

A-A

$$
\begin{aligned}
& W_{i}=\sum M_{p} \cdot \theta \cdot L . \\
& \therefore \frac{w_{i}}{M_{p}}=\sum \theta \cdot C=2 \cdot b_{p} \cdot \theta_{1}+\left(b_{p}-t_{w}\right) \theta_{2}+\left(b_{p}-t_{w}\right) \theta_{3}+\left(b_{p}-g\right) \cdot \theta_{3}+\left(b_{p}-g\right) \cdot \theta_{2} \\
& +2 \cdot P_{f i} \cdot \theta_{4}+2 \cdot s \cdot \theta_{4}+\left(g-t_{i}\right) \cdot \theta_{2}+\left(g-t_{w}\right) \cdot \theta_{3}+2\left(p_{f i}+s\right) \cdot \theta_{4} \\
& =2 \cdot b_{p} \cdot \theta_{1}+b_{p} \cdot \theta_{2}-t_{w} \cdot \theta_{2}+b_{p} \cdot \theta_{3}-t_{w} \cdot \theta_{3}+b_{p} \cdot \theta_{3}-g \cdot \theta_{3}+b_{p} \cdot \theta_{2}-g \cdot \theta_{2} \\
& +2 P_{F i} \cdot \theta_{4}+2 \cdot \cdot \cdot \theta_{4}+g \cdot \theta_{2}-t_{w} \cdot \theta_{2}+g \cdot \theta_{3}-t_{w} \cdot \theta_{3}+2 \cdot P_{f i} \cdot \theta_{4}+2 \cdot s \cdot \theta_{4} \\
& \text { LET } t_{w}=0 \Rightarrow 2 \cdot b_{p} \cdot \frac{\delta_{1}}{p_{f_{0}}}+2 b_{p} \frac{\delta_{2}}{p_{f_{i}}}+2 \cdot b_{p} \cdot \frac{\delta_{3}}{s}+8 \cdot p_{+i} \cdot \delta_{2}+\frac{8_{s} \cdot \delta_{2}}{g-t_{w}}
\end{aligned}
$$

NOW, $L_{0 .} \theta=\delta_{1}$ (APPROXIMATIOM FOR SMACL ANGLES ONLY)

$$
\begin{aligned}
h_{i \cdot \theta} & =\delta_{2} \\
\therefore \frac{\delta_{1}}{h_{0}} & =\frac{\delta_{2}}{h_{i}} \Longrightarrow \delta_{2}=\frac{h_{i}}{h_{0}} \text { wHENE } \delta_{1}=1 \\
\therefore \Sigma \theta \cdot L & =2 b_{p} \cdot \frac{\delta_{1}}{P_{f 0}}+2 h_{p} \cdot \frac{h_{i}}{h_{0} \cdot P_{f i}}+2 b_{p} \cdot \frac{h_{i}}{h_{0} \cdot S}+\frac{8 \cdot P_{f i} \cdot h_{i}}{h_{0}\left(g-t_{f}\right)}+\frac{\delta_{s \cdot} h_{i}}{h_{0}\left(g-\lambda_{0}\right)} \\
& =2 \cdot b_{p}\left[\frac{h_{i}}{h_{0}}\left(\frac{1}{P_{f i}}+\frac{1}{s}\right)+\frac{1}{P_{f 0}}\right]+\frac{g_{i} h_{i}}{g_{0}}\left(P_{f_{i}}+s\right)
\end{aligned}
$$

$$
\begin{aligned}
& W_{e}=M_{P_{L}} \cdot \theta \quad \Longrightarrow \theta=\frac{1}{h_{0}} . \\
& \text { - Mr. } \frac{1}{h_{0}} \\
& \text { - } w_{i} \\
& \therefore M_{P L}=w_{i} \cdot h_{0} \\
& =\sum m_{p} \cdot \theta \cdot C \cdot h_{0} \longrightarrow M_{p}=f y-z=\text { fy } \frac{t_{p}{ }^{2}}{4} \text { pex unit wion } \\
& =f_{g} \cdot t_{p}^{2} \cdot \frac{2 \cdot b_{p}}{42}\left[h_{i}\left(\frac{1}{p_{f i}}+\frac{1}{s}\right)+h_{0}\left(\frac{1}{p_{f 0}}\right)\right]+\frac{28 h_{i}}{\mathrm{Ag}}\left(p_{f i}+s\right) \\
& =f_{j} \cdot t_{p}^{2} y \text { wHAEE } y=\frac{b_{p}}{2}\left[h_{i}\left(\frac{1}{p_{f i}}+\frac{1}{s}\right)+h_{0}\left(\frac{1}{p_{f_{t}}}\right)\right]+\frac{2 L_{i}}{g}\left(p_{f i+s}\right)
\end{aligned}
$$

