery Alarm } & =\text { Enabled } \\
\text { Other Time Settings } & =\text { Default }
\end{aligned}
\]

CONFIGURATION:
\[
\begin{aligned}
\text { Setting Group } & =\text { Select via Menu } \\
\text { Active Settings } & =\text { Group } 1 \\
\text { Setting Group } 1 & =\text { Enabled } \\
\text { Setting Group } 2 & =\text { Disabled } \\
\text { Setting Group } 3 & =\text { Disabled } \\
\text { Setting Group } 4 & =\text { Disabled } \\
\text { System Config } & =\text { Invisible }
\end{aligned}
\]

\section*{Appendix 24}

\section*{50-62-1-BKR5 (Areva P141) Setting Calculation}
\begin{tabular}{|c|c|}
\hline Overcurrent = Enabled & \# 50FD-P \\
\hline Neg Sequence O/C = Enabled & \# Unbalance \\
\hline Broken Conductor = Disabled & \# Not used \\
\hline Earth Fault 1 = Disabled & \# Not used \\
\hline Earth Fault 2 = Enabled & \# 50FD-G \\
\hline Sensitive E/F Prot' \(\mathrm{n}=\) Disabled & \# Not used \\
\hline Residual O/V NVD = Disabled & \# Not used \\
\hline Thermal Overload = Disabled & \# Not used \\
\hline Neg Sequence O/V = Disabled & \# Not used \\
\hline Cold Load Pickup = Disabled & \# Not used \\
\hline Selective Logic = Disabled & \# Not used \\
\hline Admit Protection \(=\) Disabled & \# Not used \\
\hline Volt Protection \(=\) Disabled & \# Not used \\
\hline Freq Protection \(=\) Disabled & \# Not used \\
\hline df/dt Protection \(=\) Disabled & \# Not used \\
\hline CB Fail = Enabled & \\
\hline Supervision = Enabled & \\
\hline Fault Locator \(=\) Disabled & \\
\hline Input Labels = Visible & \\
\hline Output Labels = Visible & \\
\hline CT \& VT Ratios = Visible & \\
\hline Record Control \(=\) Invisible & \\
\hline Disturb Recorder \(=\) Visible & \\
\hline Measure't Setup = Visible & \\
\hline Comms Settings \(=\) Visible & \\
\hline Commission Tests \(=\) Visible & \\
\hline Setting Values = Secondary & \\
\hline Control Inputs = Invisible & \\
\hline Ctrl I/P Config = Invisible & \\
\hline Ctrl I/P Labels = Invisible & \\
\hline Direct Access \(=\) Disabled & \\
\hline LCD Contrast = 11 & \\
\hline Main VT Primary \(=110.0 \mathrm{~V}\) & \# Not used \\
\hline Main VT Sec'y \(=110.0 \mathrm{~V}\) & \# Not used \\
\hline Phase CT Primary \(=3000 \mathrm{~A}\) & \\
\hline Phase CT Sec'y \(=5.000 \mathrm{~A}\) & \\
\hline E/F CT Primary \(=3000\) A & \\
\hline E/F CT Secondary \(=5.000 \mathrm{~A}\) & \\
\hline SEF CT Primary \(=1.000 \mathrm{~A}\) & \\
\hline SEF CT Secondary \(=1.000 \mathrm{~A}\) & \\
\hline See setting file for detail & \\
\hline Default Display \(=\) Description & \\
\hline Local Values = Primary & \\
\hline Remote Values = Primary & \\
\hline Measurement Ref = VA & \\
\hline Measurement Mode \(=0\) & \\
\hline Fix Dem Period \(=30.00 \mathrm{~min}\) & \\
\hline Roll Sub Period \(=30.00 \mathrm{~min}\) & \\
\hline
\end{tabular}

\section*{Appendix 24}

\section*{50-62-1-BKR5 (Areva P141) Setting Calculation}

Num Sub Periods = 1
COMMISSION TESTS:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Monitor Bit \(1=64\)} \\
\hline \multicolumn{3}{|c|}{Monitor Bit \(2=65\)} \\
\hline \multicolumn{3}{|c|}{Monitor Bit \(3=66\)} \\
\hline \multicolumn{3}{|c|}{Monitor Bit \(4=67\)} \\
\hline \multicolumn{3}{|c|}{Monitor Bit \(5=68\)} \\
\hline \multicolumn{3}{|c|}{Monitor Bit \(6=69\)} \\
\hline \multicolumn{3}{|c|}{Monitor Bit \(7=70\)} \\
\hline \multicolumn{3}{|c|}{Monitor Bit \(8=71\)} \\
\hline \multicolumn{3}{|l|}{CB MONITOR SETUP:} \\
\hline \multicolumn{3}{|c|}{Broken \({ }^{\wedge}\) = 2.000} \\
\hline \multicolumn{3}{|c|}{\(\wedge^{\wedge}\) Maintenance \(=\) Alarm Disabled} \\
\hline \multicolumn{3}{|c|}{\(1^{\wedge}\) Lockout = Alarm Disabled} \\
\hline \multicolumn{3}{|c|}{No. CB Ops Maint = Alarm Disabled} \\
\hline \multicolumn{3}{|c|}{No. CB Ops Lock = Alarm Disabled} \\
\hline \multicolumn{3}{|c|}{CB Time Maint = Alarm Disabled} \\
\hline \multicolumn{3}{|c|}{CB Time Lockout = Alarm Disabled} \\
\hline \multicolumn{3}{|c|}{Fault Freq Lock = Alarm Disabled} \\
\hline \multicolumn{3}{|l|}{OPTO CONFIG:} \\
\hline \multicolumn{3}{|c|}{Global Nominal V \(=110 / 125 \mathrm{~V}\)} \\
\hline \multicolumn{3}{|c|}{Opto Filter Cntl \(=11111111\)} \\
\hline \multicolumn{3}{|c|}{Characteristic = Standard 60\%-80\%} \\
\hline \multicolumn{3}{|l|}{Group 1:} \\
\hline \multicolumn{3}{|l|}{GROUP 1 OVERCURRENT:} \\
\hline \multicolumn{3}{|c|}{\(1>1\) Function = DT} \\
\hline \multicolumn{3}{|c|}{|>1 Direction \(=\) Non-Directional} \\
\hline & \(1>1\) Current Set \(=0.75\) & \# 50FD-P \\
\hline \multicolumn{3}{|c|}{\(1>1\) Time Delay \(=0\)} \\
\hline \multicolumn{3}{|c|}{\(1>1\) tRESET \(=0\) s} \\
\hline \multicolumn{3}{|c|}{\(1>2\) Status \(=\) Disabled} \\
\hline \multicolumn{3}{|c|}{\(1>3\) Status \(=\) Disabled} \\
\hline \multicolumn{3}{|c|}{\(1>4\) Status \(=\) Disabled} \\
\hline \multicolumn{3}{|c|}{1> Blocking \(=000000000\)} \\
\hline & \(1>\) Char Angle \(=45 \mathrm{deg}\) & \# Default \\
\hline \multicolumn{3}{|c|}{VCO Status \(=\) Disabled} \\
\hline \multicolumn{3}{|l|}{GROUP 1 NEG SEQ O/C} \\
\hline \multicolumn{3}{|c|}{\(12>1\) Status = Enabled} \\
\hline \multicolumn{3}{|c|}{\(12>1\) Function \(=\) DT} \\
\hline \multicolumn{3}{|c|}{\(12>1\) Directional \(=\) Non-Directional} \\
\hline \multicolumn{3}{|c|}{\(12>1\) Current Set \(=500.0 \mathrm{~mA}\)} \\
\hline \multicolumn{3}{|c|}{12>1 Time Delay \(=0 \mathrm{~s}\)} \\
\hline \multicolumn{3}{|c|}{\(12>1\) Treset \(=0 \mathrm{~s}\)} \\
\hline \multicolumn{3}{|c|}{\(12>2\) Status \(=\) Disabled} \\
\hline \multicolumn{3}{|c|}{\(12>3\) Status \(=\) Disabled} \\
\hline \multicolumn{3}{|c|}{\(12>4\) Status \(=\) Disabled} \\
\hline \multicolumn{3}{|c|}{12> Blocking \(=00000000\)} \\
\hline \multicolumn{3}{|c|}{\(12>\) Char Angle \(=-60.00 \mathrm{deg}\)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{GROUP 1 EARTH FAULT \(2 \quad 12>\mathrm{V} 2 \mathrm{pol}\) Set \(=5.000 \mathrm{~V}\)}} \\
\hline & & \\
\hline
\end{tabular}

\section*{Appendix 24}

\section*{50-62-1-BKR5 (Areva P141) Setting Calculation}
\begin{tabular}{rl} 
IN2> Input & \(=\) Derived \\
IN2 \(>1\) Function & \(=\) DT \\
IN2 \(>1\) Direction & \(=\) Non-Directional \\
IN2 \(>1\) Current & \(=500.0 \mathrm{~mA}\) \\
IN2 \(>1\) Time Delay & \(=0 \mathrm{~s}\) \\
IN2 \(>1\) tRESET & \(=0 \mathrm{~s}\) \\
IN2 \(>2\) Function & \(=\) Disabled \\
IN2 \(>3\) Status & \(=\) Disabled \\
IN2 \(>4\) Status & \(=\) Disabled \\
IN2> Blocking & \(=00000000\) \\
IN2> & \(=\) POL \\
IN2> Char Angle & \(=-45.00\) deg \\
IN2 \(2>\) Pol & \(=\) Zero Sequence \\
IN2> VNpol Set & \(=5.000 \mathrm{~V}\)
\end{tabular}

GROUP 1 CB FAIL \& \(\mathrm{I}<:\)
CB Fail 1 Status = Enabled
GB Fail 1 Timer \(=0 \mathrm{~s}\)
CB Fail 2 Status \(=\) Enabled
CB Fail 2 Timer \(=130.0 \mathrm{~ms}\)
Volt Prot Reset \(=1<\) only
Ext Prot Reset \(=1<\) only
\(\mathrm{I}<\) Current Set \(=500.0 \mathrm{~mA}\)
\(\mathrm{IN}<\) Current Set \(=500.0 \mathrm{~mA}\)
ISEF<Current \(=20.00 \mathrm{~mA}\)
Remove l> Start = Disabled
Remove IN> Start = Disabled
GROUP 1 SUPERVISION:
\[
\begin{aligned}
\text { VTS Status } & =\text { Indication } \\
\text { VTS Reset Mode } & =\text { Manual } \\
\text { VTS Time Delay } & =5.000 \mathrm{~s} \\
\text { VTS I> Inhibit } & =50.0 \mathrm{~A} \\
\text { VTS I } 2>\text { Inhibit } & =250.0 \mathrm{~mA} \\
\text { CTS Mode } & =\text { Disabled }
\end{aligned}
\]

\section*{GROUP 1 INPUT LABELS:}

Opto Input 1 Input L1
Opto Input 2 Input L2
Opto Input 3 30-TC2/1 ALM
Opto Input 4 86BF-1/1 TRIP
Opto Input 5 30-86BF-1/1 ALM
Opto Input 6 BF Initiation
Opto Input 7 Input L7
Opto Input 8 Input L8
GROUP 1 OUTPUT LABELS:
Relay 1 Trip 86BF
Relay 2 ReTrip BkrTC2
Relay 3 Any Trip
Relay 4 Output R4
Relay 5 Output R5
Relay 6 Output R6
Relay 7 Output R7

\section*{Appendix 25 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{lclll} 
1. Data & & & & \\
MVA_Base \(=\) & 100 & kV_Base \(=\) & 345 & Z_Base \(=\) \\
CTR \(=\) & 600 & PTR \(=\) & 3000 & CTR/PTR \(=0.2\) \\
Total MVA of all three GSUs \(=\) & 750 & ; Maximum full load current (amps) \(=\) & 1255.11
\end{tabular}

\section*{2. Setting Criteria}
2.1. Set phase IOC element, i.e. phase fault detector, above load if possible but not more than \(2 / 3\) of the minimum phase to phase fault at remote bus with the largest source out. For the minimum phase to phase fault at Farragut station under minimum condition which is considered as the largest unit (STG1) of the three units out of service, the contributions from Charlie Poletti are 1,454 Amp via Q35M line and 1,349 Amp via Q35L line. Since each breaker failure relay will normally see only half of the fault contribution per feeder. The IOC1 element shall be set at 0.15 pu or 0.75 CT secondary amp or 450 CT primary amp, or \(1 / 3\) of 1,349 Amp or \(35.8 \%\) of maximum full load. Fault detector picking up on load is considered acceptable here per IEEE standard.
2.2. Set residual IOC element, i.e. ground fault detector, above maximum expected unbalance, but not more than \(2 / 3\) of the minimum ground fault at remote bus with the largest source out. For the minimum line to ground fault at Farragut station under minimum condition with is considered as the largest unit (STG1) of the three units out of serivce, the fault contributions from Chaerlie Poletti are 2,021 Amp via Q35L and 2,129 Amp via Q35M. Since each breaker failure relay will normally see only half of the fault contribution on each feeder, set residual IOC element at 0.1 pu or 0.5 CT secondary amp, 300 CT primary amp, or \(24 \%\) of maximum full load, which is less than \(1 / 3\) of minimum phase to ground fault at Farragut.
2.3 Breaker failure timer of 130 ms is used for 3 phase fault and 160 ms is used for unbalanced fault per ConEd standard. Existing Poletti settings show that 120 ms breaker failure time is used regardless fault type.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Device Definition:} \\
\hline \multicolumn{3}{|l|}{Product Setup:} \\
\hline \multicolumn{3}{|l|}{Security:} \\
\hline \multicolumn{3}{|l|}{Display Properties:} \\
\hline \multicolumn{3}{|l|}{Clear Relay Records:} \\
\hline \multicolumn{3}{|l|}{Communications:} \\
\hline \multicolumn{3}{|l|}{Modbus User Map:} \\
\hline \multicolumn{3}{|l|}{Real Time Clock:} \\
\hline IRIG-B Signal Type & \(=\) & DC Shift \\
\hline All other settings & = & Default \\
\hline Fault Report: SETTING & & PARAMETER \\
\hline Fault Report 1 Source & = & SRC 1 (SRC 1) \\
\hline Fault Report 1 Trigger & = & Trig Oscill On (VO4) \\
\hline Fault Report 1 Positive Seq (Z1) Mag & = & 0.49 ohms \\
\hline Fault Report 1 Positive Seq (Z1) Angle & = & 78 deg \\
\hline Fault Report 1 Zero Seq (Z0) Mag & = & 1.50 ohms \\
\hline Fault Report 1 Zero Seq (Z0) Angle & = & 54 deg \\
\hline Fault Report 1 Line Length Units & = & mile \\
\hline Fault Report 1 Line Length & = & 7.74 \\
\hline Fault Report 1 VT Substitution & = & None \\
\hline Fault Report 1 System Z0 Mag & = & 0.49 ohms \\
\hline Fault Report 1 System Z0 Angle & = & 78 deg \\
\hline \multicolumn{3}{|l|}{Oscillography:} \\
\hline
\end{tabular}

\section*{Appendix 25 \\ 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline SETTING & & PARAMETER \\
\hline Number Of Records & \(=\) & 6 \\
\hline Trigger Mode & = & Automatic Overwrite \\
\hline Trigger Position & = & 30\% \\
\hline Trigger Source & = & Trig Oscill On (VO4) \\
\hline AC Input Waveforms & = & 32 samples/cycle \\
\hline Digital Channel 1 & = & OFF \\
\hline Digital Channel 2 & = & OFF \\
\hline Digital Channel 3 & = & OFF \\
\hline Digital Channel 4 & = & OFF \\
\hline Digital Channel 5 & = & OFF \\
\hline Digital Channel 6 & = & 86BF TRIP On (VO1) \\
\hline Digital Channel 7 & = & RETRIP BKR On (VO2) \\
\hline Digital Channel 8 & = & UNIT ALARM On (VO3) \\
\hline Digital Channel 9 & = & OFF \\
\hline Digital Channel 10 & = & NEUTRAL IOC1 PKP \\
\hline Digital Channel 11 & = & NEUTRAL IOC1 OP \\
\hline Digital Channel 12 & = & PHASE IOC1 PKP A \\
\hline Digital Channel 13 & = & PHASE IOC1 OP A \\
\hline Digital Channel 14 & = & PHASE IOC1 PKP B \\
\hline Digital Channel 15 & = & PHASE IOC1 OP B \\
\hline Digital Channel 16 & = & PHASE IOC1 PKP C \\
\hline Digital Channel 17 & = & PHASE IOC1 OP C \\
\hline Digital Channel 18 & = & Bkr Fail Int On(H7c) \\
\hline Digital Channel 19 & = & BKR FAIL 1 TRIP OP \\
\hline Digital Channel 20 & = & BKR FAIL 2 TRIP OP \\
\hline Digital Channel 21 & = & BKR FAIL 1 T2 OP \\
\hline Digital Channel 22 & = & BKR FAIL 2 T2 OP \\
\hline Digital Channel 23 & = & 86BF TRIP On (VO1) \\
\hline Digital Channel 24 & = & RETRIP BKR On (VO2) \\
\hline Digital Channel 25 & = & BKR FAIL 1 RETRIPA \\
\hline Digital Channel 26 & = & BKR FAIL 1 RETRIPB \\
\hline Digital Channel 27 & = & BKR FAIL 1 RETRIPC \\
\hline Digital Channel 28 & = & OFF \\
\hline Digital Channel 29 & = & OFF \\
\hline Digital Channel 30 & = & OFF \\
\hline Digital Channel 31 & = & OFF \\
\hline Digital Channel 32 & = & OFF \\
\hline Digital Channel 33 & = & OFF \\
\hline Digital Channel 34 & = & OFF \\
\hline Digital Channel 35 & = & OFF \\
\hline Digital Channel 36 & = & OFF \\
\hline Digital Channel 37 & = & OFF \\
\hline Digital Channel 38 & = & OFF \\
\hline Digital Channel 39 & = & OFF \\
\hline Digital Channel 40 & = & OFF \\
\hline Digital Channel 41 & = & OFF \\
\hline Digital Channel 42 & = & OFF \\
\hline Digital Channel 43 & = & OFF \\
\hline Digital Channel 44 & = & OFF \\
\hline
\end{tabular}

\section*{Appendix 25 \\ 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline Digital Channel 45 & = & OFF & \\
\hline Digital Channel 46 & = & OFF & \\
\hline Digital Channel 47 & = & OFF & \\
\hline Digital Channel 48 & = & OFF & \\
\hline Digital Channel 49 & = & OFF & \\
\hline Digital Channel 50 & = & OFF & \\
\hline Digital Channel 51 & = & OFF & \\
\hline Digital Channel 52 & = & OFF & \\
\hline Digital Channel 53 & = & OFF & \\
\hline Digital Channel 54 & = & OFF & \\
\hline Digital Channel 55 & = & OFF & \\
\hline Digital Channel 56 & = & OFF & \\
\hline Digital Channel 57 & = & OFF & \\
\hline Digital Channel 58 & = & OFF & \\
\hline Digital Channel 59 & = & OFF & \\
\hline Digital Channel 60 & = & OFF & \\
\hline Digital Channel 61 & = & OFF & \\
\hline Digital Channel 62 & = & OFF & \\
\hline Digital Channel 63 & = & OFF & \\
\hline Analog Channel 1 & = & SRC1 & Ia Mag \\
\hline Analog Channel 2 & = & SRC2 & Ia Mag \\
\hline Analog Channel 3 & = & SRC1 & lb Mag \\
\hline Analog Channel 4 & = & SRC2 & Ib Mag \\
\hline Analog Channel 5 & = & SRC1 & Ic Mag \\
\hline Analog Channel 6 & = & SRC2 & Ic Mag \\
\hline Analog Channel 7 & = & SRC1 & In Mag \\
\hline Analog Channel 8 & = & SRC2 & In Mag \\
\hline Analog Channel 9 & = & SRC1 & Ia Angle \\
\hline Analog Channel 10 & = & SRC2 & Ia Angle \\
\hline Analog Channel 11 & = & SRC1 & Ib Angle \\
\hline Analog Channel 12 & = & SRC2 & lb Angle \\
\hline Analog Channel 13 & = & SRC1 & Ic Angle \\
\hline Analog Channel 14 & = & SRC2 & Ic Angle \\
\hline Analog Channel 15 & = & Off & \\
\hline Analog Channel 16 & \(=\) & Off & \\
\hline
\end{tabular}

Data Logger:
Demand: \# Default
User-Programmable Leds: LED Test:
\begin{tabular}{rll} 
Function & \(=\) & Enabled \\
Control & \(=\) & CONTROL PUSHBUTTON 1 ON
\end{tabular}

Trip and Alarms Leds:
\begin{tabular}{rlll} 
Trip LED Input & \(=\) & 86BF TRIP On (VO1) & \\
Alarm LED Input & \(=\) & UNIT ALARM On (VO3) & \\
& & & \\
LED 1 & \(=\) & 86BF TRIP On (VO1) & Latched \\
LED 2 & \(=\) & BKR FAIL 1 TRIP OP & Latched \\
LED 3 & \(=\) & BKR FAIL 2 TRIP OP & Latched \\
LED 4 & \(=\) & Retrip LED On (VO9) & Latched \\
LED 5 & \(=\) & OFF & Latched
\end{tabular}

\section*{Appendix 25 \\ 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|}
\hline LED 6 & = & OFF & Self-Reset \\
\hline LED 7 & = & OFF & Self-Reset \\
\hline LED 8 & \(=\) & OFF & Self-Reset \\
\hline LED 9 & \(=\) & Phase A Trip On (VO10) & Latched \\
\hline LED 10 & = & Phase B Trip On (VO11) & Latched \\
\hline LED 11 & = & Phase C Trip On (VO12) & Latched \\
\hline LED 12 & = & Ground Trip On (VO13) & Latched \\
\hline LED 13 & = & OFF & Self-Reset \\
\hline LED 14 & = & OFF & Self-Reset \\
\hline LED 15 & = & OFF & Self-Reset \\
\hline LED 16 & = & OFF & Self-Reset \\
\hline LED 17 & \(=\) & OFF & Self-Reset \\
\hline LED 18 & = & OFF & Self-Reset \\
\hline LED 19 & = & OFF & Self-Reset \\
\hline LED 20 & = & OFF & Self-Reset \\
\hline LED 21 & = & OFF & Self-Reset \\
\hline LED 22 & \(=\) & Bkr Fail Int On(H7c) & Self-Reset \\
\hline LED 23 & \(=\) & BKR FAIL 1 T2 OP & Self-Reset \\
\hline LED 24 & = & BKR FAIL 2 T2 OP & Self-Reset \\
\hline LED 25 & = & OFF & Self-Reset \\
\hline LED 26 & \(=\) & OFF & Self-Reset \\
\hline LED 27 & \(=\) & OFF & Self-Reset \\
\hline LED 28 & = & OFF & Self-Reset \\
\hline LED 29 & = & OFF & Self-Reset \\
\hline LED 30 & = & OFF & Self-Reset \\
\hline LED 31 & = & OFF & Self-Reset \\
\hline LED 32 & \(=\) & OFF & Self-Reset \\
\hline LED 33 & = & OFF & Self-Reset \\
\hline LED 34 & \(=\) & OFF & Self-Reset \\
\hline LED 35 & = & OFF & Self-Reset \\
\hline LED 36 & = & OFF & Self-Reset \\
\hline LED 37 & = & OFF & Self-Reset \\
\hline LED 38 & = & OFF & Self-Reset \\
\hline LED 39 & = & OFF & Self-Reset \\
\hline LED 40 & = & OFF & Self-Reset \\
\hline LED 41 & \(=\) & OFF & Self-Reset \\
\hline LED 42 & = & OFF & Self-Reset \\
\hline LED 43 & \(=\) & OFF & Self-Reset \\
\hline LED 44 & = & OFF & Self-Reset \\
\hline LED 45 & \(=\) & OFF & Self-Reset \\
\hline LED 46 & = & OFF & Self-Reset \\
\hline LED 47 & = & OFF & Self-Reset \\
\hline LED 48 & \(=\) & OFF & Self-Reset \\
\hline
\end{tabular}

User-Programmable Self Tests:
\begin{tabular}{rll} 
Remote Device Off Function & \(=\) & Enabled \\
Pri Ethernet Fail Function & \(=\) & Enabled \\
Battery Fail Function & \(=\) & Enabled \\
SNTP Fail Function & \(=\) & Enabled \\
IRIG B Fail Function & \(=\) & Enabled
\end{tabular}

Control Pushbuttons:

\section*{Appendix 25 \\ 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & CPB 1 CPB 2 & CPB 3 & & \\
\hline Function & Enabled Disabled & Disabled & & \\
\hline Events & Disabled Disabled & Disabled & & \\
\hline Flex States: & & & & \# All OFF \\
\hline User-definable & displays: & & & \# Not used \\
\hline Direct I/O: & & & & \# Not used \\
\hline Teleprotection: & & & & \# Not used \\
\hline Installation: & & & & \\
\hline & Relay Name & \(=\) & 50/62-2 Breaker 5 & \\
\hline System Setup: & & & & \\
\hline AC Inputs & & & & \\
\hline Current: & : PARAMETER & & CT F1 & \\
\hline & Phase CT Primary & \(=\) & 3000 A & \\
\hline & Phase CT Secondary & = & 5 A & \\
\hline & Ground CT Primary & = & 3000 A & \\
\hline & Ground CT Secondary & \(=\) & 5 A & \\
\hline Voltage: & & & & \# Not used \\
\hline Power System: & & & & \\
\hline & Nominal Frequency & \(=\) & 60 Hz & \\
\hline & Phase Rotation & = & ABC & \\
\hline & Frequency And Phase Reference & = & SRC 1 (SRC 1) & \\
\hline & Frequency Tracking Function & = & Enabled & \\
\hline Signal Sources: & : PARAMETER & & SOURCE 1 SOURCE 2 & \\
\hline & Name & \(=\) & SRC 1 SRC 2 & \\
\hline & Phase CT & = & F1 None & \\
\hline & Ground CT & = & None None & \\
\hline & Phase VT & = & None None & \\
\hline & Aux VT & = & None None & \\
\hline Breakers: & : SETTING & & PARAMETER & \\
\hline & Breaker 1 Function & \(=\) & Disabled & \\
\hline & Breaker 1 Push Button Control & = & Disabled & \\
\hline & Breaker 1 Name & = & Bkr 1 & \\
\hline & Breaker 1 Mode & = & 3-Pole & \\
\hline & Breaker 1 Open & = & OFF & \\
\hline & Breaker 1 Block Open & = & OFF & \\
\hline & Breaker 1 Close & = & OFF & \\
\hline & Breaker 1 Block Close & = & OFF & \\
\hline & Breaker 1 Phase A/3-Pole Closed & = & OFF & \\
\hline & Breaker 1 Phase A/3-Pole Opened & = & OFF & \\
\hline & Breaker 1 Phase B Closed & = & OFF & \\
\hline & Breaker 1 Phase B Opened & = & OFF & \\
\hline & Breaker 1 Phase C Closed & = & OFF & \\
\hline & Breaker 1 Phase C Opened & = & OFF & \\
\hline & Breaker 1 Toperate & = & 0.070 s & \\
\hline & Breaker 1 External Alarm & = & OFF & \\
\hline & Breaker 1 Alarm Delay & = & 0.000 s & \\
\hline & eaker 1 Manual Close Recal Time & \(=\) & 0.000 s & \\
\hline & Breaker 1 Out Of Service & = & OFF & \\
\hline & Breaker 1 Events & = & Disabled & \\
\hline
\end{tabular}

