Chapter 2

Application of Fluid
Flow Equations to
Gas Systems

2.1 Introduction

The aim of this chapter is to develop and present the fundamental equations
for flow of gases through porous media, along with solutions of interest for
various boundary conditions and reservoir geometries. These solutions are
required in the design and interpretation of flow and pressure tests.

To simplify the solutions and application of the solutions, dimensionless
terms are used. Assumptions and approximations necessary for defining the
system and solving the differential equations are clearly stated. The princi-
ple of superposition is applied to solve problems involving interference be-
tween wells, variables flow rates, and wells located in noncircular reservoirs.
The use of analytical and numerical solutions of the flow equations is also
discussed. Formation damage or stimulation, turbulence, and wellbore storage
or unloading are given due consideration. This chapter applies in general to
laminar, single, and multiphase flow, but deviations due to inertial and tur-
bulent effects are considered. For well testing purposes two-phase flow in
the reservoir is treated analytically by the use of an equivalent single-phase
mobility.

The equations of continuity, Darcy’s law, and the gas equation of state
are presented and combined to develop a differential equation for flow of
gases through porous media. This equation, in generalized coordinate nota-
tion, can be expressed in rectangular, cylindrical, or spherical coordinates and
is solved by suitable techniques. The next subsections describe steady-state,
pseudo-steady-state, and unsteady-state flow equations including the gas radial
diffusivity equation, basic gas flow equations, solutions, and one-, two-, and
three-dimensional coordinate systems.
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2.2 Steady-State Laminar Flow

Darcy’s law for flow in a porous medium is
vV=-—-— o g=VA=—— (2-1)

where

v = gas viscosity; ¢ = volumetric flow rate; k& = effective permeability;
{Lg = gas viscosity; and % = pressure gradient in the direction of flow

For radial flow, Eq. 2-1 becomes

_k(2n'rh)dp
T e dx

(2-2)

where r is radial distance and A is reservoir thickness,

Equation 2-2 is a differential equation and must be integrated for applica-
tion. Before integration the flow equation must be combined with an equation
of state and the continuity equation. The continuity equation is

0141 = p2q> = constant (2-3)
The equation of state for a real gas is

pM
0=

T ZRT (-4

The flow rate of a gas is usually desired at some standard conditions of
pressure and temperature, p;. and T.. Using these conditions in Eq. 2-3 and
combining Egs. 2-3 and 24, we get

Pq = PscYsc»

or

pM _ pscM
ZRT ~ P .RT,.

q

Solving for g, and expressing g, with Eq. 2-2 gives

pTs. 2nrhk dp

qsc = PreZ T dr
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The variables in this equation are p and r. Separating the variables and
integrating:

d _qscpscTﬁgZ Cfd_i
PeP =" onkh | ¥

Pw Tw

1—72 - pf, _ qscpscTﬂzln re
2 T,.2mkh Py

\'UI

nkhT;(p* — p2)
PscT gz In( )

or gy = (2-5)

In this derivative it was assumed that w, and z were independent of pressure.
They may be evaluated at reservoir temperature and average pressure in the
drainage area such as

P=Pe’_Pw
2

In gasfield units, Eq. 2-5 becomes

_0.007027kh(P> ~ P;)
ee = peZT log (r’—;)

0.000305kh( P2 — P2)
e T T ()

(2-6)

2-7)

Where g, = mscf/d; k = permeability in mD; 4 = formation thickness in
feet; p, = reservoir pressure, psi, p,, = well bore pressure, psia, T = reservoir
temperature, °R; r, = drainage radius, ft; r,, = well bore radius, ft; 7 = average
compressibility factor, dimensionless; and fi, = gas viscosity, cP.

This equation incorporates the following values for standard pressure and
temperature:

Pse = 14.7 psia,

T;c = 60°F = 520°R
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The gas flow rate is directly proportional to the pseudopressures. The pseudo-
pressure is defined as

14
V(p) =2 / L ap (2-8)
Pref

In Eq. 2-8, p.s is a reference pressure. At the reference pressure, pseudo-
pressure is assigned a datum value of zero. The Eqs. 2-6 and 2-7 in terms of
pseudopressure become

_ 0.0007027kh[¥ () — ¥ (pw)]

qsc = T ln ( rr_:; ) (2_9)
_ 0.000305kh[Y(P) = ¥ (pw)] _
Gsc = T Iog(:_;) (2 10)

p? and ¥ (p) have identical values up to 2500 psia. Above 2500 psia, p? and
¥ (p) exhibit different values. Thus, below 2500 psia, either p? or ¥ (p) can
be used. Above 2500 psia, ¥ (p) should be used. Gas pseudopressure, ¥ {p),
which is defined by Eq. 2-8, is considered, i.e.,

14 Pw
_ d dp
w(m—w(pw):z/f—”—z pdp
MHgZ MHegZ

Pref Pref

It is more difficult and generally engineers feel more comfortable dealing
with pressure squared, p?, rather than an integral transformation. Therefore,
it is worthwhile, at this stage, to examine the ease with which these functions
can be generated and used. We evaluate the integral in Eq. 2-8 numerically,
using values for u, and z for the specific gas under consideration, evaluated
at reservoir temperature. An example will illustrate this calculation.

Example 2-1  Calculating Gas Pseudopressure

Calculate the gas pseudopressure ¥ (p) for a reservoir containing 0.732
gravity gas at 250°F as a function of pressure in the range 400 to 4000 psia.
Gas properties as functions of pressure are given in Table 2—1.

Selution For p = 400 psia:

p
¥ (400) = 2 / P ap
HgZ

Pref
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Table 2-1
Generation of Gas Pseudopressure as a Function of the Actual Pressure
Pressure, p He z P/ugz P(P)
(psia) (cP) - (psia/cP) (mm psiazlcP)
400 0.014337 0.9733 28.665 11.47
800 0.014932 0.9503 56,378 4548
1200 0.015723 0.9319 81,899 100.83
1600 0.016681 0.9189 104,383 175.33
2000 0.017784 0.9120 123,312 266.41
2400 0.019008 09113 138,552 371.18
2800 0.020329 0.9169 150,217 486.72
3200 0.021721 0.9282 158,719 610.28
3600 0.023151 0.9445 164,638 739.56
4000 0.024580 0.9647 168,689 872.92
£ r
=2 [(“gz)o + (“31)400]
2
0 + 28, 665
= 2(————5—-—)(4OO —-0)

= 11.466 x 10° psia®/cp
For p = 800 psia:

28,665 + 56,378
2

V(800) = 11.466 x 10° + 2( )(800 — 400)

= 11.466 x 10° + 34.017 x 10°
= 45.483 x 10° psiaZ/cp

Proceeding in a similar way, we can construct Table 2-1. These results are
plotted in Figure 2—1. This plot is used in the gas well test analysis, in which it
is assumed that for high pressure, in excess of 2800 psia, the function is almost
linear and can be described by

¥ (p) = [0.3218p — 416.85] mm psia’/cp

For low pressure, less than 2800 psia, the function is described by a poly-
nomial equation of the form

¥(p) = A+ Bp + Cp* + Dp® + Ep* + Fp?
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Figure 2-1. Gas pseudopressure ¥ (P) versus pressure, psia.

where A, B, C, D, E, and F are polynomial coefficients whose values are

A =39,453; B = —222.976; C = 72.0827
D = 5.287041E-04; E = —1.993697E-06; and F = 1.92384E-10

These relationships and the plot can be used to convert from real to pseu-
dopressure and vice versa.

Example 2-2  Determining Wellbore Pressure Assuming Steady-State Flow
Conditions

Perform this calculation given the following data:

k = 1.50 mD, » = 39 ft, g, = 3900 mscfd, p. = 4625 psia, T =
712° R, r, = 550 ft, r,, = 0.333, i = 0.02695¢cp, y, = 0.759, T,. = 520°R,
P,. = 14.7 psia.

Solution The solution is iterative since 7 = f (p), where p = (p. + pw)/2,
and p,, is the unknown. As a first estimate, assume Z = 1.0.
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First trial using Eq. 2-6:

2 = 2 :aTln(re/rw)qscz
Pw = Pe = 730007027k

(.02695)(712)(550/.333)(3900) x z
.0007027(1.5(30)

= 4625% —

=2.139 x 107 — 1.756 x 107(1.0)

= 3.83 x 10°
or p,, = 1957 psia.

Second trial:

4625 + 1957

> = 3291 psia, 7 at 3291 psia = 0.88

p=
P2 =2.139 x 107 — 1.756 x 107(0.88)

=5.937 x 10°
or p,, = 2436 psia.

Third trial:

4625 + 2436

5 = 3530 psia, Z at 3530 psia = 0.890

i) =
=2.139 x 107 — 1.756 x 107(0.89)

= 5.762 x 10°
or p,, = 2400 psia.

4625 + 2400

> = 3512 psia and z at 3512 psia = 0.890

p=

Since the value for 7 is the same as for second trial, the solution has con-
verged and the required wellbore pressure is 2400 psia. The solution would
have been more complicated if a constant value for ¢ had not been assumed.
The above treatment of steady-state flow assumes no turbulence flow in the
formation and no formation or skin damage around the wellbore.
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2.3 Steady-State Turbulence Flow

The above treatment of steady-state flow assumes no turbulent flow in the
formation and no skin damage around the wellbore. The pressure squared
and pseudopressure representations of the steady-state equations including
turbulence are

2 5 503 x 10%u,zTPygs

[m s+ qu] -11)
rW

P, — Dy = khTsc
1.422 x 10°Tg,. r
Yv(p) —¥(pw) = —kh—q[l r—e — 0545+ qu] 2-12)

where Dgq;. is interpreted as the rate-dependent skin factor, and

_ 5.18 x 107%y,

2-1
jihr,, k02 (2-13)

Expression D is the non-Darcy flow coefficient in psia?/cP/(mscf/d)? and is
calculated from Eq. 2-13

where
2.33 x 10°
= i@ 1/ft (2-14a)
or
2.73 x 1010
B= s Uit (2-14b)

where k is the permeability near the wellbore region in mD. Values of the
velocity coefficient B for various permeability and porosity can be obtained
from Ref. 1 or calculated from Eq. 2—14a or 2-14b. The foregoing equations
2-11 and 2-12 have the forms

p?—p2 = AA'q,. + BB'q2 (2-11a)
where
A’ =503 x 10° “z; P o) — 075 + 51 (2-11b)
TP,
B’ =503 x 10° ﬁi;T—D @2-11¢)

¥(P) — ¥ (pw) = AAg, + Bbg’ (2-12a)
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where

_ 1422 x 103

AA
kh

[In(r./ry) — .75 + 5] (2-12b)

1.422 x 10°T
B=———+———D

o (2-12¢)
Example 2-3  Calculating Influence of Turbulence in a Vertical Well Using
Steady-State Flow Equation

A vertical gas well is drilled in a 45-ft-thick sandstone reservoir with perme-
ability of 12 mD. The initial reservoir pressure is 2150 psia and well spacing is
640 acres. The well could be operated with a minimum bottomhole pressure of
350 psia. The other data are T = 590°R, ug = 0.02 cP, z = 0.90, y, = 0.70,
ry = 0.29 ft, s’ = 0, perforated length &, = 45 ft.

Use the p? equation to calculate the flow rate.

