
Chapter 2

Applicatio n of Flui d
Flow Equation s to
Gas System s

2.1 Introductio n

The aim of this chapter is to develop and present the fundamental equations
for flow of gases through porous media, along with solutions of interest for
various boundary conditions and reservoir geometries. These solutions are
required in the design and interpretation of flow and pressure tests.

To simplify the solutions and application of the solutions, dimensionless
terms are used. Assumptions and approximations necessary for defining the
system and solving the differential equations are clearly stated. The princi-
ple of superposition is applied to solve problems involving interference be-
tween wells, variables flow rates, and wells located in noncircular reservoirs.
The use of analytical and numerical solutions of the flow equations is also
discussed. Formation damage or stimulation, turbulence, and wellbore storage
or unloading are given due consideration. This chapter applies in general to
laminar, single, and multiphase flow, but deviations due to inertial and tur-
bulent effects are considered. For well testing purposes two-phase flow in
the reservoir is treated analytically by the use of an equivalent single-phase
mobility.

The equations of continuity, Darcy's law, and the gas equation of state
are presented and combined to develop a differential equation for flow of
gases through porous media. This equation, in generalized coordinate nota-
tion, can be expressed in rectangular, cylindrical, or spherical coordinates and
is solved by suitable techniques. The next subsections describe steady-state,
pseudo-steady-state, and unsteady-state flow equations including the gas radial
diffusivity equation, basic gas flow equations, solutions, and one-, two-, and
three-dimensional coordinate systems.



2.2 Steady-State Laminar  Flow

Darcy's law for flow in a porous medium is

k dp kAdp
v = or q=vA = (2-1)

H<g ax /ig ax

where

v = gas viscosity; q = volumetric flow rate; k = effective permeability;
/jig = gas viscosity; and ^ = pressure gradient in the direction of flow

For radial flow, Eq. 2-1 becomes

, = ^ ^ * *  (2-2)
/Xg dx

where r is radial distance and h is reservoir thickness,
Equation 2-2 is a differential equation and must be integrated for applica-

tion. Before integration the flow equation must be combined with an equation
of state and the continuity equation. The continuity equation is

pxqx = p2 q2 = constant (2-3)

The equation of state for a real gas is

The flow rate of a gas is usually desired at some standard conditions of
pressure and temperature, psc and Tsc. Using these conditions in Eq. 2-3 and
combining Eqs. 2-3 and 2-4, we get

pq = Pscqsc,

or

pM _ pscM

zRT ZscRTsc

Solving for qsc and expressing qsc with Eq. 2-2 gives

pTsc lnrhkdp

psczT /a dr



The variables in this equation are p and r. Separating the variables and
integrating:

P rc

f A qscPscTfigZ f dr

J Tsc2rckh J r
Pw rw

P2 ~ PJ = qscPscT ill  f re\
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In this derivative it was assumed that /Jig and z were independent of pressure.
They may be evaluated at reservoir temperature and average pressure in the
drainage area such as

P-P

2

In gasfield units, Eq. 2-5 becomes

OmiOllkhlP2 - Pl)

_ 0 .000305^ (P2-Pw
2)

Where qsc = mscf/d; k — permeability in mD; h = formation thickness in
feet; pe = reservoir pressure, psi, pw = well bore pressure, psia, T = reservoir
temperature, 0R; re = drainage radius, ft; rw = well bore radius, ft; z = average
compressibility factor, dimensionless; and jlg = gas viscosity, cP.

This equation incorporates the following values for standard pressure and
temperature:

psc =z 14.7 psia,

Tsc = 600F = 5200R



The gas flow rate is directly proportional to the pseudopressures. The pseudo-
pressure is defined as

P

^{p) = 2 f JLdp (2-8)
J ^z

Pref

In Eq. 2-8, pref is a reference pressure, At the reference pressure, pseudo-
pressure is assigned a datum value of zero. The Eqs. 2-6 and 2-7 in terms of
pseudopressure become

_ 0.0007Q27fc/i[^(j>) -js(pw)]

«" " T In(^ ) ' ( 2" 9 )

0.000305J/i[«-(/i) -<(•(/>„) ]

«« fsgsj <2-"»
p2 and is(p) have identical values up to 2500 psia. Above 2500 psia, p2 and
if/ (p) exhibit different values. Thus, below 2500 psia, either p2 or ty(p) can
be used. Above 2500 psia, ty{p) should be used. Gas pseudopressure, ^(/?),
which is defined by Eq. 2-8, is considered, i.e.,

J /lgz J flgZ
Pref Pref

It is more difficult and generally engineers feel more comfortable dealing
with pressure squared, p2, rather than an integral transformation. Therefore,
it is worthwhile, at this stage, to examine the ease with which these functions
can be generated and used. We evaluate the integral in Eq. 2-8 numerically,
using values for \xg and z for the specific gas under consideration, evaluated
at reservoir temperature. An example wil l illustrate this calculation.