\section*{Appendix 25 50-62-2-BKR5 (GE-C60) Setting Calculation}


\section*{Ground Current:}

\section*{Appendix 25 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\frac{\text { Ground TOC }}{\text { Ground IOC }}
\] & & & & \begin{tabular}{l}
\# Not used \\
\# Not used
\end{tabular} \\
\hline Breaker Failure: & PARAMETER & & BF1 & BF2 \\
\hline & Function & = & Enabled & Enabled \\
\hline & Mode & = & 3-Pole & 3-Pole \\
\hline & Source & = & SRC 1 (SRC 1) & SRC 1 (SRC1) \\
\hline & Current Supervision & = & Yes & Yes \\
\hline & Use Seal-In & = & No & No \\
\hline & Three Pole Initiate & = & Bkr Fail Int On(H7c); & Cont lp 2 On(H5c) \\
\hline & Block & = & NEUTRAL IOC1 PKP & OFF \\
\hline & Phase Current Supv Pickup & = & 0.15 pu & \# 50FD-P \\
\hline & Neutral Current Supv Pickup & = & 0.100 pu & \# 50FD-G \\
\hline & Use Timer 1 & = & No & No \\
\hline & Timer 1 Pickup Delay & = & 0.000 s & 0.000 s \\
\hline & Use Timer 2 & = & Yes & Yes \\
\hline & Timer 2 Pickup Delay & = & 0.130 s & 0.160 s \\
\hline & Use Timer 3 & = & No & No \\
\hline & Timer 3 Pickup Delay & = & 0.000 s & 0.000 s \\
\hline & Breaker Pos1 Phase A/3P & \(=\) & OFF & OFF \\
\hline & Breaker Pos2 Phase A/3P & = & OFF & OFF \\
\hline & Breaker Test On & = & OFF & OFF \\
\hline & Phase Current HiSet Pickup & = & 0.15 pu & 0.15 pu \\
\hline & Neutral Current HiSet Pickup & = & 0.100 pu & 0.100 pu \\
\hline & Phase Current LoSet Pickup & = & 0.15 pu & 0.15 pu \\
\hline & Neutral Current LoSet Pickup & = & 0.100 pu & 0.100 pu \\
\hline & LoSet Time Delay & = & 0.000 s & 0.000 s \\
\hline & Trip Dropout Delay & = & 0.000 s & 0.000 s \\
\hline & Target & = & Latched & Latched \\
\hline & Events & = & Enabled & Enabled \\
\hline & Phase A Initiate & = & OFF & OFF \\
\hline & Phase B Initiate & = & OFF & OFF \\
\hline & Phase C Initiate & = & OFF & OFF \\
\hline & Breaker Pos1 Phase B & = & OFF & OFF \\
\hline & Breaker Pos1 Phase C & = & OFF & OFF \\
\hline & Breaker Pos2 Phase B & = & OFF & OFF \\
\hline & Breaker Pos2 Phase C & = & OFF & OFF \\
\hline Voltage Elements: & & & & \# Not used \\
\hline Power: & & & & \# Not used \\
\hline Control Elements: & & & & \\
\hline Trip Bus: & & & & \# Not used \\
\hline Setting Groups: & & & & \# Not used \\
\hline Selector Switches: & & & & \# Not used \\
\hline Synchrocheck: & & & & \# Not used \\
\hline Digital Elements: & & & & \# Not used \\
\hline Digital Counters: & & & & \# Not used \\
\hline Monitoring Elements: & & & & \# Not used \\
\hline Autoreclose 1P & & & & \# Not used \\
\hline Inputs/Outputs: & & & & \\
\hline \multirow[t]{2}{*}{Contact inputs:} & \multicolumn{2}{|l|}{SETTING} & \multicolumn{2}{|l|}{PARAMETER} \\
\hline & [H5A] Contact Input 1 ID & \(=\) & \multicolumn{2}{|l|}{CSM-2 (E13)} \\
\hline
\end{tabular}

\section*{Appendix 25 \\ 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|}
\hline [H5A] Contact Input 1 Debounce Time & = & 2.0 ms \\
\hline [H5A] Contact Input 1 Events & \(=\) & Enabled \\
\hline [H5C] Contact Input 2 ID & = & CSM-2 (TIE) \\
\hline [H5C] Contact Input 2 Debounce Time & \(=\) & 2.0 ms \\
\hline [H5C] Contact Input 2 Events & \(=\) & Enabled \\
\hline [H6A] Contact Input 3 ID & = & Bkr TC1 Mont \\
\hline [H6A] Contact Input 3 Debounce Time & = & 2.0 ms \\
\hline [H6A] Contact Input 3 Events & \(=\) & Enabled \\
\hline [H6C] Contact Input 4 ID & \(=\) & 86BF-2 Oper \\
\hline [H6C] Contact Input 4 Debounce Time & \(=\) & 2.0 ms \\
\hline [H6C] Contact Input 4 Events & \(=\) & Enabled \\
\hline [H7A] Contact Input 5 ID & = & 86BF-2 Mont \\
\hline [H7A] Contact Input 5 Debounce Time & \(=\) & 2.0 ms \\
\hline [H7A] Contact Input 5 Events & \(=\) & Enabled \\
\hline [H7C] Contact Input 6 ID & = & 43L/R \\
\hline [H7C] Contact Input 6 Debounce Time & = & 2.0 ms \\
\hline [H7C] Contact Input 6 Events & = & Enabled \\
\hline [H8A] Contact Input 7 ID & = & CSM-2 (OFF) \\
\hline [H8A] Contact Input 7 Debounce Time & = & 2.0 ms \\
\hline [H8A] Contact Input 7 Events & \(=\) & Enabled \\
\hline [H8C] Contact Input 8 ID & = & CSM-2 (FARR) \\
\hline [H8C] Contact Input 8 Debounce Time & = & 2.0 ms \\
\hline [H8C] Contact Input 8 Events & \(=\) & Enabled \\
\hline [M5A] Contact Input 9 ID & = & 11LTSR-2A \\
\hline [M5A] Contact Input 9 Debounce Time & = & 2.0 ms \\
\hline [M5A] Contact Input 9 Events & \(=\) & Enabled \\
\hline [M5C] Contact Input 10 ID & = & 11LTSR-2B \\
\hline [M5C] Contact Input 10 Debounce Time & = & 2.0 ms \\
\hline [M5C] Contact Input 10 Events & \(=\) & Enabled \\
\hline [M6A] Contact Input 11 ID & \(=\) & Cont Ip 11 \\
\hline [M6A] Contact Input 11 Debounce Time & = & 2.0 ms \\
\hline [M6A] Contact Input 11 Events & \(=\) & Disabled \\
\hline [M6C] Contact Input 12 ID & = & spare \\
\hline [M6C] Contact Input 12 Debounce Time & = & 2.0 ms \\
\hline [M6C] Contact Input 12 Events & \(=\) & Disabled \\
\hline [M7A] Contact Input 13 ID & = & Bkr Fail Int \\
\hline [M7A] Contact Input 13 Debounce Time & = & 2.0 ms \\
\hline [M7A] Contact Input 13 Events & \(=\) & Enabled \\
\hline
\end{tabular}

\section*{Appendix 25 \\ 50-62-2-BKR5 (GE-C60) Setting Calculation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & [M7C] Contact Input 14 ID & = & \multicolumn{3}{|l|}{Cont lp 14} \\
\hline [M7C] & Contact Input 14 Debounce Time & = & \multicolumn{3}{|l|}{2.0 ms} \\
\hline & [M7C] Contact Input 14 Events & \(=\) & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M8A] Contact Input 15 ID & \(=\) & \multicolumn{3}{|l|}{Cont Ip 15} \\
\hline [M8A] & Contact Input 15 Debounce Time & = & \multicolumn{3}{|l|}{2.0 ms} \\
\hline & [M8A] Contact Input 15 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M8C] Contact Input 16 ID & = & \multicolumn{3}{|l|}{Cont Ip 16} \\
\hline [M8C] & Contact Input 16 Debounce Time & = & \multicolumn{3}{|l|}{2.0 ms} \\
\hline & [M8C] Contact Input 16 Events & \(=\) & \multicolumn{3}{|l|}{Disabled} \\
\hline \multicolumn{6}{|l|}{Contact Inputs Thresholds:} \\
\hline \multicolumn{6}{|r|}{Cont Ip 1, Cont Ip 2, Cont Ip 3, Cont Ip 4(H5A, H5C, H6A, H6C) \(=84 \mathrm{Vdc}\)} \\
\hline \multicolumn{6}{|r|}{Cont Ip5, Cont lp 6, Cont Ip 7, Cont lp 8(H7A, H7C, H8A, H8C) \(=84 \mathrm{Vdc}\)} \\
\hline \multicolumn{6}{|r|}{Cont Ip 9, Cont Ip 10, Cont Ip 11, Cont Ip 12(M5A, M5C, M6A, M6C) = 84 Vdc} \\
\hline \multicolumn{6}{|l|}{Cont lp 13, Cont lp 14, Cont lp 15, Cont lp 16(M7A, M7C, M8A, M8C) = 84 Vdc} \\
\hline \multirow[t]{5}{*}{Virtual Inputs:} & SETTING & & \multicolumn{3}{|l|}{PARAMETER} \\
\hline & Virtual Input 1 Function & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 1 ID & = & \multicolumn{3}{|l|}{Bkr Trip} \\
\hline & Virtual Input 1 Type & = & \multicolumn{3}{|l|}{Self-Reset} \\
\hline & Virtual Input 1 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 2 Function & = & \multicolumn{3}{|l|}{Enabled} \\
\hline & Virtual Input 2 ID & = & \multicolumn{3}{|l|}{Bkr Close} \\
\hline & Virtual Input 2 Type & = & \multicolumn{3}{|l|}{Self-Reset} \\
\hline & Virtual Input 2 Events & = & \multicolumn{3}{|l|}{Enabled} \\
\hline Other & Virtual Inputs (from VI03 to VI64) & & & & \# Not used \\
\hline \multicolumn{6}{|l|}{Contact Outputs:} \\
\hline & [H1] Contact Output 1 ID & = & \multicolumn{3}{|l|}{Any Trip} \\
\hline & [H1] Contact Output 1 Operate & \(=\) & \multicolumn{3}{|l|}{TRIP LED On (VO6)} \\
\hline & [H1] Contact Output 1 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H1] Contact Output 1 Events & \(=\) & \multicolumn{3}{|l|}{Enabled} \\
\hline & [H2] Contact Output 2 ID & \(=\) & \multicolumn{3}{|l|}{spare} \\
\hline & [H2] Contact Output 2 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H2] Contact Output 2 Events & \(=\) & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H3] Contact Output 3 ID & \(=\) & \multicolumn{3}{|l|}{Not Used} \\
\hline & [H3] Contact Output 3 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H3] Contact Output 3 Events & \(=\) & \multicolumn{3}{|l|}{Disabled} \\
\hline & [H4] Contact Output 4 ID & = & \multicolumn{3}{|l|}{NOT USED} \\
\hline & [H4] Contact Output 4 Operate & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Seal-In & = & \multicolumn{3}{|l|}{OFF} \\
\hline & [H4] Contact Output 4 Events & = & \multicolumn{3}{|l|}{Disabled} \\
\hline & [M1] Contact Output 5 ID & \(=\) & BF TRIP & & \\
\hline
\end{tabular}

\section*{Appendix 25}

\section*{50-62-2-BKR5 (GE-C60) Setting Calculation}

Virtual Outputs:
\(\begin{array}{cll}\text { [M1] Contact Output } 5 \text { Operate } & = & 86 B F \text { TRIP On (VO1) } \\ \text { [M1] Contact Output } 5 \text { Seal-In } & = & 86 B F \text { TRIP On (VO1) }\end{array}\) [M1] Contact Output 5 Events \(=\quad\) Enabled
[M2] Contact Output 6 ID \(=\quad\) RETRIP BKR
[M2] Contact Output 6 Operate \(=\quad\) RETRIP BKR On (VO2) [M2] Contact Output 6 Seal-In \(=\) RETRIP BKR On (VO2) [M2] Contact Output 6 Events \(=\) Enabled
[M3] Contact Output 7 ID \(=\quad\) Bkr Trip [M3] Contact Output 7 Operate \(=\quad\) Bkr Trip On (VO7) [M3] Contact Output 7 Seal-In = OFF [M3] Contact Output 7 Events = Enabled
[M4] Contact Output 8 ID \(=\quad\) Bkr Close
[M4] Contact Output 8 Operate \(=\quad\) Bkr Close On (VO8) [M4] Contact Output 8 Seal-In = OFF [M4] Contact Output 8 Events \(=\) Enabled SETTING PARAMETER
Virtual Output 1 ID \(=\quad\) 86BF TRIP
Virtual Output 1 Events \(=\) Enabled
Virtual Output 2 ID = RETRIP BKR
Virtual Output 2 Events \(=\) Enabled
Virtual Output 3 ID = JNIT ALARM
Virtual Output 3 Events \(=\) Enabled
Virtual Output 4 ID = Trig Oscill
Virtual Output 4 Events = Enabled
Virtual Output 5 ID = ALARM NC
Virtual Output 5 Events \(=\) Enabled
Virtual Output 6 ID = TRIP LED
Virtual Output 6 Events \(=\) Enabled
Virtual Output 7 ID \(=\quad\) Bkr Trip
Virtual Output 7 Events \(=\) Enabled
Virtual Output 8 ID \(\quad=\quad\) Bkr Close
Virtual Output 8 Events \(=\) Enabled
\begin{tabular}{rll} 
Virtual Output 9 ID & \(=\) & Retrip LED \\
Virtual Output 9 Events & \(=\) & Enabled \\
Virtual Output 10 ID & \(=\) & Phase A Trip \\
Virtual Output 10 Events & \(=\) & Enabled \\
Virtual Output 11 ID & \(=\) & Phase B Trip
\end{tabular}

\section*{Appendix 25 \\ 50-62-2-BKR5 (GE-C60) Setting Calculation}

Virtual Output 11 Events
Virtual Output 12 ID \(=\quad\) Phase C Trip Virtual Output 12 Events \(=\) Enabled

Virtual Output 13 ID \(\quad=\quad\) Ground Trip
Virtual Output 13 Events \(=\) Enabled

Other Virtual Outputs (from VO14 to VO96)
Remote Devices:
Remote Inputs:
Remote Outputs DNA Bit Pairs
Remote Outputs UserSt Bit Pairs:
Resetting:
Direct Inputs:
Direct Outputs:
Teleprotection:
IEC 61850 GOOSE Analogs Inputs
\# Not used

\section*{Appendix 26 CT Evaluation}

\section*{345kV CT (3000:5, C800) Steady State Evaluation}
\begin{tabular}{|c|c|c|c|c|}
\hline NO. & CALCULATION & DATA & UNIT & BASIS (DATA SOURCE) \\
\hline & The maximum fault current If in primary amperes & 37994 & A & Per Aspen 1LG (Twice lead) \\
\hline & The corresponding primary circuit XIR ratio, i.e. tan(angle) & 4.96 & N/A & Calculated per fault angle \\
\hline & Fault angle & 78.6 & degree & PER ASPEN \\
\hline & CT Voltage Rating & 800 & & Per One \\
\hline & CT Ratio & 3000 & 5 & Breaker Drawing \\
\hline & Actual CT Ratio & 3000 & 5 & PER ONE-LINE Drawing 001-Sheet 1 \\
\hline 1 & The CT secondary maximum fault current Imax-ct-secondary & 63.32 & A & \\
\hline & Check that CT secondary current does not exceed 100A for maximum fault condition & CT OK & & \\
\hline 2 & Effective C-Rating = CT Tap/Max CT Ratio * (C-Rating) & 800.00 & & \\
\hline & Burden Maximum Allow = Eff C-Rating/(2*Imax-ct-secondary) & 6.32 & & C-Rating is two times of the excitation voltage Refer (IEEE C37-110 1996) \\
\hline & CT winding 600 turns at 0.00207 ohms/turn & 1.242 & ohms & 0.00207ohms/turn per Breaker DWG \\
\hline & CT leads One Way length In Feet & 400 & feet & Per Physical layout or cable list \\
\hline & Single Phase Fault, Y/N? & Y & & \\
\hline & CT lead Wiring Size (AWG) & 10 & AWG & Per Physical layout or cable list \\
\hline & Ohms/1000ft of CT Lead & 1.00 & ohms/1000ft & \\
\hline & CT leads burden & 0.80 & ohms & 1 Ph or Netural CT: Two Way ; 3 Ph: One-Way \\
\hline & Relay burden & 0.01 & ohms & NEGILIBLE PER SEL PAPER 6142.PDF \\
\hline & Actual CT burden in total & 2.05 & ohms & \\
\hline & Compare actual CT burden in total and maximum allowed Burden & CT OK & & \\
\hline & CT Steady State Saturation Evaluation Final Conclusion & CT OK & & \\
\hline
\end{tabular}

Note 1: Equation per IEEE C37-110 2007
Note 2. During normal operation, i.e. the ring bus is complete, the fault current through one CT will be half of the fault level used.
3. The fault current used in CT evaluation is the maximum CT primary current with addition of Astoria Energy II generating plant. Note It is the largest part of the fault current which relay will see, instead of the total fault current.

\section*{Appendix 26 CT Evaluation}

345kV CT (3000:5, C800) Transient State Evaluation
\begin{tabular}{|c|c|c|c|c|}
\hline NO. & CALCULATION & DATA & UNIT & BASIS (DATA SOURCE) \\
\hline 1 & The maximum fault current If in primary amperes & 37994 & A & Per Aspen 1LG (Twice lead) \\
\hline 2 & The corresponding primary circuit X/R ratio, i.e. tan(angle) & 4.96 & N/A & Calculated per fault angle \\
\hline & Fault angle & 78.6 & degree & PER ASPEN \\
\hline 3 & CT Voltage Rating & 800 & & Per One \\
\hline & CT Ratio & 3000 & 5 & Breaker Drawing \\
\hline & Actual CT Ratio & 3000 & 5 & PER ONE-LINE Drawing 001-Sheet 1 \\
\hline 4 & Maximum fault current in per unit of actual CT rating If & 12.66 & pu & \\
\hline & CT Standard Burden & 8 & ohms & \\
\hline & Actual CT Standard Burden & 8.00 & ohms & \\
\hline & CT winding 600 turns at 0.00207 ohms/turn & 1.242 & ohms & 0.00207ohms/turn per Breaker DWG \\
\hline & CT leads One Way length In Feet & 400 & feet & Per Physical layout or cable list \\
\hline & Single Phase Fault or Netural CT, "Y" or "N"? & Y & & \\
\hline & CT lead Wiring Size (AWG) & 10 & AWG & Per Physical layout or cable list \\
\hline & Ohms/1000ft of CT Lead & 1.00 & ohms/kft & \\
\hline & CT leads burden & \(\underline{0.80}\) & ohms & 1 Ph or Netural CT: Two Way ; 3 Ph: One-Way \\
\hline & Relay burden & \(\underline{0.01}\) & ohms & NEGILIBLE PER SEL PAPER 6142.PDF \\
\hline & Actual CT burden in total & 2.05 & ohms & \\
\hline & Actual CT burden in per unit of the actual CT standard burden Zb & 0.26 & pu & \\
\hline 5 & \(|\mathrm{X} / \mathrm{R}+1|^{*} \mathrm{If}\) * \(\mathrm{Zb}=\) & 19.36 & N/A & \\
\hline 6 & \(20>=|X / R+1| *\) If * Zb ? & CT OK & N/A & CONCLUSION \\
\hline
\end{tabular}

Note 1: Equation per SEL paper 6027.pdf
Note 2. During normal operation, i.e. the ring bus is complete, the fault current through one CT will be half of the fault level used.
3. The fault current used in CT evaluation is the maximum CT primary current with addition of Astoria Energy II generating plant. Note It is the largest part of the fault current which relay will see, instead of the total fault current.

\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results

Appendix 27-7 Summary of fault being displayed:
Prefault voltage: From a linear network solution
Generator impedance: Subtransient
MOV iteration: [Off]
Ignore shunts with + seq value: [Yes]
Ignore loads:
\[
\left[\begin{array}{ll}
{[\mathrm{Yes}]} \\
\hline
\end{array}\right.
\]

Ignore line \(\mathrm{G}+\mathrm{jB}\) : [Yes]


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results

Appendix 27-10 Summary of fault being displayed
Prefault voltage: From a linear network solution
Generator impedance: Subtransient
MOV iteration: [Off]
Ignore shunts with + seq value: [Yes]
Ignore loads:
\[
\left[\begin{array}{ll}
{[\mathrm{Yes}]} \\
\hline
\end{array}\right.
\]
ggnore line \(\mathrm{G}+\mathrm{jB}\) : [Yes]

10. Close-In Fault on: 0 CharlesPolet \(345 . \mathrm{kV}\) - 0 E15ST 47 345.kV 1L 2LG Type=B-C
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FAULT CURRENT (A @ DEG)} \\
\hline + SEQ & - SEQ & 0 SEQ & A PHASE & & B PHASE C & PHASE \\
\hline 29889.4@ -80.5 & 16393.4@ 93.0 & 13728.5@107.3 & 0.0@ & 0.0 & 48112.2@162.3 & 41677.2@ \\
\hline \multicolumn{7}{|c|}{THEVENIN IMPEDANCE (OHM)} \\
\hline 0.31934+j4.32648 & 0.36693+j4.34665 & 1.70682+j4.921 & & & & \\
\hline SHORT CIRC & UIT MVA= 28986.0 & X/R RATIO & \(=8.44801\) & R0/X & \(\mathrm{X} 1=0.3945 \mathrm{X} 0 / \mathrm{X}\) & \(1=1.13748\) \\
\hline
\end{tabular}

VOLTAGE (KV, L-G) \(\gg 71.510 @-1.8 ~ 71.510 @-1.8 ~ 71.510 @-1.8 ~ 214.529 @-1.8 ~ 0.000 @ 10.0 ~ 0.000 @ 0.0\)
BRANCH CURRENT (A) TO >
    0 AEII 345. 2L \(3072.8 @ 136.4 \quad 1522.3 @-88.6 \quad 3134.8 @-90.5 \quad 3367.0 @-131.1 \quad 4472.4 @-19.2 \quad 5781.2 @-111.1\)
    16 E15ST 48 345. 1L 13611.1@ 95.6 7362.0@ -86.9 \(5344.4 @-67.6\) 1675.0@ 48.5 \(21616.4 @-17.6\) 18275.5@-148.5
    0 E15ST 47 345. 1L \(13881.8 @ 95.8 ~ 7509.8 @-86.7 ~ 5441.5 @-67.6 ~ 1692.0 @ 49.3 ~ 22025.3 @-17.5 \quad 18659.0 @-148.4\)
CURRENT TO FAULT (A) > 29889.4@-80.5 16393.4@ 93.0 13728.5@107.3 0.0@ 0.0 48112.2@162.3 41677.2@ 36.3
THEVENIN IMPEDANCE (OHM) > 4.33825@ 85.8 4.36211@ 85.2 5.20885@ 70.9


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results

Appendix 27-12 Summary of fault being displayed
Prefault voltage: From a linear network solution
Generator impedance: Subtransient
MOV iteration: [Off]
Ignore shunts with + seq value: [Yes]
Ignore loads:
[Yes]
Ignore line G+jB: [Yes]
\(================================================================\)
12. Close-In Fault on: 0 CharlesPolet \(345 . \mathrm{kV}\) - 0 E15ST \(47345 . \mathrm{kV}\) 1L LL Type=B-C
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{FAULT CURRENT (A @ DEG)} \\
\hline + SEQ & - SEQ & 0 SEQ & A PHASE & B PHASE & C PHASE \\
\hline 23082.3@-82.7 & 23082.3@ 97.3 & 0.0@ 0.0 & 0.0@ 0.0 & 39979.8@-172.7 & 39979.8@ 7.3 \\
\hline \multicolumn{6}{|c|}{THEVENIN IMPEDANCE (OHM)} \\
\hline \(0.31934+\mathrm{j} 4.32648\) & 0.36693+j4.34665 & \multicolumn{2}{|l|}{\(1.70682+\mathrm{j} 4.92127\)} & & \\
\hline SHORT CIRCU & IT MVA= 24086. & X/R RAT & 12.638 & X1 \(=0.3945 \quad \mathrm{X} 0\) & \(\mathrm{X} 1=1.13748\) \\
\hline
\end{tabular}



\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


\section*{CHARLES POLETTI SUBSTATION}

Appendix 27 - Short Circuit Study Results


Appendix 28 Relay Coordination between Charles Poletti Station and Farragut Station
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{CTR = 400} & \multicolumn{2}{|l|}{PTR = 3000} \\
\hline Case & 310 Mag (Amp) & \[
\begin{gathered}
310 \\
\text { Angle } \\
\hline
\end{gathered}
\] & V0 Mag (kV) & \begin{tabular}{l}
V0 \\
Angle
\end{tabular} & kVA
Product & VA @ Relay & Per Unit of Pickup VA & Relay & Pickup VA & Time Dial & Time (Sec) & \[
\begin{array}{|l}
\hline \text { Q35L-67N } \\
\text { Time (Sec) } \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
\text { Q35M-67N } \\
\text { Time (Sec) } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { CTI } \\
(\mathrm{Sec})
\end{gathered}
\] \\
\hline 1 & 55651 & -82.2 & 61.22 & 176 & 9709533.869 & 8091.28 & 80.91 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{F} 4 \mathrm{E} \\
& 67 \mathrm{~N}-2 / \mathrm{F} 4 \mathrm{E}
\end{aligned}
\] & 100 & 3 & 0.15 & 0.66 & 0.67 & 0.51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & \\
\hline FDR45 & \multicolumn{14}{|l|}{Case 1: 1LG fault at relay (67N-1/F4E or 67N-2/F4E) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station.} \\
\hline 2 & 55293 & -82.1 & 61.69 & 175.7 & 9743211.971 & 8119.34 & 81.19 & 67N-1/F4E 67N-2/F4E & 100 & 3 & 0.15 & & 0.52 & 0.37 \\
\hline FDR45 \begin{tabular}{l|l} 
Case 2: 1LG fault at relay (67N-1/F4E or 67N-2/F4E) close-in with the largest source (Line 41) out of service and maximum contribution from \\
Charlie Poletti station. Line Q35L at Charlie Poletti is out of service.
\end{tabular} & \multicolumn{14}{|l|}{Case 2: 1LG fault at relay ( \(67 \mathrm{~N}-1 / \mathrm{F} 4 \mathrm{E}\) or \(67 \mathrm{~N}-2 / \mathrm{F} 4 \mathrm{E}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35L at Charlie Poletti is out of service.} \\
\hline 3 & 55294 & -82.1 & 61.71 & 175.7 & 9746547.004 & 8122.12 & 81.22 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{F} 4 \mathrm{E} \\
& 67 \mathrm{~N}-2 / \mathrm{F} 4 \mathrm{E} \\
& \hline
\end{aligned}
\] & 100 & 3 & 0.15 & 0.52 & - & 0.37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FDR45 & \multicolumn{14}{|l|}{Case 3: 1LG fault at relay (67N-1/F4E or \(67 \mathrm{~N}-2 / \mathrm{F} 4 \mathrm{E}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35M at Charlie Poletti is out of service.} \\
\hline 4 & 55820 & -82.4 & 61.22 & 176 & 9727783.122 & 8106.49 & 81.06 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{F} 8 \mathrm{~W} \\
& 67 \mathrm{~N}-2 / \mathrm{F} 8 \mathrm{~W}
\end{aligned}
\] & 100 & 3 & 0.15 & 0.66 & 0.67 & 0.51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FDR46 & \multicolumn{14}{|l|}{Case 4: 1LG fault at relay ( \(67 \mathrm{~N}-1 / \mathrm{F} 8 \mathrm{~W}\) or \(67 \mathrm{~N}-2 / \mathrm{F} 8 \mathrm{~W}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station.} \\
\hline 5 & 55500 & -82.2 & 61.69 & 175.7 & 9774192.486 & 8145.16 & 81.45 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{F} 8 \mathrm{~W} \\
& 67 \mathrm{~N}-2 / \mathrm{F} 8 \mathrm{~W}
\end{aligned}
\] & 100 & 3 & 0.15 & & 0.52 & 0.37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FDR46 & \multicolumn{14}{|l|}{Case 5: 1LG fault at relay ( \(67 \mathrm{~N}-1 / \mathrm{F} 8 \mathrm{~W}\) or \(67 \mathrm{~N}-2 / \mathrm{F} 8 \mathrm{~W}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35L at Charlie Poletti is out of service.} \\
\hline 6 & 55500 & -82.2 & 61.71 & 175.7 & 9777361.295 & 8147.80 & 81.48 & \[
\begin{array}{l|}
\hline 67 \mathrm{~N}-1 / \mathrm{F} 8 \mathrm{~W} \\
67 \mathrm{~N}-2 / \mathrm{F} 8 \mathrm{~W}
\end{array}
\] & 100 & 3 & 0.15 & 0.52 & - & 0.37 \\
\hline FDR46 & \multicolumn{14}{|l|}{Case 6: 1LG fault at relay ( \(67 \mathrm{~N}-1 / \mathrm{F} 8 \mathrm{~W}\) or \(67 \mathrm{~N}-2 / \mathrm{F} 8 \mathrm{~W}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35M at Charlie Poletti is out of service.} \\
\hline 7 & 53026 & -82.6 & 61.22 & 176 & 9230084.493 & 7691.74 & 38.46 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{F} 2 \mathrm{E} \\
& 67 \mathrm{~N}-2 / \mathrm{F} 2 \mathrm{E} \\
& \hline
\end{aligned}
\] & 200 & 2.5 & 0.2 & 0.66 & 0.67 & 0.46 \\
\hline
\end{tabular} Case 7: 1LG fault at relay (67N-1/F2E or 67N-2/F2E) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8 & 52690 & -82.4 & 61.69 & 175.7 & 9268800.459 & 7724.00 & 38.62 & \[
\begin{aligned}
& \hline 67 N-1 / F 2 E \\
& 67 N-2 / F 2 E
\end{aligned}
\] & 200 & 2.5 & 0.2 & - & 0.52 & 0.32 \\
\hline
\end{tabular}

\section*{Appendix 28 Relay Coordination between Charles Poletti Station and Farragut Station}