Solution  To solve this problem, the Eq. 2—11a has the form

p— p: = AA'q. + BB'q?

where
TP Y,
A =503 x 105 #E (e ) 075
A 50.3 x 10 VAT, nrw + 5
BB =503 x 10644 P py
khT,

Substituting these parameters in the above equations, we have

(02)(9)(130)(590)(14.7) [m(2978) 075+ 0]

AA’ =503 x 10°
50.3 > 10 12(45)(520) 29

= 237.34

The value of BB’ can be calculated using the preceding equation:

of (0.02)(0.9)(590)(14.7)
12(45)(520)
= 0.027965 x 10°D

BB =503 x1

where

D 2.222 x 107 By,khp
ugrwh%,
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and

B =273 x 1010 711045 15
=2.73 x 10'9(12) 7119 = 1.7547 x 10°1/ft

2222 x 10715(0.7)(12)(45)
T (0.02)(0.29)(45)(45)

(1.7547 x 10%)

= 1.255 x 107, 1/mscfd
Substituting value of D into Eq. 2-11a, BB’ is calculated as
BB’ =0.027965 x 10°(1.255 x 10~*) = 0.351 1/mscfd’
Substituting values of AA’ and BB’ into Eq. 2-11a:
p2 — p? =1237.34g, +0.351¢2
This quadratic equation is rearranged as
0.351¢% +237.34¢,. — (p2 — p2) =0

By solving the above quadratic equation the value of g, is calculated as

_ —237.34 4 /(337307 £ 40350 (p2 — p2)
Gse = 2(0.351)

_ —237.34+ /56,330.271 + 1.404(p? — p2)
- 0.7020
Calculated values of g, both with and without turbulence for various values

of p,, are summarized in Table 2-2. This table indicates a significant effect
of turbulence on well productivity.

Table 2-2
Effect of Turbulence on Vertical Well Productivity
No turbulence, With turbulence
P, (psia)  p2 — p2 (psia?) D = 0 g (mmscfd) g (mmscfd)
1800 138 x 10* 5.816 1.673
1400 266 x 10* 11.208 2.435
1000 362 x 10* 15.252 2.891

500 437 x 10* 18.412 3.207
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2.4 Pseudo-Steady-State (Finite) Flow

The equations for pseudo-steady-state flow in terms of pressure squared and
pseudopressure are:
In terms of pressure-squared treatment:

_0.0007027kh (p% — pE)
b= TTh,7 n(0.472r, /1)

(2-15)
The effects of skin damage and turbulence are included in Eq. 2-15 as
follows:

_0.0007027kh(p% — p3)
T Tia,Z[n(0.472r, /1) + 5 + Dqyc]

Gsc (2_1 6)

It is frequently necessary to solve Eq. 2-16 for pressure or pressure drop
for a known flow rate, g,..

s, 1422 % 10°T i, 24s
Pr™Pw= kh

(In(0.472r./ry) + s + Dg,]  (2-17)

Equation 2—17 may be written as follows:

Px — Pr = Aq. + Bq., (2-17a)
where
1422 x 1033,7T 472
A= X MO AglT ) (O472re +s
kh rw
and

p o 1422 103ﬁngD
kh

It is sometimes convenient to establish a relationship between the two pa-
rameters that indicate the degree of turbulence occurring in a gas reservoir.
These parameters are the velocity coefficient 8 and the turbulence coefficient
D. Equation 2—17a can be written for pseudo-steady-state flow as

0.472
P — P = 1422 % 103/23”(‘“ - +s)qu

T'w

| 3161 % 10-12y,7T8
e T

(2-17b)
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This form of the equation includes the assumption that r, >> r,,. Equating the
terms and multiplying g2 in Egs. 2-17a and 2-17b yields

1.422 x 103,1232TD _ 3161 x 10y, 2T
kh rh?
or
D— 222 x 107 By k
ﬂghrw

Expressing 8 in terms of permeability from Eq. 2—-14b, the preceding expres-
sion becomes

-5
= S.L—i Zriio‘zyg (2-17¢)
In terms of pseudopressure treatment:
¥ (pr) — ¥(pw) = A'qs + B'ql. (2-17d)
where
A= 1.422k>;l 10°T [ln(OAZere) N s]
and
B - 1.422 x 103TD

kh

It is sometimes convenient to establish a relationship between the two pa-
rameters that indicate the degree of turbulence occurring in a gas reservoir.
These parameters are the velocity coefficient § and the turbulence coefficient
D. Equation 2—-17d can be written for pseudo-steady-state flow as

0.472
Y (Br) — ¥ (pw) = 1422 x 103T(1n 0.472r +s)qw
Ty
3.161 x 10712y, T8 ,
2 s
ryh

2-17e)

This form of the equation includes the assumption that r, >> r,,. Equating the
terms and multiplying g2 in Egs. 2-17d and 2-17e yields

1.422 x 1031, ZT D— 3.161 x 1072y, zT
kh roh?

B
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or

D= 2.22 x 10_15ygkﬂ
hry,

Expressing B in terms of permeability from Eq. 2—-14b, the preceding ex-
pression becomes

518 x 1079y,

2-17f
hr, k02 ( )

2.5 Unsteady-State (Transient) Flow

A well flows in the unsteady-state or transient regime until the pressure
disturbance reaches a reservoir boundary or until interference from other
wells takes effect. Although the flow capacity of a well is desired for pseudo-
steady-state or stabilized conditions, much useful information can be obtained
from transient tests. This information includes permeability, skin factor, turbu-
lence coefficient, and average reservoir pressure. The procedures are developed
on transient testing and the relationship among flow rate, pressure, and time
will be presented in this section for various conditions of well performance
and reservoir types.

2.6 Gas Radial Diffusivity Equation

By combining an unsteady-state continuity equation with Darcy’s law and
the gas equation of state, one can derive the diffusivity equation. The equation is

d (kypdp
Ix\ pu ox

3
) = - (p) (2-18)

Equation 2~-18 can be written in three-dimensional form:

3 (k.po a (kypod a [k d ]
9 (LpoP +_<_y£_1’ +2 (222 L)Y = o) (2-19)

dx\ u ox ay\ u 09y 0z \ 1 \ 0z ot
Equation 2-19 represents a general form for the combination of the continu-
ity equation and Darcy’s law. The final differential equation, which will result

from this equation, depends on the fluid and the equation of state of interest.
For the radial flow case we obtain in a similar manner

1 8 (rpk, op ]
- =)= 2-20
r or ( 7 8r) at 2 ( )
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In the case of flow of a nonideal gas, the gas deviation factor z, is introduced
into the equation of state to give

(2-21)

If we assume laminar flow, neglect gravity, and assume constant rock prop-
erties, then Eq. 2-19 becomes, for isothermal conditions,

a d d d 0 a 0

_(L_P) 4+ _<L_£> + _<L_P> _ L(z) (2-22)

0x \ uzg 0x dy \ uzg dy 9z \ nzg 0z kot \zg
For radial flow Eq. 2-22 can be expressed as

13(p Op\_¢0(p
—— — — - — ] —
ror\uzg Or k ot

(2-23)
2g
Equation 2--23 in gasfield units is
19 (p dp ¢ d(p
——|—r—)=—— = 2-24
r8r<uzr3r) 0.0002648t(z @29

and water; the equation is

19 rap _ dc; ap
rar\ dz/) 0.000264), ot

Equation 2-24 can be modified to account for simultaneous flow of gas, oil,

(2-25)
where
z = gas deviation factor
¢; = total system isothermal compressibility, psi~!
A, = total mobility
Cr = CgSg + CoSo + CowSwCy (2-26)
k ko  ky
=ty o g (2-27)
Hg Ho  Hw

2.7 Basic Gas Flow Equations

Gas flow is characterized by Darcy’s law and for a gas described by the
equation of state:

(2-28)
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Equation 2-19 becomes, for constant ¢ and k and negligible gravitational
forces,

<Gam)  aGan) (5%
Ox \ uzg 9x dy \ uzg dy Z \ zg 02

_ ¢ o(p
~ 0.000264k (zg) 2-29)

Equation 2-29 has a form similar to the following equation:

02 92 9? a
?p ¥p ¥p_  ¢uc (2-30)
dx2  3y?  3z2  0.000264k 93t
For radial flow, the corresponding equation is
1_8_ r?ﬁ =ﬂc__?£ (2-31)
ror\ or 0.000264k ot
We define a pseudopressure,! ¥ (p), as follows:
p
Y(p) =2 f L ap 2-32)
HZg
o

where py is a low base pressure, now:

a(p\_U2op _cpip
dr\ zg dp 3  zg Ot

because

ldp z d(%)

Cg

“pdp  p dp
and also
dy oy dpap
at  dp 9t ox

Similar expressions apply for % and % Thus, Eq. 2-29 becomes

B (N D (3N B (W) __ duc Y _
ax(ax>+8y<8y>+82(8z)_0.000264k at (2-33)
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For radial flow, the equivalent of Eq. 2-33 is

13 ([ 3y puc, Y
R (A N e BN 4 2-34
rar (r 3r> 0.000264k 3t (2-34)

2.8 One-Dimensional Coordinate Systems

Equation 2-29 may be expressed in terms of rectangular, cylindrical, or
spherical coordinates:

¢uc dp
Vip=—— 2-35
k ot ( )
where V2 p is the Laplacian of p. The expression “one-dimensional” refers to
a specified coordinate system. For example, one-dimensional flow in the x-

direction in rectangular coordinates may be expressed in cylindrical
coordinates.

Linear Flow

Flow lines are parallel, and the cross-sectional area of flow is constant and
is represented by Eq. 2-36, which is in the rectangular coordinate system and
is the one-dimensional form of Eq. 2-35:

*p _ pucdp
ax2 kot

Fractures often exist naturally in the reservoir, and the flow toward the
fracture is linear.

(2-36)

Radial Cylindrical Flow

In petroleum engineering the reservoir is often considered to be circular and
of constant thickness /4, with a well opened over the entire thickness. The flow
takes place in the radial direction only. The flow lines converge toward a central
point in each point, and the cross-sectional area of flow decreases as the center
is approached. Thus flow is directed toward a central line referred to as a line-
sink (or line-source in the case of an injection well). In the petroleum literature
it is often simply called radial flow in the cylindrical coordinate system and is
given by one-dimensional form of Eq. 2-35:

29[ ap duc op
)= 2-37
r or (r 8r) k ot ( )
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Radial Spherical Flow

If the well is not opened to the entire production formation because of a
thick reservoir (h is very large), then to measure vertical permeability, the
one-dimensional form of Eq. 2-35, in the spherical coordinate system, is of
interest. It is known as the radial-spherical flow equation and is given by

d ad( dp duc op
99 (.9 _ ducop 2-38
r28r<r8r) k o1 (2-38)

2.9 Radial Gas Flow Equations in Dimensionless

Variables and Groups

Equation 2-35 and the relevant boundary conditions in dimensionless terms
are:

a
VX(App) = E(APD) (2-39)

where the subscript D means dimensionless, and the dimensionless terms are
defined in the next section for various modes of flow.

Pressure Treatment

The pressure case will be considered along with the boundary and initial
conditions. Assuming a well is producing at a constant rate g, from an infinite
reservoir, the equation governing flow is

éi( G_P) _ $ucidp

rar\"or k ot (2-40)

with the following boundary and initial conditions:

Inner Boundary Condition:

Assuming at the wellbore, the flow rate is constant and from Darcy’s law,

4 _kwl a0 (2-41)
2rrh well ©w or well
That is,
op qu
dp|  _ am 242
"or|,,  2mkh (2-42)
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and in terms of standard conditions,

ap gsct Pic T2
-+ = A% Tset ” 2-43
"or|,., 2nkh pT. @43
Outer Boundary Condition:

At all times, the pressure at the outer boundary (radius = infinity) is the
same as the initial pressure, p;, that is,

p—>pi asr —> o0

for all ¢.

Initial Condition
Initially, the pressure throughout the reservoir is constant, that is,
p=p att=0

forall z.
At this stage, the variables which affect the solution of Eq. 2-40 are p, py,
r’ rW’ qsc" I'Lg, k, h, ¢, C, and t. Let

Ap=pi—p
rp = L(dimensionless)
Fw
pPi—p
App = ——
b Di

Then Eq. 2-43 becomes

_ _qsc,u’g PscTz

T 2-44
pi2mkhp (244

0 (App)
r —
DarD Pp

rD=1
Let the dimensionless flow rate be

_ GschPecTZ
0 = b 2nkhpT,

Equation 2—44 becomes

= -1 (2-45)

. _?_[(AP/D)]

orpL 4p

rp=1
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Let the dimensionless pressure drop be
_(App) _pi=p

qp Piqp
Then Eq. 2-45 becomes

App

=-1

rp=1

J
rp—(App)
BrD

Equation 2-37 becomes

1 9 d oucr:
——|rp—(A = ¥ (A 2-46
59 [rp 8rD( PD)] T 8t( Pp) (2-46)

Let dimensionless time be
kt

In =
D= Suer?

