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Abstract
Large cyclic loading on ballasted railroad tracks is now inevitable owing to an increased demand for freight
and public transport. This leads to a progressive deterioration and densification of railroad ballast and
consequently to the loss of track geometry and differential settlement. Understanding these complex stress-
strain and degradation mechanisms is essential to predict the desirable track maintenance cycle, as well as the
design of new track. This paper presents the results of cyclic drained tests and numerical studies carried out on
a segment of model railway track supported on geosynthetically reinforced railroad ballast bed. The relative
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evaluated using a large-scale prismoidal triaxial chamber. Laboratory tests on unreinforced and reinforced
railway track were simulated in a numerical model, and the results were then analyzed to better understand the
distribution of displacements and stresses inside the railroad ballast layer. It was observed that in view of strain
and breakage control, both the type of reinforcement and its layout played a vital role in improving the
capacity of the track. These laboratory test findings were supported by the predictions from an advanced
elastoplastic numerical analysis.
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Stress-Strain Degradation Response of Railway Ballast
Stabilized with Geosynthetics

Buddhima Indraratna, F.ASCE1; and Sanjay Nimbalkar2

Abstract: Large cyclic loading on ballasted railroad tracks is now inevitable owing to an increased demand for freight and public transport.
This leads to a progressive deterioration and densification of railroad ballast and consequently to the loss of track geometry and differential
settlement. Understanding these complex stress-strain and degradationmechanisms is essential to predict the desirable trackmaintenance cycle,
as well as the design of new track. This paper presents the results of cyclic drained tests and numerical studies carried out on a segment of model
railway track supported on geosynthetically reinforced railroad ballast bed. The relative performance and effectiveness of single- and dual-layer
configurations of geosynthetic reinforcement was evaluated using a large-scale prismoidal triaxial chamber. Laboratory tests on unreinforced and
reinforced railway track were simulated in a numerical model, and the results were then analyzed to better understand the distribution of displace-
ments and stresses inside the railroad ballast layer. It was observed that in view of strain and breakage control, both the type of reinforcement and
its layout played a vital role in improving the capacity of the track. These laboratory test findings were supported by the predictions from an ad-
vanced elastoplastic numerical analysis. DOI: 10.1061/(ASCE)GT.1943-5606.0000758. © 2013 American Society of Civil Engineers.

CE Database subject headings: Repeated loads; Soil deformation; Degradation; Geosynthetics; Geotechnical models; Railroad ballast;
Railroad Tracks; Stress; Strain.
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Introduction

Large countries such as the United States, Canada, China, India, and
Australia rely heavily on railways for the transportation of bulk
commodities and passenger services. These countries have in-
troduced faster and heavier trains in recent years owing to a growing
demand from commuters and industry. This has resulted in an in-
crease in track degradation, lateral instability, and therefore the
frequency and cost of maintenance. This problem becomes more
severe under conditions of railroad ballast fouling (Selig and Waters
1994).

Particles of railroad ballast become degraded in railroad tracks
under heavy cyclic loading, thereby increasing the overall com-
pressibility (Anderson and Fair 2008; Lackenby et al. 2007; Lu and
McDowell 2006; Indraratna et al. 2010a). The use of geosynthetics
in railroad tracks has been studied in the past, and it has been proven
that geosynthetics generally improve track performance by reducing
the deformation and degradation of railroad ballast (Göbel et al.
1994; Rowe and Jones 2000; Raymond 2002; Shin et al. 2002;
Brown et al. 2007; Indraratna and Salim 2003; Indraratna et al. 2006,
2007). The application of geosynthetics to granular materials both
in permanent pavements and for heavy-haul roads is well known
(Koerner 1990; Giroud and Han 2004a, b, Kwon et al. 2009), but

only limited studies have been conducted on railroad ballast that is
significantly coarser (Selig andWaters 1994; Indraratna et al. 2011).

In addition, only limited studies have focused on the funda-
mentals of interaction between grids and ballast aggregates under
large strain conditions when subjected to cyclic loading. A numer-
ical model that can capture the envelope of the maximum plastic
deformations generated during individual load cycles and that
facilitates the prediction of accumulated deformation at a large
number of load cycles is usually adequate for railroad track practice
(Suiker and de Borst 2003). Moreover, the development of practical
and reliable design methods and the correct grid specifications for
particular applications has not been as soundly based (Brown et al.
2007). It is desirable tooptimizeperformanceandprovide abackground
to improve railroad track design. Extensive laboratory experiments
were conducted on fresh and recycled railroad ballast under both dry
and wet conditions to investigate the effectiveness of three types of
geosynthetics [geogrid, woven geotextile, and geocomposite (geogrid
1 nonwoven geotextile)] using a large-scale prismoidal test chamber
(Indraratna andSalim2003; Indraratna et al. 2006, 2007).Various types
of geosynthetic reinforcements placed in unbound ballast have usually
improved the performance of rail transportation systems, but un-
fortunately, the optimal location and number of geogrid layers have not
been established. A few recent studies have attempted to analyze the
effects of multiple geosynthetic reinforcement through model studies
(Raymond and Ismail 2003; Jirou�sek et al. 2010) and full-scale field
trials (Montanelli and Recalcati 2003).

This paper presents the results of cyclic loading tests and nu-
merical studies conducted on fresh railroad ballast stabilized with
three types of geosynthetics (geogrid, nonwoven geotextile, and
geocomposite) for single- and double-reinforcement arrangements.
The model tests were conducted using a large-scale prismoidal tri-
axial chamber that was designed and built at the University of
Wollongong. The lateral displacement of railroad ballast in the
field is not restricted (in the absence of sufficient confining pres-
sure); hence the prismoidal triaxial chamber with unrestrained sides
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provides an ideal facility for physical modeling of the deformations
of railroad ballast under cyclic loading (Indraratna and Salim 2003;
Indraratna et al. 2006, 2007). The primary objective of this studywas
to evaluate the deformation and degradation of railroad ballast under
a large number of cycles and to study the influence of the type and
tensile stiffness of the reinforcement on the overall performance of
the railroad ballast. However, laboratory tests alone do not provide
incisive and cost-effective means to gain a full insight into the com-
plex mechanisms of breakage and associated stress deformation char-
acteristics of railroad ballast at intermediate load cycles. Therefore,
a numerical analysis (FEM) was carried out by implementing an
extended elastoplastic constitutive formulation to capture particle
breakage, as well as the effect of geosynthetic reinforcement on the
stress-strain behavior of railroad ballast during cyclic loading. The
shear and volumetric deformation mechanisms in the granular sub-
structure are both of a plastic nature (i.e., they are activated after
a certain level of stress has been exceeded, and themagnitude of these
strains remains relatively constant as soon as unloading occurs).