CTR = 400
PTR = 3000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FDR61 & \multicolumn{14}{|l|}{Case 8: 1LG fault at relay (67N-1/F2E or 67N-2/F2E) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35L at Charlie Poletti is out of service.} \\
\hline 9 & 52667 & -82.4 & 61.71 & 175.7 & 9267758.133 & 7723.13 & 38.62 & \[
\begin{aligned}
& \hline 67 N-1 / F 2 E \\
& 67 N-2 / F 2 E
\end{aligned}
\] & 200 & 2.5 & 0.2 & 0.52 & & 0.32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FDR61 & \multicolumn{14}{|l|}{Case 9: 1LG fault at relay (67N-1/F2E or 67N-2/F2E) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35M at Charlie Poletti is out of service.} \\
\hline 10 & 53886 & -82.6 & 61.22 & 176 & 9379782.239 & 7816.49 & 39.08 & \[
\begin{aligned}
& \text { 67N-1/F4W } \\
& 67 \mathrm{~N}-2 / F 4 \mathrm{~W}
\end{aligned}
\] & 200 & 2.5 & 0.2 & 0.66 & 0.67 & 0.46 \\
\hline FDR62 & \multicolumn{14}{|l|}{Case 10: 1LG fault at relay (67N-1/F4W or \(67 \mathrm{~N}-2 / \mathrm{F} 4 \mathrm{~W}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station.} \\
\hline 11 & 53556 & -82.5 & 61.69 & 175.7 & 9415751.46 & 7846.46 & 39.23 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{F} 4 \mathrm{~W} \\
& 67 \mathrm{~N}-2 / \mathrm{F} 4 \mathrm{~W} \\
& \hline
\end{aligned}
\] & 200 & 2.5 & 0.2 & - & 0.52 & 0.32 \\
\hline FDR62 & \multicolumn{14}{|l|}{Case 11: 1LG fault at relay (67N-1/F4W or \(67 \mathrm{~N}-2 / F 4 \mathrm{~W}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35L at Charlie Poletti is out of service.} \\
\hline 12 & 53533 & -82.5 & 61.71 & 175.7 & 9414759.09 & 7845.63 & 39.23 & \[
\begin{aligned}
& \text { 67N-1/F4W } \\
& 67 \mathrm{~N}-2 / F 4 \mathrm{~W}
\end{aligned}
\] & 200 & 2.5 & 0.2 & 0.52 & - & 0.32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FDR62 & \multicolumn{14}{|l|}{Case 12: 1LG fault at relay ( \(67 \mathrm{~N}-1 / \mathrm{F} 4 \mathrm{~W}\) or \(67 \mathrm{~N}-2 / \mathrm{F} 4 \mathrm{~W}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35M at Charlie Poletti is out of service.} \\
\hline 13 & 52970 & -82.6 & 61.22 & 176 & 9220336.733 & 7683.61 & 38.42 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{FBT} \\
& 67 \mathrm{~N}-2 / \mathrm{FBT}
\end{aligned}
\] & 200 & 2.5 & 0.2 & 0.66 & 0.67 & 0.46 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FDR63 & \multicolumn{14}{|l|}{Case 13: 1LG fault at relay ( \(67 \mathrm{~N}-1 / \mathrm{FBT}\) or \(67 \mathrm{~N}-2 / \mathrm{FBT}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station.} \\
\hline 14 & 52634 & -82.4 & 61.69 & 175.7 & 9258949.39 & 7715.79 & 38.58 & 67N-1/FBT 67N-2/FBT & 200 & 2.5 & 0.2 & - & 0.52 & 0.32 \\
\hline
\end{tabular}
FDR63 Case 14: 1LG fault at relay ( \(67 \mathrm{~N}-1 / \mathrm{FBT}\) or \(67 \mathrm{~N}-2 / \mathrm{FBT}\) ) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35L at Charlie Poletti is out of service.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & 52610 & -82.4 & 61.71 & 175.7 & 9257727.901 & 7714.77 & 38.57 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{FBT} \\
& 67 \mathrm{~N}-2 / \mathrm{FBT}
\end{aligned}
\] & 200 & 2.5 & 0.2 & 0.52 & - & 0.32 \\
\hline FDR63 & \multicolumn{14}{|l|}{Case 15: 1LG fault at relay (67N-1/FBT or 67N-2/FBT) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35M at Charlie Poletti is out of service.} \\
\hline 16 & 55224 & -81.9 & 61.22 & 176 & 9651488.993 & 8042.91 & 26.81 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{B} 7 \mathrm{E} \\
& 67 \mathrm{~N}-2 / \mathrm{B} 7 \mathrm{E}
\end{aligned}
\] & 300 & 3 & 0.29 & 0.66 & 0.67 & 0.37 \\
\hline
\end{tabular}

\section*{Appendix 28 Relay Coordination between Charles Poletti Station and Farragut Station}

CTR = 400
PTR = 3000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline B47 & \multicolumn{14}{|l|}{Case 16: 1LG fault at relay (67N-1/B7E or 67N-2/B7E) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station.} \\
\hline 17 & 58244 & -82 & 61.69 & 175.7 & 10268944.91 & 8557.45 & 28.52 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{B} 7 \mathrm{E} \\
& 67 \mathrm{~N}-2 / \mathrm{B} 7 \mathrm{E}
\end{aligned}
\] & 300 & 2.5 & 0.27 & - & 0.52 & 0.25 \\
\hline B47 & \multicolumn{14}{|l|}{Case 17: 1LG fault at relay (67N-1/B7E or 67N-2/B7E) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35L at Charlie Poletti is out of service.} \\
\hline 18 & 55868 & -82 & 61.22 & 176 & 9758521.651 & 8132.10 & 27.11 & \[
\begin{array}{|l|}
\hline 67 N-1 / F 2 W \\
67 N-2 / F 2 W
\end{array}
\] & 300 & 3 & 0.29 & 0.66 & 0.67 & 0.37 \\
\hline FDR48 & \multicolumn{14}{|l|}{Case 18: 1LG fault at relay close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station.} \\
\hline 19 & 58950 & -82.1 & 61.71 & 175.7 & 10390981.77 & 8659.15 & 28.86 & \[
\begin{array}{|l|}
\hline 67 \mathrm{~N}-1 / \mathrm{F} 2 \mathrm{~W} \\
67 \mathrm{~N}-2 / \mathrm{F} 2 \mathrm{~W}
\end{array}
\] & 300 & 3 & 0.27 & 0.52 & - & 0.25 \\
\hline FDR48 & \multicolumn{14}{|l|}{Case 19: 1LG fault at relay (67N-1/B7E or 67N-2/B7E) close-in with the largest source (Line 41) out of service and maximum contribution from Charlie Poletti station. Line Q35M at Charlie Poletti is out of service.} \\
\hline 20 & 15788 & -70.4 & 34.95 & -173.6 & 1584719.7 & 1320.60 & 4.40 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{B} 7 \mathrm{E} \\
& 67 \mathrm{~N}-2 / \mathrm{B} 7 \mathrm{E}
\end{aligned}
\] & 300 & 3 & 1.7 & - & 0.47 & 1.23 \\
\hline B47 & \multicolumn{14}{|l|}{Case 20: 1LG fault at relay (Q35M-67N @ Charlie Poletti) close-in with the AEII (G13) station in of service, which is normal.} \\
\hline 21 & 17522 & -75.4 & 38.79 & -178.6 & 1952008.096 & 1626.67 & 5.42 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{B} 7 \mathrm{E} \\
& 67 \mathrm{~N}-2 / \mathrm{B} 7 \mathrm{E}
\end{aligned}
\] & 300 & 2.5 & 1.4 & - & 0.47 & 0.93 \\
\hline B47 & \multicolumn{14}{|l|}{Case 21: 1LG fault at relay (Q35M-67N @ Charlie Poletti) close-in with the AEII (G13) station out of service.} \\
\hline 22 & 15839 & -70.4 & 34.95 & -173.6 & 1589838.822 & 1324.87 & 4.42 & \[
\begin{aligned}
& \hline 67 \mathrm{~N}-1 / \mathrm{F} 2 \mathrm{~W} \\
& 67 \mathrm{~N}-2 / \mathrm{F} 2 \mathrm{~W}
\end{aligned}
\] & 300 & 3 & 1.7 & 0.45 & - & 1.25 \\
\hline FDR48 & \multicolumn{14}{|l|}{Case 22: 1LG fault at relay (Q35L-67N @ Charlie Poletti) close-in with the AEII (G13) station in of service, which is normal.} \\
\hline 23 & 17579 & -75.4 & 38.79 & -178.6 & 1958358.082 & 1631.97 & 5.44 & \[
\begin{array}{|l|}
\hline 67 \mathrm{~N}-1 / \mathrm{F} 2 \mathrm{~W} \\
67 \mathrm{~N}-2 / \mathrm{F} 2 \mathrm{~W} \\
\hline
\end{array}
\] & 300 & 3 & 1.4 & 0.46 & - & 0.94 \\
\hline FDR48 & \multicolumn{14}{|l|}{Case 23: 1LG fault at relay (Q35L-67N @ Charlie Poletti) close-in with the AEII (G13) station out of service.} \\
\hline
\end{tabular}

\section*{Appendix 28 Relay Coordination between Charles Poletti Station and Farragut Station}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{CTR = 400} & \multicolumn{2}{|l|}{PTR = 3000} \\
\hline Case & \[
\begin{array}{|c|}
\hline 3 I 0 \mathrm{Mag} \\
(\mathrm{Amp})
\end{array}
\] & \[
\begin{gathered}
3 I 0 \\
\text { Angle }
\end{gathered}
\] & \[
\begin{gathered}
\text { V0 Mag } \\
(\mathrm{kV})
\end{gathered}
\] & \begin{tabular}{l}
V0 \\
Angle
\end{tabular} & \[
\begin{gathered}
\text { kVA } \\
\text { Product }
\end{gathered}
\] & VA @ Relay & Per Unit of Pickup VA & Relay & Pickup
VA & Time Dial & Time (Sec) & \[
\begin{gathered}
\text { G13-67N } \\
\text { Time (Sec) }
\end{gathered}
\] & & \[
\begin{gathered}
\text { CTI } \\
(\mathrm{Sec})
\end{gathered}
\] \\
\hline 24 & 15788 & -70.4 & 34.95 & -173.6 & 1584719.7 & 1320.60 & 4.40 & \[
\begin{array}{|l|}
\hline 67 \mathrm{~N}-1 / \mathrm{F} 2 \mathrm{~W} \\
\text { 67N-2/F2W }
\end{array}
\] & 300 & 3 & 1.7 & 0 & - & 1.7 \\
\hline FDR48 & \multicolumn{14}{|l|}{Case 14: 1LG fault at relay (G13-67N @ Charlie Poletti) close-in.} \\
\hline 25 & 15839 & -70.4 & 34.95 & -173.6 & 1589838.822 & 1324.87 & 4.42 & \[
\begin{array}{|l|}
\hline 67 \mathrm{~N}-1 / \mathrm{F} 2 \mathrm{~W} \\
\text { 67N-2/F2W } \\
\hline
\end{array}
\] & 300 & 3 & 1.7 & 0 & - & 1.7 \\
\hline Case & \multicolumn{14}{|l|}{Case 25: 1LG fault at relay (G13-67N @ Charlie Poletti) close-in.} \\
\hline
\end{tabular}
\(\qquad\)

note: curves are valid if the nultiple of the tap
PRODUCT (VOLTS-AMPERES) DOES MOT EXCEED THE
VOLTAGE ON THE RELAY POLARIZING COILS.
(MADE FRON CURVE 538020)

Fig. 11. Typical Time Curves of the Type CWP Relay at Maximum Torque Angle - Curves Apply if the Multiple of Tap Product in Volt-Amperes Does Not Exceed the Polarizing Voltage in Volts.











\section*{Appendix 29 Relay Coordination between Charles Poletti Station and East 13th street Station}


Note: It is noted that coordination between Q35L-67N or Q35M-67N at Charlie Poletti and 67N/48 or 67N/B47 at East 13th street for a relay close-in fault at East 13th line 48 or B47 is not needed, since there is no 345 kV breaker at East 13th station.

\section*{Appendix 29 Relay Coordination between Charles Poletti Station and East 13th street Station}

Con Ed requires to confirm if there is no need for setting changes of the ground backup relays at E13th street station because of the new GSU's.
The following short circuit calculations have been done for this purpose.
1. Applying a single phase to ground fault at E15ST-47 bus with Poletti Generation (existing) Station in and Charles Poletti (New) Station out.
2. Applying a single phase to ground fault at E15ST-47 bus with Poletti Generation (existing) Station out and Charles Poletti (New) Station in.
3. Applying a single phase to ground fault at E15ST-48 bus with Poletti Generation (existing) Station in and Charles Poletti (New) Station out.
4. Applying a single phase to ground fault at E15ST-48 bus with Poletti Generation (existing) Station out and Charles Poletti (New) Station in.

Note:
1. In NYISO Aspen model, E15ST is used for East 13th street station.
2. The impact of the adjacent BERRIANS 3 station to be built shall be evaluated during its design and engineering in the future.

Ground Fault Comparision between the Poletti Station (existing) and Charles Poletti (New) Station.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Total 1LG fault current (A & Differen & 1LG Contribution From Poletti (A) & 1LG Contribution From Charles Poletti (A & Difference \\
\hline Case 1 & 53615 & & 6881 & 0 & \\
\hline Case 2 & 53747 & 0.25\% & 0 & 6933 & 0.76\% \\
\hline Case 3 & 52895 & & 6878 & 0 & \\
\hline Case 4 & 53021 & 0.24\% & 0 & 6930 & 0.76\% \\
\hline
\end{tabular}

Conclusion: the ground fault differences between the existing Poletti station and the new Charles Poletti station are neglectable.

\section*{Appendix 29 Relay Coordination between Charles Poletti Station and East 13th street Station}


Case 1 A single phase to ground fault at E15ST-47 bus with Poletti Generation (existing) Station in and Charles Poletti (New) Station out.

\section*{Appendix 29 Relay Coordination between Charles Poletti Station and East 13th street Station}


Case 2 A single phase to ground fault at E15ST-47 bus with Poletti Generation (existing) Station out and Charles Poletti (New) Station in.

\section*{Appendix 29 Relay Coordination between Charles Poletti Station and East 13th street Station}


Case 3 A single phase to ground fault at E15ST-48 bus with Poletti Generation (existing) Station in and Charles Poletti (New) Station out.

\section*{Appendix 29 Relay Coordination between Charles Poletti Station and East 13th street Station}


Case 4 A single phase to ground fault at E15ST-48 bus with Poletti Generation (existing) Station out and Charles Poletti (New) Station in.



\section*{Attachment 01 Transmission Line Impedance Calculation}

ACSR Table Data
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Description \\
\end{tabular}} & Resistivity & \begin{tabular}{c} 
Resistance \\
ra @ 25c
\end{tabular} & GMR & \begin{tabular}{c} 
Inductive \\
Xa
\end{tabular} & \begin{tabular}{c} 
Conductor \\
per Phase
\end{tabular} \\
\cline { 2 - 7 } & ohm-meters & ohm/mile & \(\mathbf{f t}\) & ohm/mile & N/A \\
\hline \(1192.5 \mathrm{kcmil} 45 / 7\) ACSR Bunting & 100 & 0.08050 & 0.04310 & 0.38200 & 2 \\
\hline
\end{tabular}
Equivalent depth of return \(\mathrm{De}=2160 * \operatorname{sqrt}(\mathrm{p} / \mathrm{f})\) in feet \(=\)
2788.55
where \(\mathrm{f}=60 \mathrm{~Hz}\)

Design Data
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Description \\
\cline { 2 - 7 }
\end{tabular}} & Length & Ground & dab & dbc & dca \\
\hline & mile & Wire Num & \(\mathbf{f t}\) & \(\mathbf{f t}\) & \(\mathbf{f t}\) \\
\hline \(1192.5 \mathrm{kcmil} 45 / 7\) ACSR Bunting & 0.35038 & 1 & 18.00 & 18.00 & 36.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline GMD in feet \(=\) & 22.67858 & & & \\
\hline Zero-sequence impedance - no ground wire Z0 (a) in feet \(=\) & 0.36670 & +j & 2.51192 & \\
\hline Zero-sequence self impedance Z0(g) in ohms per mile \(=\) & 0.52770 & +j & 4.03250 & \\
\hline
\end{tabular}

Design Data 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Description \\
\cline { 2 - 6 } \\
\cline { 2 - 6 } \\
\cline { 2 - 6 }
\end{tabular}} & Length & Ground & dag1 & dbg1 & dcg1 \\
\hline \(1192.5 \mathrm{kcmil} 45 / 7\) ACSR Bunting & mile & Wire Num & \(\mathbf{f t}\) & \(\mathbf{f t}\) & \(\mathbf{f t}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Zero-sequence ground mutal impedance Z0(ag) ohms/mile = & 0.28620 & +j & 1.65795 & \\
\hline Z0(ag)^2 = & -2.66688 & +j & 0.94901 & \\
\hline Z0(ag)^2/Z0(g) = & 0.14629 & +j & 0.68049 & \\
\hline Z0 = Z0(a) - Z0(ag)^2/Z0(g) = & 0.22041 & +j & 1.83143 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Description \\
\\
n
\end{tabular}} & \multirow{2}{*}{ kV } & \(\mathbf{R 1}\) & X1 & R0 & X0 \\
\cline { 3 - 7 } & & ohms/mile & ohms/mile & ohms/mile & ohms/mile \\
\hline \(1192.5 \mathrm{kcmil} 45 / 7\) ACSR Bunting & 345 & 0.04025 & 0.38038 & 0.11020 & 0.91572 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description} & \multirow[t]{2}{*}{kV} & R1 & X1 & R0 & X0 \\
\hline & & ohms & ohms & ohms & ohms \\
\hline 1192.5kcmil 45/7 ACSR Bunting & 345 & 0.01410 & 0.13328 & 0.03861 & 0.32085 \\
\hline
\end{tabular}

Zbase \(=1190.25\) ohms @ 100 MVA
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description} & \multirow[t]{2}{*}{kV} & R1 & X1 & R0 & X0 \\
\hline & & per unit & per unit & per unit & per unit \\
\hline 1192.5kcmil 45/7 ACSR Bunting & 345 & 0.00001 & 0.00011 & 0.00003 & 0.00027 \\
\hline CTR = 600 & & 000 & & & \\
\hline
\end{tabular}

CTR/PTR= 0.2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Description \\
\end{tabular}} & \multirow{2}{*}{\(\mathbf{k V}\)} & R1 & X1 & R0 & X0 \\
\cline { 3 - 6 } & & 2nd Ohms & 2nd Ohms & 2nd Ohms & 2nd Ohms \\
\hline 1192.5kcmil 45/7 ACSR Bunting & \multirow{2}{*}{345} & 0.00282 & 0.02666 & 0.00772 & 0.06417 \\
\hline \multirow{3}{*}{} & & & Z1 & & Z0 \\
\cline { 3 - 6 } & & & 2nd Ohms & & 2nd Ohms \\
\cline { 3 - 6 } & & & 0.02680 & & 0.06463 \\
\cline { 3 - 6 } & & & & &
\end{tabular}

\section*{Attachment 02 Transformer Data}

\section*{Data provided via an email}

From: Cliff.Nebeker@slthermal.com [mailto:Cliff.Nebeker@slthermal.com]
Sent: Monday, June 08, 2009 12:39 PM
To: Scott Chiappetta; Astoria II Project; Eric.Anderson@nypa.gov; Fred.Pagano@nypa.gov; MURPHYP@coned.com; mazzattor@coned.com; Nick.Johnson@slthermal.com;
Cliff.Nebeker@slthermal.com
Cc: David Klein
Subject: RE: Astoria II relay meeting notes
Zero sequence impedances and XIR ratioes are assumptions.
B. 1 Combustion turbine-generator step-up transformer (typical for two units)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline H Voltage & 345 & KV & Wye g & unded & @ & 129 & 172 & 215 & MVA \\
\hline X Voltage & 18 & KV & Delta & & @ & 129 & 172 & 215 & MVA \\
\hline Zps = & 8.50\% & \multicolumn{3}{|l|}{@129MV'A} & X/R= & 45 & \multicolumn{3}{|l|}{(assumed)} \\
\hline Zps = & 0.0019 & \(+\) & & 0.0850 & Zps0 = & 0.0019 & +j & 0.085 & ssumed) \\
\hline & & @ MV & 129 & & & & @ MVA= & & \\
\hline
\end{tabular}
B. 2 Steam turbine-generator step-up transformer


\section*{Attachment 03 Turbine Generator Data}

Data provided via an attachment of "345KV InterconnectionReq.doc" from an email
From: Cliff.Nebeker@slthermal.com [mailto:Cliff.Nebeker@slthermal.com]
Sent: Monday, June 08, 2009 12:39 PM
To: Scott Chiappetta; Astoria II Project; Eric.Anderson@nypa.gov; Fred.Pagano@nypa.gov; MURPHYP@coned.com; mazzattor@coned.com; Nick.Johnson@slthermal.com;
Cliff.Nebeker@slthermal.com
Cc: David Klein
Subject: RE: Astoria II relay meeting notes

\section*{C. 1 Combustion turbine-generator (typical for two units)}

1 Unit Rating in MVA \(\underline{226.0000}\)
2 Connection Type: WYE
3 Substransient impedance in R+jX" format. \(0.0029+j 0.145\)
Transient impedance in \(\mathrm{R}+\mathrm{j} \mathrm{X}\) ' format. Synchronous impedance in \(\mathrm{R}+\mathrm{jX}\) format Negative sequence impedance in \(\mathrm{R}+\mathrm{j} \mathrm{X}\) format Zero sequence impedance in \(\mathrm{R}+\mathrm{jX}\) format Neutral Impedance (in actual Ohms) in R+jX format
\begin{tabular}{ccll}
0.0029 & \(+j\) & 0.145 & '@ Unit MVA \\
0.0029 & \(+j\) & 0.255 & '@ Unit MVA \\
0.0029 & \(+j\) & 2.04 & '@ Unit MVA \\
0.0136 & \(+j\) & 0.146 & '@ Unit MVA \\
0.0072 & \(+j\) & 0.12 & '@ Unit MVA \\
0 & \(+j\) & 0.3456 & ohms
\end{tabular}
C. 2 Steam turbine-generator

1 Unit Rating in MVA 325.0000
2 Connection Type: WYE
3 Substransient impedance in \(\mathrm{R}+\mathrm{jX}\) " format. Transient impedance in \(\mathrm{R}+\mathrm{j} \mathrm{X}\) format. Synchronous impedance in \(\mathrm{R}+\mathrm{jX}\) format Negative sequence impedance in \(\mathrm{R}+\mathrm{j} \mathrm{X}\) format Zero sequence impedance in \(\mathrm{R}+\mathrm{jX}\) format Neutral Impedance (in actual Ohms) in \(\mathrm{R}+\mathrm{jX}\) format
\begin{tabular}{rlll}
0.0028 & \(+j\) & 0.175 & '@ Unit MVA \\
0.0028 & \(+j\) & 0.26 & '@ Unit MVA \\
0.0028 & \(+j\) & 1.96 & '@ Unit MVA \\
0.0139 & \(+j\) & 0.177 & '@ Unit MVA \\
0.0063 & \(+j\) & 0.125 & '@ Unit MVA \\
0 & \(+j\) & 0.3456 & ohms
\end{tabular}

\section*{Attachment 04 345KV CABLE DATA}

Data provided per Aspen Model NYISO_2013_CY08_ATRA_rev3a.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { MVA_Base = } \\
& \text { CTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 600
\end{aligned}
\] & \[
\begin{aligned}
& \text { kV_Base = } \\
& \text { PTR = }
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 3000
\end{aligned}
\] & Z_Base = & 1190.25 & ohms \\
\hline Line ID & From & To & R1(pu) & X1(pu) & R0(pu) & X0(pu) \\
\hline Q35L & Charles Poletti & E13th Street. & 0.00033 & 0.0016 & 0.00279 & 0.00408 \\
\hline Q35M & Charles Poletti & E13th Street. & 0.00033 & 0.0016 & 0.00279 & 0.00408 \\
\hline B47 & E13th Street. & FARRAGUT & 0.00009 & 0.00041 & 0.00083 & 0.00107 \\
\hline 48 & E13th Street. & FARRAGUT & 0.00009 & 0.00044 & 0.00089 & 0.00114 \\
\hline B43 [Note 1] & FARRAGUT & B43 Bus & 0.00001 & 0.00004 & 0.0001 & 0.00016 \\
\hline B45 & FARRAGUT & E13th Street. & 0.00009 & 0.00043 & 0.0008 & 0.0011 \\
\hline 46 & FARRAGUT & E13th Street. & 0.00009 & 0.00044 & 0.00089 & 0.00112 \\
\hline 63 & FARRAGUT & RAINEY & 0.00031 & 0.00174 & 0.00332 & 0.00486 \\
\hline 61 & FARRAGUT & RAINEY & 0.00031 & 0.00174 & 0.00334 & 0.0049 \\
\hline 62 & FARRAGUT & RAINEY & 0.00034 & 0.00189 & 0.00383 & 0.0055 \\
\hline 42 & FARRAGUT & Gow S SR & 0.00017 & 0.00096 & 0.00192 & 0.00279 \\
\hline 41 & FARRAGUT & Gow S SR & 0.00017 & 0.00096 & 0.00177 & 0.00267 \\
\hline
\end{tabular}

Note 1: B43 is the shortest 345 line out from Farrgut station.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & R1(ohms) & X1(ohms) & R0(ohms) & X0(ohms) \\
\hline Q35L & Charles Poletti & E13th Street. & 0.3927825 & 1.9044 & 3.3207975 & 4.85622 \\
\hline Q35M & Charles Poletti & E13th Street. & 0.3927825 & 1.9044 & 3.3207975 & 4.85622 \\
\hline B47 & E13th Street. & FARRAGUT & 0.1071225 & 0.4880025 & 0.9879075 & 1.2735675 \\
\hline 48 & E13th Street. & FARRAGUT & 0.1071225 & 0.52371 & 1.0593225 & 1.356885 \\
\hline B43 [Note 1] & FARRAGUT & B43 Bus & 0.0119025 & 0.04761 & 0.119025 & 0.19044 \\
\hline B45 & FARRAGUT & E13th Street. & 0.1071225 & 0.5118075 & 0.9522 & 1.309275 \\
\hline 46 & FARRAGUT & E13th Street. & 0.1071225 & 0.52371 & 1.0593225 & 1.33308 \\
\hline 63 & FARRAGUT & RAINEY & 0.3689775 & 2.071035 & 3.95163 & 5.784615 \\
\hline 61 & FARRAGUT & RAINEY & 0.3689775 & 2.071035 & 3.975435 & 5.832225 \\
\hline 62 & FARRAGUT & RAINEY & 0.404685 & 2.2495725 & 4.5586575 & 6.546375 \\
\hline 42 & FARRAGUT & Gow S SR & 0.2023425 & 1.14264 & 2.28528 & 3.3207975 \\
\hline 41 & FARRAGUT & Gow S SR & 0.2023425 & 1.14264 & 2.1067425 & 3.1779675 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line ID & From & To & R1(ohms) & X1(ohms) & R0(ohms) & X0(ohms) \\
\hline Q35L+B47 & Charles Poletti & FARRAGUT & 0.499905 & 2.3924025 & 4.308705 & 6.1297875 \\
\hline Q35M +48 & Charles Poletti & FARRAGUT & 0.499905 & 2.42811 & 4.38012 & 6.213105 \\
\hline
\end{tabular}



\begin{tabular}{|c|l}
\hline \begin{tabular}{c} 
SIZE \\
A
\end{tabular} & \begin{tabular}{l} 
DWG NO \\
\(237 A 7271\)
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
MACHINE SATURATION DATA
\end{tabular}
\begin{tabular}{lr}
\(S / 1.0=0.0572\) & Machine saturation may be calculated from the data of curves \(A\) and \(B\) of \\
\(S / 1.2=0.4604\) & "ESTIMATED SATURATION AND SYNCHRONOUS IMPEDANCE CURVES".
\end{tabular} " \(S / 1.0\) " is the field amp difference from \(B\) to \(A\) divided by the field amp of \(A\) at 1.0 pu voltage.

