aeso

DIL NUST BE MAINTAINED AT THE PROPER LEVEL. DO NOT OPERATE NO LOAD TAPCHANGER WITH TRANSFORMER ENERGIZED. AMPERE RATING GIVEN IS CURRENT IN OUTLET LEADS.GENERAL WIRING DIAGRAM : DO NOT ENERGIZE TRANSFORMER WITH RADIATOR VALVES CLOSED

TANK WITHSTANDS PRESSURE 5 PSI POSITIVE OR 14.7 PSI NEGATIVE FULL VACUUM).

Figure 3-14- Example 8: Transformer nameplate information

Transformer Modelling Guide

Page 169 of 304

Version : Revision 2

aeso

Purchaser Test	AFRIL 19	73 Purch	aser's	Order No	• _			G.	0			S.O. No.	3-5-721	8
<u>011</u> A	N/OMAF	Phos	2	_ Cy	60	In sulati	ng Fluid(DIL	L.5.00				Polarit	SUPT
Vinding	<u>H.V.</u>			· V	Yinding	L.	V#1			₩ınding	L	Y. #2		
$\frac{18}{1}$	000/21.000	}			Kv3		$\frac{20}{12000}$			Kvo	-900	0/12000)	
oltage	COU DEL	LA		-	Vollage	41	0			Voltage	410	O NYE		
ESISTANCES	5, EXCITING (surements, Fo	URRENT, I or three-phas	CSSES e transf	AND IM crimers I	EDAN	ICE - Bos stances ar	ed on normal i te the sum of th	rating, unless te three phase	otherwise is in serie	stated. s. POS	Losses	and regula	ition are bas	ed on
RESISTANCE		IN OHMS AT 75°C			EXCITE		18.5	K	V TO	18.5	Kv	10		
SERIAL N	0.	WINDINGS			Ċ	URRENT	AT LOSS WATTS AT 100° RATED GE VOLTAGE	LOAD LOSS 5 IMP WATTS 75°C 75°C		· · · · · · · · · · · · · · · · · · ·	2/.000 Kvo		Kvo 1P LOAD LOSS 5 114 WATTS 75°C 75°C	
	H.V.	H.V. LV		#1 LV #2		IATED DLTAGE				LOAD LOSS 50 H		75°C		
-3- S - 724	8 0.3	59 0.0	108	0.010	267	0.69	16500	80000	6.7_	143	800	8.9	*I.V#1	A LV
							1					·		
							+	Total Loss	51mp 75°	C Tota	Loss	- Imp 75°L	Toral Los	s 1 Imp 75
VERAGE							16500	96500	6.7	110	300	8.9		
UARANTEE							18000	108000	6.5	178	000		L	
			2		-			100% PF		S PF		80% PF		° PF
	REGULATI	ON AT 75	C		4	VERAGE							·	
RATU	RE RISES TA	vgrage rise	in degre	es C., c	orrected	to instar	it of shutdown,	of transforme						
HV Winding	17 4	75			501		1 1 1 41	······································	vith windin	ngs conn	ected or	nd loaded a	s follows:	
1#2 winding	4.1	6	Kv		1249	'	Amp.: <u>Jul att 1</u>	tant temperate			_ KY .		·	A:
	RIG	E OF WIND	INGS BY	Y PESIST	INCE		TOP	AUBIER	JT TEND	is reache			WATED	
	HV	T 1 # #1	17 1	1 42	GUAR	ANTER	FLUID	INGOING	IDL	ER	RISE	G	ALLONS T	POUNDS
ONAN	51	50 0	- 1	7 0	- 60		RISE	WATER	ORR	004		P	ER M.N.	PRESSUR
ONAF	54.9	60.3		<u>/•0</u> 5.8	65	2	47.5		+					
				<u></u>	t		O							
NSUL ATION	TESTS					WINDING		VOLTRATING		TE	TEST VOLTAGE		DURATION OF TEST	
					н.	.V.	18500			50		60		
, AFFLIED FOIENTIAL TESTS					L.V.#1		4160			26		60		
(Voltage applied between each winding and all other windings connected to core and ground.)					L.V.#2		4160			26		60		
NOUCED POTENTIAL TWO					time	s rated voltage	across full-winding;		1		Kulrom		¥#	
	TEST		Line te	erminal to		d; at	180		cycles per	second	for	7200		cycl
REMARKS	NAMEPLAT	'E #206P	454					2						
% IMPEDANCE BETWEEN H.VL.V. $#1 = 6.45$														
				H.V	-L.V.	#2 = (b	ased o	n 9 li	VA			
				L.V.	#1 -	• ۷.	#2 = 12.	78 J						
Sereby c	ertify that this	is a true rei	oort bas	ed on fac	tory te	sts made	in accordance	with the lates	Transfor	mer Test	Code C	57.2 of the	American St	londarda
Association a	nd that each tr	onstormer wi	thstood	the abov	e insu	lation test	5.							

