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FIGURE 1.1 — Types of head-cylinder structures.

This 1s prevented at their junctions by the rigid at-
tachment of the heads and cylinders, one to the other.
Such 4 disturbance of the natural deformations, arising
from internal pressure, produces shear and flexural

head-cylinder junctures. These stresses do not vary cir-
cumferentially because of the axial symmetry of the struc-
tures and decay ultimately, if not at once, both in the
cvlinders and in the heads as the axial distance from this
point of stress disturbance increascs. Thesc juncture
stresses exist in addition to the membrane stresses.

More particularly, the juncture stresses consist of
axial shear stresses, axial flexural stresses, and circumfer-
ential membrane stresses. All vary in an axial direction
only. as previously stated. due to the axial symmetry of
the structure under consideration,

This same property of symmetry obviously excludes
the existence of circumicrential shear stresses, so that cir-
cumferentialty only uniform membrane stresses and uni-

formly varying flexural stresses are obtained. These two
types of stresses are additive, and the magnitudes of their
algebraic sums, taken at any axial point on the structures,
at both the inner and outer wall surfaces related to that
point, represent the greatest and least combined circum-
ferential stresses at the point.

It should be noted that when the greater stress is at the
outer wall surface, then the lesser stress occurs at the inner
wall surface, and, vice versa. Both stresses are principal
stresses, due to the absence of any circumferential shear
stresses to combine with them, and as axial distances from
the head-cylinder juncture increase, the greater of the two
ultimately decreases, both in the head and inthe cylinder,
down to the circumferential membrane stresses of those
parts as a limit.

Likewise, the greater and lesser axial combined
stresses are also derived as the algebraic sums of the axial
membrane and axial flexural stresses, in the same manner
as the greater and lesser circumferential stresses just de-
scribed. They too, are principal stresses,

From the foregoing, it is seen that the important
stresses, at any axial point on the middle surface in the
head-cylinder structure, are the circumferential stresses
on the inner and outer wall surfaces related (o the point;
the axial stresses on the inner and outer wall surfaces re-
lated to the point and the axial shear stress at the point.

A detailed stress analysis of the tubular structures at
the junction will be given in Chapter 3.

CHAPTER 2

local and overall

buckling of cylindrical shells

2.1 Introduction

The problem of determining the external pressure at
which a thin-walled cylinder of large diameter will col-
lapse confronts the designers of steel stacks, bins, tanks,
pipelines, conveyor galleries, and similar structures.

In the design of the above structures the collapsing
pressure and the evaluation of the effect of stiffeners upon
the strength of tubular structure are frequently encoun-
tered. After determining the cylinder plate thickness in
order to satisfy tensile stress requirements, the stability of
the shell should be checked for compressive stresses
against buckling. This analysis is more complex because
the general and local buckling of thin-walled cylindrical
shell under different loading conditions should be investi-
gated.

In a linear shell theory, displacements are propor-
tional to loads. The essence of shell buckling, however, is
a disproportionate increase in displacement resulting
from a small increase in load. It becomes obvious that a
nonlinear shell theory is required. Thus, shell buckling is
fundamentally a sub-topic of nonlinear shell theory.

The purpose of this Chapter is to discuss stress analy-
sis of the local and overall buckling of thin-walled large
diameter tubular steel structures. Although tubular struc-
tures are susceptible to buckling, most structural stand-
ards or codes do not give complete design information on
the buckling analysis of such structures. Presumably, the
column buckling formulas given in these standards may
be applied to tubular structures, because the standards do
not restrict the formulas to any particular shape. How-
ever, the tubular structures especially those having rela-
tively large ration D/t, as experience shows, cannot be
safely designed by formulas given in standards. Further-
more, no limitations based on local buckling of tubular
Structures under compression, bending, or combined
loadings are given in these standards.

If the purpose of engineering analysis isto predict the
b‘ehavior of structures under a variety of loading condi-
tions, then ex perience tells us that the buckling is often the
prime consideration in the design of tubular structures.