\section*{X/R RATIO}
\(X R=152 \quad X / R\) ratio equals "XPP/DV" * base reactance / armature \(D C\) resistance at 100 C
\begin{tabular}{|c|c|c|c|}
\hline GENERAL ELECTRIC COMPANY & \[
\underset{\text { A }}{\text { SIZE }}
\] & CAGE CODE & DWG NO 237A7271 \\
\hline DRAWN: H.A. SOUTH & & & \\
\hline ISSUED: H.A. SOUTH & \multicolumn{2}{|l|}{SCALE} & SHEET 4 \\
\hline
\end{tabular}







\begin{tabular}{|c|l|c|l|}
\hline SIZE & DWG NO & SH & REV \\
A & 237 A7271 & 9 & - \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline GENERAL ELECTRIC COMPANY & \multirow[t]{3}{*}{\[
\underset{A}{\text { SIZE }}
\]} & \multirow[t]{3}{*}{CAGE CODE} & DWG NO \\
\hline GE POWER GENERATION SCHENECTADY, NY & & & \multirow[t]{2}{*}{237 A 7271} \\
\hline DRAWN H.A. SOUTH & & & \\
\hline ISSUED H.A. SOUTH & SCALE & & SHEET 9 \\
\hline
\end{tabular}










\begin{tabular}{|c|l|c|l|}
\hline SIZE & DWG NO & SH & REV \\
A & \(237 A 7261\) & 4 & - \\
\hline
\end{tabular}

\section*{MACHINE SATURATION DATA}
\[
\begin{array}{lr}
S / 1.0=0.068 & \text { Machine saturation may be calculated from the data of curves } A \text { and } B \text { of } \\
\text { S/1.2 }=0.5806 & \text { "ESTIMATED SATURATION AND SYNCHRONOUS IMPEDANCE CURVES". }
\end{array}
\]
" \(\mathrm{S} / 1.0\) " is the field amp difference from B to \(A\) divided by the field amp of \(A\) at 1.0 pu voltage.
X/R RATIO
\(X / R=125\)
X/R ratio equals "XPP/DV" * base reactance / armature DC resistance at 100 C
\begin{tabular}{|c|c|c|c|}
\hline GENERAL ELECTRIC COMPANY & \[
\underset{\text { A }}{\text { SIZE }}
\] & CAGE CODE & \begin{tabular}{l}
DWG NO \\
237A7261
\end{tabular} \\
\hline DRAWN: T.Hammell & & & \\
\hline ISSUED: & \multicolumn{2}{|l|}{SCALE} & SHEET 4 \\
\hline
\end{tabular}





\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
GENERAL ELECTRIC COMPANY \\
GE POWER GENERATION SCHENECTADY, NY
\end{tabular} & \[
\underset{\text { A }}{\text { SIZE }}
\] & CAGE CODE & \begin{tabular}{l}
DWG NO \\
237A7261
\end{tabular} \\
\hline DRAWN: T.Hammell & & & \\
\hline ISSUED: & \multicolumn{2}{|l|}{SCALE} & SHEET 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|l|}
\hline SIZE & DWG NO & SH & REV \\
A & 237 A7261 & 9 & - \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline GENERAL ELECTRIC COMPANY gE POWER GENERATION SCHENECTADY, NY & \[
\begin{gathered}
\text { SIZE } \\
\text { A }
\end{gathered}
\] & CAGE CODE & \begin{tabular}{l}
DWG NO \\
237A7261
\end{tabular} \\
\hline DRAWN: T.Hammell & & & \\
\hline ISSUED: & \multicolumn{2}{|l|}{SCALE} & SHEET 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|l|}
\hline SIZE & DWG NO & SH & REV \\
A & \(237 A 7261\) & 10 & - \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline GENERAL ELECTRIC COMPANY GE POWER GENERATION SCHENECTADY, NY & \[
\underset{A}{\text { SIZE }}
\] & CAGE CODE & \begin{tabular}{l}
DWG NO \\
237A7261
\end{tabular} \\
\hline DRAWN: T.Hammell & & & \\
\hline ISSUED: & \multicolumn{2}{|l|}{SCALE} & SHEET 10 \\
\hline
\end{tabular}







\section*{GE Power Systems}

Product Quality Report


\section*{Gas Turbine Generator Manufacturing Department Schenectady, New York}

\section*{INSPECTION REPORT}

\section*{Frame Model : 7FH2 COMPLETE GEN.}

\section*{Supplier Name and Code : DOOSAN / 48163}


\section*{}
\begin{tabular}{|c|c|c|}
\hline Prepared by & Reviewed by & Approved by \\
\hline TBN/GEN QUALITY CONTROL DEPARTMENT \\
\hline
\end{tabular}

\section*{QUALITY VERIFICATION DOCUMENT LIST}

PROJECT: 7C068 COMPLETE GENARATOR
P/O No: 181094165
CUSTOMER SHOP ORDER : \(338 \times 390\)
\begin{tabular}{|c|c|c|}
\hline & \(\Leftrightarrow\) STATOR (VOL.I) & page no \\
\hline \multirow{15}{*}{\[
(3)
\]} & GQC (GEN. QUALITY CERT).tif & A~C \\
\hline & FHPT (STATOR FINAL HIPOT).tif & 20 \\
\hline & HPT (STATOR HIPOT TEST DATA).tif & 18~20 \\
\hline & PI (STATOR POLARIZATION INDEX).tif & 20 \\
\hline & RTD (RTD DATA).tif & 24 \\
\hline & QCS-G-12 (FRAME AIR TEST).tif & 3~6 \\
\hline & QCS-G-08 (STATOR FRAME DATA).tif & 1~101 \\
\hline & QCS-G-09 (STATOR CORE DATA).tif & 1~34 \\
\hline & QCS-G-10 (STATOR BAR DATA),.tif & 1~27 \\
\hline & QCS-G-13 (STATORAPASSEMBLY).tif & 1~24 \\
\hline &  & 1~28 \\
\hline &  & 1~27 \\
\hline & (AU) & A1-E1 \\
\hline &  & 1~62 \\
\hline &  & \\
\hline
\end{tabular}


Copyright by DOOSAN Heavy Industries and Construction. Co.,Ltd. 두산중공업 All. Rights Reserved.

\section*{CERTIFICATE OF CONFORMANCE}

\section*{NO: COCDCASSPR0038}


20
WE HEREBY CERTIFY THAT THE ITEMS LISTED ABOVE HAVE BEEN MANUFACTURED, TESTED AND INSPECTED IN COMPLIANCE WITH THE REQUIREMENTS SPECIFIED IN THIS CONTRACT, APPLICABLE SPECIFICATION, DRAWING AND OWNER REQUIREMENTS.
\[
\begin{array}{cc}
\text { CERTIFIED BY: } \quad \begin{array}{c}
\text { KWON, TAB MYUNG } \\
\text { GENERAL MANAGER } \\
\\
\\
\\
\text { KG QC. DEPT. }
\end{array} \quad 20.9 .3 .9 \\
\text { DATE }
\end{array}
\]
Page No .A

Page No. 8
Copyright by DOOSAN Heavy Industries and Construction. Co., Ltd. 두산줗공업 All Rights Reserved.


\section*{Page Nac}

Copyright by DOOSAN Heavy Industries and Construction. Co.,Ltd. 두산중공입 All Rights Reserved,


\section*{※ INSTRUCTION}
1) Winding resistance: Within \(\pm 6 \%\) of drawing requirement
2) Pre-hipot test
- Insulation resistance to be above 1000 megaohms and the polarization
index to be greater than 2.0 (D C.500V)
3) Hi-pot test : Test voltage AC 37000 V, Duration 1 Minute
4) Post hi-pot test ( 30 minutes after hi-pot test)
- Insulation resistance is not less than \(85 \%\) of pre-hipot test reading
and not less than 1000 megahoms (DC 500V)
INSTRUMENTS ID No
\begin{tabular}{|l|l|}
\hline EQUIPMENT NAME & ID NO \\
\hline Low resistance ohm meter & 08E2 J2022-0001 \\
\hline Insulation tester & 08E1E0112-0004 \\
\hline Hi-pot equipment & 08E1.810680001. \\
\hline
\end{tabular}

\section*{B. Winding resistance check}

Drawing requirement : \(\quad 0.00129\) Q 0 at \(25^{\circ} \mathrm{C}\)

C. Polarization index check

(TEST VOLTAGE : 500VOLT DC)

\section*{D. Hi-pot test}


\section*{E. After Hi-pot test}

Visual Inspection : No indication

Reviowed/Whinessed By:
Andy And An
SLCI Rep. 20 Feb 300 g
WITNESSED BY

\section*{QUALITY VERIFICATION DOCUMENT LIST}

PROJECT : 7C068 COMPLETE GENARATOR
P/O No: 181094165
CUSTOMER SHOP ORDER: \(338 \times 390\)
\begin{tabular}{|c|c|}
\hline STATOR (VOL.I) & page no \\
\hline GQC (GEN. QUALITY CERT).tif & A-C \\
\hline FHPT (STATOR FINAL HIPOT).tif & 20 \\
\hline HPT (STATOR HIPOT TEST DATA).tif & 18~20 \\
\hline PI (STATOR POLARIZATION INDEX).tif & 20 \\
\hline RTD (RTD DATA).tif & 24 \\
\hline QCS-G-12 (FRAME AIR TEST).tif & 3-6 \\
\hline QCS-G-08 (STATOR FRAME DATA).tif & 1~101 \\
\hline QCS-G-09 (STATOR CORE DATA).tif & 1-34 \\
\hline QCS-G-10 (STATOR BAR DATA).tif & 1~27 \\
\hline QCS-G-13 (STATORASSEMBLY).tif & 1~24 \\
\hline  &  \\
\hline \[
(C O O W E R) t i f t
\] & 䜌等 1~27 \\
\hline  & W A1~E1 \\
\hline \multicolumn{2}{|l|}{} \\
\hline  & \\
\hline
\end{tabular}


\section*{CERTIFIED MATERIAL TEST REPORT}


GEE SERIAL NO. : 48163
PRODUCT NAME: \(7 F H 2\) GEN ROTOR \#70COTO 68
IDENTIFICATION OF MATERIAL: F07479 140
DOOSAN M/O No. : F07479
DOOSAN PURCHASE SPEC No. : N/A

The attachments described hereunder are part of this Certified Material Test Report:

9. Report of Magnetic Particle Examination: M080825-003-001
10. Report of Magnetic Permeability Test : 07-5011-07479-140
11. Dimensional Check Report : PP08-08-18-001, KSM-08026-193

\section*{- Blank -}

We hereby certify that the contents of this report are correct and accurate and that all test and examination results and operations performed by Doosan Heavy Industries \& Construction co, Ltd. are in compliance with the requirements of the material specification and the applicable material requirements as designated by the Customer's Order

Certified by


DOOSAN HEAVY INDUSTRIES \& CONSTRUCTION CO.,LTD.

MATERIAL ACCEPTANCE CERTIFICATE(MAC)






2008-08-28 10:35/주타익질관리부 단조검샤과 주단검셔적 단조검사반/H50831//0기봉
CHEMICAL COMPOSITION

\section*{1. Weight percent(\%) Heat Anabys is}
1. Weight percent \(\%\) ) Heat Analysis
Report No.: MAC808-0018
Sheet No.: 2 of 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{\multirow[t]{2}{*}{1. Weight percent(\%) Heat Analysis}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PPM}} \\
\hline & & & & & & & & & & & & & & & \\
\hline & C & Mn & P & S & Si & Ni & Cr & Mo & \(v\) & Sb & As & \$n & AI & 0 & H \\
\hline \(2 B 82821\) & 0.25 & 0.29 & 0.006 & 0.001 & 0.07 & 3.13 & 1.43 & 0.31 & 0.10 & 0.0007 & 0.0027 & 0.0021 & 0.003 & 31 & 1.02 \\
\hline & & & & & & & --- & Blank & ---- & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & &  &  & & & & & & & & & & \\
\hline & & & &  &  &  &  &  &  & & & & & & \\
\hline & & & &  & ( & (装 &  & \[
A
\] &  & & &  & & & \\
\hline 2. Product Analysis (\%) & & & & We &  & Hybubyd &  &  &  & & & & & & \\
\hline TOP & 0.24 & 0.29 & 0.005 & 0.001 & 0.08 &  &  & \({ }^{2}\) & 0.13 \({ }^{\text {che }}\) & 0.0008 & 0.0025 & 0.0024 & 0.003 & 29. & 0.72 \\
\hline BOTTOM 2 Sth & \% 0.24 & 8.29 \% & \%, 6006 & BECR & \[
5
\] & \[
\sqrt{3,02}
\] & 71:40 & \[
0.30
\] &  & \[
10.0608
\] &  & - 0.023 & 0.803 & 27 & 0.69 \\
\hline & & & & & & & \(\cdots\) & Blank & - & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
AUTHORIZED SIGNATURE: \& 7 是 \(\frac{18}{2} 8+28\)
Copyright by DOOSAN Heavy Industries and Construction. Co., Ltd. 두산중곱업 All Rights Reserved.


\section*{※ INSTRUCTION}
1) Winding resistance: Within \(\pm 6 \%\) of drawing requirement
2) Pre-hipot test
- Insulation resistance to be above 1000 megaohms and the polarization index to be greater than 2.0 (DC 500V)
3) Hi-pot test : Test voltage AC 37000 V , Duration 1 Minute
4) Post hi-pot test ( 30 minutes after hi-pot test)
- Insulation resistance is not less than \(85 \%\) of pre-hipot test reading
and not less than 1000 megahoms (DC 500V)
INSTRUMENTS ID No
\begin{tabular}{|l|l|}
\hline EQUIPMENT NAME & ID NO \\
\hline Low resistance ohm meter & O8E2J2022-0001 \\
\hline Insulation tester & O8.E1F0112-0004 \\
\hline Hi-pot equipment & 08E1F10 680001 \\
\hline
\end{tabular}
B. Winding resistance check

Drawing requirement :
0.00129

Q at \(25 \%\)

C. Polarization index check
\begin{tabular}{|c|c|c|c|c|}
\hline Phase & \begin{tabular}{c}
1 min \\
\((M R)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{5}\) min \\
\((M \Omega)\)
\end{tabular} & \begin{tabular}{c}
10 min \\
\((M \Omega)\)
\end{tabular} & P.I Value \\
\hline Ground, T1-T4 & 4780 & 20800 & 30100 & 6.30 \\
\hline Ground, T2-T5 & 5010 & 29600 & 48900 & 9.76 \\
\hline Ground, T3-T6 & 5390 & 28800 & 52300 & 9.70 \\
\hline
\end{tabular}
(TEST VOLTAGE: 500VOLT D.C
D. Hi-pot test


\section*{E. After Hi-pot test}

Visual Inspection : No indication

TESTED BX

REVIEWED BY

APPROVED BY


SLCI Rep. 20 Feb 200 g

*Exam Areas: All External, Visibly Accessible. Finished Surfaces. Which are Outberad of thëe Rotor Body on the Turbine end \& Collector end.


\footnotetext{
Sopyright by DOOSAN Heavy lndustries and Construction. Co. Lth. 두사줄공업 All Rinhts Reserver
}


*. INSTRUCTION
1) Winding Resistance: Design Value \(\pm 2 \%\)
2) Impedance : Design Value \(\pm 25 \%\)
3) Pre-hipot
- Insulation Resistance : Min 25 Mohm (DC 500V MEGGER)
\begin{tabular}{|r|}
\hline TEST CONDITION \\
\hline ambient temp: \(17{ }^{\circ} \mathrm{C}\) \\
\hline humidity \(: 30 \%\) \\
\hline
\end{tabular}
- Polarization index
\begin{tabular}{|c|c|}
\hline Insulation Resistance & Polarization Index \\
\hline \(25-199\) Mohm & Min 1.10 \\
\hline\(\geq 200\) Mohm & Min 1.00 \\
\hline
\end{tabular}
-) Hi-pot Test : Test Voltage: AC 3500 V , Holding Time: 1 Min
5) Post-hipot

Insulation resistance at 1 minute after hipot should be 25 Ma or greater and at least 60 . percent of the one-minute pre-high potential measurement, or \(200 \mathrm{M}=\) or greater.

\section*{1. WINDING RESISTANCE CHEOK}



2. IMPEDANCE CHECK
( ) \begin{tabular}{|c|c|c|c|c|}
\hline VOLTAGE & CURRENT & ACF'L DATA & DESIGN VALUE & DIFFERENCE(\%) \\
\hline 100 Vac & \(\cdot 12.2 \mathrm{~A}\) & \(8.20 \Omega\) & \(8.49 \Omega\) & \(-3.45 \%\) \\
\hline
\end{tabular}

\section*{3. INSULATION RESISTANCE CHECK}
\begin{tabular}{|c|cc|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{2}{|c|}{ INSULATION RESISTANCE } & Ration of Insulation resistance between \\
pres and post HI-pot Test ( \(\%\) ) \\
\hline POE HI - POT TEST & 6430 & \(M 8\) & \(M 8\) \\
\hline POST HI - POT TEST & 4520 & \(M 1\) & 70.3 \\
\hline
\end{tabular}
4. POLARIZATION INDEX TEST (BEFORE HI POT)
\begin{tabular}{|c|c|c|c|c|}
\hline TIME & 1 MIN & 5 MIN & 10 MIN & P.I \\
\hline M 8 & 6430 & 24200 & 41100 & 6.39 \\
\hline
\end{tabular}
5. HI-POT TEST
\begin{tabular}{|c|c|c|c|}
\hline TEST VOLTAGE & HOLDING TIME & RESULT & REMARKS \\
\hline \(3500 \mathrm{~V} . \mathrm{AC}\) & 60 SEC & Pass & \\
\hline
\end{tabular}

TESTED BY





BALANCING TEST REPORT (Generator Field)


Balancing Shop
\begin{tabular}{|l|l|l|l|}
\hline Project & 7FH2 \#7.C068 & MIO No. & T07113 \\
\hline Material No. & F07479-140 & Rotor Type & Gen Field(230Mw) \\
\hline Serial No. & \(338 \times 390\) & Customer & General Electric \\
\hline PlONo. & 184094465 & & \\
\hline Rated Speed & 3600 rpm & Overspeed & \(120 \%\) of Rated Speed(4320rpm) \\
\hline
\end{tabular}



Copyright by DOOSAN Heavy industries and Construction. Co, Ltd, <compat>ᄃ<compat>ᅮ<compat>ᄉ<compat>ᅡ<compat>ᄂ<compat>ᄊ<compat>ᅮ<compat>ᄋ<compat>ᄀ<compat>ᅩ<compat>ᄆ<compat>ᄃ<compat>ᅡ<compat>ᄇ All Rights Reserved.
Page 1 Na /


\section*{BALANCING TEST REPORT \\ (Generator Field)}


Balancing Shop
\begin{tabular}{|l|l|l|l|}
\hline Project & 7FH2 \#7C068 & M/O No. & T07113 \\
\hline Material No. & FO7479-140 & Rotor Type & Gen Field(230Mw) \\
\hline Serial No. & \(338 \times 390\) & Customer & General Electric \\
\hline PlO No. & 181094165 & & \\
\hline Rated Speed & 3600 rpm & Overspeed & \(120 \%\) of Rated Speed(4320rpm) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Test Name} & \multirow[b]{2}{*}{Applied GE Spec No.IRev. No.} & \multicolumn{4}{|c|}{Test Speed \& Condition} & \multirow[b]{2}{*}{Results} & \multirow[t]{2}{*}{Approved by \(Q A\)} \\
\hline & & Test Speed & \multicolumn{3}{|l|}{Test Condition(Specification Criterion)} & & \\
\hline \multirow{8}{*}{Response Spectra Test} & \multirow{8}{*}{\begin{tabular}{l}
P24C-AL-6502/E \\
(APR.2006)
\end{tabular}} & Rpm & \multicolumn{2}{|r|}{Specification} & Probe & Actual (/mm) & Results \\
\hline & & \multirow{7}{*}{3600} & \multicolumn{2}{|l|}{\multirow[b]{4}{*}{Not exceed \(7.62 \mu \mathrm{~m}\) peak-to-peak, at frequencies higher than \(40 \%\) of rated frequency, other than \(1 / \mathrm{rev}\)}} & CH 1 & 3.108 & \multirow{7}{*}{GOOD
dimment} \\
\hline & & & & & CH 2 & 0.4439 & \\
\hline & & & & & CH 3 & 0.3233 & \\
\hline & & & & & CH 4 & 0.6657 & \\
\hline & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
or 2 rev at any probe in the frequency \\
 range between 9 and 200 Hz . \\
\(40 \%\) of rated frequency \(=24 \mathrm{~Hz}\)
\end{tabular}}} & \[
\frac{\mathrm{CH}}{\frac{\mathrm{CH}}{5}}
\] & \[
\frac{1212}{3.215}
\] & \\
\hline & & & & & CH 7 & 1.356 & \\
\hline & & & & & CH 8 & 1.966 & \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multirow[t]{7}{*}{\(2 / \mathrm{rev}\)} & \multirow{7}{*}{\[
\begin{aligned}
& \text { P24C-AL-6502/E } \\
& \text { (APR.2006) }
\end{aligned}
\]} & & Position & Speed Range & Spec. \((\mu \mathrm{min})\) & Actual(Max, ant & Resuilts \\
\hline & & \multicolumn{2}{|l|}{\multirow{3}{*}{Coupling / Collector}} & 125~500rpm & 25.4 & 5.09 & \multirow{6}{*}{GOOD} \\
\hline & & & & 500-3600rpm & 101.6 & 84.6 & \\
\hline & & & & 3600~3780rpm & 50:8. & 12.8. & \\
\hline & & \multicolumn{2}{|r|}{\multirow{3}{*}{Journal}} & 125~500rpm & 12.7 & 4.28 & \\
\hline & & & & 500~3600rpm & 25.4 & 192 & \\
\hline & & & & 3600~3780rpm & 127 & 3.03 & \\
\hline
\end{tabular}

\section*{Measuring Values}

Rotor: 7FH2_7C068
Run: OVERSPEED TEST from 2009-01-12 17:13
Comment:
1 per rev
Measuring Values
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{TE CPLG WEST
CH 1} & \multicolumn{2}{|l|}{TE CPLG EAST CH 2} & \multicolumn{2}{|l|}{TE JNL WEST CH 3} & \multicolumn{2}{|l|}{\begin{tabular}{l}
TE JNL EAST \\
CH 4
\end{tabular}} \\
\hline Speed [rpm] & Time [s] & Amount [ \(\mu \mathrm{mpp]}\) & Angle [ \({ }^{\circ}\) ] & Amount [ mmpp ] & \[
\begin{gathered}
\text { Angle } \\
{\left[^{\circ}\right]} \\
\hline
\end{gathered}
\] & Amount [ \(\mu \mathrm{mpp}\) ] & \[
\begin{gathered}
\text { Angle } \\
{\left[^{\circ}\right]}
\end{gathered}
\] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] \\
\hline 100,000 & 33.6 & 7.87 & 146 & 15.9 & 196 & 0,691 & 270 & 2.76 & 180 \\
\hline 200.000 & 57.6 & 7.87 & 146 & 11.1 & 191 & 0.691 & 270 & 0.977 & 225 \\
\hline 300.000 & 76.2 & 9.26 & 135 & 11.8 & 202 & 0.691 & 270 & 0.977 & 225 \\
\hline 400.000 & 95.3 & 9.26 & 135 & 11.1 & 191 & 0.977 & 225 & 1.54 & 243 \\
\hline 500.000 & 116.2 & 9.26 & 135 & 11.1 & 191 & 0.691 & 270 & 2.49 & 236 \\
\hline 600.000 & 138.2 & 9.26 & 135 & 11.1 & 191 & 0.691 & 270 & 4.03 & 239 \\
\hline 700.000 & 157.0 & 10.9 & 127 & 11.1 & 191 & 0.691 & 0 & 5.26 & 247 \\
\hline 800.000 & 176.7 & 12.7 & 121 & 11.8 & 202 & 0.691 & 0 & 8.54 & 256 \\
\hline 900.000 & 199.3 & 17.0 & 130 & 13.8 & 198 & 3.45 & 53.1 & 14.5 & 273 \\
\hline 1000.00 & 223.1 & 21.8 & 143 & 12.7 & 211 & 4.83 & 90.0 & 22.4 & 304 \\
\hline 1100.00 & 250.4 & 19.8 & 174 & 12.7 & 211 & 4.88 & 135 & 24.0 & 348 \\
\hline 1200.00 & 271.5 & 15.3 & 180 & 10.9 & 217 & 2.49 & 146 & 18,0 & 4.40 \\
\hline 1300.00 & 295.3 & 6.55 & 180 & 11.1 & 259 & 3.91 & 45.0 & 16.8 & 9.46 \\
\hline 1400.00 & 319.3 & 16.6 & 113 & 8.73 & 90.0 & 14.6 & 109 & 15.8 & 28.8 \\
\hline 1500,00 & 343.6 & 18.8 & 144 & 11.8 & 158 & 9.96 & 146 & 12.4 & 26.6 \\
\hline 1600:00 & 369.7 & 17.6 & 150 & 13.3 & 171 & 7.72 & 153 & 10.5 & 23.2 \\
\hline 1700.00 & 398.4 & 17.6 & 150 & 15.3 & 180 & 7.11 & 151 & 11.4 & 14.0 \\
\hline 1800.00 & 421.5 & 17.6 & 150 & 15.3 & 180 & 7.11 & 151 & 11.4 & 14.0 \\
\hline 1900.00 & 446.0 & 19.5 & 153 & 15.3 & 180 & 7.11 & 151 & 12.7 & 12.5 \\
\hline 2000.00 & 466.0 & 19.5 & 153 & 15.3 & 180 & 6.51 & 148 & 12.7 & 12.5 \\
\hline 2100.00 & 492.3 & 22.5 & 151 & 17.6 & 187 & 6.37 & 139 & 12.5 & 6.34 \\
\hline 2200,00 & 512.4 & 22.5 & 151 & 19.8 & 186 & 7.34 & 131 & 13.8 & 2.86 \\
\hline 2300.00 & 537.2 & 22.5 & 151 & 19.8 & 186 & 7.87 & 128 & 15.9 & 0 \\
\hline 2400.00 & 586.2 & 26.4 & 156 & 19.8 & 186 & 9.29 & 132 & 18.1 & 6.58 \\
\hline 2500.00 & 613.1 & 25.5 & 160 & 19.8 & 186 & 10.3 & 138 & 19.7 & 18.4 \\
\hline 2600.00 & 634.9 & 22.8 & 163 & 19.8 & 186 & 9.39 & 144 & 17.9 & 27.6 \\
\hline 2700,00 & 650.9 & 20.7 & 162 & 19.8 & 186 & 8.32 & 138 & 15.5 & 32.3 \\
\hline 2800.00 & 678.8 & 21.5 & 156 & 19.8 & 186 & 8.32 & 138 & 14.4 & 35.2 \\
\hline 2900.00 & 707.9 & 20.7 & 162 & 21.9 & 186 & 8.32 & 138 & 13.8 & 36.9 \\
\hline 3000.00 & 725.9 & 20.7 & 162 & 22.8 & 197 & 8.79 & 135 & 12.7 & 40.6 \\
\hline 3100.00 & 744.8 & 17.6 & 150 & 20.7 & 198 & 9.81 & 141 & 11.7 & 45.0 \\
\hline 3200.00 & 772.3 & 17.0 & 140 & 20.7 & 198 & 9.59 & 150 & 9.39 & 54.0 \\
\hline 3300.00 & 801.7 & 21.8 & 143 & 20.1 & 193 & 8.08 & 160 & 8.43 & 55.0 \\
\hline 3400,00 & 826.0 & 23.6 & 146 & 22.8 & 197 & 7.44 & 158 & 7.47 & 56.3 \\
\hline 3500.00 & 856.5 & 25.4 & 149 & 22.8 & 197 & 6.55 & 162 & 6.51 & 58.0 \\
\hline 3600.00 & 880.4 & 31.2 & 155 & 26.4 & 204 & 9.39 & 163 & 5.57 & 82.9 \\
\hline 3700.00 & 916.5 & 32.2 & 152 & 25.4 & 211 & 6.51 & 148 & 3.45 & 180 \\
\hline 3800.00 & 943.5 & 38.1 & 156 & 26.3 & 222 & 5.86 & 135 & 7.47 & 304 \\
\hline file://C:ITEMP & F57.tmp & \multicolumn{4}{|r|}{\[
\text { Page No } 3
\]} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Reviewed / Wyitacssed By: \\
Andy Ang \(\qquad\)
\end{tabular}} & 1/12/09 \\
\hline
\end{tabular}
CH
CH2
CH3
CA 4


3 MIN HOLNING


\section*{Measuring Values}

Rotor: 7FH2_7C068

\section*{Run: OVERSPEED TEST from 2009-01-12 17:13}

Comment:
1 per rev
Measuring Values

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & & \multicolumn{2}{|r|}{CH 5} & \multicolumn{2}{|l|}{CH6} & \multicolumn{2}{|c|}{CH7} & \multicolumn{2}{|c|}{CH 8} \\
\hline & 3900.00 & 974.9 & 9.08 & 261 & 3.52 & 191 & 51.9 & 112 & 84.3 & 350 \\
\hline \multirow[t]{4}{*}{} & 4000.00 & 1004.7 & 18.2 & 307 & 10.9 & 235 & 80.5 & 147 & 164 & 0.764 \\
\hline & 4100.00 & 1025.9 & 27.1 & 19.4 & 33.9 & 356 & 85.8 & 263 & 210 & 59.4 \\
\hline & 4200.00 & 1049.9 & 36.8 & 55.7 & 30,3 & 153 & 114 & 48.1 & 218 & 76.1 \\
\hline & 4300.00 & 1077.6 & 42.4 & 127 & 51.5 & 302 & 168 & 159 & 278 & 144 \\
\hline \multirow[t]{4}{*}{} & 4322.00 & 1098.0 & 37.2 & 138 & 46.3 & 327 & 133 & 179 & 232 & 156 \\
\hline & 4322.00 & 1163.6 & 42.6 & 140 & 57.6 & 326 & 167 & 174 & 268 & 157 \\
\hline & 4320.00 & 1223.9 & 45.2 & 141 & 62.6 & 326 & 191 & 174 & 293 & 159 \\
\hline & 4323.00 & 1286.2 & 42,2 & 140 & 61.0 & 329 & 184 & 175 & 286 & 160 \\
\hline
\end{tabular}