Experimental Study

Materials Used for Testing

Ballast, Subballast, and Clay Subgrade
The fresh railroad ballast used in the present investigation is latite
basalt, a common aggregate obtained from a designated quarry in
Bombo (near Wollongong city), Australia. The ballast particles rep-
resent sharp angular coarse aggregates, and their required physical
properties (Indraratna et al. 1998) were evaluated using the standard
test procedures as per AS2758.7 (Standards Australia 1996). Latite
basalt is a fine-grained, very dark, and dense aggregate that contains
the essential minerals plagioclase (feldspar) and augite (pyroxenes).
The selected particle size distributions (PSDs) of fresh ballast,
subballast, and subgrade materials were based on current industry
practice (Standards Australia 1996; Rail Infrastructure Corporation
of New South Wales 2001a, b), as shown in Fig. 1. Sieve analysis
was conducted on the material retained on the No. 200 sieve, and
a Malvern particle size analyzer was employed for the finer frac-
tion (particle size , 0.075 mm). A thin layer of compacted clayey
sand was used in the laboratory model to simulate the subgrade

of a real railroad track. A subballast layer comprised a sand-gravel
mixture.

Geosynthetics
Three types of geosynthetics were used in the laboratory test
chamber to stabilize the fresh railroad ballast. These included (1)
biaxial geogrid, (2) nonwoven geotextile, and (3) geocomposite,
which is a combination of biaxial geogrid and nonwoven geotextile.
The physical and mechanical characteristics of these geosynthetics
are described in Table 1. Cubical triaxial tests reported by Indraratna
et al. (2011) indicated that a layer of geocomposite (i.e., geogrid
bonded with nonwoven geotextiles) stabilized recycled ballast

Fig. 1. Particle size distributions of fresh ballast, subballast, and
subgrade materials

Table 1. Index Properties of Geosynthetic Materials [Techfab Industries,
Ltd. (India)]

Geosynthetic type Geogrid Geotextile

Material Polyester Polypropelene
Structure Biaxial Nonwoven
Mechanical
Ultimate tensile strength
(kN/m)
Machine direction 40a —

Cross-machine direction 40a

Tensile strength at 2% strain
(kN/m)
Machine direction 9a —

Cross-machine direction 9a

Tensile strength at 5% strain
(kN/m)
Machine direction 18a —

Cross-machine direction 18a

Grab tensile strength (N) — 1,570c

Trapezoidal tear (N) — 600d

Puncture strength (N) — 910e

Mullen burst (kPa) — 4,700f

Elongation at break (%)
Machine direction 15a 60c

Cross-machine direction 15a

Hydraulic
Permeability/flow rate
(L/m2/s)

— 35g

Apparent opening size,
AOS (mm)

— 90h

Endurance
Ultraviolet resistance
@ 500 h (%)

— 70i

Physical
Aperture size (mm)
Machine direction 40 —

Cross-machine direction 40
Thickness (mm) — 2.9j

Mass per unit area (g/m2) 390b 500k

aASTM D6637 (ASTM 2001a).
bASTM D5261 (ASTM 2003b).
cASTM D4632 (ASTM 2003a).
dASTM D4533 (ASTM 2004b).
eASTM D4833 (ASTM 2001c).
fASTM D3786 (ASTM 2001b).
gASTM D4491 (ASTM 2004c).
hASTM D4751 (ASTM 2004a).
iASTM D4355 (ASTM 1999).
jASTM D5199 (ASTM 2006).
kASTM D5261 (ASTM 2003b).
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much better than standard geogrids. In a geocomposite, the geogrid
provides a strong mechanical interlock with the angular particles of
ballast (reinforcement), whereas the nonwoven geotextile prevents
the fines frommoving up from the layers of subballast and subgrade,
thus keeping the ballast layer relatively clean.

Laboratory Model Tests

Test Setup
The large-scale prismoidal triaxial chamber used in this study can
accommodate specimens 800 mm long, 600 mm wide, and 600 mm
high [Fig. 2(a)]. To model real railroad track, the prismoidal test
chamber was filled in four layers. This is a true triaxial apparatus in

which three independent principal stresses can be applied in three
mutually orthogonal directions. Because each wall of the test
chamber can move independently in a lateral direction, the ballast
specimen is free to deform laterally under cyclic vertical load and
lateral pressures. Although the actual stress states may not be
simulated exactly, especially near the lateral boundaries, this par-
ticular chamber reasonably simulates realistic track boundary
conditions (Indraratna and Salim 2003). Cyclic vertical stresseswere
measured using pressure cells made of stainless steel (12 mm thick,
230 mm in diameter) installed at the tie-ballast and ballast-capping
interfaces. To measure vertical and horizontal deformations of the
ballast, settlement pegs (consisting of 100-3 100-3 6-mm stainless
steel base plates attached to 10-mm-diameter stainless steel rods) and

Fig. 2. (a) Schematic illustration of cyclic triaxial chamber; (b) details of cyclic loading
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electronic potentiometers were installed in different track sections,
respectively [Fig. 2(a)].

Preparation of Test Specimens
The bottom layer consisted of 50-mm-thick compacted clayey sand
to simulate the layer of subgrade soil under the track. A 100-mm-
thick mixture of compacted gravel and sand was used to represent
the subballast layer. The upper two layers, viz. load-bearing ballast
(300 mm thick) and crib ballast (150 mm thick), consisted of fresh
ballast. A timber tie and rail segment was placed above the com-
pacted load-bearing layer of ballast, and the space between the tie
and walls was filled with crib ballast. The 300-mm-thick layer of bal-
last was compacted in four 75-mm-thick layers and the subballast
(100 mm thick) was compacted in two 50-mm-thick layers to
achieve representative field densities. The compaction was carried
out using a vibratory hammer. The subballast was compacted close
tooptimalmoisture content of 8.35%[maximumdrydensity ðMDDÞ5
2,240 kg=m3; relative compaction ðRCÞ5 96%; specific gravity
ðGsÞ5 2. 6]. The subgrade was compacted close to an optimal
moisture content of 12.64% (MDD51,930 kg=m3; RC5 98%;
Gs 5 2. 68). The bulk unit weights (gbulk) of the compacted layers of
ballast, subballast, and subgrade were 15.3, 23.8, and 21.4 kN/m3,
respectively. The corresponding initial void ratios (e0) of the ballast
and subballast layers were 0.74 and 0.52, respectively.

Layout of Geosynthetics in Test Specimens
Single-Layer Arrangement. The relative benefits of different

geosynthetics—(1) biaxial geogrid, (2) nonwoven geotextile, and
(3) geocomposite—when placed as a single layer at the ballast-
subballast interface, were then evaluated. In real railroad track, the
depth of this placement (about 300 mm from the base of the tie) is
enough to prevent any damage from the tamper tines.

Dual-Layer Arrangement. Apart from the biaxial geogrid and
the nonwoven geotextile placed at the ballast-subballast interface, as
described earlier, the layer of geocomposite was placed at the un-
derlying subballast-subgrade interface to evaluate the added benefits
of a dual-layer arrangement.