Equation 2-37, the radial cylindrical flow equation, may now be expressed
in dimensionless terms by

1 9

0 d
- —(A = —(A 2-47
. l:rz) BrD( PD)] atp( pD) ( )

with the boundary and initial conditions as follows:

=—1 fortp >0

L. rpz(App)
rp=1
2. App > 0 afv)rD — oo forallip

3. ApD=O attp =0 forallrp

The solution of Eq. 2-47, which is the dimensionless form of Eq. 2—40, now
involves only App, tp, and rp. The dimensionless terms in terms of pressure
treatment case are defined in gasfield units as follows:

00002637kt

tp = 248
D SR ( )
App=B"P (2-49)
Piqp
and
7.085 x 10°q,i,TZ
b = sckts (2-50)

Pkhp;
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where k = formation permeability, mD; ¢ =time, hours; ¢ = porosity, fraction;
flg = average gas viscosity, cP; T = reservoir temperature, °R; z = gas
compressibility factor at average pressure; APp = dimensionless average
reservoir pressure, psia; p; = initial reservoir pressure, psia; & = reservoir
thickness, ft; g, = gas flow rate, mmscfd; 7. = base temperature, °R; P,, =

base pressure, psia; and ¢ = gas compressibility, psi~!.

Pressure Squared Treatment

Dimensionless variables in terms of pressure squared treatment are defined
in gasfield units as follows:

0.0002637k¢
tp=——" (2-51)
Pirgcr,
2_ .2
pPp= 5’—2—’7— (2-52)
P;4qp
and
1.417 x 10° ZT g,
ap = sckls (2-53)

khp}

Pseudopressure Treatment

Dimensionless variables in terms of pseudopressure treatment are defined
in gasfield units as follows:

0.000263 7kt
Ip=—"—"7— (2-54)
opger,
App = Vi —Ywr (2-55)
Yiqp
and
1.417 x 10T gy,
qp = RacLEalA L L (2-56)

khip;

Example 2-4  Calculating Dimensionless Quantities Using p, p?, and ¥ (p)
Treatment

A gas reservoir was produced at a constant rate g of 6.5 mmscfd for a time,
t, of 36 hours. The sandface pressure, p,, at that time was 1750 psia. General
data are as follows:
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p = 1925 psia, p; = 2100 psia, z; = 0.842, z; = 0.849, 71750 = 0.855,
ci = 0.000525 psi~!, c1750 = 0.000571 psi~!, ¢ = 0.000548 psi~!, k =
18.85 mD, T = 595°R, r,, = 0.39 ft, u; = 0.01495 cp, i = 0.01430 cp,
1,750 = 0.01365 cp, h = 40 ft, and ¢ = 0.138 fraction.

Calculate the dimensionless quantities ¢p, Pp, and gp using the p, pz, and
Y treatments.

Solution Pressure treatment, p, from Eq. 2—48:

0.0002637k¢
Ip=—"r>5—
$pcr?
0.0002637(18.85)(36)

= = 1,087,925
(0.138)(0.01430)(0.000548)(0.39)?

~Ip

From Eq. 2-50:

7085 x 103, iT%
= Pkhp;

_7.085 x 10°(6.5)(0.0143)(595)(0.849)

“4p = (1925)(18.85)(40)(2100) =0.010914

From Eq. 2-49:

pi—0p 2100 — 1750 350

= = =15.27
Piqp 2100(0.010914)  22.92

Pressure-squared treatment, p?, from Eq. 2-51:
0.0002637kt
tp=——"—
pier?
_ 0.0002637(18.85)(36)
"~ (0.138)(0.01430)(0.000548)(0.39)2

~1tp = 1,087,925

From Eq. 2-53:

_ 1417 x 10°2T g, /i

1417 x 105(0.849)(595)(6.5)(0.0143)
- (18.85)(40)(2100)2

= 0.020010
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From Eq. 2-52:
2_ 2
APD = pl 2 P
Piqp
2100% — 1.750%
= 0 750 =15.27
21002(0.020010)
Pseudopressure treatment, r, from Eq. 2-54:
0.0002637kt
Ip=—————>—
pacrl
0.0002637(18.85)(36)
it = = 1,087,925
P (0.138)(0.01430)(0.000548)(0.39)?
From Eq. 2-56:
1.417 x 10°T g,
9p = ———

kh;
pr = 2100 psia < y; = 335 mmpsia®/cp

1417 x 10%(595)(6.5)
" (18.85)(40)(335 x 10)

From Eq. 2-55:

App = Yi — Yy

Yiqp

= 0.021696

~4qp

p = 1,750 psia < ¥ (p) = 223 mmpsia®/cp

(335 —223)10°
" 335 x 10°(0.021696)

» App =15.41

Calculating Gas-Pseudopressure 1(p) Function

Accuracy of gas well test analysis can be improved in some cases if the pseu-
dopressure 1 (p) is used instead of approximations written in terms of pressure
or pressure squared. In this section, we discuss the calculations of pseudo-
pressure. Detailed discussion, including systematic development of working
equations and application to drawdown, buildup, and deliverability tests, is
provided in Ref. 2. The applications of real gas pseudopressure ¥ (p) to flow

in gas wells under practical conditions are as follows:
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1. When turbulence is not present, the drawdown test provides accurate
results. When turbulence is significant, the drawdown test can be mis-
leading.

2. The buildup test can be interpreted accurately even with extreme
turbulence.

3. The use of a p? well-test plot is usually equivalent to the A(p) method,
when well pressures are below 2000 psi.

4. Flow capacity can be determined accurately from (p)? or p well-test
plots if point values, rather than average values, are used for slopes and
gas properties.

Calculation of Pseudopressure

Gas pseudopressure, ¥ (p), is defined by the integral
P
14
v=2 [ Lap 2-57)
uz
PBASE<0
An example will illustrate this calculation.
Example 2-5  Calculating Gas Pseudopressure

Given data are gas gravity = 0.7, T = 200°F. Gas properties as functions
of pressure are given in Table 2-3.

Solution Use the trapezoidal rule for numerical integration.
For p = 150 psia,

£ L) (&
¥ (150) = 2 / 2 gp =2t Ghal 155,
Uz 2
Pbase
0+ 12,290 .
= 2-[-L——](150) = 1.844 x 10° psia®/cp

2

Table 2-3
Gas Properties as Functions of Pressure

Pressure P Gas viscosity Compressibility p/uz

(psia) (cP) factor z (psia/cP)
150 0.01238 0.9856 12,290
300 0.01254 0.9717 24,620

450 0.01274 0.9582 36,860
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For p = 300 psia,

(G150 + (i) 300]

¥(300) = 1.844 x 10° 42 >

(300 — 150)

12,290 + 24,620
= 1.844 x 106+2( er )(300— 150)

= 7.381 x 10° psia®/cp

2.10 Analytical Solutions of Gas Flow Equations

Radial flow geometry is of greatest interest in gas well testing. This radial
flow equation was developed in terms of dimensionless variables in previous
sections. It is Eq. 2—47 and is repeated below.

1 0 d d
— | rp—(A =—(A 2-58
b 97D [rD D ( PD)] BtD( Pp) ( )

Equation 2-58 can be solved for pressure as a function of flow rate and
time. Solutions to Eq. 2-47 depend on the reservoir type, the boundary and
initial conditions. Direct analytical solutions will be presented in this section.

Constant Production Rate, Radial Cylindrical Flow,
Infinite-Acting Reservoir (Transient)

The Eq. 2-58 is reduced to an ordinary differential equation by applying the
Boltzmann transformation X = r2/(4¢p). This is then solved by separating
the variables and integrating with the above three conditions. The equation
form of the solution is

2
App = —0.5E; (—r—D> (2-59)
4tp
or
App = —0.5E, (——2Her” (2-60)
Pp =528\ T0.0002637k1
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Values of App versus ¢p can be found in Ref. 5 for various reservoir sizes,
that is, for various values of rp. E; is the exponential integral and is defined by

e “du x x? x3
Ei(—x) = =In(1.781) — — _—
(=) f » n(L78) = 1+ 331 T 33l
x4 (__x)n
2-61
+4x4! n x n! ( )

For values of x less than 0.02, Eq. 2-62 can approximate the exponential
integral with an error of Iess than 0.6:

Ei(—x) =In(1.781x) forx < 0.02 (2-62)

For computing pressures at the borehole such as drawdown pressures or
buildup pressures Eq. 2-61 may be used. However, if practical units are used
and logarithms to the base 10 are used, constants for Eq. 2-62 must be evalu-
ated. Darcy units apply to Eq. 2-62. Table 24 lists Darcy units and practical
units.

For x > 10.9 the exponential integral is closely approximated by zero. To
evaluate the E; function, we can use Table 2-5 for 0.02 < x 10.9.

Thus Eq. 2-59 becomes

4t 4t
pp =05 1n< 2 2) for — > 100 (2-592)
1.781r rp
t t
pp = o.s[m(—Z’) + 0.80907] for - > 25 (2-63)
"p "p
Table 2-4

Darcy and Practical Units for Parameters in the
Exponential Solution of the Diffusivity Equation

Parameter or
variables Darcy units Practical units
C vol/vol/atm vol/vol/psi
¢ Porosity Porosity
h cm ft
K Darcy Millidarcies
n Centipoise Centipoise
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Table 2-5

Values of the Exponential Integral, — E;(—x) (after Lee, ©) SPE, Well

Testing, 1982)°

X

—E;(—x),0.000 < 0.209, interval — 0.001

0 1 2 3 4 5 6 7 8 9

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20

co 6332 5639 5235 4948 4.726 4.545 4392 4259 4.142
4.038 3.944 3858 3.779 3.705 3.637 3.574 3.514 3.458 3.405
3.355 3307 3261 3.218 3.176 3.137 3.098 3.062 3.026 2.992
2959 2927 2.897 2867 2.838 2810 2.783 2756 2731 2706
2.681 2.658 2.634 2612 2590 2568 2.547 2527 2.507 2487
2468 2449 2431 2413 2395 2378 2360 2344 2327 2311
2295 2280 2265 2249 2235 2220 2.206 2192 2.178 2164
2251 2138 2125 2112 2.099 2087 2.074 2062 2.050 2.039
2.027 2016 2.004 1993 1982 1971 1960 1950 1.939 1.929
1.919 1909 1.899 1.889 1.879 1.870 1.860 1.851 1.841 1.832
1.823 1.814 1805 1.796 1.788 1.770 1.770 1.762 1.754 1.745
1.737 1729 1.721 1.713 1.705 1.697 1.690 1.682 1.675 1.667
1.660 1.652 1.645 1.638 1.631 1.623 1.616 1.609 1.603 1.696
1.589 1.582 1.576 1.569 1.562 1.556 1.549 1543 1.537 1.530
1.524 1518 1512 1.506 1.500 1.494 1.488 1482 1476 1470
1465 1459 1453 1448 1442 1436 1.431 1425 1420 1415
1409 1404 1399 1.393 1388 1.383 1378 1373 1.368 1.363
1.358 1353 1.348 1.343 1338 1.333 1.329 1324 1319 1315
1.310 1305 1301 1.296 1292 1.287 1.283 1.278 1274 1.269
1265 1261 1256 1252 1248 1244 1.239 1235 1231 1227
1.223 1219 1.215 1211 1207 1203 1.199 1.195 1.191 1.187