Considering the stability analysis of tubular struc-
tures it is necessary to clarify the situation regarding such
terminology as buckling and collapse.

Since the terms “buckling™ and “collapse” are often
used interchangeably, we define a buckle as a localized
failure in the form of a wrinkle or indentation caused by
overstress or instability of the pipe wall on the compres-
sive side of a pipe subjected to bending.

Collapse, on the other hand, is defined as a general
failure usually in the form of a flattening of the pipe cross-
section over a considerable length as the result of the ac-
tion of external pressure on the pipe.

2.2 Overall and Local Buckling

In the design of tubular structures, after determining the
shell plate thickness in order to satisfy tensile stress re-
quirements, the stability of the shell should be checked for
compressive stresses against buckling,

A thin-walled cylindricat shell subjected to compres-
sion in the direction of its longitudinal axis may fail either
by the instability of the shell as a whole, involving bending
of the axis, or by the local instability of the wall of the
shell which may not at all involve lateral distortion of the
axis. The former type of failure is that investigated by
Euler, when the strength depends on the ratio of length to
the radius of gyration of the shell. The latter type of fail-
ure has been called by various authors: secondary flexure,
crinkling, wrinkling, or local buckling, and is often the
governing consideration in the design of thin-walled
cylinders.

The stability against local buckling depends on the
ratio of thickness to the radius of the shell wall (t/R).
Wrinkling is local in nature and depends upon the com-
bined compressive stresses at the point under considera-
tion. Failure of this type is due to the formation of charac-
teristic wrinkles or bulges, circular or lobed in shape,
Figure 2.1.

In studying thin-walled tubular structures, two con-
siderations are of importance. First, local buckling
should be prevented at stresses below vield strength;
secondly, a more severe restriction is that the tendency to
buckle locally should not reduce the general buckling
load of a whole structure.

N N = 5 e L Y N
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FIGURE 2.1 — Overall and local buckling.

2.3 A Paradox in the Buckling Analysis
of Cylindrical Shell Under Axial
Compression

To investigate the phenomena of the local and overall
buckling of tubular structures, the classical approach was
to investigate the fundamental case, namely — the buck-
ling of cylindrical shell under axial compression. Solu-
tions to this problem were obtained more than SIXty years
ago, first by Lorenz [2.1] in 1908, then by Timoshenko
[2.2] in 1910 and by others. Lorenz used Euler's method
and substantially simplified the problem, assuming that
upon the loss of stability all generatrix of the cylinder
were bent in equal manner, and that the axially-symmet-
ric shape at the loss of stability had taken place, Figure
2.2
He arrived at the classical expressions of buckling
where the critical stress is equal
Et t
“or T Loty - OSER 2.1

and the “classical buckling load™ is

2 2
Poo= -3—51_3:2—7_— (E—) = O.GE(E—) (2.2)
where
R = is the radius of the shell, that is, the inside
radius plus one-half of the wall thickness
t = thickness of the shell wall
E = modulus of elasticity of material
# = 0.3 Poisson’s ratio

Southwell [2.3], Dean [2.4] and Prescott [2.5] give for a
lobed form of buckling the following formula

g_. = = ) ni-l
cr @—(—i_—“z)— R n2+l (23)
in which
n = the number of lobes in the wrinkle.

172 \/%— g 238/ %

FIGURE 2.2 — Cylindrical shell subjected to axial compression.

In these derivations, it is assumed that the elastic limit
of the material is not exceeded. In general, aithoungh dif-
ferent methods of approach were used, the same results
were obtained, namely, for a uniform circular bulge or
wrinkle, as shown in Figure 2.1. In any case, where the
number of lobes is greater than 3, Eq. (2.3) gives substan-
tially the same critical stress as Eq. (2.1).

