Burns & McDonnell

Dynamic Foundations:

Basics of Analysis & Design

Agenda

- Resources
- Types of Machines & Foundations
- When is Dynamic Analysis Required?
- What is Dynamic Analysis?
 - Basics of Dynamics
 - Preliminary Design
 - Machine Manufacturer Criteria
 - Detailed Analysis & Design
- Construction Considerations
- Questions

Resources

ACI 351.3R-04. "Foundations for Dynamic Equipment." American Concrete Institute, 2004.

El Naggar, M.H. "Design of Machine Foundations-Lecture Notes." Geotechnical Research Center,
Department of Civil and Environmental Engineering,
University of Western Ontario.
http://www.engga.uwo.ca/People/helnaggar/default.htm

Arya, Suresh; O'Neil, Michael, & Pincus, George. "Design of Structures and Foundations for Vibrating Machines." Gulf Publishing Co, June 1979.

Types of Dynamic Machines

Pumps

Types of Dynamic Machines

Fans

Types of Dynamic Machines

Turbine Generators

Types of Foundations

Block vs. Table Top Piles vs. Soil supported

When is dynamic analysis required?

The level of analysis required is primarily dictated by the design requirements and performance parameters provided by the machine manufacturer.

Varying levels of dynamic analysis include:

- 1. Mass Ratio (Fdn wt : equipment wt)
- 2. Frequency Analysis
- 3. Forced Response Analysis

Source: El Naggar, M.H. "Design of Machine Foundations."

Basics of Dynamics – Types of Models

Basics of Dynamics – Rigid Body Modes

RIGID BODIES (Translational):

Basics of Dynamics – Rigid Body Modes

RIGID BODIES (Rotational):

Basics of Dynamics – Mode Shapes

Figure 1-51. Normal modes of vibration.

Figure 1-52. Modes of vibration of a two-degree-offreedom system.

Source: Arya, O'Neill, & Pincus, "Design of Structures and Foundations for Vibrating Machines."

Basics of Dynamics – Mode Shapes

Source: GERB Vibration Control systems

SDOF Equation of Motion:

$$m\ddot{v} + c\dot{v} + kv = P(t)$$

Forcing function

Figure 2.1: Basic Model of Single Degree of Freedom System

For a rotating machine:

Figure 1.2: Harmonic time history

 $\omega = \text{circular frequency of rotation}$

 $P_{V}(t) = P\sin(\omega t)$ $P_{h}(t) = P\cos(\omega t)$

Source: El Naggar, M.H. "Design of Machine Foundations."

For a rotating machine:

$$F_o = m_r e_m \omega_o^2 S_f / 12 \quad \text{lbf} \tag{3-3}$$

$$F_o = m_r e_m \omega_o^2 S_f / 1000 \text{ N}$$

where

- $F_o =$ dynamic force amplitude (zero-to-peak), lbf (N);
- $m_r = \text{rotating mass, lbm (kg)};$
- $e_m = \text{mass eccentricity, in. (mm);}$
- $\omega_o =$ circular operating frequency of the machine (rad/s); and

 S_f = service factor, used to account for increased unbalance during the service life of the machine, generally greater than or equal to 2.

Table 3.1—Balance quality grades for selected groups of representative rigid rotors (excerpted from ANSI/ASA S2.19)

Balance quality guide	Product of <i>e</i> ω, in./s (mm/s)	Rotor types—general examples				
G1600	63 (1600)	Crankshaft/drives of rigidly mounted, large, two-cycle engines				
G630	2.5 (630)	Crankshaft/drives of rigidly mounted, large, four-cycle engines				
G250	10 (250)	Crankshaft/drives of rigidly mounted, fast, four-cylinder diesel engines				
G100	4 (100)	Crankshaft/drives of fast diesel engines with six or more cylinders				
G40	1.6 (40)	Crankshaft/drives of elastically mounted, fast four-cycle engines (gasoline or diesel) with six o more cylinders				
G16	0.6 (16)	Parts of crushing machines; drive shafts (propeller shafts, cardan shafts) with special requirements; crankshaft/drives of engines with six or more cylinders under special requirements				
G6.3	0.25 (6.3)	Parts of process plant machines; centrifuge drums, paper machinery rolls, print rolls; fans; flywheels; pump impellers; machine tool and general machinery parts; medium and large electric armatures (of electric motors having at least 80 mm shaft height) without special requirement				
G2.5 0.1 (2.5)		Gas and steam turbines, including marine main turbines; rigid turbo-generator rotors; turbo- compressors; machine tool drives; medium and large electric armatures with special requirements turbine driven pumps				
G1	0.04 (1)	Grinding machine drives				
G0.4	0.015 (0.4)	Spindles, discs, and armatures of precision grinders				

Source: ACI 351

The following guidelines may be used for the trial dimensions of the foundation block:

1. Generally, the base of the foundation should be above the ground water table. It should be resting on competent native soil (no backfill or vibration-sensitive soil).