Testing Procedure
A cyclic vertical stress (s0

1cyc) was provided by a servohydraulic
actuator and transmitted to the ballast through a 100-mm-diameter
steel ram and a rail-tie assembly. In railroad track environments, the
confining pressure is ofmajor concern (Lackenby et al. 2007). Under
normal railroad track environments, a significant lateral movement
is observed in the ballast layer owing to reduced lateral restraint at
the edge of sleeper (Indraratna et al. 2010a, 2011). To simulate track
behavior under low-field confinement, small lateral pressures (in-
termediate principal stress s0

2 5 10 kPa, and minor principal stress
s0
3 5 7 kPa) were applied to the triaxial specimens through hy-

draulic jacks to simulate field confinement. Confinement in a real
railroad track generally is provided by the weight of the crib and
shoulder ballast, along with a frictional interlock between particles
of angular ballast and interaction between tie and ballast. Initially,
a strain-controlled test was performed (at a rate of 1 mm/s) until the
mean level of cyclic deviator stress was reached. Afterward, a stress-
controlled test with a harmonic sinusoidal cyclic stress amplitude of
Ds0

1cyc 5s0
1max;cyc 2s0

1min;cyc was carried out [Fig. 2(b)]. A reduced-
frequency conditioning phase (5 Hz) was employed at the com-
mencement of cyclic loading (during rapid vertical deformation) to
prevent impact loading and loss of actuator contact with the top
surface of the rail-tie assembly. After this stage, initial readings of
load cells, potentiometers, and settlement plateswere taken, and then
a cyclic load with a maximum intensity (s0

1max;cyc) corresponding to

25 tons/axle load calculated in accordance with American Railway
Engineering Association (AREA) method (Li and Selig 1998) was
applied. The tests were conducted at a frequency of 15 Hz, which
simulated a speed of 109 km/h, a wheel diameter of 0.97 m, and
an assumed distance between the wheels of common rolling stock
bogies of 2.02 m. The average contact stress at the tie-ballast in-
terface obtained by the AREA method was 447 kPa compared with
335 kPa using the European method (Esveld 2001). The total
number of load cycles applied in each test was 200,000. The cyclic
loading was halted at a selected number of cycles, and readings of
settlement, lateral movement of walls, and loading magnitudes were
recorded. Initial cyclic triaxial experiments with and without a rest
period indicate that a rest period has an insignificant influence on
ballast deformation with the number of cycles (Indraratna et al.
2010b). Six tests were conducted to investigate the response of
cyclic loading on railroad ballast with and without geosynthetics.
Initially, the deformation of model railroad track with the single-
reinforcement configuration was analyzed through a series of tests,
whereas the effect of a double-reinforced model railroad track was
studied in terms of strain and breakage control.

Results and Discussion

Settlement Characteristics

The vertical deformation (and strains) of railroad ballast were
computed by excluding the deformation of the layers of subballast
and subgrade and are shown in Fig. 3(a). In this respect, the limited
thickness of the layer of subgrade was expected to have an in-
significant influence on the test results, especially when compared
with the response of different ballast specimens with and without
geosynthetics (Indraratna et al. 2007). As expected, the ballast
deformed rapidly when the loading cycles commenced, although its
rate of settlement diminished to a controlled steady state after
a certain level of load repetitions had passed, defined as the stable
zone [Fig. 3(a)]. The granular materials display a strong tendency
to compact under cyclic loading (Lackenby et al. 2007; Indraratna
et al. 2010a, b). As evident from Fig. 3(a), ballast settlement is
characterized by three phases. The first phase is the immediate
settlement under the first loading cycle. The second phase is an
unstable zone where rapid settlement occurs. Reorientation and
rearrangement of particles along with significant breakage generate
a denser (compressive) packing assembly. In the third phase, the rate
of increaseof settlement ismarginal,with an almost linear relationship
between settlement and the number of load cycles. This third phase is
often characterized as stable shakedown. Thus the ballast settlement
SN can be modeled in terms of the number of load cycles N as

SN ¼ S1
�
1 þ a lnN þ 0:5b lnN2� ð1Þ

where S1 5 settlement of ballast after the first load cycle, and a and
b 5 two empirical constants. The first term in Eq. (1) refers to
settlement owing to the first cycle, the second to an unstable zone
(N, 104 cycles), and the third term to a stable shakedown zone
(N. 104 cycles). The settlement of ballast was plotted on a normal
scale with a comparisonwith different settlementmodels, as shown in
Fig. 3(a). These settlementmodels and their regression parameters are
described in Table 2. The parameters a and b were determined by the
new equation proposed here [Eq. (1)]. Other parameters c to y were
determined by using solutions proposed by others [Table 2; Fig. 3(a)].

Compared with unreinforced ballast, reinforced ballast exhibited
a lower vertical settlement [Fig. 3(b)]. In every laboratory test, the
geosynthetic reinforcement remained intact. This occurred because
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the mechanism of reinforcement is truly the aggregate-geogrid in-
terlock causing the local stiffness increase, and it is not related to
differences in tensile strength of stiff (extruded) geogrids. The
geogrid appeared to bemore effective than the nonwoven geotextile.
This may be attributed to the fact that highly frictional angular
particles of fresh ballast develop a strong mechanical interlock with
the geogrid, whereas the performance of geotextile depends largely
on its tensile membrane action. As expected, the fresh ballast sta-
bilized with the geocomposite (a combination of geogrid and
geotextile) exhibited the least vertical settlement. This occurred be-
cause a nonwoven geotextile offers an optimal separation between
the layers of ballast and subballast while maintaining a higher
resiliency, whereas a biaxial geogrid provides a strong interlock. The
pattern of the settlement logarithm of numbers of load cycles for the

doubly reinforced case was similar to that of the single reinforced
tests [Fig. 3(b)]. They all portrayed a curved nonlinear pattern on
a semilogarithmic plot. In all cases, the benefit of geogrid re-
inforcement was more significant when the test specimens were
subjected to higher numbers of loading cycles. The doubly rein-
forced case showed considerable beneficial effects on the cumula-
tive plastic settlement. The dual-layer reinforcement (geogrid and
geocomposite) of the uniform ballast aggregates appeared to have
the greatest beneficial effect in reducing settlement. The response of
the reinforced section is related to the shear resistance mobilized at
the interface owing to interaction between the geogrid, ballast, and
subballast. The shear resistance mobilized at the interface provides
additional internal confinement by interlockingwith aggregates, and
deflection induces a tension-membrane effect in the geogrid.