—E;(—x),0.00 < x < 2.09, interval = 0.01

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
14

co  4.0380 3.3548 2.9592 2.6813 2.4680 2.2954 2.1509 2.0270 1.9188
1.8230 1.7372 1.6596 1.5890 1.5242 1.4645 1.4092 1.3578 1.3099 1.2649
1.2227 1.1830 1.1454 1.1099 1.0763 1.0443 1.0139 0.9850 0.9574 0.9310
0.9057 0.8816 0.8584 0.8362 0.8148 0.7943 0.7745 0.7555 0.7372 0.7195
0.7024 0.6860 0.6701 0.6547 0.6398 0.6354 0.6114 0.5979 0.5848 0.5721
0.5598 0.5479 0.5363 0.5350 0.5141 0.5034 0.4931 0.4830 0.4732 0.5721
0.4544 0.4454 0.4366 0.4281 0.4197 0.4116 0.4036 0.3959 0.3884 0.3810
0.3738 0.3668 0.3600 0.3533 0.3468 0.3404 0.3342 0.3281 0.3221 0.3163
0.3107 0.3051 0.2997 0.2944 0.2892 0.2841 0.2791 0.2742 0.2695 0.2648
0.2602 0.2558 0.2514 0.2471 0.2429 0.2388 0.2348 0.2308 0.2270 0.2232
0.2194 0.2158 0.2122 0.2087 0.2053 0.2019 0.1986 0.1954 0.1922 0.1891
0.1861 0.1831 0.1801 0.1772 0.1744 0.1716 0.1689 0.1662 0.1636 0.1610
0.1585 0.1560 0.1536 0.1512 0.1488 0.1465 0.1442 0.1420 0.1398 0.1377
0.1355 0.1335 0.1314 0.1294 0.1274 0.1255 0.1236 0.1217 0.1199 0.1181
0.1163 0.1146 0.1129 0.1112 0.1095 0.1079 0.1063 0.1047 0.1032 0.1016
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Table 2-5 (Continued)
1.5 0.1002 0.0987 0.0972 0.0958 0.0944 0.0930 0.0917 0.0904 0.0890 0.0878
1.6 0.0865 0.0852 0.0840 0.0828 0.0816 0.0805 0.0793 0.0782 0.0771 0.0760
1.7 0.0749 0.0738 0.0728 0.0718 0.0708 0.0698 0.0679 0.0669 0.0669 0.0660
1.8 0.0651 0.0642 0.0633 0.0624 0.0616 0.0607 0.0599 0.0591 0.0583 0/0575
1.9 0.0567 0.0559 0.0552 0.0545 0.0537 0.0530 0.0523 0.0516 0.0509 0.0503
2.0 0.0496 0.0490 0.0483 0.0477 0.0471 0.0465 0.0459 0.0453 0.0448 0.0432

2.0 < x < 10.9, interval = 0.1

489 426 372 325 284 249 219 192 1.69 1.48
1.30 115 101 894 789 6.87 616 545 4382 4.27
378 335 297 264 234 207 184 164 145 1.29
1.1I5 1.02 908 809 7.19 641 571 509 453 4.04
360 321 286 255 228 203 182 162 145 1.29

1.15 103 922 824 1736 658 58 526 4.71 4.21
377 337 302 270 242 216 194 173 155 1.39
124 111 999 895 802 7.8 644 577 5.17 4.64

0 415 373 334 3.00 268 241 216 194 174 1.56x6076

D 00 )N AW

App varies with the boundary conditions, but for the case of constant pro-
ductivity rate from an infinite-acting reservoir, App is given by

1

App = —0.5E; | —— 2-64
PD ( 4tD) (2-64)

When r = r,, rp = 1. In terms of the logarithmic approximation, from
Eq. 2-63

App =0.5 (Intp + 0.809) fortp > 25 (2-65)

It is evident that pp for an infinite-acting reservoir is identical to the rp = 1
curve for pp, is expressed in dimensionless terms, and is the value at the
well without inertial-turbulent and skin effects.! The effects of skin inertial-
turbulent flow are treated earlier.

Example 2-6  Calculating Flowing Pressure at the Well due to Laminar
Flow in an Infinite-Acting Reservoir Using p, p?, and Pseudopressure Treat-
ments.

Using the following data, calculate the pressure at the well after a flowing
time of 24 hours using p, p?, and ¥ treatment. Given data are h = 40 ft,
k =20 mD, p; = 2000 psia, r,, = 0.399 ft, T = 580°R, ¢,. = 7.0 mmscfd,
¢ =0.16, 7 = 0.850, i = 0.0152 cP, ¢ = 0.00061 psi!.
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Solution Pressure treatment:

From Eq. 2-54:
0.0002637kt
Ip=———75—
pacr}
0.0002637(20)(24)

= = 535,93
0.16(0.0152)(0.00061)(0.399)2 >

From Eq. 2-65, since 7p > 25:
~App =0.5(ntp + 0.809)
= 0.5(In(535,935) + 0.809)) = 7.00
The value of App can also be obtained from Ref. 5, rp = 1.0 curve.
First trial:

Assume

P = pi = 2000 psia

From Eq. 2-50:
7.085 x 10°2Tq,.ii
dp = =
pkhp;

_7.085 x 10°(0.85)(580)(7.0)(0.0152) 0.01161

- (2000)(20) (40) (2000) o
Using Eq. 2-49:
App = BL=P

bidp

p = pi — piAppgp = 2000 — 2000(0.01161)(7.00)
= 2000 — 163 = 1837 psia

Second trial:
Assume
i 2000 + 1 .
p:p +p= 00+ 837=1919p31a
2 2
From Eq. 2-50:

_ 7.085 x 10°(0.85)(580)(7.0)(0.0152)
= 1919(20)(40)(2000)

= 0.01210
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or
p = 2000 — 2000(7.0)(0.01210) = 1831 psia

Third trial:
Assume

pi+p _ 2000+ 1831

p= > ) = 1916 psia
7.085 x 10°(0.85)(0.0152)(580)(7.0
b = 5 % 10°(0.85)( )(580)(7.0) — 001212
1916(20)(40)(2000)

or
p = 2000 — 2000(7.0)(0.01212) = 1830 psia

Pressure-squared treatment:
Assuming fi, Z, and ¢ are constants, therefore, using Eqs. 2-65 and 2-53:
From Eq. 2-53:

_ 1417 x 10°2T g1

_ 1417 x 10°(0.85)(580)(7.00)(0.0152)

(20)(40)(2000)2 = 0.02323

From Eq. 2-52:

2 2
pi—p
App = —'T—-—

Diqp

or

p =+/p? — p2Appgp = [2000* — 2000%(7.00)(0.02323)]°3

= 1830 psia

(the same as the results from the pressure treatment).
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Pseudopressure treatment:
The values of z;, i, and ¢; are calculated at p;; therefore

Y = 329.6 mmpsiaZ/cP, z; = 0.84, u; = 0.0156 cP,
¢; = 0.00058 psi~!

From Eq. 2-54:
0.0002637kt
Ip=———""5—
¢MiCirw
0.0002637(20)(24)

= = 549,203
(0.16)(0.0156)(0.00058)(0.399)?

Since fp > 25 and using Eq. 2-65:
App = 0.5(nzp + 0.809)

= 0.5{In(549,203) 4 0.809] = 7.013
From Eq. 2-56:

Apn o LALT X 10° Tq,
Pp = kh,

_ 1417 x 10°(580)(7.0)
T (20)(40)(329.6 x 10%)

From Eq. 2-55:

'¢’i - ]//w
App = LAl 44

Yiqp

=0.02182

Therefore:

Yur = ¥i — ¥iqpApp
=329.6 x 10 — 329.6 x 10%(0.02182)(7.013)
= 279.16 mmpsia/cP = 1818 psia

The values of p,calculated by the p, p2, and ¢ treatments are 1830, 1830,
and 1818 psi respectively.

Example 2-7  Calculating Flowing Pressure away from the Well due to
Laminar Flow in an Infinite-Acting Reservoir Using p, p?, and Pseudopressure
Treatments
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A gas well is situated in an infinite-acting reservoir. Calculate the flowing
pressure, due to laminar flow, at a radius of 100 feet from the well, after 24
hours of production. Reservoir and well data are as follows:

pi = 2000 psia, ¥, = 329.6 mmpsiaZ/cP, z; = 0.835, u; = 0.0159 cP,
¢; = 0.00055 psia~!, r = 50 ft, r, = 0.33 ft, ¢ = 0.15, k = 20 mD,
t = 24 hours, g, = 7.50 mmscfd, T = 580°R, h = 40 ft.

Solution From Eq. 2-54:

N 0.0002637kt
b= ¢,u'icir\,%
_ 0.0002637(20)(24) — 886,079
(0.15)(0.0159)(0.00055)(0.33)2
r 50
=—=—=152
= T 33
tp 886,079
= = ———— = 3835
ry 1522
t
Since 5 > 25 and using Eq. 2-63:
p
tp
App =0.5 [ln(—z) + 0.80907]
p
= 0.5[In(38.35) + 0.80907] = 2.228
From Eq. 2-56:
_ 1417 x 10°T g,
gp = khy
1. 6 .
_ 417 x 10°(580)(7.50) — 0.02338
(20)(40)(329.6 x 10%)
From Eq. 2-55:
APD — wi - lpwf
Vi —d4p

Y=V — ¥iAppqp
= 329.6 x 10 —329.6 x 10%(2.228)(0.02338)
= 327.88 mmpsia®/cP

Using the v-p curve, p,s = 1942 psia.
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Radial-Cylindrical Flow, Finite Reservoir, Constant
Production Rate, with No Flow at Outer Boundary
(Pseudo-Steady-State)

Equation 258 can be written as follows:

2 ooy + -2 app) = 2 (app) (2-66)
or2 DD 5 37D Pp = PD

Using Laplace transform'> and Bessel functions, App, which is the solution
at the well, is obtained as follows.
For values of tp < 0.25r2, :

App = 0.5 In(tp + 0.80907) (2-67)

For r’% > 0.25: the equation of the form solution is
eD

2
App = 5> +1n(0.472 r.p) (2-68)
TeD
where
Ye
Yep = —
rW

Values of App versus tp can be found in Ref. 5 for various reservoir sizes.
At early times the solution is represented by Eq. 2—-61 and for large times and
where r,, < r,, the solution at the well is given by Eq. 2-68. The transition
from infinite to finite behavior occurs at

tp ~ 0252, (2-68a)

Example 2-8  Calculating Flowing Sandface Pressure in Finite-Acting
(Closed) Reservoir

A gas well in a finite-acting (closed) reservoir (r, = 1850 ft) was produced
at a constant rate of 7.5 mmscfd. Assuming gas composition, reservoir, and
well data pertinent to the test are the same as in Example 2-1, calculate the
flowing sandface pressure, p,y, after 80 days of production.

Solution  Since the gas is the same as that of Example 2-1, the ¥—p curve
already constructed for Figure 2—1 is applicable to this problem.

t = 80 x 24 = 1920 hours
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From Eq. 2-54:
0.0002637kt
tp=——+—
¢Mi6‘i'}2v
_ 0.0002637(20)(1,920)
~(0.15)(0.0159)(0.00055)(0.33)2

From Eq. 2-56:

= 170,886,315

1417 x 10°Tq,

qdp = kh
1417 x 10°(580)(7.5)
 (20)(40)(329.6 x 106)

Te 1850
D = — = —— = 5 6
Fep T'w .33 60

rk, = 5606> = 31,427,236

P 70,886,315
Lipfy = 22200
eD 31,427,236

=0.02338

= 2.256

Since ’D/rzD > 0.25, App is given by Eq. 2-68:

21
App = =2 +In(0.472 r.p)

TeD

= 2(2.256) + m(0.472 x 5606)
= 12.392
2w =i — YiAppgp
=329.6 x 10® — 329.6 x 10%(12.392)(0.02338)
= 234.11 mmpsia’/cP
Pwr = 1790 psia  (Figure 2-1)
The transition from infinite to finite behavior occurs at

_ O.25reZD¢;L,~c,~ r?v
T 0.0002637k

_0.25(31,427,236)(0.15)(0.0159)(0.00055) (0.33)?

A = 212.8 hot
0.0002637(20) ours
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Radial-Cylindrical Flow, Finite Circular Reservoir,
Constant Production Rate with Constant Pressure
at Outer Boundary (Steady-State Conditions)

The conditions for this situation are:

1. Flow rate at the well is constant
2. The pressure at the boundary is constant at all times, p, = p; forall ¢
3. Initially the pressure throughout the reservoir is uniform

By the use of the Laplace transform, Bessel functions,’ and the above bound-
ary conditions, the solution of the Eq. 2-66 is found to be (Carslaw and Jaeger,
1959, p. 334)%

App=Inr,p fortp > 1.0 rezD (approximately) (2-69)
This equation may also be derived directly by integration of Darcy’s law
for a radial flow. Equation 2-69 represents the steady-state condition. Values

of App versus tp can be found in Ref. 5 for various reservoir sizes, which are
for various values of rp.