2. The mass of the block should be 2-3 times the mass of the supported rotating machine, and 3-5 times the supported reciprocating machine.

3. The top of the block should be 0.3 m above the elevation of the finished floor.

4. The thickness of the block should be the greatest of 0.6 m, the anchorage length of the anchor bolts and 1/5 the least dimension of the footing.

5. The width should be 1-1.5 times the vertical distance from the base to the machine centerline to increase damping in rocking mode.

6. The length is estimated from the mass requirement and estimated thickness and width of the foundation. The length should then be increased by 0.3 m for access maintenance purposes.

7. The length and width of the foundation are adjusted so that the center of gravity of the machine plus equipment lies within 5% of the foundation dimension in each direction, from the foundation center of gravity.

8. It is desirable to increase the embedded depth of the foundation to increase the damping and provide lateral restraint as well.

9. Ensure dimensions fit with all physical constraints.

Source: El Naggar, M.H. "Design of Machine Foundations."

Detailed Dynamic Analysis

Design Checks:

Preliminary

- Mass ratio

Frequency (Modal) Analysis

- Natural frequency outside of a range the of operating frequency

Forced Response (Time History)

- Maximum displacement amplitude
 - Min foundation stiffness in all directions
 - Relative displacements between bearings (multiple rotors)
- Maximum velocity
- Maximum acceleration

Fig. 3.10—General Machinery Vibration Severity Chart (Baxter and Bernhard 1967).

Dynamic Amplification

Amplification Factor & Natural Frequency Avoidance

Fig. 3.14—Force transmissibility.

Dynamic Amplification – Natural Frequency

Natural Frequency Equation

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

 $f_n = natural frequency$ k = stiffness

m = mass

Figure 2.1: Basic Model of Single Degree of Freedom System

Source: Pincus & GERB Vibration Control systems

Other Design Considerations

Interesting fact:

Motion which may be noticed by persons is on the order of 1/100 of that which is likely to cause damage to machines.

Source: Whitman & Richart. "Design Procedures for Dynamically Loaded Foundations"

Machine Manufacturer's Design Criteria

Machine Manufacturer's Design Criteria

For a rotating machine:

$$F_o = m_r e_m \omega_o^2 S_f / 12 \quad \text{lbf}$$

Design Input: Common

 $Q := 0.25 \cdot \frac{m}{2}$

Product of eccentricity and operating frequency. Designated as "Q" in Table 3.1, ACI 351.3R (Based on ANSI/ASA S2.19). Industry standard Q=0.25 per table.

$$\underset{\omega}{\mathbf{e}} \coloneqq \frac{\mathbf{Q}}{\omega} = 2.015 \times 10^{-3} \cdot \mathbf{in}$$

Service factor

Design Input:

$$w_{rotor} := 38.225 \cdot kip$$

 $F_{rotor} := S_{f} \cdot m_{rotor} \cdot e \cdot \omega^{2} = 20.732 \cdot kip$

$$F_{\text{bearing}} := \frac{F_{\text{rotor}}}{2} = 10.366 \, \text{kip}$$

$$m_{rotor} := \frac{w_{rotor}}{g} = 3.822 \times 10^4 \, \text{lb}$$

Total imbalance force @ rotor

Imbalance force per bearing

Source: ACI 351

Machine Manufacturer's Design Criteria

Additional loads for a turbine:

- Bowed rotor
- Loss of blade
- Generator short circuit
- Condenser vacuum
- Valve trips

Machine Performance

Performance Zones A=No Faults, New B=Minor Faults, Good Condition C = Faulty, Correct In 10 Days To Save \$\$ D = Failure Is Near, Correct In 2 Days E = Stop Now

Source: ACI 351 & Richard P. Ray, Ph.D., P.E., University of South Carolina

To accurately account for soil-structure interactions for damping and stiffness effects on the system, a program which accounts for the geotechnical analysis is necessary.