Signed ____

Dote <u>May 22, 1973</u> Approved

Page _____cí ____Pages

Figure 3-15- Example 8: Transformer test results

Transformer Modelling Guide

Page 170 of 304

Version : Revision 2

ltem	Transformer Parameter	Symbol	Values					
General								
1	Transformer ONAN Ratings	MVA _{ONAN}	18 MVA					
2	Winding Voltages (primary, secondary,)	$V_H, V_X, V_Y,$ $V_P, V_S,$ $V_1, V_2,$	18.5kV/2.4kV/2.4kV					
3	Connection type	-	Dyy					
4	Tap range	t ₁ , t ₂ ,	± 30%					
5	Number of tap steps	-	5 (OCTC)					
6	Winding with an adjustable tap	-	Primary (high) side					
7	Phase angle of windings	$\theta_1, \theta_2, \theta_3$	30°,30°					
No Load Loss Test Results								
8	No-load loss test MVA	MVA _{NL Test}	-					
9	No-load loss	P _{NL}	16.5 kW					
10	Excitation current	%I _{exc}	0.69 A					
11	Tap setting for no-load loss test	t _{NL}	Nominal					
Load Loss Test Results								
12	Load loss test MVA	MVA _{SC Test} , …	(H-X+Y @ 18MVA)					
13	Load loss	P _{SC} , P _{LL_HX} ,	80 kW					
14	Impedance (Voltage)	I _Z , or Z _{HX} ,	6.7%					
15	Reactance	I_X , or X_{HX} ,	Not reported					
16	Tap setting for load loss test	t _{sc}	Nominal (13)					
17	Positive-sequence impedance between Pair Windings	H-X, H-Y, X-Y @MVA	6.45%, 6.50%, 12.78% @ 9MVA					
Zero-Sequence Test Results								
18	Zero-sequence open circuit test results	Z ₁ , Z ₂	-					
19	Zero-sequence short circuit test results	Z ₃	-					
20	Zero-sequence T-model parameters	Z_{H0} , $Z'_{X0} Z_{M0}$ for the T-model	-					
21	Zero-sequence impedances between Pair Windings	$Z_{H-X 0}$, $Z_{H-Y 0}$, for the T-model	-					
22	Grounding configuration	Windings neutral point grounding method	Solidly grounded					
23	Grounding Impedance	Z _{GX} , Z _{GY} ,	0Ω reactance					

Table 3-7- Information Required for Modelling the Transformer of Example 8

Transformer Modelling Guide

aeso

Туре	Parameters in Per Unit	Parameters in SI Units ¹
Windings' leakage impedance	$z_{H} = \frac{z_{H-X} + z_{H-Y} - z_{X-Y}}{2} = 0.0017$ $z_{X} = \frac{z_{H-X} - z_{H-Y} + z_{X-Y}}{2} = 0.1273$ $z_{Y} = \frac{-z_{H-X} + z_{H-Y} + z_{X-Y}}{2} = 0.1283$ @ 18MVA	$Z_{b} = \frac{V_{rated}^{2}}{S_{b}} = \frac{18.5^{2}}{18} = 19.014 \Omega$ $Z_{H} = z_{H} \times Z_{Z_{H-base}} = 0.0323\Omega$ $Z'_{X} = z_{X} \times Z_{H-base} = 2.42\Omega$ $Z'_{Y} = z_{Y} \times Z_{Z_{H-base}} = 2.44\Omega$ Verification: $Z_{H-X Y} = Z_{H} + Z'_{X} Z'_{Y} = 1.2473 \Omega$ From full load-losses test: $Z_{H-X Y} = 1.274 \Omega$
Magnetizing branch admittance	$y = \% I_{exc.} / 100 = 0.0069 \text{ pu}$	$Y_H = \frac{I_{OC}}{V_{OC}} = 3.63E - 4$ \mho or
No-Load losses equivalent conductance	$g = \frac{P_{NL}}{MVA_{NLTest} \times 1000} = 0.00092 \mu u$	$G_H = \frac{P_{OC}}{V_{OC}^2} = \frac{P_{NL}}{V_{H rated}^2} = 4.821E - 5 \ \mho$
Magnetizing branch susceptance	$b = -\sqrt{y^2 - g^2} = -0.0068 \ PU$	$B_H = -\sqrt{{Y_H}^2 - {G_H}^2} = -3.6E - 4 \text{ °C}$
Zero-Sequence parameters (Based on assumptions)	$z_{H0} = 0.85 \times z_{H}$ $z'_{X0} = 0.90 \times z'_{X}$ $z'_{Y0} = 0.90 \times z'_{Y}$ $z_{M0} = \infty$	

Table 3-8- Example 8: Generic Model Parameters of the Transformer

3.7 Three-Winding Transformers with Delta Primary, Wye Secondary, and Delta Tertiary

The tertiary winding in this type of connection is not provided to supply a considerable amount of load; it might be used for a local small load such as substation lighting. In practice, if the VA rating of the delta-connected tertiary winding is significantly less than the VA rating of the other windings it cannot be considered as a single winding in modelling. Even in practice, it is not recognized as a three-winding transformer by practical engineers. However, the zero-sequence current can flow through this winding. Therefore, the tertiary winding should withstand the zero-sequence fault current if one of the other windings is a grounded Y connection. For example, Figure 3-16 shows the nameplate information of a D-y-d-connected transformer. It is a 5.76 MVA 20 kV/900 V distribution transformer. This transformer does not have a test results report, but the impedances have been provided on the transformer nameplate. These parameters can be used to obtain the positive-sequence equivalent circuit. The zero-sequence equivalent circuit of this transformer depends on whether the neutral point of the secondary winding is grounded or not. If it has been grounded, the zero-sequence equivalent circuit is only one impedance from the secondary terminal and is an open circuit from the other terminals (See line 24 in Table 1-2). Since the zerosequence test results are not available, the transformer can be considered as a two-winding transformer with Delta-wye connected (See Section 2.7)

Page 172 of 304