3 MIN HOLDING


\section*{Measuring Values}

Rotor: 7FH2_7C068
Run: OVERSPEED TEST from 2009-01-12 17:13
Comment:
Unfiltered
Measuring Values
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & TE CPLG WEST
VC4000
CH 1 & TE CPLG EAST
VC4000
CH 2 & TE JNL WEST
VC4000
CH 3 & \[
\begin{gathered}
\text { TE JNL EAST } \\
\text { VC4000 } \\
\text { CH } 4
\end{gathered}
\] \\
\hline Speed [rpm] & \[
\begin{aligned}
& \text { Time } \\
& {[5]}
\end{aligned}
\] & Amount [ mm ] & Amount [ \(\mu \mathrm{m}\) ] & Amount [ \(\mu \mathrm{m}\) ] & Amount [ \(\mu \mathrm{m}\) ] \\
\hline 100.000 & 33.6 & 15.0 & 19.1 & 5.30 & 5.90 \\
\hline 200.000 & 57.6 & 14.4 & 17.0 & 5.90 & 6.40 \\
\hline 300.000 & 76.2 & 14.5 & 14.9 & 5.40 & 5.80 \\
\hline 400.000 & 95.3 & 14.5 & 14.8 & 5.20 & 6.80 \\
\hline 500.000 & 116.2 & 13.9 & 14.9 & 5.20 & 8.90 \\
\hline 600.000 & 138.2 & 15.6 & 15.6 & 3.60 & 9.80 \\
\hline 700.000 & 157.0 & 15.6 & 19.5 & 5.20 & 9.60 \\
\hline 800.000 & 176.7 & 15.7 & 14.6 & 4.20 & 9.70 \\
\hline 900.000 & 199.3 & 20.4 & 14.9 & 5.60 & 14.9 \\
\hline 1000.00 & 223.1 & 24,9 & 15.8 & 7.50 & 22.7 \\
\hline 1100.00 & 250.4 & 24.0 & 14.8 & 7.30 & 26.0 \\
\hline 1200.00 & 271.5 & 17.8 & 13.7 & 4.60 & 22.1 \\
\hline 1300,00 & 295.3 & 13.5 & 12.3 & 5.90 & 21.6 \\
\hline 1400.00 & 319.3 & 23.9 & 13.8 & 17.1 & 24.2 \\
\hline 1500.00 & 343.6 & 25.7 & 17.1 & 11.6 & 20.6 \\
\hline 1600,00 & 369.7 & 28.4 & 21.6 & 10.1 & 18.7 \\
\hline 1700.00 & 398.4 & 28.4 & 23.5 & 9.00 & 16.8 \\
\hline 1800.00 & 421.5 & 27.9 & 23.1 & 8.70 & 15.7 \\
\hline 1900.00 & 446.0 & 29.4 & 22.5 & 8.60 & 16.8 \\
\hline 2000.00 & 466.0 & 30.2 & 22.5 & 8.00 & 15.3 \\
\hline 2100.00 & 492.3 & 30.3 & 28.2 & 8.30 & 15.9 \\
\hline 2200.00 & 512.4 & 29.7 & 23.5 & 8.70 & 16.1 \\
\hline 2300.00 & 537.2 & 37.6 & 28.8 & 9.30 & 19.4 \\
\hline 2400.00 & 586.2 & 49.8 & 37.8 & 11.6 & 26.5 \\
\hline 2500.00 & 613.1 & 58.7 & 67.6 & 17.2 & 32.1 \\
\hline 2600.00 & 634.9 & 34.4 & 41.5 & 15.1 & 29.9 \\
\hline 2700,00 & 650.9 & 29.9 & 34.5 & 14.2 & 27.9 \\
\hline 2800.00 & 678.8 & 24.7 & 28,7 & 13.0 & 23.0 \\
\hline 2900.00 & 707.9 & 25.3 & 25.9 & 12.8 & 21.9 \\
\hline 3000.00 & 725.9 & 25.3 & 25.4 & 12.7 & 20.6 \\
\hline 3100.00 & 744.8 & 22.0 & 26.4 & 12.9 & 19.9 \\
\hline 3200.00 & 772.3 & 24.1 & 26.5 & 13.0 & 17.2 \\
\hline 3300:00 & 801.7 & 25.2 & 23.6 & 11.7 & 17.1 \\
\hline 3400.00 & 826.0 & 26.0 & 25.6 & 11.0 & 15.9 \\
\hline 3500.00 & 856.5 & 29.4 & 24.9 & 10.4 & 14.8 \\
\hline 3600,00 & 880.4 & 33.0 & 24.9 & 9.60 & 14.0 \\
\hline 3700.00 & 916.5 & 35.0 & 27.8 & 9.30 & 12.0 \\
\hline & & & Pcge No & \[
\begin{aligned}
& \text { Revlewed / y } \\
& \text { Andy Ang }
\end{aligned}
\] & ssed By: \\
\hline \multicolumn{3}{|l|}{file://C:TTEMP\CF67.tmp} & & Scec Rep rexin yos9 & 1/12/09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & CFI & \(C / 12\) & \(C A_{3}\) & C44 \\
\hline 3800.00 & 943.5 & 41.5 & 27.1 & 8.70 & 14.8 \\
\hline 3900.00 & 974.9 & 52.1 & 27.1 & 8.70 & 16.4 \\
\hline 4000.00. & 1004.7 & 78.1 & 25.8 & 11,3 & 19.8 \\
\hline 4100.00 & 1025.9 & 93.4 & 28.3 & 11.5 & 15.6 \\
\hline 4200.00 & 1049.9 & 104 & 78.5 & 11.1 & 10.8 \\
\hline 4300.00 & 1077.6 & 133 & 109 & 11.6 & 23.3 \\
\hline 4322.00 & 1098.0 & 129 & 102 & 11.9 & 24.7 \\
\hline 4322.00 & 1163.6 & 142 & 125 & 11.5 & 26.7 \\
\hline 4320.00 & 1223.9 & 149 & 132 & 12.0 & 28.2 \\
\hline 4323.00 & 1286.2 & 157 & 139 & 12.4 & 29.1 \\
\hline
\end{tabular}


Rage No. 8

\section*{Measuring Values}

Rotor: 7FH2_7C068
Run: OVERSPEED TEST from 2009-01-12 17:13

Comment:

Unfiltered

Measuring Values


Page No, 9



\section*{Measuring Values}

\section*{Rotor: 7FH2_7C068}

Run: OVERSPEED TEST from 2009~01-12 17:13
Comment:
2 per rev
Measuring Values
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{TE CPLG WEST \(2 X\) CH 1} & \multicolumn{2}{|l|}{TE CPLG EAST 2 X CH 2} & \multicolumn{2}{|l|}{TE JNL WEST 2 X} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { TE JNL EAST } 2 \mathrm{X} \\
\text { CH } 4
\end{gathered}
\]} \\
\hline Speed [rpm] & Time [s] & \[
\begin{aligned}
& \text { Amount } \\
& \text { [ } \mu \mathrm{mpp} \mathrm{pp}]
\end{aligned}
\] & Angle [ \({ }^{\circ}\) ] & \[
\begin{aligned}
& \text { Amount } \\
& \text { [ } \mu \mathrm{mmp} \mathrm{pp}] \\
& \hline
\end{aligned}
\] & Angle
\[
\left[\left[^{\circ}\right]\right.
\] & Amount [ mmpp p] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] \\
\hline 100.000 & 33.6 & 5.03 & 344 & 4.20 & 9.46 & 0 & , & 2.76 & 270 \\
\hline 200.000 & 57.6 & 3.52 & 349 & 4.42 & 38.7 & 2.07 & 180 & 1.54 & 26.6 \\
\hline 300.000 & 76.2 & 3.52 & 11.3 & 3.45 & 53.1 & 1.38 & 180 & 0.977 & 315 \\
\hline 400,000 & 95.3 & 1.54 & 333 & 3.45 & 36.9 & 2.07. & 180 & 2.85 & 14.0 \\
\hline 500.000 & 116.2 & 4.42 & 309 & 3.91 & 45.0 & 2.49 & 214 & 5.26 & 66.8 \\
\hline 600.000 & 138.2 & 6.25 & 354 & 4.42 & 51.3 & 1.38 & 270 & 5.86 & 135 \\
\hline 700.000 & 157.0 & 2.85 & 76.0 & 9.62 & 111 & 2.85 & 194 & 5.52 & 180 \\
\hline 800.000 & 176.7 & 3.09 & 333 & 0.691 & 180 & 1.54 & 297 & 3.52 & 191 \\
\hline 900.000 & 199.3 & 3.52 & 349 & 0.691 & , & 0.691 & 270 & 2.18 & 198 \\
\hline 1000.00 & 223.1 & 3.09 & 333 & 0.691 & 0 & 0.691 & 270 & 1.95 & 225 \\
\hline 1100.00 & 250.4 & 3.91 & 315 & 1.38 & 0 & 0.691 & 270 & 2.49 & 236 \\
\hline 120000 & 271.5 & 4.98 & 304 & 2.07 & 0 & 0.977 & 225 & 3.72 & 248 \\
\hline 1300.00 & 295.3 & 7.34 & 319 & 2.85 & 14.0 & 0.691 & 270 & 4.88 & 225 \\
\hline 1400.00 & 319.3 & 8.79 & 315 & 2.76 & 0 & 0.977 & 225 & 5.39 & 220 \\
\hline 1500.00 & 343.6 & 10.9 & 325 & 4.20 & 351 & 0.977 & 225 & 7.11 & 209 \\
\hline 1600.00 & 369.7 & 14.6 & 341 & 9.69 & 4.09 & 2.93 & 225 & 8.34 & 204 \\
\hline 1700.00 & 398.4 & 12.4 & 0 & 9.81 & 39.3 & 2.07 & 270 & 7.72 & 190 \\
\hline 1800.00 & 421.5 & 14.2 & 14.0 & 9.39 & 54.0 & 3.72 & 21.8 & 6.80 & 204 \\
\hline 1900.00 & 446.0 & 12.4 & 3.18 & 9.59 & 59.7 & 0.977 & 315 & 3.52 & 259 \\
\hline 2000.00 & 466.0 & 15.6 & 12.8 & 8.08 & 70.0 & 0.691 & 270 & 3.45 & 217 \\
\hline 2100,00 & 492.3 & 10.8 & 39.8 & 14.4 & 73.3 & 0 & 0 & 1.38 & 270 \\
\hline 2200.00 & 512.4 & 13.3 & 351 & 9.39 & 54.0 & 0.691 & 180 & 6.25 & 264 \\
\hline 2300.00 & 537.2 & 19.3 & 2.05 & 13.6 & 59.5 & 2.07 & 180 & 8.98 & 270 \\
\hline 2400.00 & 586.2 & 30.0 & 23.0 & 23.5 & 61.9 & 3.72 & 202 & 10.7 & 255 \\
\hline 2500.00 & 613.1 & 39.6 & 73.8 & 52.6 & 107 & 9.81 & 219 & 13.9 & 207 \\
\hline 2600.00 & 634.9 & 17.4 & 96.8 & 29.3 & 165 & 10.4 & 278 & 15.2 & 177 \\
\hline 2700.00 & 650.9 & 11.9 & 100 & 19.3 & 178 & 7.72 & 297 & 12.1 & 193 \\
\hline 2800:00 & 678.8 & 9.21 & 103 & 15.9 & 185 & 6.84 & 315 & 11.2 & 202 \\
\hline 2900.00 & 707.9 & 8.29 & 90.0 & 10.4 & 188 & 5.94 & 324 & 9.59 & 210 \\
\hline 3000.00 & 725.9 & 8.32 & 85.2 & 6.94 & 186 & 4.63 & 333 & 7.87 & 248 \\
\hline 3100.00 & 744.8 & 5.94 & 126 & 10.7 & 195 & 3.72 & 338 & 7.47 & 214 \\
\hline 3200.00 & 772.3 & 6.91 & 127 & 12.6 & 189 & 3.72 & 338 & 5.94 & 216 \\
\hline 3300.00 & 801.7 & 4.20 & 99.5 & 8.54 & 194 & 3.52 & 349 & 6.37 & 221 \\
\hline 3400.00 & 826.0 & 2.49 & 33.7 & 7.11 & 241 & 3.52 & 349 & 6.84 & 225 \\
\hline 3500.00 & 856.5 & 6.25 & 83.7 & 4.63 & 207 & 2.85 & 14.0 & 5.94 & 234 \\
\hline 3600.00 & 880.4 & 7.72 & 79.7 & 2.07 & 180 & 2.18 & 18.4 & 5.94 & 234 \\
\hline 3700.00 & 916.5 & 6.55 & 108 & 6.25 & 186 & 2.49 & 33.7 & 5.94 & 234 \\
\hline 3800.00 & 943.5 & 5.57 & 82.9 & 2.49 & 214 & 1.54 & 63.4 & 5.26 & 247 \\
\hline file://C:\TEMP & CF5B.tm & & & gage & // & \multicolumn{3}{|l|}{Reviewed / Mjinessed By Andy Ang \(\qquad\) \(-\sin ^{2} x\)} & 12/09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{CA1} & \multicolumn{2}{|c|}{\(C H 2\)} & \multicolumn{2}{|c|}{CAB} & \multicolumn{2}{|r|}{CH 4} \\
\hline 3900.00 & 974.9 & 9.39 & 107 & 5.86 & 135 & 0.691 & 90.0 & 5.26 & 247 \\
\hline 4000.00 & 1004.7 & 3.45 & 127 & 6.37 & 167 & 1.54 & 63,4 & 5.03 & 254 \\
\hline 4100.00 & 1025.9 & 2.18 & 342 & 5.26 & 157 & 0.691 & 180 & 2,18 & 288 \\
\hline 4200.00 & 1049.9 & 6.21 & 0 & 7.81 & 135 & 1.54 & 243 & 2.49 & 236 \\
\hline 4300.00 & 1077.6 & 12.4 & 19.4 & 13.3 & 152 & 2.93 & 315 & 4.83 & 180 \\
\hline 4322.00 & 1098.0 & 13.8 & 17.5 & 13.8 & 162 & 2.93 & 315 & 4.88 & 188 \\
\hline 4322.00 & 1163.6 & 13.6 & 24.0 & 12.9 & 164 & 2.49 & 326 & 4.88 & 188 \\
\hline 4320.00 & 1223.9 & 13.6 & 30.5 & 12.9 & 164 & 2.18 & 342 & 4.37 & 198 \\
\hline 4323.00 & 1286.2 & 13.3 & 27.9 & 13.8 & 162 & 1.54 & 333 & 4.37 & 198 \\
\hline
\end{tabular}

\section*{Measuring Values}

\section*{Rotor: 7FH2_7C068}

Run: OVERSPEED TEST from 2009-01-12 17:13

\section*{Comment:}

\section*{2 per rev}

Measuring Values
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { CE JNL WEST } \\
2 \mathrm{X} \\
\text { CH } 5 \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { CE JNL EAST } \\
2 \mathrm{X} \\
\mathrm{CH} 6
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { COLLECTOR WEST } \\
2 \mathrm{X} \\
\mathrm{CH} 7
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { COLLECTOR EAST } \\
2 \mathrm{X} \\
\mathrm{CH} 8 \\
\hline
\end{gathered}
\]} \\
\hline Speed [rpm] & \[
\begin{gathered}
\text { Time } \\
{[s]} \\
\hline
\end{gathered}
\] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mppl}\) & Angle ["] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{m} \mathrm{pp}\) ] & Angle [ \({ }^{\circ}\) ] \\
\hline 100.000 & 33.6 & 2.07 & 180 & 2.85 & 284 & 4.03 & 239 & 1.54 & 243 \\
\hline 200.000 & 57.6 & 3.52 & 191 & 3.52 & 11.3 & 3.52 & 259 & 0.691 & 180 \\
\hline 300.000 & 76.2 & 2.85 & 194 & 2.07 & 0 & 2.76 & 270 & 1.54 & 243 \\
\hline 400.000 & 95.3 & 3.52 & 191 & 3.09 & 26.6 & 2.85 & 256 & 0.977 & 225 \\
\hline 500.000 & 116.2 & 4.03 & 211 & 5.90 & 69.4 & 3.52 & 259 & 2.18 & 198 \\
\hline 600.000 & 138.2 & 2.93 & 225 & 5.57 & 120 & 3.45 & 270 & 3.45 & 233 \\
\hline 700.000 & 157.0 & 3.45 & 233 & 4.88 & 188 & 8.79 & 315 & 7.72 & 297 \\
\hline 800.000 & 176.7 & 2.18 & 252 & 2.18 & 198 & 1.38 & 90.0 & 0.977 & 225 \\
\hline 900.000 & 199.3 & 1.54 & 243 & 2.18 & 198 & 0.977 & 135 & 2.18 & 252 \\
\hline 1000.00 & 223.1 & 0.977 & 225 & 2.93 & 225 & 0.977 & 135 & 2.07 & 270 \\
\hline 1100.00 & 250.4 & 0.977 & 225 & 3.45 & 233 & 0.977 & 135 & 2.85 & 284 \\
\hline 1200.00 & 271.5 & 0.691 & 180 & 4.20 & 261 & 1.38 & 180 & 0.977 & 315 \\
\hline 1300.00 & 295.3 & 0.691 & 180 & 4.88 & 278 & 4.88 & 172 & 4.63 & 243 \\
\hline 1400.00 & 319.3 & 2.18 & 198 & 4.37 & 288 & 3.45 & 270 & 7.72 & 280 \\
\hline 1500.00 & 343.6 & 0.977 & 225 & 5.57 & 300 & 3.09 & 297 & 8.32 & 312 \\
\hline 1600.00 & 369.7 & 0.691 & 90.0 & 6.91 & 323 & 9.67 & 0 & 8.98 & 337 \\
\hline 1700.00 & 398.4 & 2.49 & 146 & 5.57 & 353 & 9.26 & 63.4 & 5.57 & 353 \\
\hline 1800.00 & 421.5 & 2.85 & 166 & 5.26 & 337 & 6.94 & 84.3 & 5.69 & 346 \\
\hline 1900.00 & 446.0 & 3.52 & 191 & 4.03 & 329 & 6.21 & 90.0 & 4.03 & 329 \\
\hline 2000.00 & 466.0 & 3.52 & 191 & 2.85 & 194 & 12.9 & 74.5 & 9.69 & 274 \\
\hline 2100.00 & 492.3 & 3.72 & 248 & 2.49 & 214 & 3.45 & 90.0 & 30.5 & 322 \\
\hline 2200.00 & 512.4 & 0.977 & 315 & 7.11 & 241 & 18.3 & 101 & 24.9 & 1.59 \\
\hline 2300.00 & 537.2 & 1.95 & 45.0 & 9.67 & 270 & 20.1 & 106 & 31.6 & 10.1 \\
\hline 2400.00 & 586.2 & 4:14 & 90.0 & 12.4 & 304 & 33.7 & 101 & 48.3 & 31.0 \\
\hline 2500.00 & 613.1 & 7.11 & 119 & 17.7 & 339 & 87.5 & 129 & 66.2 & 82.2 \\
\hline 2600.00 & 634.9 & 7.72 & 170 & 10.4 & 7.59 & 58.5 & 197 & 31.9 & 120 \\
\hline 2700.00 & 650.9 & 6.25 & 186 & 4.63 & 333 & 38.1 & 215 & 23.5 & 133 \\
\hline 2800.00 & 678.8 & 5.03 & 196 & 3.72 & 292 & 28.3 & 227 & 19.1 & 139 \\
\hline 2900.00 & 707.9 & 4.03 & 211 & 4.20 & 279 & 22.8 & 235 & 16.5 & 147 \\
\hline 3000.00 & 725.9 & 4.03 & 211 & 3:45 & 270 & 19.3 & 255 & 15.8 & 157 \\
\hline 3100.00 & 744.8 & 2.49 & 214 & 3.45 & 270 & 19.8 & 241 & 13.8 & 162 \\
\hline 3200.00 & 772.3 & 2.49 & 214 & 2.76 & 270 & 16.6 & 253 & 12.1 & 167 \\
\hline 3300.00 & 801.7 & 2.18 & 198 & 3.52 & 281 & 15.3 & 252 & 9.00 & 176 \\
\hline 3400.00 & 826.0 & 1.54 & 207 & 3.52 & 281 & 14.5 & 267 & 13.1 & 177 \\
\hline 3500.00 & 856.5 & 1.54 & 207 & 4.20 & 279 & 17.3 & 272 & 12.9 & 196 \\
\hline 3600.00 & 880.4 & 1.54 & 153 & 4.03 & 301 & 10.4 & 266 & 12.2 & 196 \\
\hline 3700.00 & 916.5 & 0.977 & 135 & 4.98 & 304 & 15.2 & 273 & 12.3 & 218 \\
\hline & & & & \multicolumn{3}{|r|}{\[
\text { wage No, } 3
\]} & \multicolumn{3}{|l|}{Reviewed / Wiznessed By: mody ter fiviry} \\
\hline \multicolumn{4}{|l|}{file://C:\TEMP\CF5D.tmp} & \multicolumn{3}{|l|}{} & \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{CH5} & \multicolumn{2}{|r|}{CH6} & \multicolumn{2}{|c|}{CH7} & \multicolumn{2}{|c|}{\(C H+\)} \\
\hline 3800.00 & 943.5 & 1.54 & 117 & 4.88 & 315 & 10.4 & 262 & 11.8 & 267 \\
\hline 3900.00 & 974.9 & 3.52 & 101 & 5.86 & 315 & 13.0 & 295 & 9.21 & 283 \\
\hline 4000.00 & 1004.7 & 6.18 & 117 & 7.34 & 319 & 20.5 & 303 & 3.45 & 233 \\
\hline 4100.00 & 1025.9 & 6.37 & 139 & 7.87 & 345 & 13.6 & 345 & 13.6 & 210 \\
\hline 4200.00 & 1049.9 & 7.87 & 142 & 9.39 & 343 & 16.6 & 315 & 14.9 & 236 \\
\hline 4300.00 & 1077.6 & 9.39 & 144 & 11.7 & 0 & 18.3 & 10.9 & 29.8 & 275 \\
\hline 4322.00 & 1098.0 & 10.2 & 152 & 11.7 & 0 & 14.9 & 21.8 & 29.1 & 284 \\
\hline 4322.00 & 1163.6 & 10.2 & 152 & 11.1 & 356 & 14.9 & 21.8 & 29.5 & 286 \\
\hline 4320.00 & 1223.9 & 10.2 & 152 & 11.8 & 357 & 15.5 & 20.9 & 30.2 & 286 \\
\hline 4323.00 & 1286.2 & 10.2 & 152 & 11.8 & 357 & 15.3 & 18.4 & 29.3 & 285 \\
\hline
\end{tabular}

O





O
FFT-Diagram


Page \(1 \times 16\)
-




Beasitilg Rna:Frequencyspectrom

\section*{Measuring Values}

Rotor: 7FH2_7C068
Run: 1 per rev, Speed UP from 2009-01-13 17:12
Measuring Values
Runout corrected
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{array}{r}
\text { TE CPLG } \\
\text { CH }
\end{array}
\] & WEST & \[
\begin{array}{r}
\text { TE CPLC } \\
\mathrm{CH} \\
\hline
\end{array}
\] & EAST & TE JNL
CH & \begin{tabular}{l}
WEST \\
3
\end{tabular} & TE JNL & EAST
\[
4
\] \\
\hline & Speed [rpm] & Time [s] & Amount [ \(\mu \mathrm{m} \mathrm{pp}\) ] & Angle & Amount [ \(\mu \mathrm{mpp}\) ] & Angle \(\left[{ }^{\circ}\right]\) & Amount [ \(\mu \mathrm{mpp}\) ] & Angle & Amount [ \(\mu \mathrm{mpp}\) ] & Angle \\
\hline & 500.000 & 67.4 & 2.79 & 51.3 & 0.436 & 90.0 & 0.437 & 162 & 0.276 & 270 \\
\hline & 600.000 & 92.3 & 2.23 & 101 & 0.436 & 90.0 & 0.437 & 162 & 0.967 & 270 \\
\hline & 700.000 & 108.3 & 2.23 & 101 & 0.436 & 90.0 & 0.437 & 162 & 1.80 & 293 \\
\hline & 800.000 & 126.9 & 2.23 & 101 & 0.436 & 90.0 & 0.437 & 162 & 2.16 & 310 \\
\hline & 901.000 & 145.4 & 3.41 & 140 & 0.436 & 90.0 & 0.926 & 117 & 3.63 & 320 \\
\hline & 1000.00 & 167.6 & 2.62 & 180 & 0.436 & 90.0 & 1.38 & 143 & 5.53 & 357 \\
\hline & 1100.00 & 189.4 & 2.23 & 259 & 0.436 & 90.0 & 1.80 & 176 & 5.67 & 43.0 \\
\hline & 1200.00 & 206.8 & 0.436 & 180 & 0.436 & 90.0 & 0.437 & 162 & 3.24 & 50.2 \\
\hline & 1301.00 & 231.4 & 2.79 & 51.3 & 2.23 & 11.3 & 0.926 & 117 & 2.84 & 60.9 \\
\hline & 1400.00 & 251.7 & 5.09 & 121 & 3.41 & 130 & 3.28 & 165 & 1.80 & 90.0 \\
\hline & 1500.00 & 267.7 & 3.41 & 140 & 2.23 & 169 & 1.88 & 197 & 0.414 & 90.0 \\
\hline & 1600.00 & 286.4 & 3.41 & 140 & 2.23 & 169 & 1.88 & 197 & 0.744 & 338 \\
\hline & 1700.00 & 317.6 & 3.41 & 140 & 2.23 & 169 & 1.11 & 173 & 2.09 & 352 \\
\hline & 1800.00 & 335.4 & 5.27 & 156 & 2.23 & 169 & 1.11 & 173 & 2.93 & 341 \\
\hline & 1900.00 & 353.6 & 7.32 & 163 & 2.79 & 219 & 1.11 & 173 & 3.59 & 344 \\
\hline & 2000.00 & 370.1 & 5.27 & 156 & 2.23 & 169 & 0.437 & 162 & 3.46 & 355 \\
\hline & 2100.00 & 385.0 & 5.27 & 156 & 4.39 & 174 & 0.926 & 117 & 3.59 & 344 \\
\hline & 2200.00 & 400.1 & 7.32 & 163 & 6.77 & 195 & 1.57 & 105 & 5.11 & 341 \\
\hline & 2300.00 & 417.7 & 11.6 & 169 & 6.77 & 195 & 2.47 & 117 & 7.77 & 348 \\
\hline & 2400.00 & 431.1 & 13.7 & 179 & 7.63 & 211 & 4.37 & 125 & 11.7 & 2.02 \\
\hline & 2500.00 & 453.8 & 15.9 & 188 & 7.63 & 211 & 5.28 & 137 & 14.2 & 13,0 \\
\hline & 2600.00 & 473.2 & 14.2 & 198 & 7.63 & 211 & 5.80 & 142 & 14:1 & 28.1 \\
\hline & 2700,00 & 488.8 & 13.1 & 210 & 4.49 & 241 & 5.06 & 154 & 12.6 & 39.6 \\
\hline & 2800.00 & 506.6 & 8.23 & 212 & 4.70 & 202 & 4.15 & 159 & 10.5 & 43.9 \\
\hline & 2900.00 & 522.6 & 7.32 & 197 & 6.77 & 195 & 3.87 & 145 & 10.6 & 49.2 \\
\hline & 3000.00 & 539.0 & 10.2 & 205 & 9.57 & 204 & 4.30 & 138 & 11.3 & 56.5 \\
\hline & 3100.00 & 555.9 & 8.23 & 212 & 8.95 & 223 & 6.25 & 137 & 11.2 & 64.4 \\
\hline & 3201.00 & 571.6 & 7.05 & 248 & 10.6 & 232 & 8.15 & 154 & 10.3 & 78.4 \\
\hline & 3300.00 & 590.6 & 5.09 & 239 & 4.49 & 241 & 8.83 & 170 & 9.42 & 85.8 \\
\hline & 3400.00 & 607.5 & 3.41 & 220 & 4.49 & 241 & 8.01 & 179 & 8.73 & 94.5 \\
\hline & 3500.00 & 626.2 & 4.80 & 180 & 2.79 & 219 & 8.03 & 184 & 7.45 & 101 \\
\hline & 3600.00 & 643.4 & 9.16 & 180 & 2.79 & 219 & 10.1 & 179 & 6.55 & 115 \\
\hline & 3700.00 & 660.9 & 8.23 & 212 & 2.79 & 219 & 7.42 & 190 & 3.46 & 113 \\
\hline & 3780.00 & 679.1 & 9.57 & 223 & 2.23 & 169 & 6.91 & 196 & 4.39 & 61.8 \\
\hline
\end{tabular}