It may be noted that Egs. {(2.1) and (2.2) for local
buckling do not involve the length of the shell. That is, the
critical local buckling stress is independent of the length
of the shell. Nevertheless, in the case of leng siender shells,
the total load-carrying capacity is affected by the ratio of
the length to the radius of gyration. For, if there is a tend-
ency to buckle, the stress will no longer be uniform overa
section, and failure will occur when the maximum stress
on the section becomes equal to the critical buckiing
stress. When we pass from the local loss of stability to the
overall, theratio L/ R lies within the following limits [2.6],
Figure 2.3.

1.72/t/R < L/R < 2.38/R/% (2.4)
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FIGURE 2.3 - Slenderness Ratios (L/R) for local buckling.
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For a long slender cylindrical shell, failure does not
occur by wrinkling, but by the type of buckling investi-
gated by Euler. The unit stress at which buckling is likely
to occur in this case is given by the formula

2
g = C TE (2.5)
(L/x)?
where
gor = unit stress at failure
r = radius of gyration of the cross-section of the
cylinder

C = a constant, depending on the end conditions

For a very thin shell 12 = R2/2, and Eq. (1.5) becomes

R

2
_ b
g --C——2 E(L

or ) (2.6)

When the experiments were made to check the valid-
ity of Eq. {2.1), certain behavioral patterns were observed
which were completely at variance with the theory,

There is a serious disagreement between the results of
classical and experimental stress for the buckling of iso-
tropic cylindrical shells under axial compression.

Similar discrepancies can be observed for other load-
ing conditions. These experiments indicated critical stress
levels in the order of ; of those given by the classical
linear theory.

This paradox puzzled the investigators for morethan
30 years!

The medern phase of the investigation of the buck-
ling of thin-walled cylindrical shells subjected to axial
compression began in 1940, with two papers published by
Von Karman [2.7), [2.8] and his collaborators. They
showed that the significant dilference between the buck-
ling stresses predicted by the theory and those observed in
experiment could be attributed to the fundamentally non-
linear nature of the buckling process.

They obtained a lower value which is three times
smaller than that given in the classical theory, or

t
Top = 0.195E(g) (2.7)

Von Karman and Tsien also suggested that imperfec-
tions which were inevitable in the fabrication, such as
initial irregularities in shape in the test cylinders, might
cause a round-off of the sharp peak between the linear
and nonlinear branches of the load-displacement curve,
and, thus, result in a lower maximum point.

TABLE 2.1 — Critical Buckling Stress o¢y.

Author Year Buckling Stress References
Michielson 1948 Jer = 0.194E(%) [2.8]
Kirste 1954 Ugr = 0.187E(%) [2.10}
Kempner 1954 Oer = 0.182E(%) [2.11]
Pogorslov 1867 Oer = 0.160E(%) [2.12]

Several investigators extended the Von Karman-
Tsien analysis and found the lowest values of the buckling
stress as shown in Table 2.1 [2.9, 2.10, 2.11, 2.12].

2.4 Imperfections of the Shell Shape
and Edge Effect

Theoretical analyses [2.12; 2.13; 2.14; 2.16] of the effect of
imperfections on the buckling behavior of cylinders have
clearly demaonstrated that relatively small imperfection
amplitudes can drastically reduce the critical {oad of the
shell.

Despite the substantial theory available, few experi-
mental data [2.17; 2.18; 2.19] exist describing the effects
of specific imperfections in shape in reducing the static
buckling load. Consequently, it was of particular interest
to determine the buckling load reduction caused by an
initial axissymmetric imperfection in shape defined by a
simple trigonometric function, This problem was investi-
gated by Koiter.

Koiter [2.20; 2.21] developed a rigorous theory of the
maximum load and showed that thin-walled circular
cylindrical shells are very sensitive to small deviations in
the initial, unstressed state from the exact circular cylin-
drical shape.

The results of the Koiter analysis indicate that an
initial imperfection amplitude equal to the shell thickness
is sufficient to reduce the bucklingload to only 20 percent
of the corresponding value for the perfect cylinder.