Fig. 3.Vertical deformation of fresh ballast: (a) comparisonwith previous studies; (b) thatwith andwithout geosynthetics plotted in semilogarithmic scale
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Strain Characteristics

Under repeated loading, the specimens of railroad ballast undergo
compression in the vertical direction (major principal strain ɛ1) and
expand in the two lateral directions (intermediate principal strain ɛ2
and minor principal strain ɛ3). Fig. 3(b) also shows a variation in the
major principal strain ɛ1 of fresh ballast under an increasing number
of load cycles with and without geosynthetics. The variations in the
lateral strains (e2, e3) of fresh ballast with andwithout geosynthetics
are shown in Figs. 4(a and b). It is important to note that these lateral
strains are based on the rigid-body movements of the walls of the
prismoidal triaxial chamber, and therefore, they only represent the
average strains across the depth of the sample, not at the interface (in
particular, the ballast-subballast or subballast-subgrade interface),
where the lateral strains were expected to be the least or even
negligible owing to placement of the geosynthetics.

The geogrid decreased the lateral strain of the ballast by an ap-
preciable amount, thus proving to be more effective than the geo-
textile. The geogrid provided internal confinement (lateral stability)
to the ballast layer, thus improving its vertical stress distribution
characteristics. Confinement was achieved by the geogrid restrain-
ing the lateral and vertical deformation of the ballast layer. Part of the
ballast layer located in the immediate vicinity of the geogrid became
locked into the aperture of the geogrid during placement and com-
paction of the ballast particles. The reinforcement action of the
geogrid is generated by the application of vertical stress, and it is
responsible for the reduction in lateral and vertical deformations of
the ballast. Furthermore, introducing two layers of geosynthetic
reinforcement had a pronounced effect on controlling the lateral
strain in the ballast. Fresh ballast stabilized with geocomposites or
geogrids exhibited less lateral strain (e3) than fresh ballast (without
any geosynthetics) at a higher number of load cycles. This result has
a significant bearing on the maintenance of railroad tracks because
reducing the lateral movement of ballast with the inclusion of
geocomposites implies a reduced need for additional layers of crib
and shoulder ballast during maintenance operations.

Ballast Breakage

The degree of particle crushing affects the deformation and ultimate
strength characteristics of railroad ballast materials (Selig and
Waters 1994; Indraratna et al. 1998, 2011). Initially, local crushing at
the interparticle contacts takes place, followed by the complete
fracture of weaker particles when the load is increased further. This
breakage of the grain contributes to differential track settlement and
increasing vertical and lateral deformations. To analyze the deg-
radation of fresh ballast under cyclic loading, an assessment of
ballast breakage was performed. After each test was completed, crib

ballast and load-bearing ballast aggregates were recovered from the
triaxial chamber separately and then sieved to determine any
changes in particle gradation. The breakage was quantified using the
parameter ballast breakage index (BBI), proposed by Indraratna
et al. (2005). By using a hypothetical linear size axis as a reference,
the BBI then was calculated using Eq. (2):

BBI ¼ A
A þ B

ð2Þ

whereA5 shift in the particle size distribution (PSD) curve after the
test, and B 5 potential breakage. On a PSD plot, the potential
breakage B is defined by the area between the arbitrary boundary of
maximum breakage and the final PSD curve. The BBI values ob-
tained from all the tests are presented in Table 3. The fresh ballast
stabilized with geotextile reinforcement showed marginally more
degradation in this range of particle sizes compared with ballast
stabilized with geogrid. This also explains the lower displacement
of ballast when it was reinforced with geogrid. As expected, the
geocomposite was the most effective at reducing ballast breakage. It
was further observed that the double reinforcement was better than
the single reinforcement in terms of reducing ballast breakage.

Shear Strain and Volumetric Strain

The shear strain ɛs and volumetric strain ɛv of the ballast can be
determined by (Timoshenko and Goodier 1970)

ɛs ¼
ffiffiffi
2

p
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðɛ12 ɛ2Þ2 þ ðɛ2 2 ɛ3Þ2 þ ðɛ3 2 ɛ1Þ2

q �
ð3Þ

ɛv ¼ ɛ1 þ ɛ2 þ ɛ3 ð4Þ

where ɛ1 5 vertical strain (major principal strain), ɛ2 5 lateral strain
actingparallel to the rail (intermediate principal strain), and ɛ3 5 lateral
strain acting parallel to the tie (minor principal strain). Figs. 5(a and b)
show the variation of ɛs and ɛv against the number of load cyclesN. In
general, both the shear strain and the volumetric strain accumulated
steadily with an increasing number of cycles; however, their rates of
increase were reduced with progressive accumulations of strain. Less
permanent strains (shear and volumetric strains) were induced in the
ballast bed reinforced with single and double layers of geosynthetics.

Stress-Dilatancy Approach

Based on an analogy between the irregular packing of soil particles
and a regular assembly of spheres (or cylinders) and on the principal

Table 2. Models Linking Permanent Deformation to the Number of Load Cycles

Equation number Model Reference Regression parameters

i SN 5 S1ð11 a logNÞ Raymond et al. (1975) a
ii

SN 5 g1 hðlogNÞ1 kN for N# 200, 000
SN 5 i1 jN for N. 200, 000

Jeffs and Marich (1987) g, h, i, j, k

iii
SN 5gð12 e2aNÞ1bN

Sato (1995) a, b, g

iv SN 5 S11
e logN

11 f logN Neidhart (2001) e, f
v SN 5 S1ðNyÞ Indraratna et al. (2007) y
vi SN 5 c1 dðlnNÞ Indraratna et al. (2011) c, d
vii SN 5 S1ð11 a lnN1 0:5b lnN2Þ Present study a, b

Note: Parameters for fresh ballast [refer Fig. 3(a)]: a5 0. 43, b5 1. 6, c5 4. 3, d5 1. 85, e5 3. 8, f 5 0. 2, g5 90. 0, h5 0. 006, i5 12. 5, j5 1:53 1025,
k5 1.53 1024, a5 0:018, b5 1.23 1025, g5 12. 5; y5 0. 106.
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of a minimum energy ratio, the generalized stress-dilatancy re-
lationship can be written as (Rowe 1962)

K ¼ R
D

ð5Þ

where R 5 principal stress ratio (R5s0
1=s

0
3), D 5 dilatancy

(D5 dv=dɛ1; dv=dɛ1 is the dilatancy rate, where dɛv and dɛ1 are
the increments of volumetric and axial strain, respectively), and
K 5 material parameter expressed as

K ¼ tan2
�
45 þ f0

f

2

�
ð6Þ

where f0
f 5 interparticle frictional angle. The value of f0

f varies
between f0

m (the basic friction angle between particles) and f0
cy (the

critical-state friction angle) depending on the density of the sample.
By extending the approach adopted by Schanz and Vermeer (1996),
as shown in Fig. 6, the following three-dimensional (3D) stress-
dilatancy relationship can be proposed:

Fig. 4. Principal strains of fresh ballast layer with and without geosynthetics: (a) intermediate; (b) minor
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s0
1

s0
2s

0
3
¼
�
1
s0
2

�
2
dɛ p3
dɛ p1

�
þ 1

s0
3

�
2
dɛ p2
dɛ p1

��
tan2

 
45 þ f0

f

2

!