Example 2-9  Calculation of Flowing Bottom-Hole Pressure Assuming
Steady-State Conditions

Rework Example 2-9, assuming a steady-state condition is achieved after
long producing time. Calculate the flowing bottom hole pressure, p,y, after
1920 hours of production.

Solution From Example 2-8, we have 7p = 70,886,315, gp = 0.02338,
rep = 5606, (rep)* = 31,427,236. Since tp > 1.0r%,, App is given by
Eq. 2-69,
App = In(r.p) = In(5606) = 8.632
From Eq. 2-55:
Yur = Vi — YiAppgp
=329.6 x 10° — 329.6 x 10%(8.632)(0.02338)
= 263.8 mmpsia®/cP

From Figure 2-1, p,,, = 1970 psia.
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Radial-Cylindrical Flow, Infinite and Finite Circular
Reservoir, Constant Production Rate, Solution at the Well

The App functions may also be expressed in steady-state form by intro-
ducing the idea of an effective drainage radius. This concept, along with the
concepts of radius of investigation and time to stabilization, is discussed in de-
tail hereafter. Possible expressions for the effective drainage radius for various
systems are as follows.

Infinite reservoir:

1
ln(r—d> = E(ln tp +0.809) fortp > 25. (2-70)
Tw
Closed outer boundary:
re =0.472r, fortp > 0.25r% (2-70a)

Constant-pressure outer boundary:
rg=re forrg=r.

In terms of pressure treatment:

App = PR T Pwf _ ln(id_) (2-71)
Pi4p Iy
In terms of pressure-squared:
=2 2
—_— pw
Pr— Py _ ln(r—d) @-72)
pPidp Ty

In terms of pseudopressure:

—‘ﬁ’:/f :I;”Wf = ln(:—d> @-73)

Radial-Cylindrical Flow, Constant Well Pressure, Infinite
and Finite Circular Reservoir

When the well is producing at a constant pressure, the flow rate is nct
constant but declines continuously. The cumulative production is given by
Katz et al. (1959, p. 414)?! and may be written as

SC pl

= 2ﬂ¢cr2h
p PSC

- (Pi = Pup) Opp (2-74)
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where

Gp = cumulative gas produced, and
Q,p = dimensionless total production number which has been tabulated
for certain boundary conditions, and can be found in Ref. 5.

For tp < 0.01:
- 05

O = (—) (2-75)
n

For tp > 200 or

—4.29881 + 2.02566¢
tp & Qpp = s 2 (2-76)

_ 0.0002637k?

Ip -
Py

In terms of pressure-squared treatment:

0.111¢hr2c(p? — pZ)
P ZT

Qpp (2-77)

where

G, = cumulative gas produced, mscf, and
rp=r/ry

Values of Q,p as a function of dimensionless time fp and dimensionless
radius can be found in tabular form in Ref, 5.

Linear Flow, Constant Production Rate, Infinite Reservoir
When flow is in the vicinity of a fracture (of length x), the flow will be

linear and the pressure at any distance x from the sandface (x # 0) is given
by Katz ez al. (1959, p. 411)* as

2 tp 0.5 x% x% 0.5
App = — | = ——= | —erfc| 0.5{ = 2-78
e () ol ) eos(2)] e
where
0.0002637kt
tp=—"— (2-79)

=2
dicxy
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x ¢ is half fracture length, ft

Xp = —
rr
In terms of pressure treatment:

4467 x 10%T g,

= 2-80
4D Sk, (2-80)
In terms of pressure-squared treatment:

8.933 x 10°27q,.jt

= 2-81

In terms of pseudopressure treatment:
8.933 x 10°Tg,.

=" = 2-82

qp "o, (2-82)
and erf is the error function defined as

erf 2 j e " dt (2-83)

X = —— .

JT
0
2 x? x> x’
fx=—x— — 4+ —— — f —... 2-83
e ﬁ(x mtas 3T ) (2-83a)
erf(co) = 1, the complementary error function, and is defined by
2 oo

effecx=1—erfx = ﬁ f eV dt (2-83b)

The values of error and complementary functions are given in Table 2-6.

Radial-Spherical Flow, Constant Production Rate,
Infinite Reservoir

The dimensionless App, at any radius r, is given by (Carslaw and Jaeger,
1959, p. 261)%

1 2 0.5
App = —erfc| 2 2-84
pp = 7€ c(4tD) ( )
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Table 2-6
Complementary Error Function (after Katz et al., 1959,
© McGraw-Hill)*!

X erfx erffcx=1—erfx
0.0 0.0000 1.0000
0.1 0.1114 0.8887
0.2 0.2227 0.7773
03 0.3256 0.6745
04 0.4284 0.5716
0.5 0.5162 0.4839
0.6 0.6039 0.3961
0.7 0.6730 0.3268
0.8 0.7421 0.2579
0.9 0.7924 0.2076
1.0 0.8427 0.1573
1.1 0.8765 0.1235
1.2 0.9103 0.0897
13 0.9313 0.0687
14 0.9523 0.0477
1.5 0.9643 0.0356
1.6 0.9763 0.0237
1.7 0.9827 0.0173
1.8 0.9891 0.0109
1.9 0.9922 0.0078
20 0.9953 0.0047
2.1 0.9967 0.0033
2.2 0.9981 0.0019
23 0.9987 0.0013
24 0.9993 0.0007
2.5 0.9996 0.0005
2.6 0.9998 0.0002
2.7 0.9999 0.0001
2.8 0.9999 0.0001
2.9 1.0000 0.0000
3.0 1.0000 0.0000
31 1.0000 0.0000
3.2 1.0000 0.0

33 1.0000 0.0

34 1.0000 0.0

35 1.0000 0.0

3.6 1.0000 0.0

3.7 1.0000 0.0

3.8 1.0000 0.0

3.9 1.0000 0.0

4.0 1.0000 0.0
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where
0.0002637kt
pper?
In terms of pressure treatment:
7.110 x 10°2T g
ap = - Bsctt (2-86)
Pkrp;
In terms of pressure-squared treatment:
1.422 x 10%2T g, 2
ap = <Al (2-87)
krp;
In terms of pseudopressure treatment:
1.422 x 10T g,,
gp =~ (2-88)

krz//,-

In thick formations, radial-spherical flow may exist in the vicinity of the well
when only a limited portion of the formation is opened to flow.

2.11 Application of Superposition Techniques

Superposition may be considered to be a problem-solving technique in
which the pressure behavior at any point at any time is the sum of the histories
of each of the effects that may be considered to affect the solution at that point.
Particular applications of superposition, which are important in the analysis of
pressure test data, are discussed in the following section.

Investigating for Rate Change Effects

The following example will illustrate the principle of superposition as
applied to the pressure drawdown due to two different flow rates. The method
may be extended to any number of changing flow rates. Thus the total pressure
drop for the well would be

(AY)iorat = |¥i ApD1gD11g1 + 1¥i APD2gD2lg2-01
+1¥iAppigpslgz—q2 + - . (2-89)
K”mf = ‘(Ifi - (Aw)total (2—90)

The variable-rate production history is illustrated in Figure 2-2.



Gas Flow Rate, mmscfd

Example 2-10 Calculating Flowing Sandface Pressure Accounting for Rate
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q:

q:-q:)

q>
(q3-q2)

q3

Time ¢, hours

Figure 2-2. Variable-rate production of a gas well.

Change Effects

of

rW
¥ = 320 mmpsiaZ/cP, t; = 45 hours, £, = 70 hours, ¢; = 5 mmscfd, g» = 15
mmscfd.

Solution Total production time = t; + #, = 45 + 70 = 115 hours.

A well situated in an infinite-acting reservoir was produced at constant rate
5 mmscfd for 55 hours, at which time the flow rate was changed to 15
mmscfd. The stabilized shut-in pressure, pg, prior to the test was 2100 psia.
General data pertinent to the test are as follows: k = 25 mD, T = 600°R,
=035ft, h = 35ft, ¢ = 0.16, ¢; = 0.00053 psi~!, u; = 0.0147 cP,

Using the principle of superposition, calculate the flowing sandface pres-
sure, p,y, after 40 hours of production at the increased flow rate.

From Eq. 2-54:
0.0002637kt
th=———"7—
puiciry
0.0002637(25)(115)
tp] = = 4,964,765
D1 = 10.16)(0.0147)(0.00053)(0.35)2
0.0002637(25)(115 — 45
tp1 (25X ) _ 3,022,031

- (0.16)(0.0147)(0.00053)(0.35)
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From Eq. 2-56:
_ 1427 x 10°T g,
qp = Kl
1427 x 10%(600)(5)
= =0.01518
91 = 125)(35)(320 x 105)
1427 x 10%(600)(10
a2 x 107(600)(10) = 0.03036

= (25)(35)(320 x 105)

Since the reservoir is infinite-acting, Eq. 2—65 applies, so that

App = 0.5 [Intp + 0.809]
Appi = 0.5 [In(4,964,765) 4+ 0.809] = 8.1134
App; = 0.5 [In(3,022,031) + 0.809] = 7.86522

(AY) o = ¥i App1gp1 + Vi App2gD2
= 320 x 10°(8.1134)(0.01518) + 320 x 10°(7.86522)(0.03036)
= 115.82 mmpsia®/cP
Yur = ¥i — (A )sotar

= 320 x 10% — 115.82 x 10% = 204.18 mmpsia®/cP

from Figure 2-1; .. p,s = 1604 psia.

Estimating for Effects of More Than One Well

In some cases more than one well is producing from a common reservoir.
As an example, consider three wells A, B, and C that start to produce at the
same time, from an infinite-acting reservoir, the pressure at a point C in the
producing wells (see Figure 2-3). Thus the pressure at a point C in the reservoir
is obtained by superposing (adding) the solution at point C due to well A to
that at point C due to well B. Each of these solutions is independent of the
other and, to obtain it, the pressure behavior at any point » in the reservoir is
required: that is, the general solution of the partial differential equation and
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Distance, r4¢ Distance, 745

Well C Well B

Figure 2-3. Three wells in an infinite reservoir.

not just the solution at the well. Thus

r2 r2
AP|poiec = Piqap| —0.5E;{ 22} | + pigep| —0.5E; | -22 (2-91)
4tD 4tD

where

r4 = distance from C to well A.
Tap =7a/Tyw
rp = distance from C to well B
rgp =rg/ry

This is the basis of “interference” type tests used to determine reservoir
characteristics. In such a test, point C is really an observation well and the
interference of other producing wells is measured at C. Figure 2-3 illustrates
this concept.

Example 2-11  Accounting for the Effects of More Than One Well

Consider the three wells in Figure 2—4. Well B is put on production at rate
of 3.0 mmscfd after well A has produced for 2 months at a rate of 5.2 mmscfd.
After well A has produced 3 months, what is the pressure at well C, where a
well C is to be drilled? Rock and fluid properties are as follows:

pi = 3700 psia, ¥; = 772.56 mmpsiazlcP, ¢; = 0.00023 psi_l, mi =
0.0235 cP, ¢ = 0.1007 fraction, r,, = 0.4271 ft, T = 710°R, h = 41 ft,
k =8.5mD.
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700 ft 1000 ft
Well A Well B
t; = 2 months t; = 3 months
Gser = 5.2 mmscfd Gsc2 = 3.0 mmscfd

Figure 24. lllustration of three wells in infinite system.

