The flexural design strength of noncompact I or C rolled shapes bent about the maxis is determined by:

$$\phi_b M_n = \phi_b M_p - \phi_b (M_p - M_r) \left(\frac{L_b - L_p}{L_r - L_p} \right) \leq \phi_b M_n'$$

In the Load Factor Design Selection Table, in the case of the noncompact shapes we values of $\phi_b M_n$ and L_p are tabulated as $\phi_b M_p$ and L_p . The formula above may be used with the tabulated values.

Flexural Design Strength for $C_b > 1.0$ C_b is a factor which varies with the moment gradient between bracing points (L_b) . F_{cb} C_b greater than 1.0, the design flexural strength is equal to the tabulated value of f_{cb} design flexural strength (with $C_b = 1.0$) multiplied by the calculated C_b value. The maximum value is $\phi_b M_p$ for compact shapes or $\phi_b M_n'$ for noncompact shapes. The maximum unbraced lengths associated with the maximum flexural design strength $\phi_b M_p$ and $\phi_b M_n'$ are L_m and L_m' (see Figure 4-1). A new expression for C_b is given in the LRFD Specification. (It is more accurate the the one previously shown.)

 $C_b = \frac{1}{2.5M_{\rm max} + 3M_A + 4M_B + 3M_c}$

 $12.5M_{\rm max}$

where M is the absolute value of a moment in the unbraced beam segment as follows:

 M_{max} , the maximum M_A , at the quarter point M_B , at the centerline M_C , at the three-quarter point

Values for C_b for some typical loading conditions are given in Table 4-1.

Compact Sections ($C_b > 1.0$) When $L_b \leq L_m$

The flexural design strength for rolled I and C shapes is:

A condition for Lb<=Lm

But you have to find Lm from the formula A or B

The

\$bl

Whe

m

The valu

 $C_b =$

For Lm>1

(F1.2)

LO

When $L_b > L_m$

shown below.

The flexural design strength is:

A condition for Lb>Lm

But you have to find Lm from the formula A or B shown below.

$$\phi_b M_n = C_b[\phi_b M_n \text{ (for } C_b = 1.0)] \leq \phi_b M_p$$

$$L_{m} = L_{p} + \frac{(C_{b}M_{p} - M_{p})(L_{r} - L_{p})}{C_{b}(M_{p} - M_{r})}$$

How do you know formula to use? You don't know it Lm <Lr unless you plug into the Formula A, or do you plug into Formula B?

Formula A

 $L_{m} = \frac{C_{b}\pi}{M_{p}} \sqrt{\frac{EI_{y}GJ}{2}} \sqrt{1 + \sqrt{1 + \frac{4C_{w}M_{p}^{2}}{I_{v}C_{b}^{2}G^{2}J^{2}}}}$

The value of C_b for which L_m or L_m' equals L_r for any rolled shape is:

$$C_b = \frac{F_y Z_x}{(F_y - 10)S_x}$$

Noncompact Sections ($C_b > 1.0$) When $L_b \leq L_m'$

The flexural design strength for rolled I and C shapes is:

 $\phi_b M_n = \phi_b M_n' < \phi_b M_p$

When $L_b > L_m'$

The flexural design strength is:

 $\phi_b M_n = C_b [\phi_b M_n \text{ (for } C_b = 1.0)] \leq \phi_b M_n'$

AMERICAN INSTITUTE OF STEEL CONSTRUCTION