Page No. 19

\section*{Measuring Values}

\section*{Rotor: 7FH2_7C068}

Run: 1 per rev, Speed UP from 2009-01-13 17:12
Measuring Values
Runout corrected
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { CE JNL WEST } \\
\text { CH } 5
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { CE JNL EAST } \\
\text { CH } 6
\end{gathered}
\]} & \multicolumn{2}{|l|}{COLLEGTOR WEST CH 7} & \multicolumn{2}{|l|}{COLLECTOR EAST CH 8} \\
\hline Speed [rpm] & Time [s] & Amount [ \(\mu \mathrm{m} \mathrm{pp}\) ] & Angle
\(\qquad\) [ \({ }^{\circ}\) ] & Amount [ m mpp ] & \[
\begin{gathered}
\text { Angle } \\
{\left[{ }^{\circ}\right]} \\
\hline
\end{gathered}
\] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle
\[
\left[{ }^{\circ}\right]
\] \\
\hline 500.000 & 67.4 & 0.437 & 288 & 0 & 0 & 0 & 0 & 2.18 & 0 \\
\hline 600.000 & 92.3 & 0.437 & 288 & 0 & 0 & 0 & 0 & 2.18 & 0 \\
\hline 700.000 & 108.3 & 0.437 & 288 & 0.691 & 0 & 0 & 0 & 3.09 & 315 \\
\hline 800.000 & 126.9 & 0.691 & 217 & 1.38 & 0 & 0 & 0 & 2.18 & 0 \\
\hline 901.000 & 145.4 & 0.618 & 153 & 3.52 & 349 & 0 & 0 & 2.18 & 0 \\
\hline 1000.00 & 167.6 & 1.27 & 167 & 5.57 & 7.13 & 0 & 0 & 2.18 & 0 \\
\hline 1100.00 & 189.4 & 1.95 & 172 & 7.47 & 56.3 & 2.18 & 180 & 3.09 & 45.0 \\
\hline 1200.00 & 206.8 & 2.23 & 210 & 6.37 & 77.5 & 3.09 & 225 & 0 & 0 \\
\hline 1301.00 & 231.4 & 1.98 & 192 & 6.25 & 83.7 & 3.09 & 225 & 2.18 & 270 \\
\hline 1400.00 & 251.7 & 3.49 & 198 & 5.69 & 104 & 4.88 & 297 & 4.88 & 297 \\
\hline 1500.00 & 267.7 & 3.18 & 214 & 5.03 & 106 & 2.18 & 0 & 3.09 & 315 \\
\hline 1600.00 & 286.4 & 2.64 & 223 & 5.03 & 106 & 4.36 & 0 & 3.09 & 315 \\
\hline 1700.00 & 317.6 & 3.15 & 232 & 6.55 & 108 & 6.55 & 0 & 2.18 & 270 \\
\hline 1800.00 & 335.4 & 3.72 & 239 & 7.11 & 119 & 4.36 & 0 & 2.18 & 270 \\
\hline 1900.00 & 353.6 & 3.72 & 239 & 7.87 & 128 & 6.55 & 0 & 3.09 & 225 \\
\hline 2000.00 & 370.1 & 4.32 & 243 & 8.84 & 129 & 7.87 & 33.7 & 2.18 & 270 \\
\hline 2100.00 & 385.0 & 5.26 & 240 & 10.9 & 125 & 6.17 & 45.0 & 0 & 0 \\
\hline 2200.00 & 400.1 & 6.49 & 246 & 12.7 & 135 & 6.17 & 45.0 & 3.09 & 225 \\
\hline 2300:00 & 417.7 & 6.91 & 254 & 15.2 & 150 & 7.87 & 56.3 & 4.88 & 243 \\
\hline 2400.00 & 431.1 & 8.03 & 266 & 17.1 & 166 & 4.36 & 90.0 & 6.90 & 342 \\
\hline 2500.00 & 453.8 & 7.37 & 276 & 18.0 & 180 & 11.1 & 349 & 14.6 & 117 \\
\hline 2600.00 & 473.2 & 7.48 & 282 & 16.8 & 189 & 10.9 & 53.1 & 15.4 & 188 \\
\hline 2700.00 & 488.8 & 6.80 & 283 & 15.7 & 195 & 7.87 & 56.3 & 16.6 & 203 \\
\hline 2800.00 & 506.6 & 6.80 & 283 & 16.2 & 200 & 9.26 & 45.0 & 17.0 & 220 \\
\hline 2900.00 & 522:6 & 6.68 & 277 & 15.5 & 201 & 9.26 & 45.0 & 17.0 & 230 \\
\hline 3000.00 & 539.0 & 7.37 & 276 & 14.2 & 209 & 6.90 & 71.6 & 16.6 & 247 \\
\hline 3100,00 & 555.9 & 8.31 & 285 & 12.3 & 218 & 4.88 & 63.4 & 19.6 & 270 \\
\hline 3201.00 & 571.6 & 8.15 & 296 & 8.84 & 231 & 6.55 & 0 & 19.5 & 297 \\
\hline 3300.00 & 590.6 & 6.36 & 304 & 4.98 & 236 & 9.76 & 26.6 & 17.0 & 320 \\
\hline 3400.00 & 607.5 & 4.83 & 307 & 3.45 & 233 & 10.9 & 36.9 & 14.6 & 333 \\
\hline 3500.00 & 626.2 & 3.87 & 305 & 1.95 & 225 & 9.76 & 26.6 & 13.3 & 351 \\
\hline 3600.00 & 643.4 & 3.52 & 296 & 0.691 & 270 & 9.76 & 26.6 & 10.9 & 0 \\
\hline 3700.00 & 660.9 & 3.33 & 312 & 1.38 & 270 & 8.73 & 0 & 9.76 & 26.6 \\
\hline 3780.00 & 679.1 & 2.25 & 349 & 3.52 & 349 & 11:8 & 338 & 12.7 & 59.0 \\
\hline
\end{tabular}

\section*{Measuring Values}

Rotor: 7FH2_7C068
Run: Final Balancing ( \(\sqrt{ }\) per rev) Speed Down from 2009-01-14 13:29
Measuring Values
Runout corrected
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{array}{r}
\text { TE CPLC } \\
\mathrm{CH}
\end{array}
\] & WEST & \[
\begin{array}{r}
\text { TE CPLG } \\
\text { CH }
\end{array}
\] & EAST &  & WEST & TE JNL CH & EAST \\
\hline & Speed [rpm] & Time [s] & Amount [ \(\mu \mathrm{mpp} \mathrm{pp}\) ] & Angle
\[
\left.{ }^{\circ}\right]
\] & Amount [ mm pp ] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] \\
\hline & 3780.00 & 299.0 & 14.4 & 245 & 9.57 & 294 & 6.12 & 186 & 2.10 & 23.2 \\
\hline & 3700.00 & 320.5 & 12.0 & 226 & 8.74 & 267 & 6.77 & 180 & 3.27 & 152 \\
\hline & 3600.00 & 336.8 & 8.95 & 227 & 10.9 & 268 & 4.24 & 161 & 7.91 & 117 \\
\hline & 3500.00 & 385.1 & 10.6 & 218 & 11.2 & 257 & 8.18 & 185 & 10.7 & 102 \\
\hline & 3400.00 & 405.7 & 13.6 & 220 & 13.4 & 259 & 9.55 & 184 & 12.7 & 96.9 \\
\hline ( ) & 3300.00 & 420.8 & 13.6 & 220 & 17.7 & 261 & 10.9 & 176 & 13.9 & 90.6 \\
\hline & 3200.00 & 436.0 & 18.2 & 226 & 20.2 & 256 & 11.4 & 162 & 16.8 & 83.4 \\
\hline & 3100.00 & 452.0 & 21.5 & 218 & 24.6 & 243 & 10.7 & 140 & 19.1 & 71.4 \\
\hline & 3000.00 & 467.0 & 23.1 & 202 & 23.5 & 220 & 6.28 & 130 & 18.3 & 61.1 \\
\hline & 2900.00 & 514.0 & 19.7 & 193 & 18.0 & 209 & 4.31 & 140 & 16.9 & 55.7 \\
\hline & 2800.00 & 570.5 & 17.2 & 187 & 16.3 & 196 & 4.87 & 145 & 16.1 & 47.4 \\
\hline & 2700.00 & 604.0 & 19,3 & 186 & 13.7 & 189 & 5.77 & 159 & 17.6 & 45.6 \\
\hline & 2600.00 & 628.0 & 19.2 & 180 & 13.7 & 189 & 6.05 & 153 & 18.2 & 37.9 \\
\hline & 2500.00 & 656.5 & 19.3 & 174 & 13.5 & 180 & 6.05 & 153 & 16.7 & 30.4 \\
\hline & 2400.00 & 678.5 & 18.2 & 159 & 11.3 & 180 & 4.87 & 145 & . 15.4 & 21.5 \\
\hline & 2300.00 & 710.5 & 17.2 & 150 & 11.3 & 180 & 4.31. & 140 & 12.6 & 13.3 \\
\hline & 2200.00 & 731.6 & 16.7 & 139 & 11.6 & 169 & 3.34 & 142 & 9.65 & 9.06 \\
\hline & 2100.00 & 748.4 & 12.0 & 134 & 9.42 & 167 & 2.97 & 152 & 7.67 & 11.5 \\
\hline & 2000.00 & 772.7 & 10.7 & 125 & 10.2 & 155 & 2.71 & 165 & 6.26 & 14.0 \\
\hline & 1900.00 & 789.5 & 7.63 & 121 & 8.23 & 148 & 2.62 & 180 & 4.28 & 20.8 \\
\hline & 1800.00 & 811.5 & 7.63 & 121 & 8.23 & 148 & 2.62 & 180 & 4.40 & 41.2 \\
\hline ( & 1700.00 & 838.8 & 5.87 & 132 & 8.23 & 148 & 3.39 & 192 & 4.89 & 47.3 \\
\hline & 1600.00 & 859.2 & 5.87 & 132 & 8.23 & 148 & 4.06 & 190 & 5.33 & 68.7 \\
\hline & 1500.00 & 879.4 & 5.87 & 132 & 9.57 & 137 & 6.08 & 180 & 7.17 & 62.4 \\
\hline & 1400.00 & 899.0 & 13.7 & 107 & 13.4 & 101 & 10.2 & 137 & 10.3 & 48.8 \\
\hline & 1300.00 & 919.6 & 5.09 & 59.0 & 2.79 & 51.3 & 2.08 & 86.2 & 8.82 & 39.9 \\
\hline & 1200.00 & 938.0 & 2.79 & 129 & 3.41 & 140 & 2.05 & 160 & 11.1 & 30.7 \\
\hline & 1100.00 & 955.2 & 7.51 & 144 & 3.41 & 140 & 3.81 & 134 & 15.1 & 358 \\
\hline & 1000.00 & 969,4 & 11.6 & 110 & 3.41 & 140 & 3.46 & 87.7 & 11.1 & 307 \\
\hline & 900.000 & 984.0 & 8.74 & 87.1 & 3.41 & 140 & 1.61 & 59.0 & 6:20 & 282 \\
\hline & 800,000 & 1002.8 & 6.56 & 86.2 & 3.41 & 140 & 1.08 & 39.8 & 4.01 & 268 \\
\hline & 700.000 & 1023.9 & 5.09 & 59.0 & 3.41 & 140 & 0.138 & 0 & 2.63 & 267 \\
\hline & 600.000 & 1039.2 & 4.39 & 84.3 & 3.41 & 140 & 0.138 & 0 & 1.25 & 264 \\
\hline & 500.000 & 1054.6 & 4.39 & 84.3 & 2.62 & 180 & 0.138 & 0 & 0.569 & 256 \\
\hline & 400.000 & 1069.8 & 4.39 & 84.3 & 3.41 & 140 & 0.138 & 0 & 0.569 & 256 \\
\hline & 300.000 & 1086.5 & 4.39 & 84.3 & 3.41 & 140 & 0.138 & 0 & 0.569 & 256 \\
\hline & 200.000 & 1100.8 & 2.23 & 78.7 & 2.62 & 180 & 0.704 & 78.7 & 0.195 & 135 \\
\hline & 125,000 & 1123.8 & 4.49 & 151 & 2.23 & 259 & 0.138 & 0 & 0.195 & 135 \\
\hline
\end{tabular}

\section*{Measuring Values}

\section*{Rotor: 7FH2_7C068}

\section*{Run: Final Balancing ( \(L\) per rev ) Speed Down from 2009-01-14 13:29}

\section*{Measuring Values}

Runout corrected
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{CE JNL WEST
CH 5} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { CE JNL EAST } \\
\text { CH } 6
\end{gathered}
\]} & \multicolumn{2}{|l|}{COLLECTOR WEST CH 7} & \multicolumn{2}{|l|}{COLLECTOR EAST CH 8} \\
\hline Speed [rpm] & Time [s] & Amount [um pp] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mpp} \mathrm{pp}\) ] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{m}\) po] & Angle \(\left.{ }^{\circ}{ }^{\circ}\right]\) & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] \\
\hline 3780.00 & 299.0 & 3.32 & 343 & 2.18 & 342 & 12.0 & 316 & 9.81 & 111 \\
\hline 3700.00 & 320.5 & 3.42 & 317 & 0.977 & 315 & 9.57 & 336 & 1.95 & 297 \\
\hline 3600.00 & 336.8 & 3.93 & 309 & 1.54 & 297 & 11.0 & 351 & 8.05 & 311 \\
\hline 3500.00 & 385.1 & 4.40 & 316 & 3.45 & 270 & 11.0 & 351 & 8.05 & 311 \\
\hline 3400.00 & 405.7 & 5.37 & 316 & 4.14 & 270 & 13.2 & 352 & 11.1 & 312 \\
\hline 3300.00 & 420.8 & 6.44 & 325 & 6.37 & 283 & 14.4 & 335 & 14.7 & 300 \\
\hline 3200.00 & 436.0 & 8,80 & 312 & 11.1 & 266 & 15.4 & 305 & 15.7 & 289 \\
\hline 3100.00 & 452.0 & 9.78 & 289 & 12.4 & 243 & 15.5 & 254 & 14.9 & 265 \\
\hline 3000.00 & 467.0 & 8.57 & 273 & 12.3 & 218 & 14.4 & 205 & 11.0 & 252 \\
\hline 2900.00 & 514.0 & 6.50 & 268 & 11.1 & 210 & 11.9 & 156 & 7.04 & 240 \\
\hline 2800.00 & 570.5 & 5.82 & 274 & 12.4 & 207 & 9.57 & 133 & 8.34 & 227 \\
\hline 2700.00 & 604.0 & 5.13 & 275 & 12.4 & 207 & 13.1 & 120 & 9.95 & 218 \\
\hline 2600.00 & 628.0 & 5.82 & 274 & 13.8 & 198 & 17.9 & 90.0 & 9.21 & 149 \\
\hline 2500.00 & 656.5 & 6.50 & 268 & 13.8 & 183 & 5.27 & 65.6 & 15.4 & 61.3 \\
\hline 2400.00 & 678.5 & 5.81 & 267 & 13.3 & 171 & 9.42 & 103 & 11.8 & 2.12 \\
\hline 2300:00 & 710.5 & 5.20 & 259 & 12.7 & 158 & 11.3 & 90.0 & 7.62 & 347 \\
\hline 2200.00 & 731.6 & 4.72 & 249 & 10.9 & 145 & 11.3 & 90.0 & 7.43 & 3.37 \\
\hline 2100.00 & 748.4 & 4.08 & 246 & 9.77 & 135 & 9.42 & 103 & 9.76 & 350 \\
\hline 2000.00 & 772.7 & 4.41 & 238 & 8.84 & 129 & 10.2 & 64.5 & 5.52 & 342 \\
\hline 1900.00 & 789.5 & 3.84 & 232 & 7.72 & 117 & 10.2 & 64.5 & 7.62 & 347 \\
\hline 1800.00 & 811.5 & 2.87 & 235 & 6.80 & 114 & 9.57 & 46.8 & 7.62 & 347 \\
\hline 1700.00 & 838.8 & 2.87 & 235 & 5.69 & 104 & 9.96 & 28.8 & 8.39 & 332 \\
\hline 1600.00 & 859.2 & 3.84 & 218 & 5.57 & 97.1 & 9.96 & 28.8 & 10.4 & 338 \\
\hline 1500.00 & 879.4 & 3.84 & 218 & 5.03 & 106 & 9,11 & 16.7 & 11.4 & 328 \\
\hline 1400.00 & 899.0 & 3.85 & 195 & 11.2 & 112 & 11.3 & 293 & 12.7 & 264 \\
\hline 1300.00 & 919.6 & 1.92 & 210 & 11.2 & 68.2 & 2.23 & 169 & 2.18 & 233 \\
\hline 1200.00 & 938.0 & 3.19 & 198 & 10.8 & 50.2 & 3.41 & 130 & 3.09 & 8.13 \\
\hline 1100.00 & 955.2 & 2.44 & 133 & 11.9 & 10.0 & 3.41 & 130 & 5.52 & 342 \\
\hline 1000.00 & 969.4 & 0.586 & 45.0 & 7.11 & 331 & 2.62 & 90.0 & 8.39 & 332 \\
\hline 900.000 & 984.0 & 0.498 & 326 & 3.45 & 307 & 2.62 & 90.0 & 6.55 & 323 \\
\hline 800.000 & 1002.8 & 1.05 & 293 & 1.54 & 297 & 2.62 & 90.0 & 4.98 & 308 \\
\hline 700.000 & 1023.9 & 1.05 & 293 & 0.691 & 270 & 3.41 & 50.2 & 6.83 & 297 \\
\hline 600.000 & 1039.2 & 1.05 & 293 & 0 & 0 & 2.62 & 90.0 & 4.98 & 308 \\
\hline 500.000 & 1054.6 & 1.71 & 284 & 0.691 & 180 & 2.62 & 90.0 & 4.98 & 308 \\
\hline 400.000 & 1069.8 & 1.71 & 284 & 0 & 0 & 2.62 & 90.0 & 4.98 & 308 \\
\hline 300.000 & 1086.5 & 1.71 & 284 & 0.691 & 180 & 2.23 & 11.3 & 4.02 & 283 \\
\hline 200.000 & 1100.8 & 0.391 & 225 & 0.977 & 45.0 & 2.62 & 90.0 & 3.52 & 330 \\
\hline 125.000 & 1123.8 & 0.391 & 225 & \(\bigcirc 0\) & 0 & 2.62 & 90.0 & 0.976 & 26.6 \\
\hline
\end{tabular}


\section*{Measuring Values}

\section*{Rotor: 7FH2_7C068}

\section*{Run: Final Balancing (2 per rev) Speed Down from 2009-01-14 13:29}

Measuring Values

Runout corrected
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & &  & EST 2X & \[
\begin{array}{r}
\text { TE CPLG } \\
\mathrm{CH}
\end{array}
\] & AST 2X & \[
\begin{gathered}
\text { TE JNL W } \\
\text { CH }
\end{gathered}
\] & \[
\operatorname{EST}_{3}^{2 X}
\] & TE JNL EA CH & \[
\begin{aligned}
& \text { AST } 2 X \\
& 4
\end{aligned}
\] & \\
\hline & Speed [rpm] & Time [s] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] & Amount【 \(\mu \mathrm{m}\) pp] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle [ \({ }^{\circ}\) ] & Amount [ \(\mu \mathrm{mpp}\) ] & Angle \(\left[{ }^{\circ}\right]\) & \\
\hline & 3780.00 & 299.0 & 4.84 & 182 & 6.76 & 229 & 2.07 & 323 & 3.03 & 210 & \\
\hline & 3700.00 & 320.5 & 6.24 & 175 & 7.29 & 217 & 1.75 & 342 & 3.03 & 210 & \\
\hline & 3600.00 & 336.8 & 5.21 & 158 & 5.00 & 242 & 1.75 & 342 & 3.03 & 210 & \\
\hline & 3500.00 & 385.1 & 7.39 & 159 & 8.26 & 232 & 2.35 & 3.37 & 3.16 & 247 & \\
\hline & 3400.00 & 405.7 & 7.64 & 186 & 12.8 & 250 & 3.04 & 2.60 & 4.70 & 246 & \\
\hline ( 7 & 3300.00 & 420.8 & 11.5 & 163 & 12.7 & 218 & 3.04 & 2.60 & 4.70 & 246 & \\
\hline & 3200.00 & 436.0 & 17.9 & 158 & 17.4 & 202 & 3.73 & 2.12 & 5.62 & 242 & \\
\hline & 3100.00 & 452.0 & 15.7 & 152 & 15.9 & 213 & 4.42 & 1.79 & 6.87 & 248 & \\
\hline & 3000.00 & 467.0 & 16.1 & 130 & 13.2 & 217 & 5.14 & 354 & 9.33 & 245 & \\
\hline & 2900.00 & 514.0 & 18.5 & 122 & 17.4 & 207 & 6.61 & 349 & 11.4 & 233 & \\
\hline & 2800:00 & 570.5 & 16.9 & 117 & 19.8 & 197 & 7.63 & 328 & 12.4 & 215 & \\
\hline & 2700.00 & 604.0 & 20.0 & 95.9 & 23.1 & 182 & 9.38 & 314 & 16.1 & 201 & \\
\hline & 2600.00 & 628.0 & 20.2 & 72.1 & 28.0 & 166 & 10.9 & 290 & 19.2 & 180 & \\
\hline & 2500.00 & 656.5 & 28.3 & 67.1 & 47.8 & 115 & 9.12 & 235 & 17.6 & 201 & \\
\hline & 2400.00 & 678.5 & 23.8 & 16.5 & 21.2 & 63.8 & 3.18 & 236 & 9.77 & 226 & \\
\hline & 2300.00 & 710.5 & 14.6 & 354 & 10.9 & 52.7 & 1.66 & 228 & 6.38 & 265 & \\
\hline & 2200.00 & 731.6 & 9.03 & 337 & 5.98 & 49.7 & 0.691 & 233 & 3.59 & 272 & \\
\hline & 2100.00 & 748.4 & 6.82 & 35.9 & 8.28 & 62.2 & 1.11 & 330 & 1.53 & 275 & \\
\hline & 2000.00 & 772.7 & 9.68 & 3.27 & 3.65 & 60.5 & 1.57 & 308 & 3.03 & 210 & \\
\hline & 1900.00 & 789.5 & 8.42 & 350 & 5.00 & 50.6 & 2.07 & 323 & 2.54 & 241 & \\
\hline & 1800.00 & 811.5 & 4.23 & 349 & 5.00 & 39.4 & 2.18 & 215 & 7.36 & 203 & \\
\hline 5 & 1700.00 & 838.8 & 9.43 & 342 & 7.08 & 20.6 & 2,80 & 290 & 8.15 & 181 & \\
\hline & 1600.00 & 859.2 & 11.8 & 315 & 10.1 & 330 & 2.23 & 240 & 8,00 & 201 & \\
\hline & 1500.00 & 879.4 & 8.87 & 288 & 6.31 & 293 & 0.618 & 297 & 6.12 & 208 & \\
\hline & 1400.00 & 899.0 & 7.76 & 275 & 4.44 & 275 & 1.57 & 308 & 4.94 & 216 & \\
\hline & 1300.00 & 919.6 & 7.18 & 259 & 3.89 & 287 & 1.27 & 283 & 3.49 & 236 & \\
\hline & 1200.00 & 938.0 & 6.30 & 244 & 4.56 & 284 & 1.27 & 283 & 1.96 & 231 & \\
\hline & 1100.00 & 955.2 & 4.53 & 232 & 4,43 & 266 & 0.618 & 297 & 1.25 & 186 & \\
\hline & 1000.00 & 969,4 & 3.54 & 219 & 4.43 & 266 & 1.11 & 330 & 1.25 & 186 & \\
\hline & 900.000 & 984.0 & 3.03 & 227 & 4.52 & 258 & 1.11 & 330 & 2.63 & 183 & \\
\hline & 800.000 & 1002.8 & 3.56 & 234 & 5.00 & 242 & 2.07 & 323 & 4.01 & 182 & \\
\hline & 700.000 & 1023.9 & 3.96 & 151 & 5.13 & 117 & 1.24 & 207 & 4.19 & 163 & \\
\hline & 600.000 & 1039.2 & 3.21 & 295 & 1.47 & 319 & 2.16 & 297 & 6.17 & 130 & \\
\hline \(\bigcirc\) & 500.000 & 1054.6 & 5.09 & 237 & 1.99 & 304 & 1.31 & 252 & 4.28 & 69.2 & \\
\hline & 400.000 & 1069.8 & 3.54 & 219 & 2.59 & 295 & 0.437 & 7.62 & 0.996 & 33.7 & \\
\hline & 300.000 & . 1086.5 & 2.57 & 216 & 2.38 & 280 & 0.309 & 26.6 & 0.195 & 315 & \\
\hline & 200.000 & 1100.8 & 2.61 & 238 & 2.04 & 332 & 1.24 & 207 & 0.996 & 33.7 & \\
\hline & 125.000 & 1123.8 & 2.97 & 118 & 2.59 & 155 & 0.691 & 233. & 0.781 & 135 & \\
\hline
\end{tabular}

\section*{Measuring Values}

\section*{Rotor: 7FH2_7C068}

\section*{Run: Final Balancing (2 per rev) Speed Down from 2009-01-14 13:29}

Measuring Values
Runout corrected



IMPEDANGE GRAPH


19geno. 25




*. INSTRUCTION
1) Winding Resistance : Design Value \(\pm 2 \%\)
2) Impedance : Design Value \(\pm 25 \%\)
3) Pre-hipot
- Insulation Resistance: Min 25 Mohm (DC 500V MEGGER)
\begin{tabular}{|c|}
\hline TEST CONDITION \\
\hline ambient temp: \(17^{\circ} \mathrm{C}\) \\
\hline humidity \(: 30 \%\) \\
\hline
\end{tabular}
- Polarization index
\begin{tabular}{|c|c|}
\hline Insulation Resistance & Polarization Index \\
\hline \(25-199\) Mohm & Min 1.10 \\
\hline\(\geq 200\) Mohm & Min 1.00 \\
\hline
\end{tabular}
(y) Hi-pot Test: Test Voltage :AC 3500 V, Holding Time: 1 Min
5) Post-hipot

Insulation resistance at 1 minute after hipot should be 2548 or greater and
at least 60 percent of the one-minute pre-high potential measurement,
or 200 Ms or greater.