Investigations by Stein [2.22], Ohira [2.23] and Hoff
[2.24] showed lower buckling load due to the edge effect.
In the classical analysis the influence of the edge restraint
on the prebuckling deformation was neglected. However,
in reality, the diameter of the restrained cylinder tends to
increase under axial compression due to Poisson’s effect.
This increase is prevented at the ends of the cylinder by its
boundary restrainis,

Hence, the generators of the cylinder are distorted
prior to buckling and axial forces in the cylinder at the
ends are eccentric relative to portions of the shell wall
near their mid-length. When this eccentricity is consid-
ered, the theoretical prebuckling equilibrium becomes
nonlinear.

2.5 Practical Application of
Experimental Data

A disagreement between the theory and experiments con-
sidering the buckling of thin cylindrical shells under axial
compression has lasted a long time, causing much dis-
appointment, and inducing a number of new theories.
And yet, when the final clarification arrived, the answer
was simple and clear: one should have made better experi-
ments and more extensive calculations!

Small imperfections of the test specimen, nonuni-
formity in loading, and small uncertainties in the control
of boundary conditions have had large effect. To compare
theory with experiment, a very careful analysis and exper-
imental control would have to be made.

When we turn to experimental data in considering the
magnitude of critical stress, this data is somewhat contra-
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FIGURE 2.4 — Region of experimental dala for criticat compres-
sion stress.

dictory, since it strongly depends on initiat imperfections
in the form of the shell and in conditions of loading.

In Figure 2.4, a region of experimental values is
shown of the buckling coefficient p in equation

t
Top = pE(-R“) (2.8)

based on experiments performed by different investiga-
tors [2.25),

A significant part of the experiments leads to the
values of p lving above 0.18. However, certain values lie
below this magnitude and in separate cases turn out to be
cqual to 0.06 —0.15. Figure 2.4 indicates an evident tend-

10

ency of p to drop dyring the growth of ratio Rjt. ttis
necessary to recall that with anincrease of R/t, the proba-
bility of the appearance of initial imperfections should
increase. This, undoubtedly, should lead to a lowering of
the average magnitude of real critical stresses.

2.6 Allowable Design Stresses

In view of discrepancy between theoretical and experi-
mentai results, it seems advisable to rely largely on test
results for developing adequate design provisions to safe-
guard against local buckling.

Donnell [2.26] developed the following formula for
the ultimate buckling stress of circular cylinders in com-
pression

t -7R
Q .6§ - 10 T

1+ ¢.004 E~

Fy (2.9)

where Fy is the yield stress of the material.

The formula is designed to give the average strengths
to be expected, and if it is desired to know the minimum
strength likely to be encountered under any circum-
stances, some factor must be used with it.

A systematic evaluation of test evidence obtained by
a number of investigators was analyzed by Plantema
[2.29]. The permissible compressive stress is given by the
following formula:

- 662
Tep = D/t + 0.2399 FY (2.10)

The ratio D/t is valid for

3,300

F
Y

D 13,00
< < 222000 (2.11)
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FIGURE 2.5 — Correlation factors for unstiffened circular cylinders subjected to axial compression.
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30 \ = E
e Tor = 0-STE(D 213
A qcrq_zg:ﬁ_ (BAKER ET AL) where the values of the correlation factor ¥ in the fune-
25 tion of the ratio (R/t), are shown in Figure 2.5, The corre-
\ Cfc,=%ﬂtwmso~—~ewwnm lation ¥ is introduced to account for the difference be-
\ tween theoretical and experimental results.
/\\ % 235 (ReCOMMENDED) Wilson and Newmark [2.30] carried tests using tubu-
Qo 7 X lar steel compression members having a large D/t ratio.
z A N \( /f\ In the elastic range, the magnitude of the critical buckling
g F \\ \ \ stress is expressed as follows
' | Y \
i N, ) = 5,000 gy (2.14)
& | 17 cr D/t
| A SAN A) . . . _ .
2 A ~ 3 Agsuming the factor of safety = 1.5, the allowable crit-
=5 ! ! NN AN ical stress for local buckling is
; N
3 |
L 5,333 .
o ! } \‘\ ~— or f)/t , ksi (2.15)
ol E \'\-.._ The recommended allowable stresses for local buck-
] T’ ling in the function of D/t are shown in Figure 2.6 {2.31]
] i Long cylindrical shells must be checked for overall
! ' buckling as an Euler column, by the formula (2.6).
o glz 3'6,100 50 800 1000 1200 1400 1500 1208 3o Buckling analysis of the cylindrical shell indicates