Solution From Eq. 2-51:
_0.0002637kt

In =

P ¢.U«iCir‘%
. _ 00002637 x 8.5 x 2 x 30.5 x 24
DA™ 0.1007(0.0235)(0.00023)(0.4271)2

. _ 0.0002637 x 8.5 x 3 x 30.5 x 24
PE ™ 0.1007(0.0235)(0.00023)(0.4271)2

= 33,051,092.58

= 49,576,638.87

From Eq. 2-56:

_ 1427 x 10°Tg,.
dp = kh,

1427 x 10%(710)(5.2)
904 = (85)(41)(772.56 x 105)

1427 x 103(710)(3.0)

b5 = (8.5)(41)(772.56 x 10%)
r4 = distance from well C to well A = 700 ft
ra 700

Yap = E = m = 1638.96

rg = distance from well C to well B = 1000 ft

1000
= ——— =2.7341.37
T T

= 0.019568

=0.011289

53
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Using Eq. 2-91:

2 2
Ap'wellC = pi(qAD) [OSE,(%)] + pi (qDB) [OSE,(r—.J;)]

4tpa 4tpp

2
=3700(0.019568)[0.5E,.[ (1,638.96) ]]

4(33,051,092.58)

(2,341.37)2
4(49,576,638.87

+3,700(0.011289) [O.SE,- (
= 72.4016[0.5E;(0.020318)] + 41.7693[0.5E;(0.027644)]
From Table 2-5, E;(0.020318) = 3.355 and E;(0.027644) = 3.062
5 APlwenc = 72.4016[0.5(3.355)] + 41.7693[0.5(3.062)]
= 185.40 psia

Pressure at well C = 3700 — 185.50 = 3515 psia.

Determining Pressure Change Effects

Superposition is also used in applying the constant pressure-rate case. In
cases where two pressure changes have occurred, the constant-pressure solu-
tion will be applied to each individual pressure change. This means that in this
particular case we have to use Eq. 2-92 two times. The following generalized
form of Eq. 2-92 will be used in applying the principle of superposition to
pressure changes in the constant-pressure case:

0.111¢phr2c =0  Ap?
= T W ( _’)QpD (2-92)
= Z
j=1
AP? = pgld - pr2tew
and
Z is calculated at (W)

For illustration, let us assume that a well has experienced the pressure history
shown in Figure 2-5.
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6000 s
APD =2000
o [ (T
2 4000 :
g i 4pp = 1500
7 :
@ Beesssanneauszss Qesnseusnsasnsansvassnannnes
g 2000 _| : :
=3 H :
0 | ‘ ; ‘ !
0 20 40 60 80 100
t hours

Figure 2-5, Variable pressure history of a gas well.

Simulating Boundary Effects

The principle of superposition concept can be applied to infinite-acting
solutions to reservoirs that are limited in one or more direction, i.e., pressure
behavior in bounded fault. Figure 2—6 shows a well, A, located at a distance
L /2 from a no-flow barrier and producing at a constant rate. This system can
be treated by replacing the barrier by an imaging well A’ identical to the real
well but situated at a distance L from it. Thus the pressure history of the well
will be that of an infinite-acting well at A, plus the effect at point A’ of an
infinite-acting well at A’, that is,

pucr?
APDhwer = pigp| —0.5E; [ — 25w
DD el PqD[ ( 0.00105k¢

< caused by A —

pucL?
+[_O'5Ei (‘m)] (2-93)

— effectof A’ at A —

Equation 2-67 may approximate the first E; term because the agreement is
usually less than 0.01 for all practical times. However the second E; term is not
true because of the presence of L? (usually a large number) in the argument.
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Image well, A

Rrrtremererrens strsmrrersssssssssesesaes &
L/2 L/2

Real well A

— No flow barrier

Figure 2-6. Well near no-flow boundary illustrating use of imaging.

Therefore:

pucL?
App = pign| 0.5(In1p +0.809) — 0.5E; { — 2K 294
ke qu[OS(mDJr ) ( 0.00105kt)] (2-94)

The following example will illustrate the principle of superposition applied
to the simulation of no-flow barriers within a reservoir.

Example 2-12  Simulating No-Flow Boundaries within a Reservoir

In an infinite-acting gas reservoir, a well is situated 150 ft from a barrier and
produced at a constant rate of 5 mmscfd for 36 hours. The stabilized shut-in
reservoir pressure, pg, prior to the test was 2100 psia. Calculate the flowing
bottom hole pressure. Other data are as follows:

k=25mD,T =580°R,h = 41ft,r, = 0.35ft,¢ = 0.16, u; = 0.0157cP,
¢i = 0.00059 psi~!, p; = 2,100 psia, ¥; = 320 mmpsia®/cP.

Solution From Eq. 2-51:

0.0002637kt
tp = ——————
duicir’
0.0002637(25)(36)
= = 1,307,209
(0.16)(0.0157)(0.00059)(0.35)?
From Eq. 2-56:
1417 x 10°T g,
gp = ———F

khi;

_ 1417 x 10%(580)(5)

T (25)(41)(320 x 105) = 001253
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Equation 2-55 may be written in terms of pseudopressure as
Yuwr = ¥i — ¥iAppgp
where

; iL2
App = 0.5(Intp + 0.809) — O.5Ei< L”LC—_>

" 0.00105k¢

= 0.5(n1,307,209 + 0.809)

2
_05E, (_ (0.16)(0.0157)(0.00059) (150) )

(0.00105)(25)(36)
= 7.446 — 0.5E;(—0.353) = 7.447 — 0.5(2.75) = 6.07
Therefore

Yy = 320 x 108 — 320 x 105(6.07)(0.01253)

=320 x 10% — 24.34 x 10° = 295.66 mmpsia’cP

from .. p,,; = 1865 psia.

Use of Horner’s Approximation

57

In 1951, Horner!! introduced an approximation that could be used in many
cases to avoid the use of the tedious superposition principle as applied to model
production history of a variable-rate well instead of using the sequence of E;
functions, i.e., one E; function for each rate change. With the help of this
approximation, we are able to use one equation with one single producing rate

and one single producing time.
Thus, mathematically,

_ 246,

tp = (2-95)

Qlast

where

G, = cumulative production, mmscf, and
qiase = constant-rate just before shut-in, mmscfd.
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Accounting for Different Reservoir Geometry

Ramey?? has presented models of pseudo-steady-state flow in more general
reservoir shapes. For practical applications, the concept of the shape factor,
C4, which depends on the shape of the area and the well position, is quite
useful. Defining a dimensionless time based on drainage area, A, as

0.0002637kt
tp= ———— (2-51)
PucA
2
Ipy = tDXw (2-96)
1 2.2458At
Pi = Pur = Pidp3 [ln(—z”‘) +4mips — F] (2-97)
w
where dimensionless pressure App is
1 2.2458 At,
App = 5[m(—zﬂ) +Amtp, — F:| (2-98)
rW

and F is the Matthews, Brons, and Hazebroek®? dimensionless pressure func-
tion that has been evaluated for various reservoir shapes and well locations. For
small values of zp,, that is, the transient region of flow, the well is infinite-acting
and

F=4n tpa (2—99)

and

App = 0.5 ln( 5
’

w

For large values of tp4, when all the boundaries have been felt, that is, at
pseudo-steady state,

F =1In(Catps) (2-101)
and
2.2458A
App = 05In A + 2mtpa (2-102)
riCa

The late transient between transient and pseudo-steady-state varies with
each situation. During this period, the pressure drop function may be obtained
from

2.2458 At
App = 0.5[1n(r—2m) + A tp, — F] (2-103)
w
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Figure 2-7. Gas well is situated in the center of a rectangle.

Dimensionless pressure function i is obtained from Table B—1%* or graphic-

ally?* from Figures B—1 through B-7. Shape factors C4 for various drainage
shapes and well locations can be found from Table B—1.!3

Example 2-13  Accounting for Different Reservoir Geometry

A gas well is situated in the center of a rectangle, as shown in Figure 2—7,
having closed no-flow boundaries and an area A of 8 x 10° sq ft, was produced
at a constant rate of 5 mmscfd. The stabilized shut-in reservoir pressure, pg,
prior to the test was 2100 psia. Use gas composition given in Example 2-1.
Other data are as follows: k = 25 mD, T = 580°R, & = 41 ft, r,, = 0.35 ft,
¢ = 0.16, u; = 0.0157 cP, c; = 0.0059 psi~!, pr = 2100 psia, ¥z = 320
mmpsiaZ/cP.

Calculate flowing pressure, p,y, after 40 and 2000 hours of production.

Solution  Since the gas is the same as that of Example 2—-1, the ¢ — p curve
already constructed (Figure 2-1) is applicable to the problem.

t = 40 hours:
From Eq. 2-51:

0.0002637kt
du;ciA
_ 0.0002637(25)(40)
- (0.16)(0.0157)(0.00059) (8 x 10°)

Ipa =

= 0.02224

From Eq. 2-56:

_ 1417 x 10°T g,
qp = khy,
1417 x 10%(580)(5)

= 25((@D(320 x 105) 0.01253
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Calculate F from Table B-1:2 F = 0.2806.
From Eq. 2-103:

2.2458 Atpys

2
ry

App = 05[111 +4mtpy — F:|

2.2458(8 x 10%)(0.02224)
(0.35)2

=0.5 [ln +4(22/7)(0.01253) — 0.2806]

=729

After rearranging:
Yy = ¥ — ¥iApPpqp
=320 x 10® — 320 x 10%(7.29)(0.01253) = 290.77 mmpsia®/cP

From the ¥ — p curve (Figure 2-1), P,r = 1845 psia.
t = 2000 hours:

From Eq. 2-51:

N 0.0002637kt

T puiciA
0.0002637(25)(2000)

= (0.16)(0.0157)(0.00059)(8 x 108 — =" 120

From Eq. 2-56:

_ 1417 x 10°T g,
qp = kh;

_ 1417 x 10°(580)(5)

= (25)(@1)(320 x 105) 0.01253
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Calculate F from Table B—1:2 F = 3.2000
From Eq. 2-103:

2.2458 At
APD = 0S[II‘I—“—'—',‘—Z"‘—IZé +47TtDA — F]
2.2458(8 x 10°)(1.1120)
=0.5]1 4(22/7)(0.01253) — 3.200
[n o35 +4(22/7)( )
= 14.84
Also,
APD — Wi - lpmf
Viqp

After rearranging the preceding equation:

Y = Vi — ¥iAppqp
=320 x 10° — 320 x 10%(14.84)(0.01253) = 260.50 mmpsia*/cP

From the ¥ — p curve (Figure 2-1), P, = 1746 psia.

Alternatively, from Table B-2,!3 ¢, required for stabilization equals 0.15
and C4 = 21.8369. Because fp, at 2000 hours = 1.1120 > 0.15, Eq. 2-102
can be used to evaluate App.

From Eq. 2-102:

2.2458A
App =0.5 ln( 3 ) + 2mtpa
rw A

2.2458(8 x 109)
=0.5In
(0.35)2(21.8369)

) +2(22/7)(1.1120) = 14.84

Therefore,

VYur = Vi — ¥iAppgp
= 320 x 10% — 320 x 10°(14.84)(0.01253) = 260.50 mmpsia’/cP

From the ¥ — p curve (Figure 2-1), P, = 1746 psia.
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2.12 Choice of Equation for Gas Flow Testing
and Analysis

This section will discuss correlation of the gas flow solutions in terms of
the pressure; pressure squared, and real-gas pseudopressure approaches. An
analysis of these approaches has been conducted by Aziz, Mattar, Ko, and
Brar.” They consider the analytical solution at the well for an infinite reservoir
given by Eq. 2-104:

App = —0.5E, ( L ) (2-104)
4tp

Calculate the sandface pressure from this equation, using different ap-
proaches.

Pressure Case

For pressure >3000 psi the simpler form is in terms of pressure, p. The
differential equation is

10 d ¢uc  9p
iy P I e -1
r or (rar) 0.0002637k 31 (2-105)

The diffusivity equation in dimensionless variables becomes

1 d ad
[ D*(APD)] = —(App) (2-106)
rp orp dtp

The dimensionless time, ¢4, in Eq. 2-106 is defined by

0.0002637kt { 1
= L__:‘_( ) (2-107)

or2  \uc

The definition of App, however, is different for this approach. For the
pressure case,

pi— P

70.85x 10°T ¢ ( 1) (2-108)
kh P

ApD =

Both quantities (i) and (&;) in Egs. 2-107 and 2-108 are evaluated at
(pi + p)/2.
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Pressure-Squared Case

For pressure <2000 psi a simple form in terms of p? is more generally
applicable.