\section*{1. WINDING RESISTANCE OHEGK}
\begin{tabular}{|c|c|c|}
\hline RESISTANCE ( \(\Omega\) ) at 12.5 ¢ C \% &  & F-\%: REMARKS \\
\hline 0.1315 . & V1 4 , 0.13815 \% & , -1.53\% \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Segtion & 1 & 2 & \[
1 . y
\] & W, S, & \[
\sqrt{2 k 5}
\] & Average & REMARKS \\
\hline Temp( \({ }^{\circ} \mathrm{C}\) ) & 12.3 & 12.5 & 12.7* & -42.4 2 & 极 12.5 & 12.5 & \\
\hline
\end{tabular}

\section*{2. IMPEDANCE CHECK}
(?) \begin{tabular}{|c|c|c|c|c|}
\hline VOLTAGE & CURRENT & ACTLDATA & DESIGN VALUE & DIFFERENCE(\%) \\
\hline 100 Vac & 12.2 A & \(8.20 \Omega\) & \(8.49 \Omega\) & \(-3.45 \%\) \\
\hline
\end{tabular}

\section*{3. INSULATION RESISTANCE CHECK}
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & INSULATION RESISTANCE & Ration of Insulation resistance between \\
pre and post Hi-pot Test (\%)
\end{tabular}
4. POLARIZATION INDEX TEST (BEFORE HI POT)
\begin{tabular}{|c|c|c|c|c|}
\hline TIME & 1 MIN & 5 MIN & 10 MIN & \(P .1\) \\
\hline\(M \&\) & 6430 & 24200 & 41100 & 6.39 \\
\hline
\end{tabular}
5. HI - POT TEST
\begin{tabular}{|c|c|c|c|}
\hline TESTVOLTAGE & HOLDING TIME & RESULT & REMARKS \\
\hline \(3500 V . A C\) & 60 SEC & Pass & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline  & \multicolumn{2}{|l|}{\begin{tabular}{l}
RTD TEST REPORT \\
(AFTER FINAL HI-POT TEST)
\end{tabular}} & \[
\begin{array}{r}
\text { PCG NO: PC }-\mathrm{SW}-01 \\
\text { PAGE: } / \mathrm{OF} /
\end{array}
\] \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{※ INSTRUCTION}} & 7FH2 7C068.GEN \\
\hline & & & T07113 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
1) DIFF : \([(A-B+A-C) \div 2]\) \\
2)TEMP: (DIFF-100)*2.544
\end{tabular}}} & \multirow[t]{2}{*}{\[
-\mathrm{B}-\mathrm{C}
\]} & 135E3545 Rev.J \\
\hline & & & P24A -AL -5068Q \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
3) All the temperature should be within \(\pm 2{ }^{\circ} \mathrm{C}\) of ambient temperature. \\
- Arabient temperature is the average of the all measured temperature.
\end{tabular}}} & 181094165 (338×390) \\
\hline & & & 2009.02.21 \\
\hline
\end{tabular}


\section*{COMMENTS:}

※ FLUX PROBE CAECK : \(6.14 \Omega\)
\(\frac{7+\frac{0.21}{6} 2(21 / 0)}{A D P R O V E D \cdot B Y}\)


Jopyright by DOOSAN Heavy industries and Construction. Co. Ltd. 두산중공업 All Rights Reserved,


Instruments ID No.:
속정장비 식별번호 유니마스터 : 08A2E1018-0008


2008-12-1909:50/발전)턴빈/발전기품질관리부 발전기검서과 발전기검사반/H506384/김남건

Page No. 24
2008-12-19 09:50/발전)텃빈/발 저기품질관리부 발전기겸사과 발전기검사반/H506384/김남건


\title{
Customer: ASTORIA ENERGY II, LLC PHASE II ASTORIA ENERGY EXPANSION PROJECT Generator: 290T769
}


This report contains Quality and Test information created during the manufacture of the generator noted above. The data and certifications included are intended to provide information on the final electrical and mechanical testing performed on the generator and its major components

\section*{Steam Turbine Generator Manufacturing Department Schenectady, New York}

\title{
Generator Quality Certification
}

\section*{GENERATOR SERIAL NO.: 290 T769}
Equipment Description: 324 LD 60HZ

\section*{CERTIFICATION TO SHIP THE GENERATOR IDENTIFIED ABOVE HAS BEEN GIVEN BY THE FOLLOWING:}


Stator Serial \# 181167351


Generator Manufacturing Dept. General Electric Co. Schenectady, V.Y.
Any Problems?......Please Call 1-800-4GE-FAST

\title{
Armature Hipot Test Data For Medium (Conventionally Cooled) Armatures - Split Phase
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Wind Stand Hipot: ___ X} & \multicolumn{3}{|c|}{Shipping Hipot} & \multirow[b]{2}{*}{9/28/09} \\
\hline SER \# 181167351 & Customer & \multicolumn{2}{|l|}{ASTORIA ENERGY} & Date & \\
\hline \multicolumn{6}{|c|}{Stator Phase Resistance Test (Per P24A-AL-5069Q)} \\
\hline \multirow[t]{2}{*}{Therm. S/Ns Pr \(^{78560064}\)} & 78490014 & Cal Due & 219/10 & 2/9/10 & \\
\hline & 1390 & Cal Due & 6/9/10 & & \\
\hline Measured Winding Temps TE & \(23.6{ }^{\circ} \mathrm{C}\) & Design R & esistance/Phase & 0.0009 & \\
\hline \multirow[t]{2}{*}{Measured: Phase 1-4 \({ }^{\text {CE }}\)} & \(23.5^{\circ} \mathrm{C}\) & Circuit Res & sistance/Circuit & & \\
\hline & 2.568. & Phase 2-5 & 2.598 & Phase 3-6 & 2.605 \\
\hline Measured: Phase 1-4 & 2.607 & Phase 2-5 & 2.651 & Phase 3-6 & 12.564 \\
\hline Measured: Phase 1-4 & 2.645 & Phase 2-5 & 2.585 & Phase 3-6 & 2.652 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{METER SCALE: \(\qquad\) m Ohm u Ohm Note: Write Down Exact Meter Reading, Do Not Covert. Attach Program Analysis' Sheet (PCT-409)}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Insulation Resistance Test (500 volt Megger) Before \& After Hipot (Per P12A-AL-7486)}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Ambient Temp \(23.4^{\circ} \mathrm{C}{ }^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{2}{|l|}{Rel. Humidity \(\quad 51.8 \%\)} & RH S/N & 100-04-02352 & Cal Due & 10/10/10 \\
\hline Megger S/N 2233 & al Due & 4/8/10 & & & \\
\hline \multicolumn{4}{|l|}{Before Hipot} & After Hipot & Min Req. \\
\hline Phase M 2 : 1 Min & 3 Min & 10 Min & PI & 1 Min & 1 Min \\
\hline 1-4 3300 & 9700 & 24400 & 7.4 & 2960 & 2805 \\
\hline 2-5 : \(: 3460\) & 10500 & 26600 & 7.65 & 3200 & 2941 \\
\hline \begin{tabular}{l|l}
\(3-6\) & 3080
\end{tabular} & 9750 & 24000 & 7.55 & 2780 & 2703 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
Notes: Proceed with hipot if resistance \(>\mathbf{1 0 0 0} \mathrm{M} \Omega\) AND PI \(>\mathbf{2 . 0}\) After hipot megger to be done at least 30 minutes after hipot. After hipot resistance should be \(\geq 85 \%\) of initial, before-hipot, one minute value and also \(\geq\) \(1000 \mathrm{M} \Omega\). Issue a QCR for any out of tolerance readings. \\
Testers GAMMMTS/BM/JF \\
Date \\
9/28/09
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{} & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Hipot Safety Checklist, Form PCT-004 had been completed and is attached ( )}} \\
\hline & & & & & \\
\hline Enter Pass/Fail: PASS & er Pass/Fail & \[
\begin{gathered}
\text { hase 2-5 } \\
\text { PASS } \\
\hline
\end{gathered}
\] & Enter Pass/Fail: & \[
\begin{array}{r}
\text { hase } 3-6 \\
\text { PASS } \\
\hline
\end{array}
\] & \\
\hline Testers \({ }^{\text {a }}\) & A/MMTS/BM/JF & & Date & 9/28/09 & \\
\hline Head of Test PCG-5811A & \(\cdots\) & & Date & 9-28-09 & \\
\hline
\end{tabular}

Engineering Design Resistance @ 2.5 DegC is: 0.0009 Ohms
At Measured Temperature of 23.6 Deg .0008688 Ohms was measured
This Corrects to a Resistance of: . 0008735 Ohms @ 25 Deg
Compared to the Design Resistance, This is \(2.95 \%\) LOWER Than the Design. Resistance

> ** * WITHIN TOLERANCE *

PHASE 2

Engineering Design Resistance @ 25 DegC is: 0.0009 Ohms
At Measured Temperature of 23.6 Deg .0008703 Ohms was measured
This Corrects to a Resistance of: . 0008751 Ohms @ 25 Deg
Compared to the Design Resistance, This is \(2.77 \%\) LOWER Than the Design Resistance

\section*{* * * WITHIN TOLERANCE * * *}

PHASE 3

Engineering Design Resistance @ 25 DegC is: 0.0009 Ohms
At Measured Temperature of 23.6 DegC .0008688 Ohms was measured
This Corrects to a Resistance of: . 0008735 Ohms @ 25 Deg
Compared to the Design Resistance, This is \(2.94 \%\) LOWER Than the Design Resistance
```

*     *         * WITHIN TOLERANCE ***

```

\section*{METER CALIBRATION}

Fluke Thermometer S/N 78560064 Used Calibration Due: 2/9/10
BIDDLE DLR SN 13910 USED CAL DUE: 6/9/10
Fluke Thermometer S/N 78490014 Used Calibration Due: 2/9/10

TEST MEN WORKING UNIT: ĞGMmTSBM
TEST DATA REVIEWED BY:


DATE: \(9 / 28 / 09\)
DATE: \(9 / 28 / 11\)

RID WIRE CHECK RECORD SHEET (PER P24A-AL-5068Q) PCG-5810 Rev DPI 10/06

PC - GFBADRE

\section*{\(2907769 \quad\) Gen S/N - 181167351}

Res. Meter: Valhalla 4020 S/N 28-878 Cal Due: 8/11/2010

\section*{ASTORIA}

TC Meter: Fluke \(51 \mathrm{~S} / \mathrm{N} 78850473\) Cal Due: 8/11/2010

\author{
RESULTS: (ABB) \& (ABC) \\ High to Low Comparison .Diff \(=.550\) \\ Comparison with Ambient
}

All RTD's within Limits
ALL RTD's WITHIN TOLERANCE
ALL RTD's WITHIN LIMITS

\(\qquad\) Date: \(\qquad\) \(10-22-04\)

RTD WIRE CHECK RECORD SHEET (PER P24A-AL-5068Q)
PCG-5810 Rev DPI 10/06
PC - GFBADRE

\section*{\(290 T 769\) Gen S/N-181167351}

Res. Meter: Valhalla \(4020 \mathrm{~S} / \mathrm{N} 28-876\) Cal Due: \(8 / 11 / 2010\)
Operator: BL/BH

ASTORIA
TC Meter: Fluke 51 SN 78850473 Cal Due: \(8 / 11 / 2010\)
Date: 10/22/2009
All RTD's within Limits
ALL RID's WITHIN TOLERANCE
ALL RTD's WITHIN LIMITS
Ambient Temp \(=26.2\)

Flux Probe Reading was 6.30 Ohms
\begin{tabular}{llcccccccc} 
RID \\
\(\#\) & LOAN & A-B & A-C & B-C & DIFF & \begin{tabular}{l} 
Temp \\
DEG C
\end{tabular} & \begin{tabular}{c}
\((\) A-B)\&(A-C) \\
Comparison
\end{tabular} & \begin{tabular}{c} 
Comparison w/ \\
Ambient
\end{tabular} & \begin{tabular}{c} 
Comparison \\
Hi to Lo
\end{tabular} \\
& & & & & & & & & \\
10A & GAS & 1.11 .050 & 111.030 & 1.260 & 109.780 & 25.2 & OK & OK & OK \\
10B & GAS & 111.190 & 111.200 & 1.270 & 109.925 & 25.5 & OK & OK & OK \\
11A & GAS & 110.360 & 110.360 & .540 & 109.820 & 25.3 & OK & OK & OK \\
11B & GAS & 110.320 & 110.310 & .540 & 109.775 & 25.1. & OK & OK & OK \\
12A & GAS & 110.000 & 109.990 & .270 & 109.725 & 25.0 & OK & OK & OK \\
12B & GAS & 110.020 & 110.010 & .260 & 109.755 & 25.1 & OK & OK & OK \\
13A & GAS & 111.350 & 111.360 & 1.570 & 109.785 & 25.2 & OK & OK & OK \\
13B & GAS & 111.450 & 111.430 & 1.570 & 109.870 & 25.4 & OK & OK & OK \\
15A & GAS & 110.410 & 110.410 & .660 & 109.750 & 25.1 & OK & OK & OK \\
15B & GAS & 110.380 & 110.380 & .660 & 109.720 & 25.0 & OK & OK & OK \\
16A & GAS & 110.960 & 110.960 & 1.180 & 109.780 & 25.2 & OK & OK & OK \\
16B & GAS & 110.990 & 110.990 & 1.160 & 109.830 & 25.3 & OK & OK & OK \\
18A & GAS & 111.510 & 111.510 & 1.690 & 109.820 & 25.3 & OK & OK & OK \\
18B & GAS & 111.480 & 111.470 & 1.690 & 109.785 & 25.2 & OK & OK & OK \\
19A & GAS & 110.160 & 110.120 & .370 & 109.770 & 25.1 & OK & OK & OK \\
19B & GAS & 110.160 & 110.160 & .370 & 109.790 & 25.2 & OK & OK & OK
\end{tabular}
\(\qquad\) Date: \(10-22-d n\)

\section*{GE Generator Field Balance Facility}


RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED

\section*{GE Generator Field Balance Facility}

290 T769 Generator Field Astoria \(\quad 181073326\) Page 2

Shot 22P5


3511 F S \(1.3 \quad 0.3 \quad 0.3 \quad 2.7\)
\(\begin{array}{lllll}\mathrm{N} & 0.8 & 0.7 & 0.7 & 1.4\end{array}\)
\(\begin{array}{llll}236 & 315 & 299 & 178\end{array}\)
\(\begin{array}{llllll}3600 & \text { F S } & 1.5 & 0.2 & 0.2 & 2.2 \\ & & 140 & 64 & 44 & 114\end{array}\)
\(\begin{array}{lllll}\mathrm{N} & 0.7 & 0.8 & 0.8 & 1.5\end{array}\)
\(239 \quad 335 \quad 322 \quad 166\)
\(\begin{array}{llllll}3780 & \text { F S } & 1.6 & 0.7 & 0.4 & 1.1 \\ & & 157 & 50 & 32 & 125\end{array}\)
\(\begin{array}{lllll}\mathrm{N} & 1.3 & 0.8 & 0.6 & 1.9 \\ & 232 & 2 & 5 & 176\end{array}\)
\(\begin{array}{llllll}3781 & \text { F S } & 1.6 & 0.7 & 0.5 & 1.1 \\ & & 156 & 52 & 42 & 126\end{array}\)
\(\begin{array}{lllll}\mathrm{N} & 1.3 & 0.8 & 0.6 & 1.9 \\ & 232 & 3 & 9 & 177\end{array}\)

Time
STATIC COUPLE
\begin{tabular}{lll}
0.1 & 1.0 & \(7: 41: 35\) AM \\
352 & 120 & \\
& \\
0.2 & 0.6 & \\
259 & 106 &
\end{tabular}
0.2 0.1 7:43:30 AM
\(45 \quad 157\)
\(0.6 \quad 0.1\)
29478
\(\begin{array}{lll}0.3 & 0.1 & 7: 43: 52 \\ \text { AM }\end{array}\)
\(0.7 \quad 0.1\)
\(307 \quad 48\)
\(0.2 \quad 0.0\)
\(54 \quad 137\)
\(0.8 \quad 0.1\)
\(329 \quad 52\)
\(43 \quad 74\)
\(0.7 \quad 0.1\)
\(3 \quad 353\)
\(0.6 \quad 0.1 \quad 7: 45: 22\) AM
\(48 \quad 75\)
\(0.7 \quad 0.1\)
\(6 \quad 348\)
\(0.6 \quad 0.2 \quad\) 7:45:11 AM
7:44:11 AM
\[
4
\]

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
2\} \\
\text { Shot }
\end{array}
\] & \[
\begin{gathered}
90 \mathrm{~T} 7 \\
22 \mathrm{P}
\end{gathered}
\] & \[
769
\] & & \begin{tabular}{l}
erator \\
RUN 38
\end{tabular} & Field & Astoria OPERATOR - BS/AA & \[
\begin{array}{r}
181 \\
10 / 5 / 20
\end{array}
\] & \begin{tabular}{l}
\[
1073326
\] \\
09
\end{tabular} & Page 3 \\
\hline \multicolumn{2}{|l|}{SPEED RPM} & VIBRATIO TE Coup & \[
\begin{gathered}
\text { V - Mils } \\
\text { TEJ }
\end{gathered}
\] & eak-Pea CEJ & Coll & & STATIC & COUPLE & Time \\
\hline \multicolumn{10}{|l|}{Starting Reverse SV Run} \\
\hline \multirow[t]{2}{*}{3781} & F S & \[
\begin{aligned}
& 1.5 \\
& 158
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 123
\end{aligned}
\] & & \[
\begin{aligned}
& 0.6 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 77
\end{aligned}
\] & 7:45:52 AM \\
\hline & & \[
\begin{aligned}
& 1.3 \\
& 232
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 178
\end{aligned}
\] & & \[
{ }_{9}^{0.6}
\] & \[
\begin{aligned}
& 0.1 \\
& 346
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{3698} & & \[
\begin{aligned}
& 1.3 \\
& 160
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 57
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 119
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 44
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 103
\end{aligned}
\] & 7:46:56 AM \\
\hline & & \[
\begin{aligned}
& 1.0 \\
& 230
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 168
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 13
\end{aligned}
\] & \[
0.1
\] & \\
\hline \multirow[t]{2}{*}{3597} & FS & \[
\begin{aligned}
& 1.4 \\
& 172
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 91
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 121
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 142
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 102
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 59
\end{aligned}
\] & 7:47:43 AM \\
\hline & & \[
\begin{aligned}
& 0.6 \\
& 246
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 160
\end{aligned}
\] & & \[
\begin{aligned}
& 0.7 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 00
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{3495} & FS & \[
\begin{aligned}
& 1.4 \\
& 161
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 99
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 74
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 136
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 87
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 158
\end{aligned}
\] & 7:48:30 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.6 \\
& 261
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 357
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 177
\end{aligned}
\] & & \[
\begin{aligned}
& 0.8 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 84
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{3396} & & \[
\begin{aligned}
& 1.3 \\
& 155
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 98
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 69
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 111
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 84
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 161
\end{aligned}
\] & 7:49:16 AM \\
\hline & N & \[
\begin{aligned}
& 0.6 \\
& 255
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 338
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 188
\end{aligned}
\] & & \[
\begin{aligned}
& 0.7 \\
& 343
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 .1 \\
& 102
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{3295} & F S & \[
\begin{gathered}
1.1 \\
149
\end{gathered}
\] & \[
\begin{aligned}
& 0.3 \\
& 102
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 68
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 116
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 82
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 204
\end{aligned}
\] & 7:50:02 AM \\
\hline & & \[
\begin{aligned}
& 0.5 \\
& 252
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 332
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 182
\end{aligned}
\] & & \[
\begin{aligned}
& 0.7 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 132
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED
Shot 22P5
RUN 38
Page 3

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
20 \\
\text { Shot }
\end{array}
\] & \[
\begin{gathered}
90 \mathrm{~T} 7 \\
22 \mathrm{P} 5
\end{gathered}
\] & \[
769
\] & & rator UN 38 & & Astoria OPERATOR-BS/AA & \[
\begin{array}{r}
181 \\
10 / 5 / 20
\end{array}
\] & \[
\begin{aligned}
& 073326 \\
& 109
\end{aligned}
\] & Page 4 \\
\hline \multicolumn{2}{|l|}{SPEED RPM} & VIBRATION TE Coup & \[
\underset{\text { TEJ }}{N-\text { Mils }}
\] & ak-Pa CEJ & Coll & & STATIC & COUPLE & Time \\
\hline 3197 & F S & \[
\begin{array}{ll}
S & 0.8 \\
147
\end{array}
\] & \[
\begin{aligned}
& 0.2 \\
& 127
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 51
\end{aligned}
\] & \[
\begin{aligned}
& 2.4 \\
& 114
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 74
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 202
\end{aligned}
\] & 7:50:49 AM \\
\hline & & \[
\begin{array}{ll}
N & 0.4 \\
246
\end{array}
\] & \[
\begin{aligned}
& 0.4 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 181
\end{aligned}
\] & & \[
\begin{aligned}
& 0.6 \\
& 333
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 130
\end{aligned}
\] & \\
\hline 3100 & FS & \[
\begin{aligned}
& 0.7 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 152
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 59
\end{aligned}
\] & \[
\begin{aligned}
& 2.4 \\
& 111
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 82
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 217
\end{aligned}
\] & 7:51:32 AM \\
\hline & N & \[
\begin{array}{r}
0.3 \\
048
\end{array}
\] & \[
\begin{aligned}
& 0.3 \\
& 353
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 184
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 145
\end{aligned}
\] & \\
\hline 3000 & F S & \[
\begin{aligned}
& 0.6 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 169
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 43
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 110
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 205
\end{aligned}
\] & 7:52:19 AM \\
\hline & N & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
0.1
\] & \[
\begin{aligned}
& 0.8 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 185
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 150
\end{aligned}
\] & \\
\hline 2900 & F S & \[
\begin{aligned}
& 0.4 \\
& 155
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 173
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 98
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 196
\end{aligned}
\] & 7:53:06 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 335
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 177
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 154
\end{aligned}
\] & \\
\hline 2792 & F S & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 157
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 92
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 70
\end{aligned}
\] & \[
\begin{gathered}
1.3 \\
166
\end{gathered}
\] & 7:53:55 AM \\
\hline & N & \[
\begin{aligned}
& 0.4 \\
& 314
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 119
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 183
\end{aligned}
\] & & \[
\begin{gathered}
0.4 \\
336
\end{gathered}
\] & \[
\begin{aligned}
& 0.8 \\
& 138
\end{aligned}
\] & \\
\hline 2699 & F S & \[
\begin{aligned}
& 0.3 \\
& 195
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 109
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 295
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 101
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 112
\end{aligned}
\] & 7:54:38 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.6 \\
& 283
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 91
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 194
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 111
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED
Shot 22P5 RUN 38

Page 4

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\begin{gathered}
290 T 769 \\
\text { Shot } 22 P 5
\end{gathered}
\]} & \multicolumn{3}{|l|}{Generator Field RUN 38} & Astoria OPERATOR-BSIAA & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 181073326 \\
& 10 / 5 / 2009
\end{aligned}
\]} & Page 5 \\
\hline \multicolumn{10}{|l|}{SPEED VIBRATION - Mils Peak-Peak
RPM TE Coup TEJ CEJ Coll
Time} \\
\hline \multirow[t]{2}{*}{2600} & F S & \[
\begin{aligned}
& 0.3 \\
& 193
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 76
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 249
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 106
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 87
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 73
\end{aligned}
\] & 7:55:25 AM \\
\hline & & \[
\begin{array}{ll}
N & 0.5 \\
& 237
\end{array}
\] & \[
\begin{aligned}
& 0.6 \\
& 62
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 284
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 195
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 88
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{2499} & F S & \[
\begin{aligned}
& 0.32 \\
&
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 68
\end{aligned}
\] & \[
\begin{gathered}
0.3 \\
222
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 106
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 85
\end{aligned}
\] & \[
0.4
\] & 7:56:11 AM \\
\hline & N & \[
\begin{array}{ll} 
& 0.3 \\
& 201
\end{array}
\] & \[
\begin{aligned}
& 0.6 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 280
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 203
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 312
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 87
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{2399} & FS & \[
\begin{aligned}
& 0.3 \\
& 223
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 63
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 175
\end{aligned}
\] & \[
\begin{aligned}
& 2.6 \\
& 103
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 87
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 45
\end{aligned}
\] & 7:56:58 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.3 \\
& 180
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 61
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 202
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 312
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 84
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{2298} & FS & \[
\begin{aligned}
& 0.4 \\
& 235
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 66
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 100
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 52
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 84
\end{aligned}
\] & 7:57:44 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 57
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 268
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 199
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 76
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{2197} & F S & \[
\begin{aligned}
& 0.5 \\
& 231
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 77
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 78
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 95
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 77
\end{aligned}
\] & \[
\begin{gathered}
0.0 \\
67
\end{gathered}
\] & 7:58:31 AM \\
\hline & N & \[
\begin{aligned}
& 0.2 \\
& 135
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 53
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 257
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 196
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 304
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 67
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{2097} & F S & \[
\begin{aligned}
& 0.5 \\
& 215
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 92
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 67
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 90
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 163
\end{aligned}
\] & 7:59:17 AM \\
\hline & & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 35
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 243
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 197
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 301
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 50
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { Shot }}{2!}
\] & \[
\begin{aligned}
& 90 \mathrm{~T} 7 \\
& 22 \mathrm{P5} 5
\end{aligned}
\] & & & \begin{tabular}{l}
rator \\
UN 38
\end{tabular} & & Astoria OPERATOR - BS/AA & \[
\begin{array}{r}
181 \\
10 / 5 / 20
\end{array}
\] & \begin{tabular}{l}
\[
073326
\] \\
9
\end{tabular} & Page 6 \\
\hline \multicolumn{2}{|l|}{SPEED RPM} & VIBRATION TE Coup & \[
\begin{gathered}
\text { I- Mils } \\
\text { TEJ }
\end{gathered}
\] & ak-Pea CEJ & Coll & & STATIC & COUPLE & Time \\
\hline 1998 & F S & \[
\begin{aligned}
& 0.5 \\
& 197
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 116
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 49
\end{aligned}
\] & \[
\begin{aligned}
& 2.4 \\
& 86
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 86
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 165
\end{aligned}
\] & 8:00:04 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 223
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 192
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 318
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 29
\end{aligned}
\] & \\
\hline 1896 & & \[
\begin{aligned}
& 0.5 \\
& 186
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 109
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 92
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 85
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 136
\end{aligned}
\] & 8:00:51 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 206
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 185
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 338
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 17
\end{aligned}
\] & \\
\hline 1797 & F S & \[
\begin{aligned}
& 0.5 \\
& 171
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 105
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 94
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 91
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 117
\end{aligned}
\] & 8:01:37 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
{ }_{3}^{0.5}
\] & \[
\begin{aligned}
& 0.3 \\
& 191
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 194
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 6
\end{aligned}
\] & \\
\hline 1697 & F S & \[
\begin{aligned}
& 0.4 \\
& 159
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 99
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 99
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 97
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 101
\end{aligned}
\] & 8:02:24 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 353
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 166
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 194
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 358
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 351
\end{aligned}
\] & \\
\hline 1594 & F S & \[
\begin{aligned}
& 0.3 \\
& 157
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 95
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 101
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 85
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 105
\end{aligned}
\] & 8:03:10 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 347
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 145
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 193
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 359
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 341
\end{aligned}
\] & \\
\hline 1500 & F S & \[
\begin{aligned}
& 0.3 \\
& 159
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 94
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 103
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 77
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 111
\end{aligned}
\] & 8:03:54 AM \\
\hline & & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 347
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 193
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 343
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { Shot }}{2 S}
\] & \[
\begin{aligned}
& 90 \mathrm{~T} 7 \\
& 22 \mathrm{P5}
\end{aligned}
\] & \[
769
\] & \multicolumn{3}{|l|}{Generator Field RUN 38} & Astoria OPERATOR - BS/AA & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 181073326 \\
& 10 / 5 / 2009
\end{aligned}
\]} & Page 7 \\
\hline SPEE RPM & \[
=\mathrm{D} \quad \mathrm{VII}
\] & IIBRATION TE Coup & \[
\begin{aligned}
& \text { U - Mils } \\
& \text { TEJ }
\end{aligned}
\] & -P-Peak CEJ & Coll & & STATIC & COUPLE & Time \\
\hline 1400 & FS & \[
\begin{aligned}
& 0.3 \\
& 160
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 94
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 160
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 104
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 118
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 58
\end{aligned}
\] & 8:04:40 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 99
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 192
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 334
\end{aligned}
\] & \\
\hline 1295 & & \[
\begin{aligned}
& 0.2 \\
& 168
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 93
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 143
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 105
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 117
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 34
\end{aligned}
\] & 8:05:30 AM \\
\hline & & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 192
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 356
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 350
\end{aligned}
\] & \\
\hline 1198 & FS & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 94
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 121
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 106
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 109
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & 8:06:13 AM \\
\hline & N & \[
\begin{aligned}
& 0.3 \\
& 113
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 82
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 188
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 42
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 332
\end{aligned}
\] & \\
\hline 1099 & F S & \[
\begin{aligned}
& 0.4 \\
& 71
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 64
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 52
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 96
\end{aligned}
\] & & \[
\begin{aligned}
& 0.9 \\
& 58
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 139
\end{aligned}
\] & 8:07:00 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.8 \\
& 71
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 34
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 42
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 148
\end{aligned}
\] & & \[
\begin{aligned}
& 0.6 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 16
\end{aligned}
\] & \\
\hline 999 & FS & \[
\begin{aligned}
& 0.3 \\
& 226
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 194
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 108
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 196
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 12
\end{aligned}
\] & 8:07:46 AM \\
\hline & N & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0.4 \\
326
\end{gathered}
\] & \[
\begin{aligned}
& 0.3 \\
& 323
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 212
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 333
\end{aligned}
\] & \\
\hline & & \[
\begin{aligned}
& 0.3 \\
& 188
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 79
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 86
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 109
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 83
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 293
\end{aligned}
\] & 8:08:33 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 298
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 276
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 205
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 286
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 40
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& 290 \mathrm{~T} 769 \\
& \text { Shot 22P5 }
\end{aligned}
\]} & \multicolumn{3}{|l|}{Generator Field RUN 38} & Astoria OPERATOR-BS/AA & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 181073326 \\
& 10 / 5 / 2009
\end{aligned}
\]} & Page 8 \\
\hline \multicolumn{10}{|l|}{\begin{tabular}{llll} 
SPEED & VIBRATION - Mils Peak-Peak \\
RPM & TE Coup TEJ CEJ Coll & STATIC COUPLE
\end{tabular}} \\
\hline \multirow[t]{2}{*}{798} & FS & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 106
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 77
\end{aligned}
\] & 8:09:19 AM \\
\hline & N & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 239
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 201
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 217
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 359
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{699} & FS & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 107
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 50
\end{aligned}
\] & 8:10:06 AM \\
\hline & \(N\) & \[
{ }_{0}^{0.0}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 175
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 201
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 172
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 356
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{598} & FS & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 108
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & 8:10:52 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 200
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 270
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{496} & F S & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 108
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & 8:11:39 AM \\
\hline & N & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 199
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 270
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{397} & F S & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 109
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & 8:12:25 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
{ }_{0}^{0.0}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 199
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{300} & Fs & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 109
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & 8:13:12 AM \\
\hline & & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
{ }_{0}^{0.0}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 199
\end{aligned}
\] & & \[
0.0
\] & \[
\begin{aligned}
& 0.0 \\
& 180
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED

GE Generator Field Balance Facility


Shot 22P5
RUN 38
Page 9
\[
\begin{aligned}
& \text { Final Balance complete } \\
& \text { Barong. Sartorial } 10 / 5109
\end{aligned}
\]

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\underset{\text { Shot 13-14 }}{290 T 769}
\]} & \multicolumn{3}{|l|}{Generator Field RUN 20} & \multirow[t]{2}{*}{Astoria OPERATOR-BS / JE} & \multicolumn{2}{|l|}{\[
\begin{gathered}
181073326 \\
10 / 2 / 2009
\end{gathered}
\]} & Page 1 \\
\hline \begin{tabular}{l}
SPEE \\
RPM
\end{tabular} & \[
=\mathrm{D} . \mathrm{VII}
\] & \begin{tabular}{l}
IBRATION \\
TE Coup
\end{tabular} & \[
\begin{gathered}
\text { N Mils } \\
\text { TEJ }
\end{gathered}
\] & ak-Peak CE.J & Coll & & STATIC & COUPLE & Time \\
\hline 303 & FS & \[
\begin{aligned}
& 0.4 \\
& 201
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 117
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0
\end{aligned}
\] & 11:20:12 AM \\
\hline & \(N\) & \[
\begin{aligned}
& 0.2 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 207
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 270
\end{aligned}
\] & \\
\hline 854 & F S & \[
\begin{aligned}
& 0.3 \\
& 210
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 320
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 110
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 327
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 129
\end{aligned}
\] & 11:21:51 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 185
\end{aligned}
\] & \[
\begin{gathered}
0.6 \\
169
\end{gathered}
\] & \[
\begin{aligned}
& 2.3 \\
& 204
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 173
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 342
\end{aligned}
\] & \\
\hline 967 & F S & \[
\begin{aligned}
& 0.5 \\
& 197
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 91
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 113
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 74
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 17 \theta
\end{aligned}
\] & 11:22:07 AM \\
\hline & N & \[
\begin{aligned}
& 0.3 \\
& 317
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 294
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 227
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 207
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 240
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 31
\end{aligned}
\] & \\
\hline 1101 & F S & \[
\begin{aligned}
& 0.6 \\
& 230
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 290
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 323
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 91
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 312
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 171
\end{aligned}
\] & 11:22:29 AM \\
\hline & N & \[
\begin{aligned}
& 0.7 \\
& 314
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 327
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 268
\end{aligned}
\] & \[
\begin{aligned}
& 2.3 \\
& 210
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 297
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 29
\end{aligned}
\] & \\
\hline 2152 & F S & \[
\begin{aligned}
& 1.6 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 273
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 155
\end{aligned}
\] & \[
\begin{aligned}
& 3.4 \\
& 128
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 216
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 303
\end{aligned}
\] & 11:25:13 AM \\
\hline & N & \[
\begin{aligned}
& 0.8 \\
& 144
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 137
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 312
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 228
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 205
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 135
\end{aligned}
\] & \\
\hline 2751 & & \[
\begin{aligned}
& 1.8 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 237
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 54
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 140
\end{aligned}
\] & & \[
\begin{gathered}
0.2 \\
268
\end{gathered}
\] & \[
\begin{aligned}
& 3.4 \\
& 236
\end{aligned}
\] & 11:26:56 AM \\
\hline & & \[
\begin{aligned}
& 1.5 \\
& 99
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 208
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 44
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 168
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 156
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 215
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED

