The flexural design strength of noncompa axis is determined by:

$$
\phi_{b} M_{n}=\phi_{b} M_{p}-\phi_{b}\left(M_{p}-M_{r}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right) \leq \phi_{b} M_{n}^{\prime}
$$

In the Load Factor Design Selection Table, in the case of the noncompact shape
values of $\phi_{b} M_{n}{ }^{\prime}$ and $L_{p}{ }^{\prime}$ are tabulated as $\phi_{b} M_{p}$ and L_{p}. The formula above may be used the tabulated values.

Flexural Design Strength for $C_{b}>1.0$
C_{b} is a factor which varies with the moment gradient between bracing points (L_{b}). $p_{\text {p }}$ design flexural strength (with $C_{b}=1.0$) multiplied by the calculated C_{b} value maximum value is $\phi_{b} M_{p}$ for compact shapes or $\phi_{b} M_{n}{ }^{\prime}$ for noncompact shapes. \boldsymbol{T}_{b} maximum unbraced lengths associated with the maximum flexural design strenget $\phi_{b} M_{p}$ and $\phi_{b} M_{n}{ }^{\prime}$ are L_{m} and $L_{m}{ }^{\prime}$ (see Figure 4-1).

A new expression for C_{b} is given in the LRFD Specification. (It is more accurate then the one previously shown.)

$$
\begin{equation*}
C_{b}=\frac{12.5 M_{\max }}{2.5 M_{\max }+3 M_{A}+4 M_{B}+3 M_{c}} \tag{1/3}
\end{equation*}
$$

where M is the absolute value of a moment in the unbraced beam segment as follows
$M_{\text {max }}$, the maximum
M_{A}, at the quarter point
M_{B}, at the centerline
M_{c}, at the three-quarter point
Values for C_{b} for some typical loading conditions are given in Table 4-1.
Compact Sections $\left(C_{b}>1.0\right)$
When $L_{b} \leq L_{m}$
The flexural design strength for rolled I and C shapes is:

The flexural design strength is:

$$
\phi_{b} M_{n}=C_{b}\left[\phi_{b} M_{n}\left(\text { for } C_{b}=1.0\right)\right] \leq \phi_{b} M_{p}
$$

$$
L_{m}=L_{p}+\frac{\left(C_{b} M_{p}-M_{p}\right)\left(L_{r}-L_{p}\right)}{C_{b}\left(M_{p}-M_{r}\right)}
$$

Nonce
When
For $L_{m}>1$

The val

$$
L_{m}=\frac{C}{1}
$$

$\phi_{b} l$

Values of C_{b} for Table 4-1.

For $L_{m}>L_{r}$

$$
L_{m}=\frac{C_{b} \pi}{M_{p}} \sqrt{\frac{E I_{y} G J}{2}} \sqrt{1+\sqrt{1+\frac{4 C_{w} M_{p}^{2}}{I_{y} C_{b} G^{2} J^{2}}}}
$$

The value of C_{b} for which L_{m} or $L_{m}{ }^{\prime}$ equals L_{r} for any rolled shape is:

$$
C_{b}=\frac{F_{y} Z_{x}}{\left(F_{y}-10\right) S_{x}}
$$

Noncompact Sections ($C_{b}>1.0$)
When $L_{b} \leq L_{m}{ }^{\prime}$
The flexural design strength for rolled I and C shapes is:

$$
\phi_{b} M_{n}=\phi_{b} M_{n}^{\prime}<\phi_{b} M_{p}
$$

When $L_{b}>L_{m}{ }^{\prime}$
The flexural design strength is:

$$
\phi_{b} M_{n}=C_{b}\left[\phi_{b} M_{n}\left(\text { for } C_{b}=1.0\right)\right] \leq \phi_{b} M_{n}^{\prime}
$$