¥p*  18p* _ ¢puc  ap’

Z = = 2-109
ar? + r ar 0.0002637k ot ¢ )
The diffusivity equation in dimensionless variables becomes
82 A PD 1 A PD 3
- = —(A 2-110
Br% rp orp atp (&pp) ( )

The definition of App, however, is different for this approach. For the
pressure-squared case,

p}—p?
App=——i 2 (2-111)
1,417xk1ho Tqsc (u2)

The quantities (i) and (uz) in Egs. 2-107 and 2-108 are evaluated at p;.

Pseudopressure Case

For both low and high pressures the equation in terms of psendopressure is
best fitted to this role, is denoted by ¥ (p), and is defined by the integral'®

P
vp)=2 f 2 ap (2-112)
"z
Pbase

The differential equation in terms of this approach is

19 ( oy puc, Iy

L =T 2-113
ror (r or ) 0.0002637k 9t (2-113)

The diffusivity equation in dimensionless variables becomes

1 d 0AYp dAYD
—_ = 2-114
rp 0rp ( b arp ) 31‘[) ( )
The definition of Ayrp is
Vi— ¥ (2-115)

Ayp = 1417103 Tqse
T

The properties are evaluated at initial conditions.
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2.13 Skin, IT Flow, and Wellbore Storage Effects

In the derivation of the equations it was assumed that the porous medium
was homogeneous and isotropic and that flow was single-phase and obeyed
Darcy’s law. It was also supposed that opening and shut-in of the well was
done at the sandface. In actual fact these idealizations are not realistic, and
derivations from the ideal model are too frequent and important to be ignored.
Ways of accounting for skin effects; IT flow, and wellbore storage will be
treated in the following sections.

Accounting for Effects of Formation Damage

The permeability of the formation immediately around the well can be
damaged by the well drilling process or improved by fracturing or acidizing
the well on completion. To account for this altered permeability a skin factor
was defined by Van Everdingen® as

(App)siin = S, a constant (2-116)
so that
App|wen (including skin) = pp + s (2-117)

This essentially states that there will be an added pressure difference due to
the skin effect given by Eq. 2-117. A position value of s indicates a damaged
well, and a negative value, an improved well. Hawkins® proposed that the skin
be treated as a region of radius 7, with permeability kgy,,, with the skin factor
given by

k skin
s = ( - 1) In 2 (2-118)
kskin I'w

Equation 2-118 is valid for both positive skin (ky;,, < k) and negative skin
(ksiin > k) but there is no unique set of values of ky;, and ry,;, for a particular s.

An alternative treatment of the skin effect is that of an “effective wellbore
radius” (Matthews and Russell, 1967, p. 21),'% defined as that radius which
makes the pressure drop in an ideal reservoir equal to that in an actual reservoir
with skin. Thus:

ry (effective) = r,e™* (2-119)

For positive skin, r,, (effective) < r,,, that is, the fluid must travel through
additional formation to cause the observed pressure drop, Ap. For negative
skin, r,, (effective) > r,. This is a useful concept in hydraulically fractured
wells.
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Accounting for Effects of Turbulence

For gas flow, however, inertial and/or turbulent (IT) flow effects, not
accounted for by Darcy’s law, are frequently of significance and should not
be ignored. IT flow is most pronounced near the well and results in an addi-
tional pressure drop similar to the skin effect, except that it is not a constant
but varies directly with flow rate.>* Smith?® confirmed with actual test results
and with numerical solutions that IT flow could be treated as an additional,
rate-dependent skin effect.

(App)ir = Dy (2-120)

Where D = IT flow factor for the system, the pressure at the well is given
by

Applwen = Pp + 5 + Dgsc (2-121)
or
5" = (App)siin + (App)r = 5 + Dy, (2-122)

The following example will show how pressure drop is attributed to laminar
flow, skin, and IT flow effects. It assumes negligible effects of viscosity on
turbulence.

Example 2-14  Calculating Pressure Drop due to Laminar Skin and IT Flow
Effects

In an infinite-acting gas reservoir, a well was produced at a constant rate,
gsc1, of 8 mmscfd for a period of 35 hours. The flowing bottom hole pressure,
Dwyi, at that time was 1550 psia. The same well was produced at a constant
rate, ¢s2, of 11 mmscfd for a time of 25 hours. The flowing bottom hole
pressure, p,», at that time was 1300 psia. The stabilized shut-in pressure, pg,
prior to each of the two flowing periods, was 2100 psia. Other data pertinent
to the test are given below:

k=25mD,r, =0.35ft, h =351ft, T = 600°R,

¢ = 0.16, j1; = 0.0147 cP, ¢; = .00053 psi~!, ¥; = 320.00 mmpsia®/cP
t; = 35 hours, g,; = 8 mmscfd, p,; = 1550 psia

ty = 25 hours, g,2 = 11 mmscfd, p,s, = 1300 psia

Calculate the skin and IT flow effects, s and D, respectively. Also calculate,
for the second flow rate, using the same gas composition given in Example 2-2:

(a) the pressure drop due to the laminar flow effect
(b) the pressure drop due to skin effects
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(c) the pressure drop due to IT flow effects
(d) total pressure drop

Solution From Eq. 2-54:

0.0002637ks
Ip = ————
ouicirk
Therefore
0.0002637(25)(35)
Ip) = =1,511,015
D1 ™= 10.16)(0.0147)(0.00053)(0.35)2
and
0.0002637(25)(25)
tpy = = 1,077,296
D2 ™ (0.16)(0.0147)(0.00053)(.35)2
From Eq. 2-56:
1417 x 10°Tg,,
qd = kh
Therefore
1417 x 103(600)(8)
- = 0.02429
901 = 125)(35)(320 x 105
1417 x 10%(600)(11
7x 100600AD _ o 43349

122 = 125)(35)(320 x 10)
Since the reservoir is infinite-acting, Eq. 2-65 applies, so that
p: = pp = 0.5[Intp + 0.809]
Therefore,
pr1 = pp1 = 0.5 [in(1,511,015) 4 0.809] = 7.519
pr2 = pp2 = 0.5 [In(1,079,296) + 0.809] = 7.351

From Eq. 2-55:
APD — wi - wwf
Vidp

From the y — p curve, P,y = 1550 psia < {1,z = 207 x 10° psia®/cP

Pwee = 1300 psia < ,p = 145 x 10 psia®/cP
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Therefore,
320 x 10° — 207 x 10°

Appy = = 14.54
PD1= 7330 x 106(0.02429)

N, 320X 10° — 145 x 10°
PD2 = 7350 % 106(0.03340)

From Eq. 2-121:

= 16.37

App=pp or p;=s5+ Dgs

Substituting the calculated values of App, pp, or p; and g, in the above
equation gives

14.54 =7.519+s+8D
1637 =7.351+s+ 11D
Solving these equations simultaneously gives

_ (16,37 — 14.54) — (7.351 — 7.519)
- (11 —18)

s = 14.54 - 7.519(8)(0.666) = 1.69

For the second production rate, g, is as follows:

= 0.666

(a) Pressure drop due to laminar flow effects is given by

Therefore
¥ =Y — Yipngp

=320 x 10° — 320 x 10%(7.351)(0.3340)

= 241.43 mmpsia®/cP

= 1720 psia (from ¥ — p curve)
and Aplaminarﬂaw = pi-p = 2100-1720 = 380 psia.

(b) Pressure drop due to skin effects is given by
_Yi—¥

5 =
Yiqp2
2 = i — i sqpy = 320 x 10° — 320 x 10° x 1.69 x 0.03340

= 302 mmpsia/cP < p = 1910 psia
Apgin = pi — p = 2100 — 1910 = 190 psia
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(c) Pressure drop due to IT flow effects is given by

vi— Y
Yiqp2
& ¥ =Y — ¥iDgse2 qp2
=320 x 10° — 320 x 10° x 0.666 x 11 x 0.03440
= 239.35 mmpsia?/cP < p = 1690 psia
. APrrfiow = Pi — p = 2100 — 1690 = 410 psia

Dgscr =

(d) Total pressure dI'Op = Aplaminar flow + Apskin + ApIT flow = 380 + 190 +
410 = 980 psia.

Welibore Storage Effects

Wellbore storage effects are associated with a continuously varying flow
rate in the formation. One solution® is to assume that the rate of unloading
of, or storage in, the wellbore per unit pressure difference is constant. This
constant is known as the wellbore storage constant, Cg, and is given by

Cs = Vs X Cys (2-123)

where

Vws = Volume of the wellbore tubing (and annulus, if there is no packer) ft®
Vs = Jtrva, ft3
L = well depth, ft
Cws = compressibility of the wellbore fluid evaluated at the mean
wellbore pressure and temperature, psi™!

The wellbore storage constant may be expressed in a-dimensionless term as

0.159C5

The rate of flow of fluid from the formation may then be obtained from

] (2-125)
wellbore

d
q= qsc|:1~0 - CSDé_(ApD)
Ip
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The time for which wellbore storage effects are significant is given by
tyss = 60Csp v (2-126)
The time at which wellbore storage effects become negligible is given by

_36,177uCs

tws o hours 2-127)

Example 2-15  Finding the End of Wellbore Storage Effects

The following characteristics are given: well depth = 5500 ft, r,, = 0.39ft.,
Cws = 0.000595 psi~!, h = 5ft, k = 25mD, u = 0.0175 cP. Assume there is
no bottomhole packer. Calculate the time required for wellbore storage effects
to become negligible.

Solution From Eq. 2-123:
Vs = wrl L = 22/7(0.39)%(5500) = 2629 ft*

From Eq. 2-123: Cs = CysVis = 0.000595 x 1629 = 1.565 ft*/psi~!
From Eq. 2-127:

. 36,177(0.0175)(1.565)
ws = 25(45)

After a time of 0.88 hours, wellbore storage effects become negligible and
the analytical solutions for transient flow apply.

= 0.88 hours

Radius of Investigation

The radius of investigation has several uses in pressure transient test analysis
and design:

1. Provides a guide for well test design

2. Estimates the time required to test the desired depth in the formation

3. Provides a means of estimating the length of time required to achieve
“stabilized” flow (i.e., the time required for a pressure transient to reach
the boundaries of a tested reservoir)

An infinite reservoir may be considered to be a limited reservoir with a
closed outer boundary at r, provided r is allowed to increase with . This
changing value of r is defined as the radius of investigation, 7;,, that is,

Ip = 0.257‘3[,
or (2-128)

2 _
r.p = 4tp
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2
(’_) = 4tp (2-128a)

Iy
<0.00105kt
Vip =\ —(/——

0.5
, ft, forry, <r, (2-128b)
duc

If the value of r;,, obtained from Eq. 2-128a is greater than r., then the
radius of investigation is taken to be r,.

Time of Stabilization

If a well is centered in a cylindrical drainage area of radius r,, then setting
T = e, the time required for stabilization, fg, is defined as follows:

tp = 0.25r%,
1
=37 o
or
oo L _eucr
ST 47 0.0002637k
(2-129)
948¢1.Cr?
= T—, hours

Example 2-16  Estimating Radius of Investigation

We want to conduct a flow test on an exploratory gas well for a long enough
time to ensure that the well will drain a radius of more than 1500 ft. Well
and fluid data are as follows: ¢ = 0.18 fraction, k = 9.0 mD, r; = 1500 ft,
i = 0.0156 cP, C; = 2.2 x 10~* psi~!. What length of flow test appears
advisable? What flow rate do you suggest?

Solution From Eq. 2-128a, the time required is

(0.00105/(1‘
Fipy =

0.5
S ) , ft, forry, <r.
t

In principle, any flow rate would sufficient required to achieve a particular
radius of investigation is dependent of flow rate.
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2.14 Numerical Solutions of Partial Differential
Equations

Numerical methods must be used for cases where the partial differential
equation and its boundary conditions cannot be linearized, where the reservoir
shape is irregular, or when the reservoir is heterogeneous. In some complex
situations, analytical solutions may be so difficult to apply that numerical meth-
ods are preferred. In this section a brief discussion of the numerical approach
is presented including difference equations.