D/t

FIGURE 2.6 — The recommended allowable buckling stresses.

At yield point for mild steel Fy = 36 ksi, the limits arc

92 < % < 361 (2.12)

Formula (2.10) is recommended by the American
Iron and Steel [nstitute [2.28)].

Baker et al [2.29] proposed the following formula for
the determination of the local buckling stress for cylindri-
cal shells of moderate length.
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CHAPTER 3

edge effeet

at tubular structures

3.1 Physical Concept

Stresses and deformations in thin-walled shells, deter-
mined by applying the membrane theory are correct only
in zones located at certain distances from the changes of
such geometrical parameters as shape, dimensions and
stiffness and also from the places of sharp changes in act-
ing forces.

For sections having changes in geometry, apart from
forces. stresses and deformations which are determined in
applying the membrane theory, additional forces, stresses
and deformation which also originate are called — the
edge effect,

Due to the elastic resistance of the adjoining parts,
the edge effect does not spread too far, but rather acts
upon relatively narrow zones. The edge effectis spread by
relatively fast diminishing waves, the general character of
which is shown in Figure 3.1, where at the axis x are ordi-
nates of the wave curve and along the axis y - are plotted
lengths of the generatrix of the shell.

The physical causes of origination of the edge effect
are;

4. An absence of free deformation of the shell, under
membrane stresses in a circumferential direction.

b. Sudden changes or eccentricity of the generatrix,
which lead under axially-symmetrical loading to the
origin of local forces, distributed along the circumfer-
ence of shell as projections of meridional forces on a
plane, normal to the axis, or on moments due to its
eccentricity.

-

TN

T4

FIGURE 3.1 — Diagram of diminshing of edge effect. Axis Ox —
location of origin of edge effect.

An example, shown in Figure 3.2 illustrates the origi-
nal causes of edge effect.

At the elevation a-a under free deformation and load-
ing Py an increase of radii may be expressed as follows:

For a cylinder

r
Ar = E(O’;_-\)Gl) =

For a cone

13

2
_RP . %) (3.2)

R
A = e -y
R =g (G2=v0y) EE

cone
where
o, = longitudinal stress
o, = circumferential stress

teylteon = thicknesses of the walls of a cylinder and
cone, respectively

v = Poisson’s ratio
E = modulus of elasticity of shell materials

In general cases
Ar # AR sing (3.3)

and at the free elastic deformations results in a relative
displacement at section a-a. However, the interconnec-
tion between the cylindrical and conical shells prevents
free deformation at these shells at a level a-a which results
in the origin of local bending at this level. Apart from this,
the edge effect originates due to a break of the generatrix
and the existence of the local circumferential forces in the
plan a-a, which are projections of the meridional forces of
conical shell. The presence of these forces cause different
deformations and stresses to those of the parts of a shell
located relatively at a distance from section a-a. This
results in the local bending of shells at their interconnec-
tions. Therefore, in general, as shown in Figure 3.2, the
edge effect is due to both causes.
In particular, at the ratio of a shell thickness

t
<¥l - ging (3.4)
Ceone

and under internal or external uniform pressure, we have

Ay = ARsing (3.5)
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