þ dEB

s0
2s

0
3dɛ

p
1

	
1 þ sin f0

f



ð7Þ

where dEB 5 incremental energy consumption by particle breakage
per unit volume (Ueng and Chen 2000), and dɛp1 5 plastic com-
ponent of principal strain increment. The basic friction angle f0

f is
the apparent effective friction angle f0

fb corresponding to a zero rate
of particle breakage [i.e., ðdBBIÞf =ðdɛ p

1 Þf 5 0]. The rate of energy
consumption (dEB=dɛ

p
1 ) can be calculated for a given f

0
f according

to Eq. (7) using the values of the effective stresses and dilatancy
factors dɛ p

2 =dɛ
p
1 and dɛ p

3 =dɛ
p
1 at a given loading cycle. The ðdEBÞf

is related to the differential increment of ballast breakage index
ðdBBIÞf corresponding to ðdɛ p

1 Þf by a linear relationship as defined
earlier by Indraratna and Salim (2002):

�
dEB

dɛ p1

�
f

¼ k

"�
dBBI
dɛ p1

�
f

#
ð8Þ

wherek5 constant of proportionality. Thus, combining Eqs. (7) and
(8), the nonassociated plastic flow rule incorporating the rate of
particle breakage during shearing is now represented by

dɛpv ¼
"
12

�
s0
1

s0
2s

0
3

�
Mc

 
12 sinf0

f

1þsinf0
f

!

þ k

�
dBBI
dɛ p

1

��
1

s0
2s

0
3

�
Mc

	
12 sinf0

f


#
dɛ p

1

ð9Þ

where

Mc ¼
"
1
s0
2

�
1þ dɛ p

2

dɛ p
3

�21

þ 1
s0
3

�
1þ dɛ p

3

dɛ p
2

�21
#21

By virtue of Eq. (9), the term dɛpv=dɛ
p
1 depends on the stress state,

plastic strain ratios, and particle breakage. The values of dɛpv=dɛ
p
1 can

be computed from Eq. (9) for a corresponding friction mobilization,
progressive breakage, and stress-state evolution during either
loading or reloading. It is evident that beyond 104 load cycles, ballast
undergoes negligible incremental rates of plastic deformations,

implying negligible breakage (Fig. 4). Therefore, the FEM simu-
lations in the current study are conducted at low values of N (up to
104). Eq. (1) is differentiated with respect to loading cycle N to give

dɛp1
dN

¼ ɛp11

�
a0
N

þ b0
N

�
ð10Þ

where ɛp11 5 vertical plastic strain after the first loading cycle, and a0

and b0 5 two empirical constants. Differentiating Eq. (9) with re-
spect to N gives

dɛpv
dN

¼
(�

ɛp11

�
a0
N

þ b0
N

��
2

�
s0
1

s0
2s

0
3

�
Mc

 
12 sinf0

f

1þ sinf0
f

!

�
�
ɛp11

�
a0
N

þ b0
N

��
þk
	
dBBI
dN


�
1

s0
2s

0
3

�
Mc

	
12 sinf0

f


)

ð11Þ

For axisymmetric ðs0
2 5s0

3; dɛ
p
2 5 dɛ p

3 Þ and plane-strain ðdɛp2 5 0Þ
testing conditions, Eq. (10) is expressed as

dɛ pv
dN

¼
(�

ɛp11

�
a0
N

þ b0
N

��
2

�
s0
1

s0
3

� 
12 sinf0

f

1 þ sinf0
f

!

�
�
ɛp11

�
a0
N

þ b0
N

��
þ k

	
dBBI
dN


�
1
s0
3

�	
12 sin f0

f


)

ð12Þ

Figs. 7(a and b) illustrate the resilient characteristics of a typical
cyclic stress-strain response and the correspondingflow rule in terms
of incremental plastic strains accumulated in the ballast layer,
respectively.

Finite-Element Simulation

Three-dimensional modeling can incorporate complex longitudinal
stress-strain distribution and cross-anisotropic behavior but often
requires numerous input parameters and significant computational
power. In engineering practices, where possible, it is advantageous
to simplify complex 3D problems into equivalent two-dimensional
(2D) plane strain such as railroad tracks where the longitudinal
strain (ɛ2) is negligible. Usually, the 2D strength criterion under-
estimates the actual strength when b ½5 ðs0

2 2s0
3Þ=ðs0

1cyc 2s0
3Þ�

. 0, where b represents the role of intermediate stress (Matsuoka
and Nakai 1982; Lade 2006). However, in this study, the 2D failure
criterion still can predict the shear strength with acceptable accuracy
for small b values (≅ 0.01). In this study, an elastoplastic model of
a composite multilayer test sample including tie, ballast, subballast,
subgrade, and geosynthetic is proposed. The response of this
multilayer system to cyclic loading is considered by conducting a 2D
plane-strain dynamic FEManalysis usingPLAXIS (PLAXIS 2D 8.6).
The modified stress-dilatancy relationship is used to capture the
ballast particle degradation only during the loading-reloading stage,
and it is assumed that only elastic deformations occur during
unloading. A typical plane-strain test model is simulated in the FEM
discretization, as shown in Fig. 8,with 15-node cubic strain elements
that provide a fourth-order interpolation for displacements and 12
Gauss points for numerical integration.

Given the symmetry, only half the section of model railroad track
is considered. The right and bottom boundaries are considered as
absorbent (viscous) boundaries to avoid spurious reflections of

Table 3. Assessment of Ballast Breakage during Cyclic Loading

Test
number Material type

Ballast breakage index (BBI)

Top zone,
100 mm thick

Central zone,
100 mm thick

Bottom zone,
100 mm thick

1 Fresh ballast 0.140 0.059 0.046
2 Ballast1 geogrid 0.119 0.030 0.015
3 Ballast 1

geotextile
0.093 0.066 0.031

4 Ballast 1
geocomposite

0.086 0.034 0.005

5 Ballast1 geogrid
1 geocomposite

0.064 0.036 0.006

6 Ballast 1
geotextile 1
geocomposite

0.106 0.020 0.015
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cyclic waves. The node at the left corner of the bottom boundary of
the section is considered as a pinned support (i.e., is restrained in
both the vertical and horizontal directions). The left (axis of sym-
metry) and bottom boundaries are restrained in the horizontal and
vertical directions, respectively. The top and right boundaries are
unrestrained. A lateral distributed static load is applied to a movable
steel wall of the prismoidal test chamber to simulate an effective
confining pressure ðs0

3Þ of 7 kPa. The train load is simulated by
applying an equivalent uniformly distributed vertical cyclic load on
the tie. The cyclic deviator stress (Dqcyc) measured through data-
burst techniques at regular intervals during actual testing is applied
to the FEM model [Fig. 7(a)]. Data-burst technique is defined as
sampling of data bursts (1,500 readings in 1 second, sampling

frequency 1,500Hz) over channels of pressure cells, potentiometers,
and actuator position (recoverable or resilient strain) to evaluate the
cyclic deviator stress (Dqcyc). The noise owing to electrical inter-
ference (background or white noise) was filtered by employing the
discrete Fourier transform algorithm inMATLAB (Lackenby 2006).
A total of 10,000 load cycles was applied in the finite-element
analysis, and their computed results were compared with the ex-
perimental data at the same number of load cycles.