Three-Dimensional Models

Gas flow equations are different from those for liquid flow in that the equa-
tions of state that are used are quite different in functional form from those for
liquids. The ideal gas law gives the equation of state for an ideal gas:

M
pV=ﬂRT and ﬂ=—P=;o
M V RT

where p is the density.
In the case of flow of a nonideal gas, the gas deviation factor z, is introduced
into the equation of state to give

p=—L (2-130)

If we assume laminar flow, neglect gravity effects, and assume constant
rock properties, Eq. 2—130 becomes

i(_l’_?ﬁ)+i(_}';§£)+i( P )=£_3.(£) (2-131)
dx \ puzg dx dy \ nzg dy 9z \ puzg 3 k 3t \ zg

In field units Eq. 2-131 can be written as

d(popN d(pd d( p \___¢ d(p
0x \ nzg 0x 0y \ uzg dy 9z Mzgz—;’ 0.000264k 9t \ z,

(2-132)

In terms of pseudopressure, ¥ (p), the equation can be written as follows:

P
Y(p) =2 / MLZ dp (2-133)
8
Do



72 Gas Well Testing Handbook
where pg is a low base pressure. Now,
a(p)_ 4o _cpir
at\z, ) dp ot z, ot’

because

ldp =z, d(i)
T pdp p dp
Also note that

v _Wp _ 20

at op 3t uz, Ot

Ce

and

oy 2p dp

dx  pzg dx

- : Y oy
Similar expressions apply for 3y and R Thus Eq. 2-131 becomes

v z
a

ia_llf +i % +i % =&_¢ (2-134)
dx \ dx dy \ dy dz \ 9z 0.000264k 3t

Equations 2-131 and 2-134 are in three-dimensional form for single-phase
flows and can be used for the study of completely heterogeneous reservoirs.

Radial One-Dimensional Model

For radial flow, the equivalent of Eq. 2-131 is

19(p 0p\___ ¢ 3(p (2-135)
ror\puzg or 0.000264k ot \ z,

In terms of pseudopressure, ¥ (p) is

10(9\__¢ ¥ (2-136)
ror\ or 0.000264k ot

For single-well problems, the use of the cylindrical coordinates provides
greater accuracy than other coordinate systems. For the study of multiwell
systems it is usually necessary to use rectangular coordinates with closely
spaced grid points near the well.
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Radial Two-Dimensional Coning Model

Where vertical flow is important, a two-dimensional radial model must be
considered. The equation to be solved in this case is

]
Va(p o\ 0 (po\___¢__0(p\ .
ror\uzg Or 0z \ 1z 3z 0.000264k 9t
In terms of pseudopressure, W(p) is
oy oy pucg 3 (p
-~ —_— — 2-138
rar<’ar)+az<az> 0.000264k 31 (2-138)

Models of this type can be used to study the effects of anisotropy on the
transient pressure analysis of buildup and drawdown tests.

Areal Two-Dimensional Models

Multiwell problems can be solved through the solution of Eq. 2-139:

o ( p hk,op d [ phkyop q)hp
—_—— — == 1) (2-139
8x<zg 7 3x>+8y(zg w dy at HEARAL )

The injection or production from different wells is accounted for by the
g term. The reservoir shape may be completely arbitrary and there may be
different types of boundary conditions such as no-flow or constant pressure.
This model can also be used for interference test analysis.

Studies of this type for Darcy’s flow have been reported in the literature, for
example, by Carter.?

Multiphase (Gas-Condensate Flow) Model

In this section we outline a detailed derivation of an equation describing
radial, and a multiphase mixture of gas, condensate, and water. We assume that
a porous medium contains gas condensate and water, and that each phase has
saturation-dependent effective permeability (kg, k,, and k,,); time-dependent
saturation (Sg, S,, and S,,); and pressure-dependent viscosity (g, (o, and
Uw). When gravitational forces and capillary pressures are negligible, the
differential equation describing this type of flow is

1a0y\_ b Y (2-140)
p ar "or ] T 0.000264%, ot
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where
C; = SgCg + SoCo + Swew + ¢y (2-141)

¢; is the effective total compressibility and is the sum of the fractional
compressibilities. The fractional compressibility of a fluid is its compressibil-
ity multiplied by the fraction of the pore space that it occupies (that is, its
saturation). The effective total mobility, (k/u),, is given in terms of the in situ
permeability to each of the phases by

A= (5) R (2-142)
vy Hg Mo Hw

The in situ permeability to each phase is the product of the permeability
of the formation and the relative permeability to that phase. This latter factor
depends on the prevailing saturation conditions. The effective total production
rate is simply the sum of the individual fluid flow rates.

9 =4+ 9ot qw (2-143)

Substituting these effective total properties and the total porosity, ¢;, for their
single-phase equivalents in Eq. 2—108 makes it possible to use the solutions of
this equation for multiphase (gas-condensate flow) problems.

Compositional (Multicomponent) Model

In a reservoir system there are generally several species of chemical com-
pounds. These components vary in composition in different phases, and each
phase flows at a different rate. Therefore a mass balance must be made on
every flowing fraction instead of each phase. Figure 2—8 shows compositional
mass balance on element. Detailed discussion and numerical equations can be
found in Refs. 16 and 17.

Compositional Mass Balance on Element

There are N species of chemical compounds flowing into the reservoir
element in three phases. With the element there are changes due to either or
all of the following:

1. Pressure change
2. Production
3. Injection
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—— Production or injection

oil : : oil |[ G
[ G : | E
C . 3
< : ; Ci
G : )= | &
Ci : [ c.
| (‘n-! : C.‘Ls
| Cis Gas
G IS o
Ce Water C, |
Water |
c‘l\
L

Figure 2-8. Composition mass balance on element (after Roebuck et al.
© SPE, AIME 1969).'°

Then we can write

i kops a_pfl kgpgc .aﬁ k_wpwc i)pl
Ix \ [, Mo 3 x M3 x M8 x

127 w

a9
= E(¢SopoCMoj + ¢S 05 Cragi + Sw P ity (2-144)

Consider the conservation of mass applied to one compound. Let

Cuoj = mass fraction of jth component in oil
Che; = mass fraction of jth component in gas
Cuj = mass fraction of jth component in water

Equation 2-117 describes the flow of a single component, e.g., CH4 in a
linear system without any sources or sinks. Equation 2-117 also shows that
each term on the left represents the mass flux of the jth component in each
phase, which is simply derived by the following:

Total mass flux = Density x Volumetric rate
kopo _a_Pﬁ
Ho 0x

(2-145)

= Podo =

kop, @
Component mass flux = CMDj.l& Po

Mo 0Ox

(2-1406)
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Table 2-7
Unknown Number
Chij 3N
Dbi 3
S; 3
pI 3
175 3
kr 3

Note: Cpij = 1,2,3 j = L,--, N;
total = 3N

Similarly, the accumulation term embodies the changes in each phase of the
specific component:

Mass at time (t + At) — Mass at time ¢
At

Mass rate of change =

A general equation for the N species under observation will be of the form

d 3 k,',O,' 3p,~ d 3
D = Cwym— =D _¢SeCuy), j=1,....N
E)x( Mi Bx) 3t<i=1¢ o Mj) /

i=1 i
(2-147)

where

i = represents the phases and
J = the number of components.

We must determine the number of independent variables in the system.
These data are listed in Table 2—7 for an N-component system.

In order to solve the system we must have 3N +15 independent relationships.
These relationships come from several sources:

Differential equations
Phase equilibrium

PVT data

Relative permeability data
Conservation principles
Capillary data

A A
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Relationship Development

Develop the necessary relationships as follows:

1.

2.

Write one partial differential equation for each component in the system,
thus providing N relationships.

Since the pore space is always fluid-filled, the fluid phase saturations
must always sum to unity:

So+Sg+ Sy =1 (2-148)

This is one relationship.

The mass fraction of each component in each fluid phase must sum to
unity, since mass conservation of each component is required.

Thus:

N

Y Cup=1

j=1

N

S Crg = 1 (2-149)
j=1

jN

S Capy = 1

=

This provides three relationships.

. The following can be obtained from the PVT data.

Ho = f (po, CMoj)
Hg = f (Pg’ CMgi)

Hw = f (Pw» Cij)
Po = f (Po, CMoj)

pg = [ (Pgs Cutgj) (2-151)
Pw = f (Pws Chwj)

(2-150)

Note: These provide six more relationships. Viscosity and density are
computed experimentally or from well-known correlations, which relate
these parameters to compositions and pressures.

. For mobility calculations, we need relative permeability data:

ko, = f(Sga Sos Sw)
kg = f (Sga S05 SW) (2—152)
kyw = f(Sga Sos Sw)

This provides three more relationships.
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6. For distribution of a component between its liquid and gaseous states,
the equilibrium constant can be derived from thermodynamic principles.

For example,
C Mgj
= Kjgo
g’”"f (2-153)
Mg _ g
Coni jgw

These equilibrium constants are a function of several variables:

Kjeo=[(p,T,Cyp)
2-154
Kjgw = [ (p. T. Cy) 9
from which
Kjo _ Kigw

= K 2-155
K] Kjgo 80 ( )
Equations 2-154 and 2-155 provide an independent relationship when
written for each component in the system.
7. Capillary pressure provides the remaining relationship:

Pgs — Po = DPcgo = f (Sg7 Sos Sw)
(2-156)

Po — Pw = Pcow = f (Sg» So» Sw)

These relationships are summarized in Table 2-8.
Therefore, according to Table 2-8, we have 3N 4 15 independent unknown
and 3N + 15 independent relationships that can be used to solve the system.

Assumptions

Several simplifying assumptions are usually made to make the problem
more amenable to solution:

Table 2-8

Relationship Unknown Equations
Differential equation N 2-147
Phase equilibrium 2N 2-153

PVT data 6 2-150 and 2-151
Relative permeability 3 2-152

3" Mass fraction 3 2-149

Y~ Saturation 1 2-148
Capillary pressure 2 2-156
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1. Capillary pressure between oil and gas is generally neglected.
2. Several components are grouped together, e.g., a system containing the
following nine components will be grouped as shown below:

C Component 1

G,
Cs
Cis
Ci» | Component 2
Cis
Cn5
Cs

C74+ Component 3

3. The mass fraction of components present in the water is so small that the
Cuvy terms are also zero. This means that oil and gas are the only phases
in which mass transfer occurs. The equation for the water present is still
needed.

Sources and Sinks

Sources and sinks can be included in Eq. 2—-139 by the addition of a term
representing the source or sink:

3
ax( —'—p—' Cui ) Zq,a,,«sm t(;@&-picw) (2-157)

where

= Mass injection rate of phase in suitable units
@;; = Mass fraction of jth component in ith phase
8(x) = Delta function

The delta function 8(x) is defined as follows:

Production or injection in allat x : §(x) = 1
No production or injection in all at x : §(x) =

The locations of these wells are shown in Figure 2-9.
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ox=0

S x

1l
—

Figure 2-9. Well [ocations.

Procedure Outline for Solution of Flow Equations

The solution of the compositional model is an iterative one. The process
indicated in Figure 2—10 is essentially the solution outline.

2.15 Summary

Chapter 2 provides the basic flow theory for gas well testing and anal-
ysis techniques. General equations are used for transient pressure behavior
with dimensionless pressure solutions desired. Some important dimensionless
pressure functions are presented in this chapter and references to others are
provided. The dimensionless pressure approach provides a way to calculate
pressure response and to devise techniques for analyzing transient tests in
a variety of systems. Sections covering turbulence, wellbore storage effects,
wellbore damage, and improvement are included, since the effects have a sig-
nificant influence on transient well response.
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Flash at initial conditions to obtain original mole
fraction in each phase

v

Using gas or extrapolated thermodynamic data,
set up coefficients for the flow equations

T

Solve flow equations

v

Recalculate mole fractions of each component

v

Determine fluid compositions at new pressure

Figure 2-10. Solution Outline.
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