\section*{GE Generator Field Balance Facility}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
2! \\
\text { Shot }
\end{array}
\] & \[
90 T 7
\] & & \multicolumn{3}{|l|}{Generator Field RUN 20} & Astoria OPERATOR-BS / JE & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 181073326 \\
& 10 / 2 / 2009
\end{aligned}
\]} & Page 2 \\
\hline SPE RPM & ED VII & IBRATION E Coup & \[
\begin{aligned}
& \text { V - Mills } \\
& \text { TEJ }
\end{aligned}
\] & ak-Peak CEJ & Coll & & STATIC & COUPLE & Time \\
\hline 3500 & FS & \[
\begin{aligned}
& 5.1 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 301
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 209
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 353
\end{aligned}
\] & & \[
\begin{aligned}
& 1.3 \\
& 271
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 330
\end{aligned}
\] & 11:29:38 AM \\
\hline & N & \[
\begin{aligned}
& 3.2 \\
& 161
\end{aligned}
\] & \[
\begin{aligned}
& 3.9 \\
& 189
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& 159
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 172
\end{aligned}
\] & & \[
\begin{aligned}
& 3.3 \\
& 176
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 236
\end{aligned}
\] & \\
\hline 3600 & FS & \[
\begin{aligned}
& 6.6 \\
& 39
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 209
\end{aligned}
\] & \[
\begin{aligned}
& 6.6 \\
& 23
\end{aligned}
\] & & \[
\begin{aligned}
& 1.1 \\
& 279
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 332
\end{aligned}
\] & 11:30:13 AM \\
\hline & N & \[
\begin{aligned}
& 3.4 \\
& 180
\end{aligned}
\] & \[
\begin{aligned}
& 4.8 \\
& 208
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \\
& 192
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 44
\end{aligned}
\] & & \[
\begin{aligned}
& 3.9 \\
& 202
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 233
\end{aligned}
\] & \\
\hline 3780 & F S & \[
\begin{aligned}
& 8.1 \\
& 64
\end{aligned}
\] & \[
\begin{aligned}
& 3.7 \\
& 295
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 245
\end{aligned}
\] & \[
\begin{aligned}
& 7.6 \\
& 60
\end{aligned}
\] & & \[
\begin{aligned}
& 2.9 \\
& 274
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 340
\end{aligned}
\] & 11:31:19 AM \\
\hline & N & \[
\begin{aligned}
& 3.3 \\
& 159
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 237
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 239
\end{aligned}
\] & \[
\begin{aligned}
& 4.8 \\
& 73
\end{aligned}
\] & & \[
\begin{aligned}
& 4.7 \\
& 238
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 234
\end{aligned}
\] & \\
\hline 4322 & F S & \[
\begin{aligned}
& 13.8 \\
& 123
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 152
\end{aligned}
\] & \[
\begin{aligned}
& 14.8 \\
& 320
\end{aligned}
\] & & \[
\begin{aligned}
& 2.6 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& 3.4 \\
& 12
\end{aligned}
\] & 11:34:46 AM \\
\hline & N & \[
\begin{aligned}
& 7.0 \\
& 209
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 311
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 139
\end{aligned}
\] & \[
\begin{aligned}
& 4.1 \\
& 359
\end{aligned}
\] & & \[
\begin{aligned}
& 2.1 \\
& 305
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 313
\end{aligned}
\] & \\
\hline 4322 & D 5 & \[
\begin{aligned}
& 1.1 \\
& 138
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 319
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 265
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 351
\end{aligned}
\] & & \[
\begin{aligned}
& 2.7 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 15
\end{aligned}
\] & 11:34:49 AM \\
\hline & N & \[
\begin{aligned}
& 0.1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 282
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 175
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 243
\end{aligned}
\] & & \[
\begin{aligned}
& 2.1 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 313
\end{aligned}
\] & \\
\hline 4322 & US & 14.0 & 6.3 & 2.6 & 14.9 & & \[
\begin{aligned}
& 2.7 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 13
\end{aligned}
\] & 11:34:50 AM \\
\hline & \(N\) & 7.4 & 8.2 & 3.8 & 4.5 & & \[
\begin{aligned}
& 2.1 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 313
\end{aligned}
\] & \\
\hline
\end{tabular}

RAW DATA - ENGINEERING INTERPRETATION MAY BE REQUIRED

GE Generator Field Balance Facility


Shot 13-14
RUN 20
Page 3
Overspend complateff
4320 rpm for 3 minutes
Burn A Sowfoni \(10 / 2109\)

\section*{GENERATOR FIELD FLUX PROBE DATA}

\section*{FLUX PROBE DATA}


\section*{SHORTS FOUND}

IF SHORT SUSPECTED SEE IF SHORT IS SPEED SENSITIVE. leave excitation on during run down to see if SHORT IS SPEED SENSITIVE.

WAS SHORT SPEED SENSITIVE P(Y/N) IF YES, SHORT DROPS OUT AT RPM: WAS BURNOUT ATTMPT MADE: (YR) BURNOUT CURRENT APPLIED:

IF SHORTS) ARE STILL PRESENT/AFTER COMPLETION OF ALL THERMAL TESTING, DIAGNOSTICS, AND BURNOUT ATTEMPT (S) A OCR MUST BE ISSUED AND THE LOCATION OF THE SHORTS) NOTED. A COPY OF PCT -40/ SHOULD ACCOMPANY THE QCR. THE CR SHOULD BE LOGGED ON PCT-362 JOB CLOSEOUT SHEET, ON PCG-268 COMPLETED TEST SHEET, AND HERE ON PCT-401.
\(\qquad\)


LOCATION OF SHORT(\$) IF PRESENT DEGREE POLE: \(\qquad\) DEGREE POLE: \(\qquad\) DEGREE POLE:

FLUX PROBE DATA TAKEN BY:
TECHS: \(\qquad\) DATE: \(\qquad\)
\(10-2-09\)

AUTHORIZED SIGNATURE BELOW


DATE: \(10-5-07\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{9}{|c|}{Mormalizad Slot Amplitude Measurement} \\
\hline & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{LE TE}} & \multirow[b]{2}{*}{LE} & \multirow[b]{2}{*}{TE} & \multirow[t]{2}{*}{PoloX} & \multirow[b]{2}{*}{Poior} & \multirow[t]{2}{*}{¢ \({ }_{\text {¢ Diff }}\)} & \multirow[t]{2}{*}{shorti?} & \multirow[b]{2}{*}{Single Tern Smort} \\
\hline & & & & & & & & & \\
\hline & LE & TE & LE & TE & Pole X Avg & Poie Y Avg & \% Daf X-Y & Short? & 5.88\% \\
\hline T1-S1 & 0.969 & 0.996 & 0.996 & 1.000 & 0.904 & 0.996 & -1.168\% & & \\
\hline 2.2 & 0.669 & 0.681 & 0.692 & 0.694 & 0.681 & 0.686 & -0.734\% & & \\
\hline 3-3 & 0.657 & 0.663 & 0.675 & 0.677 & 0.667 & 0.669 & -0.300\% & & \\
\hline \(4-4\) & 0.646 & 0.654 & 0.667 & 0.665 & 0.655 & 0.661 & -0.763\% & & \\
\hline 5-5 & 0.644 & 0.649 & 0.666 & 0.667 & 0.655 & 0.657 & -0.305\% & & \\
\hline 6-6 & 0.646 & 0.643 & 0.666 & 0.661 & 0.653 & 0.655 & -0.153\% & & \\
\hline
\end{tabular}



Pole \(X\)
Polay


Test Timing: Ater Thermal; Fled Ourrent: 418; Fleld Voltage: 114; Tlme \& Date: 21:13:25 2009/10/02; File Path: Run_02.dat
Licensed to: GE Test Fadilty SN:OxOO

Generator Field Balance Bunker Welght Resolution


PCT-367

Field Shipping Hipot
PCG-5625
Per P12A-AL-6129


\section*{Field Megger Data}


The post-hipot megger must be \(>=25 \mathrm{Mohm}\) and \(>=60 \%\) of the 1 minute pre-hlpot reading or \(>=200 \mathrm{Mohm}\)
Before HIPOT ( 1 min ) megger \(\mathbf{x} 0.6=\) \(\qquad\) After HIPOT (1 min) megger = 1160

The Pre- to Post-Hipot Megger Comparison is WITHIN TOLERANCE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Hipot Data} \\
\hline Hipot S/N: & & & & Hipot Cal Due: & 2/14/2 & \\
\hline \multicolumn{7}{|l|}{( Completed Safety Check Sheet PCT-004:} \\
\hline Passed Hipot at & 5.350 & KV AC & for 1 min . & and (4) & 1.5 & amps \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Tester: \\
Date:
\end{tabular}} & \multicolumn{2}{|c|}{MB/BP} & \multicolumn{4}{|c|}{Test Review: \(\qquad\)} \\
\hline & \multicolumn{2}{|l|}{10/7/2009} & \multicolumn{2}{|r|}{Date:} & d 1 & \\
\hline
\end{tabular}

GE POWER SYSTEMS
Test Operations
PCG-268 PJR 10/29/02

\section*{COMPLETED TEST SHEET FOR GENERATOR FIELDS}


1 FIELD ROTOR BALANCE AND OVERSPEED COMPLETE.
ISSUE QR IF FAILED \& RECORD AT ITEM 2.


EXCEPTIONS:

\section*{2 QCR'S GENERATED IN BLDG. 281}

40911043
50911073
ATTENTION: ROTOR INSPECTION TO RECORD THESE QCR'S IN THE ROTOR FOLDER.

3 ENGINEERING MI': COMPLETED:


4 FLUX PROBE CHECK FOR SHORTED TURNS APPROVED FOR SHIP


5 THERMAL APPROVED FOR SHIP:


6 COMMENTS:
gnatures, initials, or typed names are permissible.

\begin{tabular}{|l|c|c|}
\hline\(*\) Energietechnik Essen & \begin{tabular}{c} 
MATERIALACCEPTANCE \\
CERTIFICATE (MAC) \\
Inspection-Cotificate: \\
No. 090301
\end{tabular} & \begin{tabular}{c} 
Page-2 \\
of 6
\end{tabular} \\
\hline
\end{tabular}

Purchaser: GE Power Systems, 1 River Road, Schenectady, NY12345
Supplier Serial Number: \(\quad 5002180 \quad 51009571\)

RE MELT CHEMICAL COMPOSITON:
Method Used: Ingot \(X\) Billet ___ Forging ___
\begin{tabular}{|c|c|c|}
\hline TESTING LOCAIION ELEMENT & TOP & B07TOM \\
\hline & \multicolumn{2}{|c|}{Welght Percentage} \\
\hline c & 0,076 & 0061 \\
\hline Min & 19,46 & 18,63 \\
\hline P & 0.019 & 0,015. \\
\hline S & <0,001 & 0,001 \\
\hline Si & 031 & 0,35 \\
\hline Cr & 1783 & 17,76 \\
\hline N & 0.59 & 0,54 \\
\hline V & 0.069 & 0,070. \\
\hline Sb & 0,0005 & 0,0004 \\
\hline As. & 0,003 & 0,003 \\
\hline Sn & 0,002 & 0,002 \\
\hline Al & 0,004 & 0,011 \\
\hline
\end{tabular}

AUTHORIEE SIGNATURE



\section*{ULTRASCHALL PRUFPROTOKOLL \\ Utrasenic Test Roport \\ selime 1 vontat 3}



\footnotetext{
Anrex: C. ploa morint of all probes"
\(3-0\) plot
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline Nrilio: 000301 & Seitaliage & volutiold \\
\hline Aufirem Hr: Ond Mu: & & 8002180 \\
\hline
\end{tabular}

5100957103.03 .09 PRTM OF ALL PROB世S


CH. \(6 \quad 33+10 \mathrm{AB}\) CH. \(72+\mathrm{AOB}\) EDGE ECHOS 801 GATES \(20 \%\)

Abnahmepruteougnis EN 1020413.1 Inspoction-Certificate I/ Centifleat do réception


Onderifoc:
Motre commande: No.:

\(51009571 \quad 03.03 .09\)
Bs Amenummonda \(3-\mathrm{CH} . \mathrm{B}\)
CH. 3 , D8 80 33.90 B
CH. 8 .BE 40 28.OAB

\begin{tabular}{|c|c|c|}
\hline Energiefechnik Essen anditatatal & MATERIAL ACCEPTANCE CERTHCATE (MAC) Inspection-Gerfificate No.: 090300 & \[
\begin{aligned}
& \text { Page }-2 \\
& \text { of } 6
\end{aligned}
\] \\
\hline
\end{tabular}

Purchaser : GE Power Systems, 1 River Road, Schenectady, NY12345 Supplier Serial Number: \(5002180 \quad 51009560\)

RE-MELT CHEMACAL COMPOSITION:
Method Used: Ingot X Billet \(\qquad\) Forging \(\qquad\)
\begin{tabular}{|c|c|c|}
\hline TESTMG LOCATION
ELEMENT & TOP & BOTTOM \\
\hline & \multicolumn{2}{|c|}{Weight Porcentage:} \\
\hline \(c\) & 0,069 & 0,061 \\
\hline Mn & 19,14 & 18,36. \\
\hline P & 0,019 & 0,017 \\
\hline S & 0,001 & 0,001 \\
\hline Si & 0,26 & 0,30 \\
\hline Cr & 17,89 & 17.62 \\
\hline N & 0.63 & 0,56 \\
\hline V & 0,071 & 0,069 \\
\hline Sb & 0.0004 & 0.0004 \\
\hline As & 0.003 & 0,003. \\
\hline Sn & 0,002 & 0,002 \\
\hline Al & 0,004 & 0,012 \\
\hline
\end{tabular}


\section*{ULTRASCHALL - PRÜFPROTOKOLL}

Utrasonie Test Report
simmetime 1 vontor. 3

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Searoh Unh \\
Destan
\end{tabular} & \begin{tabular}{l}
Fred \\

\end{tabular} & \multicolumn{3}{|c|}{Callibratton.} & Cates whengths and Thredhofds & Nolse Level: \\
\hline \begin{tabular}{l}
No. 1 \\

\end{tabular} & 225 & \begin{tabular}{l}
DAC \\
\(16 \mathrm{~mm}+6 \mathrm{~GB}\)
\end{tabular} & TBESO\% &  & \[
\begin{gathered}
66 \mathrm{~mm} \\
\hline
\end{gathered}
\] & 16/8\% \\
\hline \begin{tabular}{l}
No:2 \\
Land withe tay
\end{tabular} & 225 & QRC & 1.1580\% & \(30,5+300 \pm 60.648\) & \[
\begin{aligned}
& 40 \mathrm{~mm} \\
& 20 \%
\end{aligned}
\] & 20110\% \\
\hline \[
\begin{aligned}
& \text { No.3 } \\
& \text { Lingy Wime mat }
\end{aligned}
\] & 2,25 & 120E \(80 \%\) & & 33.7 d & - & \(\cdots\) \\
\hline \begin{tabular}{l}
No. 4 \\

\end{tabular} & 2,25 & Notcit Echo 80\% &  & \(3 \mathrm{O}+6=45 \mathrm{dc}\) & \[
\begin{aligned}
& 100 \mathrm{~mm} \\
& 20 \% \\
& \hline
\end{aligned}
\] & 155/8\% \\
\hline \[
\begin{aligned}
& \text { N0.5 } \\
& \text { Sineor Wreve wing }
\end{aligned}
\] & 2.25 & Nofen Echor \(80 \%\) &  & \(43+6=498\) & \[
100 \% m
\] & 1-710\% \\
\hline \[
\begin{aligned}
& \text { No. } 8 \\
& \text { Sluewnew }
\end{aligned}
\] & 2.25 & Edge ELCtio 80\% & & \(33+10=4308\) & \[
\begin{aligned}
& 30 \mathrm{~mm} \\
& 20 \%
\end{aligned}
\] & 157\% \\
\hline \begin{tabular}{l}
No. 7 \\
Friker Maviend
\end{tabular} & 225 & Edge Echo 80\% & & \(40+10=50 \cdot 0\) & \[
\begin{aligned}
& 30 \mathrm{~mm} \\
& 20 \%
\end{aligned}
\] & 27/12\% \\
\hline \begin{tabular}{l}
Na: 6 . \\
Thanc: Wrive.pa
\end{tabular} & 2,25 & 7.8E 40\% & & 27,9 dB & \(\cdots\) & \(\cdots\) \\
\hline
\end{tabular}

Fremank: Am 104tmm
©. \(1=915 \mathrm{~min}\)
La. 846 mm
Wm 65;0 min


Athahmepratrengnis: EN 102043.1 inspectlon-Centhicate / Corlifiot de reception

Energietechnik Essen
Smba-sme 181


Autinioitm. Ar::

\(51009560 \quad 03.03 .09\) PRINT OF ALH RROEES




Abnahmeprifreugnis ENTO2043. 1 Inspoction Confificato / Corfficat de rocoption
 Sither ines \(\quad \mathbf{5 0 0 2 1 8 0}\) Opterm:


\(51009560 \quad 03.03 .09\)
BE ATHESUATION CH 3 - CHE 8
CH. 3 1. BE \(80 \% 33.7 \mathrm{~dB}\)
\(\mathrm{CH} .81 . \mathrm{BE} 404\) 27.9GB

CUSTOMERS REPRESENTATIVE WITNESS/REVIEW OF TEST / INSPECTION


THE SIGNING OF THIS FORM BY THE CUSTOMER(S) REPRESENTATIVE / WITNESS DOES NOT IMPLY ACCEPTANCE OR REJECTION OF THE TEST OR OF THE DATA BEING DEMONSTRATED. THIS FORM REPRESENTS THE PRESENCE AND/OR REVIEW OF THE DATA OF SAID CUSTOMER(S).

NAME OF TEST /DATA BEING DEMONSTRATED :

\(\qquad\)


CUSTOMERS) REPRESENTATIVE SIGNATURE


GE COMPANY REPRESENTATIVE SIGNATURE


CUSTOMER
PART DESCRIPTION
DUG \# OF PART
SERIAL \#
DATE
\begin{tabular}{l} 
Astoria Energy 290TクG9 \\
STATOR \(324(2 \circ)\) \\
\(138 E 8462\) \\
\hline 181167351 \\
\(9-28-89\) \\
\hline
\end{tabular}

THE SIGNING OF THIS FORM BY THE CUSTOMERS) REPRESENTATIVE/ WITNESS DOES NOT IMPLY ACCEPTANCE OR REJECTION OF THE TEST OR OF THE DATA BEING DEMONSTRATED. THIS FORM REPRESENTS THE PRESENCE AND/OR REVIEW OF THE DATA OF SAID CUSTOMER(S).

NAME OF TEST DATA BEING DEMONSTRATED :
Wind Stand Final at 370 av for 1 minute.
\(\qquad\)
\(\qquad\)

CUSTOMERS) REPRESENTATIVE SIGNATURE


GE COMPANY REPRESENTATIVE SIGNATURE \(\qquad\)

DATE \(\qquad\) \(9-28-\Delta 9\)


THE SIGNING OF THIS FORM BY THE CUSTOMERS) REPRESENTATIVE / WITNESS DOES NOT IMPLY ACCEPTANCE OR REJECTION OF THE TEST OR OF THE DATA BEING DEMONSTRATED. THIS FORM REPRESENTS THE PRESENCE AND/OR REVIEW OF THE DATA OF SAID CUSTOMER(S).

NAME OF TEST /DATA BEING DEMONSTRATED :


GE COMPANY REPRESENTATIVE SIGNATURE


\section*{Magnetic Particle Test Turblne Rotors, Generator Rotors, \& Shafts}
QCR's \#1
\#2
\#3

Turbine Rotor Mag Test Before Bucket Assembly


Generator Rotor Mag Test
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Sign Offs & Amperes & Yes & No & Operator & Date \\
\hline \multirow{3}{*}{Mag Bore} & "1st Mag" Hpadehnt & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { G7600A,B,N } \\
\text { G7629 A, } \\
\text { PCR-336 }
\end{gathered}
\]} & & & & & \\
\hline & "2nd Mag" Headshot & & & & & & \\
\hline & Demag. & & & & & & \\
\hline \multirow{3}{*}{Mag Ends} & "1st Mag" Headsho & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { G7600A,B,N } \\
\text { G7629 A, } \\
\text { PCR-336 }
\end{gathered}
\]} & 3600 & & \(x\) & Gwalyc & 1.24 .09 \\
\hline & \[
\begin{gathered}
\text { "2nd Mag" } \\
\text { Wrap } \\
\hline
\end{gathered}
\] & & 3600 & & \(X\) & Gualy & 1.24-09 \\
\hline & Demag. & & & & & UW12LC & 7-24-03 \\
\hline
\end{tabular}

Note: When all mag tests before assembly have been signed off on this form, place original in master folder at inspection.

Shop Order: \(\qquad\) Serial \#: 181673326 Drawing \#: 134ES700
Prototype: Workstation: \(\qquad\) Inspector Audit: \(\qquad\) Date: 7-2909


\section*{GE Steam Turbine Manufacturing Generator Field - 3rd Lathe Machiniñg}

Do all machining to the drawing. - This PC Form is for record onlyl


\section*{Instructions:}
1. Runout opposite tool post to be less than .001 "
2. Record all dimensions required. Call for inspector verification. All others are operator verification.
3. When a QCR is written, list the QCR \# next to the error.
4. Operator is responsible to report all out of tolerance conditions.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{T.E. Journal} \\
\hline & Inboard & Center & Outboard \\
\hline Diameter & 16.000 & 16.000 & 16.000 \\
\hline Runout * & & *.0007 & \\
\hline Lobe & & . 0001 & \\
\hline \multicolumn{2}{|l|}{Oper. Pay No.: 13194} & Date: & 19709 \\
\hline \multicolumn{2}{|l|}{Insp Dia. Check:} & Date: & \[
9 / 10 / 09
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{C.E. Journal} \\
\hline & Inboard & Center & Outboard \\
\hline Diameter & 16.000 & \(15.4996^{\circ}\) & 1610,00 \\
\hline Runout * & & *.0006 & \\
\hline Lobe & & . 0002 & \\
\hline \multicolumn{2}{|l|}{Oper. Pay No.: 13144} & Date: 2 & 7109 \\
\hline \multicolumn{2}{|l|}{Insp Dia. Check: 7} & Date: & \[
7 / 7 \log
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & Inspector Sign & Date \\
\hline H Stamp Verification & \(7 z\) & \(9 / 29\) \\
\hline M Stamp Verification & \(7 z\) & \(9 / 29\) \\
\hline
\end{tabular}
5. Inspector visual signoff required for final Journal acceptance after Profilometer check.
6. The H-Stamp (high spot of the coupling face Runout) is po stamped in the coupling face relief.
7. The M-Stamp is to be stamped on the coupling outer diameter and to be located \(180^{\circ}\) away from the H-Stamp.
8. All.dimensions to be machined in lathe

\section*{Notify inspector and operations leader for any discrepancies betweon measurements and drawing dimensions}


GE Steam Turbine Manufacturing

\section*{Generator Field Journal Surface Finish Inspection And Final Visual Inspection}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Finish Journal Machining } \\
\hline Inch & CE & TE & Inch & CE & TE \\
\hline 1 & 6 & 10 & 13 & 5 & 9 \\
\hline 2 & 6 & 13 & 14 & 5 & 11 \\
\hline 3 & 5 & 11 & 15 & 5 & 11 \\
\hline 4 & 5 & 11 & 16 & 5 & 10 \\
\hline 5 & 5 & 9 & 17 & 6 & 12 \\
\hline 6 & 5 & 9 & 18 & 6 & 12 \\
\hline 7 & 6 & 10 & 19 & 5 & 14 \\
\hline 8 & 6 & 9 & 20 & 5 & 12 \\
\hline 9 & 6 & 11 & 21 & 5 & 9 \\
\hline 10 & 5 & 12 & 22 & 6 & 10 \\
\hline 11 & 5 & 12 & 23 & & \\
\hline 12 & 6 & 12 & 24 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & TE & CE \\
\hline Date: & \(9.30-09\) & \(9.30 \cdot 69\) \\
\hline Inspector: & P. Defetipoo & M.facel \\
\hline Degree Loc: & \(0^{\circ}\) & \(0^{\circ}\) \\
\hline Comments: & \(0 K\) & ok \\
\hline Final Visual Inspection: & PotD.9.30.09 & \[
\begin{aligned}
& m \cdot \text { Facer } \\
& 9.30 .09
\end{aligned}
\] \\
\hline
\end{tabular}
1. Wipe Journal prior to taking measurements.
2. Position Profilometer directly on top of the journal (working form outboard to inboard).
3. Record surface finish every 1 " along both Collector and Turbine End Journals.
4. If the data appears to vary significantly - recheck the data point.
5. Degree Location is the field degree location where the measurements are being taken (ex. \(0,30,60\), etc)
6. Profilometer measurements recorded at the final visual inspection of the journals at \(3^{\text {rd }}\) lathe and prior to removal of the rotor from the lathe.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Shop Order: \\
Prototype:
\end{tabular}} & & \multirow[t]{2}{*}{Serial \#:
\[
6-7
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{181073326 Drawing \#: Inspector Audit: \(\quad \mathrm{P} / 0\)}} & \multicolumn{2}{|l|}{\(134 \varepsilon 5700\)} \\
\hline & Workstation: & & & & _ Date: & 9-30.09 \\
\hline
\end{tabular}

\section*{GENERATOR FIELD FORGING RELEASE FORM}

SUPPLIER SERIAL NO.: 62365-07/GEU 866
GE SERIAL NO.: 181073326
PURCHASE ORDER NO.: 181073326
FORGING DRAWING NO.: 117E1716P0001 Rev: E
SDR's: V08104108

MATERIAL SPEC.: B50A375A90 Rev. D SUPPLIER: 92151 - Buderus
HEAT NO: 78002
TRIAL ORDER: YES NO X

\section*{RELEASE BY SOURCING OUALITY AND PRODUCTIVITY}

The aforementioned Rotor has been evaluated based on the Purchase Order and specification requirements and all known written Engineering requirements. Based on this evaluation, this rotor has met all the requirements and is now released to Manufacturing for further processing. GE non-destructive tests were not completed prior to receipt of the forging unless otherwise noted. The tests to be done prior to machining include those tests not performed by the supplier, those required for audit/qualification purposes and those required because the supplier is not qualified to perform the final test.


Rev. A - March 12, 02


Approved sDR(s) AUTHORIZED SIGNATURE


COPYRIGHT 1\%OS GENERAL ELECTRIC COMPANY PROPRIETARY INFORMATION. THS DOCLIUENT CONTNNS PROPRIETARY INFORMATION OF GENERAL ELECTRIC COMPANY AND MAY NOT BE USED OR DASCLOSED TO OTHERS. EXCEPT WTH THE WRITTEN PERMSSION OF GENERAL ELECTRIC CDMPANY.

\section*{Encloced:}

PATT-daerminawion of the positions: CIIT+CE\%CES (collinetor Anci)


AUTHORIZED SIGNATURE


 mernitary wronation or oermal tratic company and may wot metici on bisclonto to


```


[^0]:    ${ }^{1}$ Case 08-E-1111, Astoria Energy II LLC and Astoria Energy LLC- Petition for Approval of a Transaction pursuant to Public Service Law Section 70, Authority to issue debt Pursuant to Public Service Law section 69 and for Lightened Regulation and Request for Expedited Action, Order Approving Transfer and Financings and Making Other Findings (issued December 15, 2008).
    ${ }^{2}$ Case 08-F-1367, Petition of Astoria Energy LLC and Astoria Energy II LLC for the Amendment and Transfer of Certificate of Environmental Compatibility and Public Need, Order Granting Transfer and Amendment of Certificate of Environmental Compatibility and Public Need (issued April 7, 2009).

[^1]:    ${ }^{3}$ Case 99-F-1191, Application by Astoria Energy LLC for a Certificate of Environmental Compatibility and Public Need to Construct and Operate an Approximately 1,000 Megawatt Generating Facility in the Astoria Section of Queens County - Application for Amendment of Certificate Regarding Timing of Relay Coordination Study, Order Granting Amendment of Certificate of Environmental Compatibility and Public Need (issued January 27, 2005) at 4-5.