Types of Soil Models

The following sections describe the various soil models used for the
railroad track materials.

Fig. 5. (a) Shear strain; (b) volumetric strain of fresh ballast layer with and without geosynthetics
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Hardening Soil Model for Ballast
The hardening soil (HS) model is based on isotropic hardening
plasticity appropriate to simulate the strain-hardening behavior of
railroad ballast subjected to repeated load cycles. The HS model
includes material dilatancy, as proposed by Rowe (1962). Com-
plete details of the stress-dependent stiffness moduli for primary,
unloading, and reloading stress paths (E50, Eur, and Eoed) can be
found elsewhere (Schanz et al. 1999). As illustrated in Fig. 7(a), the
long-term elastic response of materials subjected to cyclic loading
is often characterized in terms of the resilient modulus Mr

(5Ds0
1cyc=ɛ

e
1, where ɛe1 is the resilient component of vertical

strain). To capture the hardening of Mr observed in repeated-
loading triaxial tests, the following relationship is used (Uzan
1985):

Eref
50 ¼ Mr ¼ k1Pa

�
u
Pa

�k2�
toct
Pa

�k3

ð13Þ

where Mr 5 resilient modulus in megapascals, u 5 bulk stress in
kilopascals, toct 5 octahedral shear stress in kilopascals, Pa 5
normalizing stress (atmospheric pressure: 101.325 kPa at sea level),
and k1, k2, and k3 5 coefficients obtained by fitting against the
laboratory test results (Tables 4 and 5). For other materials such as
subballast and subgrade, it is assumed that in the absence of
hardening, their moduli do not change under cyclic loading,
i.e., E ref

50 5Mr (Howard and Warren 2009). The mobilized effective
friction angle f0

m during the loading-reloading phase is expressed in

terms of the effectivemajor andminor principal stresses according to
the Mohr-Coulomb failure criterion:

sinf0
m ¼ s0

12s0
3

s0
1 þ s0

3
ð14Þ

For low confining pressure, a very high friction angle for ballast (up
to 65�) is not surprising (Tables 4 and 5). The nonassociated plastic
flow rule incorporating the rate of particle breakage during shearing
in 2D space is represented by

dɛpv ¼
"
12

�
s0
1

s0
3

�
tan2
 
452

f0
f

2

!
þ k

�
dBBI
s0
3dɛ

p
1

�	
12 sinf0

f


#
dɛ p1

ð15Þ

The mobilized dilatancy angle cm during the loading-reloading
phase is expressed as

sincm ¼ dɛp1 þ xdɛp3
dɛp12 xdɛp3

¼ dɛpv=dɛ
p
1

22
�
dɛpv=dɛ

p
1

� ð16Þ

where x5 1 for plane strain and x5 2 for triaxial test conditions. By
incorporating the effect of particle breakage, cm can be expressed
by substituting Eq. (15) into Eq. (16):

sincm ¼

"
12

�
s0
1

s0
3

� 
12 sinf0

f

1þ sinf0
f

!
þ k

�
dBBI
dɛp1

��
1
s0
3

�	
12 sinf0

f


#
"
1þ
�
s0
1

s0
3

� 
12 sinf0

f

1þsinf0
f

!
2 k

�
dBBI
dɛp1

��
1
s0
3

�	
12 sinf0

f


#

ð17Þ

It is interesting to know that the proposed modified stress-dilatancy
relationship reduces to Rowe’s stress-dilatancy relationship when
particle breakage is ignored. Further details of the HS material
parameters and breakage parameters are given in Tables 4 and 5.
All six tests had different values because at a given number of load-
ing cycles unreinforced ballast (Test 1), ballast with one geosynthetic
(Tests 2, 3, and 4), and ballast with two geosynthetics (Tests 5
and 6) showed different dilation characteristics and peak stress
values. Thus, even for the same ballast, the change of interface and
boundary conditions can give different apparent properties (Tables 4
and 5). To be more specific, the improved performance of ballast
owing to placement of geosynthetics is captured through (1) in-
creased internal friction angle of the ballast (Tables 4 and 5), (2)
increased global interface friction [Eq. (18)], (3) increased resilient
modulus (Tables 4 and 5), and (4) reduced dilation (Tables 4 and 5).
Some slight differences are also associated with slight altera-
tions associated with identical sample preparation. This is so be-
cause all these large prismoidal specimens (0:83 0:63 0:6 m)
contained slightly different particle shapes and sizes. Even if the
PSD curveswere kept uniform and as close as possible to each other
in gradation, still it would be very difficult to ensure very similar
particle shapes for every test specimen owing to the varied ge-
ometries (angular and/or irregular) of freshly blasted coarse
aggregates. Given this inevitable and significant variation in an-
gularity, it is common for large-scale coarse rockfill specimens
to have slightly different properties (e.g., friction angle), unlike con-
ventional smaller particles such as natural sands and gravels.
Therefore, we have deliberately determined the relevant prop-
erties for each specimen (e.g., friction angle) as given in Tables 4
and 5.

Fig. 6. Derivation of prismoidal dilatancy based on contact forces
and deformations in a biaxial state
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Mohr-Coulomb Elastoplastic Model for Subballast
and Subgrade
Both the subballast and subgrade are represented with a standard
Mohr-Coulomb model (linear elastic-perfectly plastic), whose pri-
mary function is to provide a representative foundation for the
ballast. The MC model involves five key parameters (i.e., Young’s
modulusE, Poisson’s ratio n, effective cohesion c0, effective friction
angle f0, and dilatancy angle c). Subballast with the properties
E5 140 MPa,n5 0:35,c5 5� andf0 5 35� is considered. Subgrade
with E5 60 MPa, n5 0:33, c0 5 20 kPa and f0 5 10� is simulated.