Geotechnical parameters required for analysis include: -G, shear modulus -mass density -Poisson's ratio -damping ratio -depths and thickness of soil layers

Input:

Geotechnical parameters, Physical characteristics, Dynamic load

Response Output: Stiffness and Displacements

		Frequency (rpm)	Horizontal Stiffness X (lb/ft)	Horizontal Damping X (lb/ft/S)	Horizontal Stiffness Y (lb/ft)	Horizontal Damping Y (lb/ft/S)	Vertical Stiffness Z (lb/ft)	Vertical Damping Z (lb/ft/S)	Rocking Stiffness X (lb.ft/Rad)	Rocking Damping X (b.ft/Rad/S)	Rocking Stiffness Y (lb.ft/Rad)	Rocking Damping Y (b.ft/Rad/S)	Torsional Stiffness Z (b.ft/Rad)	Torsional Damping Z (b.ft/Rad/S)
١.	1	0.00	1.77E+08	3.98E+06	1.84E+08	4.13E+06	2.90E+08	6.95E+06	6.56E+10	3.58E+08	2.01E+11	9.81E+08	1.65E+11	7.12E+08
	2	50.00	1.78E+08	3.71E+06	1.84E+08	3.84E+06	2.95E+08	6.06E+06	6.51E+10	2.74E+08	1.98E+11	8.36E+08	1.62E+11	6.16E+08
	3	100.00	1.78E+08	3.41E+06	1.85E+08	3.53E+06	2.97E+08	5.79E+06	6.39E+10	2.63E+08	1.90E+11	9.21E+08	1.58E+11	6.53E+08
	4	150.00	1.82E+08	3.27E+06	1.90E+08	3.38E+06	2.96E+08	5.68E+06	6.25E+10	2.71E+08	1.80E+11	1.04E+09	1.53E+11	7.06E+08
	5	200.00	1.84E+08	3.19E+06	1.93E+08	3.30E+06	2.92E+08	5.65E+06	6.10E+10	2.84E+08	1.71E+11	1.16E+09	1.49E+11	7.56E+08
	6	250.00	1.85E+08	3.15E+06	1.95E+08	3.24E+06	2.88E+08	5.66E+06	5.96E+10	2.97E+08	1.63E+11	1.26E+09	1.45E+11	8.01E+08
	7	300.00	1.85E+08	3.13E+06	1.98E+08	3.20E+06	2.82E+08	5.69E+06	5.84E+10	3.10E+08	1.56E+11	1.35E+09	1.42E+11	8.39E+08
						1	1	1	1					

Center of Gravity Resultant Points

	Frequency(rpm)	Translational Response at CG - X (ft)	Translational Response at CG - Y (ft)	Translational Response at CG - Z (ft)	Rotational Response at CG - X (Rad)	Rotational Response at CG - Y (Rad)	Rotational Response at CG - Z (Rad)
1	0.00	2.11E-16	7.72E-15	3.46E-15	3.30E-16	3.18E-17	4.50E-17
2	50.00	5.96E-09	2.13E-07	9.33E-08	9.19E-09	8.91E-10	1.26E-09
3	100.00	2.57E-08	8.70E-07	3.72E-07	3.82E-08	3.76E-09	5.26E-09
4	150.00	6.39E-08	2.01E-06	8.47E-07	9.08E-08	9.10E-09	1.25E-08
5	200.00	1.30E-07	3.77E-06	1.53E-06	1.73E-07	1.76E-08	2.37E-08
6	250.00	2.35E-07	6.32E-06	2.44E-06	2.94E-07	3.01E-08	3.97E-08
7	300.00	3.98E-07	9.87E-06	3.56E-06	4.64E-07	4.77E-08	6.17E-08

<u>Check against</u> <u>Machine</u> <u>Requirements:</u>

- Vibration Amplitudes

- Vibration Velocities
- Foundation Stiffness

Computer Modeling - Structural

Structural modeling – Steam Turbine-Generator

Summary

- Resources
- Types of Machines & Foundations
- When is Dynamic Analysis Required?
- What is Dynamic Analysis?
 - Basics of Dynamics
 - Preliminary Design
 - Machine Manufacturer Criteria
 - Detailed Analysis & Design
- Construction Considerations
- Questions

Burns & McDonnell

Dynamic Foundations:

Basics of Analysis & Design

Thanks for Attending. Have a Great Day.