Linear Elastic Model and Interface Elements
Wooden tie (E5 10 GPa, n5 0:15, and g517 kN=m3) and steel
boundary wall (E5 210 GPa, n5 0:15, and g577 kN=m3) are
considered as linear elastic. In addition, the linear elastic tension
elements are used to model the geosynthetic layer. The shock mat
(E5 6:12 MPa andRayleigh coefficientsa5 0:041 andb5 0:002)
is simulated as a damping material (Nimbalkar et al. 2012). The
axial stiffness of the geosynthetic is determined as EA5F=ðDL=LÞ,
where F is the applied axial force per unit width of test sample, and
DL=L is the axial strain. The axial stiffness corresponding to 5%

Fig. 7. Laboratory characterization for idealized hardening soil model of ballast: (a) cyclic stress-strain response; (b) flow rule
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axial strain (EA5 360 kN=m for geogrid; EA5 391:4 kN=m for
geocomposite) was determined from applicable test methods
[ASTMD4632 (ASTM 2003a); ASTMD6637 (ASTM 2001a)] and
from the information provided by the manufacturer. Zero-thickness
fully bounded interface elements available in PLAXIS were used to
model the frictional behavior between various layers and are sim-
ulated by five-node line elements. The geosynthetic material
modeled here using the linear tension elements and the interface
elements could not properly take into account the aggregate interlock
mechanism of geogrids for providing local stiffness increase. These
five-noded interface elements still can capture the interface strength

through the effective friction angle at the interface, which will be
lower than themaximum interparticle friction or dilation angle at low
confining pressure. The role of this aggregate-geogrid interaction is
captured through the strength-reduction factor Rint obtained as

tanf0
int ¼ Rint tanf

0
m ð18Þ

where f0
int 5 effective friction angle of the interface. In this study,

Rint is assumed to be 1/2 for the soil-geotextile interface and as 2/3
for the soil-geogrid interface.

Fig. 8. Finite-element mesh discretization of typical test sample

Table 4. Parameters Used for Simulation of Hardening Soil Model for Ballast: Single Layer

Material parameter Symbol Test 1 Test 2 Test 3 Test 4 Method of determination and other notes

Secant modulus (MPa) at 50%
strength for primary stress path

Eref
50 284.0 295.6 288.5 302.6 Shown in Fig. 7(a) and using Eq. (13)

Tangent modulus (MPa) for
primary odometer stress path

Eref
oed 284.0 295.6 288.5 302.6 Same as the above (Schanz et al. 1999)

Stiffness modulus (MPa) for
unloading-reloading stress path

Eref
ur 852.0 886.8 865.5 907.7 Equals 33Eref

50 (Schanz et al. 1999)

Apparent friction angle (degrees) f0 64.0 64.4 64.2 64.6 Determined using Eq. (14) and also shown
in Fig. 7(a)

Angle of dilation (degrees) c 19.5 15.8 15.5 14.8 Evaluated using Eq. (17) and also shown
in Fig. 7(b).

Rate of change of ballast breakage
index (BBI) at failure

ðdBBI=dɛp1Þf 1.6 1.5 1.4 1.3 Determined by the gradient of the plot of
BBI versus the major principal strain (ɛ1);
BBI is evaluated by sieving.

Rate of energy consumption
(kNm/m3) at failure

ðdEB=dɛ
p
1Þf 249.2 264.8 233.4 270.0 Determined by Eq. (7) for a given friction

angle f0

Empirical coefficient k 153.4 182.2 163.0 204.6 Determined by Eq. (8)
Empirical coefficient k1 1.10 1.09 1.11 1.05 Eq. (13) based on fitted laboratory data
Empirical coefficient k2 0.21 0.20 0.18 0.14
Empirical coefficient k3 21.00 21.20 21.15 21.35
Empirical coefficient a0 0.14 0.11 0.12 0.08 Eq. (10) based on fitted laboratory data
Empirical coefficient b0 0.53 0.49 0.52 0.44
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Finite-Element Predictions

Finite-element simulations were employed to predict the stress-
strain behavior of railroad ballast subjected to cyclic loading. For
brevity, only selected results are discussed. Fig. 9 shows the dis-
tribution of vertical stress (s0

v) of fresh ballast along the tie at dif-
ferent depths. A nonuniform stress pattern is predicted at all the
interfaces. Vertical stresses at the ballast, subballast, and subgrade
surfaces are the largest approximately beneath the rail seat. Fig. 9
also shows a comparison of the results of this study with the sim-
plified elasticity-based approaches commonly practiced among rail
industries in Australia, such as MULTA [three-dimensional equa-
tions of linear elasticity for multi-layered systems (Kennedy and
Prause 1978)], PSA [Fourier series for linear elastic behavior of
materials, reviewed by Adegoke et al. (1979)], and ILLI-TRACK
[finite element method using non-linear elastic material behavior
(Tayabji and Thompson 1976)]. A wheel load of 145 kN, a ballast
depth of 380mm, and a subballast depth of 150mmwere considered
in MULTA, PSA, and ILLI-TRACK (Adegoke et al. 1979). It is
evident that the FEMmodel predicts the vertical stress along the tie at
different depths quite well in relation to the observed stress mea-
suring using pressure cells in the laboratory. The FEM predictions
are significantly different from the elastic analyses using MULTA,
PSA, and ILLI-TRACK, which do not consider the actual cyclic
nature of wheel loading, Furthermore, the values of vertical dis-
placement (Svd) predicted by the FEM model show only a slight
deviation from the laboratory data (Fig. 10). A nonuniform dis-
placement pattern is predicted along the tie at different depths. The
vertical deformation of ballast (Sv) is calculated by differentiating
the vertical displacements between the upper and lower surfaces of
the ballast, respectively. The measured value of Sv of 10.51 mm at the
edge of the tie compares well with the predicted value of 9.98mm. A
slight increase of Svd at the edge of the tie can be attributed to
a reduced lateral restraint, as was confirmed previously though full-
scale field studies (Indraratna et al. 2010a).

Fig. 11 shows the distribution of vertical displacement (Svd) and
lateral displacement (Shd) along the depth of model track. It can be
seen that geosynthetics substantially reduced the vertical and lateral
displacements of ballast. The lateral-displacement values predicted
by the current 2D elastoplastic analysis show a slight deviation from

Table 5. Parameters Used for Simulation of Hardening Soil Model for Ballast: Double Layer

Material parameter Symbol Test 5 Test 6 Method of determination and other notes

Secant modulus (MPa) at 50%
strength for primary stress path

Eref
50 311.2 305.0 Shown in Fig. 7(a) and using Eq. (13)

Tangent modulus (MPa) for primary
odometer stress path

Eref
oed 311.2 305.0 Same as the above (Schanz et al. 1999)

Stiffness modulus (MPa) for unloading-
reloading stress path

Eref
ur 933.5 915.0 Equals 33Eref

50 (Schanz et al. 1999)

Apparent friction angle (degrees) f0 64.7 64.6 Determined using Eq. (14) and also shown in Fig. 7(a)
Angle of dilation (degrees) c 11.5 12.7 Evaluated using Eq. (17) and also shown in Fig. 7(b)
Rate of change of ballast breakage
index (BBI) at failure

ðdBBI=dɛp1Þf 1.4 1.3 Determined by the gradient of the plot of BBI versus
the major principal strain (ɛ1); BBI is evaluated by
sieving.

Rate of energy consumption
(kNm/m3) at failure

ðdEB=dɛ
p
1Þf 280.9 275.2 Determined by Eq. (7) for a given friction angle f0

Empirical coefficient k 203.6 208.6 Determined by Eq. (8)
Empirical coefficient k1 1.03 1.07 Eq. (13) based on fitted laboratory data
Empirical coefficient k2 0.21 0.22
Empirical coefficient k3 21.45 21.33
Empirical coefficient a0 0.07 0.10 Eq. (10) based on fitted laboratory data
Empirical coefficient b0 0.38 0.48

Fig. 9. Distribution of vertical stress (s0
v) along tie: FEM predictions

versus test results
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the measured strains. One possible reason is that particle breakage at
intermediate loading cycles is not considered here; it was assessed
only at the end of test. To further validate the FEM model, the
permanent deformations are linked to the number of loading cycles.
The variations in vertical (Sv) and lateral deformation (Sh) of ballast
with number of loading cycles (N) is presented in Fig. 12. It is
evident that the 2D elastoplastic FEM analysis is able to capture the
nonlinear variation of permanent deformation response of ballast
with N. These results clearly show that the use of geosynthetic
reinforcement contributes to decreased track settlement and lateral
strains and improved track stability.

Limitation of This Study

Given the limited height of the triaxial chamber (600 mm), the sub-
grade thickness had to be curtailed. The 50-mm subgrade is not re-
alistic comparedwith themuch higher thicknesses of subgrade seen in
the field. However, as indicated earlier, these laboratory tests were
conducted with the specific purpose of comparing the relative be-
havior when different geosynthetic types are used (i.e., geogrids,
geotextiles, and geocomposites). The maximum triaxial height of
specimens is 600mm, ofwhich themost important ballast layer had to
be 300 mm, as in the field (Australian railroad tracks), with the crib
ballast taking 150mm to confine the sleeper. Therefore, the thickness
of capping (subballast) and subgrade layers had to be reduced to 100
and 50 mm, respectively. Because all the tests still had the same
subgrade thickness (50 mm), direct comparison of the influence of
these different geosythetics on the ballast behavior still could bemade.
Indeed, using a thinner subgrade thickness would affect the overall
compliance. In the field, the lateral movement of subballast would be
less than that of ballast. This decreased thickness of material beneath
the ballast would induce more lateral displacement in the subballast
than what would be normally expected in the field.

We selected the 2D (plane-strain)PLAXIS analysis because the 3D
analysis inPLAXIS could not accommodate cyclic loading.We accept
that the experimental setupwas not 2Dplane strain because the strains
in the longitudinal direction could not always bemaintained at zero. In
several railroad tracks we have measured longitudinal strains to be
one-quarter to one-half the transverse strains, even along relatively
straight track sections (e.g., Singleton track nearNewcastleCity, Bulli
track near Wollongong City). Pronounced 3D behavior is seen when
approaching turnouts and curves. As shown in Figs. 10–12, the
comparison between the PLAXIS 2D numerical data and the ex-
perimental observations clearly elucidates this discrepancy. If
a proper 3D analysis could be done with cyclic loads, then this
discrepancy would be much less. However, the key objective of
this study was to compare the relative behavior of different geo-
synthetics under the same test conditions. Although the 2DPLAXIS
analysis was not an accurate match to the laboratory data, still the
relative behavior between different geosynthetics could be studied
using both the numerical and experimental procedures.

We have chosen the elastoplastic continuum modeling approach
in this study to simulate the overall plastic deformation and degra-
dation response of railroad ballast subjected to a large number of
loading cycles. In this study, the FEMapproach can simulate loading
up to 10,000 loading cycles, whereas the discrete-element modeling
(DEM) approach cannot handle more than a few thousand cycles
[Particle Flow Code (PFC2D; PFC3D)]. Therefore, for large
numbers of cycles that are appropriate for rail track traffic, the FEM
approach was considered to be more suitable than DEM. However,
we accept that DEM would be more suitable for modeling the
geogrids and particles interlock compared with FEM. The current
FEMmodel on its own cannot accurately simulate the local stiffness
increase by the aggregate-geogrid interlock. This is a limitation of
this analysis. For better insight into the aggregate-geogrid interlock
mechanism, the DEM approach has to be used, which is not within
the scope of this paper.

Conclusions

A series of cyclic drained tests was conducted on fresh railroad ballast
with biaxial geogrid, nonwoven geotextile, and geocomposite inclu-
sions placed at the ballast-subballast and subballast-subgrade inter-
faces. The biaxial geogrid and nonwoven geotextile demonstrated
their effectiveness by reducing settlement and the movement of par-
ticles under cyclic loads, as well as reducing grain breakage. As
expected, the geogrid was more effective than the geotextile owing to
a strongmechanical interlock between the grid apertures and particles
of ballast. Itwas concluded that the biaxial geogridwould be a suitable
reinforcement to be placed below the ballast for overall railroad track
stabilization. However, a biaxial geogrid was not an effective sepa-
rator when used below the subballast layer unless it was placed in
conjunction with a geotextile. On the basis of this study, the geo-
composite was shown to be very effective at controlling both strain
and particle breakage. It also was demonstrated that dual-layer rein-
forcements, i.e., geogrid at the ballast-subballast interface and geo-
composite at the subballast-subgrade interface, are better at reducing
settlement than single-layer reinforcements.

The results of the experimental tests were compared with the
predictions of a 2D cyclic elastoplastic FEM analysis (PLAXIS). A
numerical analysis captured the plane-strain response of ballast
using an isotropic hardening model in conjunction with a modified
stress-dilatancy theory that incorporated the effect of particle
breakage. The results indicated that the 2D (plane-strain) FEM
model could predict the stress-strain-degradation of a reinforced
and unreinforced model railroad track system subjected to cyclic

Fig. 10. Distribution of vertical displacement (svd) along tie: FEM
predictions versus test results
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loading with reasonable accuracy. The FEM model also could
simulate the relative performance of single and dual layers of geo-
synthetics placed in the model track. The FEM model is further
validated by modeling the permanent deformation versus number of
loading cycles.

Given that railroad ballast subjected to large cyclic loads (e.g.,
heavy-axle trains operating at high speeds) inevitably will be dam-
aged, the use of appropriate geosynthetics provides an effective and
environmentally sound solution for optimizing track performance and
reducing maintenance costs. This study also suggests that the correct
placement of geosynthetics in relation to the stabilized interfaces will
play a vital role in the overall behavior of ballasted track. However,
the role of geosynthetics for varied subgrade soils and the influence of

other variables such as aperture size, stiffness, and tensile strength
have not been elucidated within the scope of this study. Fully
instrumented field studies are currently being launched by the authors
near the city of Newcastle to capture the effects of different types of
geosynthetics along variable ground conditions, and the data from this
field study will be reported in a subsequent paper.
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