Example 2-1 Calculating Gas Pseudopressure
Calculate the gas pseudopressure %// (p) for a reservoir containing 0.732

gravity gas at 2500F as a function of pressure in the range 400 to 4000 psia.
Gas properties as functions of pressure are given in Table 2-1.

Solution For p = 400 psia:

p

^(400) = 2 f —dp
J VgZ

Pref



Table 2-1
Generation of Gas Pseudopressure as a Function of the Actual Pressure

Pressure,/? /ig Z P/VgZ *1>(P)
(psia) (cP) - (psia/cP) (mmpsia2/cP)

400 0.014337 0.9733 28.665 11.47
800 0.014932 0.9503 56,378 45.48

1200 0.015723 0.9319 81,899 100.83
1600 0.016681 0.9189 104,383 175.33
2000 0.017784 0.9120 123,312 266.41
2400 0.019008 0.9113 138,552 371.18
2800 0.020329 0.9169 150,217 486.72
3200 0.021721 0.9282 158,719 610.28
3600 0.023151 0.9445 164,638 739.56
4000 0.024580 0.9647 168,689 872.92

_ 2 LV 1Wo V*W4ooJ

= 2^±f^)<400-0>
= 11.466 x 106psia2/cp

For p = 800 psia:

VK800) = 11.466 x 106 + 2^ 2^665 + 56,378 (̂80() _ ^

= 11.466 x 106 +34.017 x 106

= 45.483 x 106 psia2/cp

Proceeding in a similar way, we can construct Table 2-1. These results are
plotted in Figure 2—1. This plot is used in the gas well test analysis, in which it
is assumed that for high pressure, in excess of 2800 psia, the function is almost
linear and can be described by

f(p) = [0.3218/? - 416.85] mmpsia2/cp

For low pressure, less than 2800 psia, the function is described by a poly-
nomial equation of the form

^(p) = A +Bp+ Cp2 + Dp3 + Ep4 + Fp5



Pressure, psia

Figure 2-1 . Gas pseudopressure XJr(P) versus pressure, psia.

where A, B, C, D, E, and F are polynomial coefficients whose values are

A = 39,453; B = -222.976; C = 72.0827

D = 5.287041E-04; E = -1.993697E-06; and F = 1.92384E-10

These relationships and the plot can be used to convert from real to pseu-
dopressure and vice versa.

Example 2-2 Determining Wellbore Pressure Assuming Steady-State Flow
Conditions

Perform this calculation given the following data:
k = 1.50 mD, h = 39 ft, qsc = 3900 mscfd, pe = 4625 psia, T =

712° R, re = 550 ft, rw = 0.333, p, = 0.02695cp, yg = 0.759, Tsc = 5200R,
Psc = 14.7 psia.

Solution The solution is iterative since z = f(p), where p = (pe + pw)/2,
and pw is the unknown. As a first estimate, assume z = 1.0.
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First trial using Eq. 2-6:

2 _ 2 _ fiTln(re/rw)qscz
Pw-Pe- 0.0007027fc/z

_ 2 (.02695)(712)(550/.333)(3900) x z
"~4 .0007027(1.5(30)

= 2.139 x 107 - 1.756 x 107(1.0)

= 3.83 x 106

or pw = 1957 psia.

Second trial:

p =  4 6 25 + 1 9 57
 = 3291 psia, z at 3291 psia = 0.88

pi = 2.139 x 107 - 1.756 x 107(0.88)

= 5.937 x 106

or pw = 2436 psia.

Third trial:

4625 + 2436
p = = 3530 psia, z at 3530 psia = 0.890

= 2.139 x 107 - 1.756 x 107(0.89)

= 5.762 x 106

or pw = 2400 psia.

4625 + 2400
p = = 3512 psia and z at 3512 psia = 0.890

Since the value for z is the same as for second trial, the solution has con-
verged and the required wellbore pressure is 2400 psia. The solution would
have been more complicated if a constant value for /x had not been assumed.
The above treatment of steady-state flow assumes no turbulence flow in the
formation and no formation or skin damage around the wellbore.



2.3 Steady-State Turbulence Flow

The above treatment of steady-state flow assumes no turbulent flow in the
formation and no skin damage around the wellbore. The pressure squared
and pseudopressure representations of the steady-state equations including
turbulence are

2 2 50.3 x 106fi gZTPscqsc f re 1
Pe -Pl = TUT ln 7" + s + Dqsc ( 2" U )

Knlsc [_ 'w J

f(p) - f(pw) =  L 4 22 *!° 3TqSC U - - 0.5 + s + Dqsc]  (2-12)

where Dg^ is interpreted as the rate-dependent skin factor, and

Expression D is the non-Darcy flow coefficient in psia2/cP/(mscf/d)2 and is
calculated from Eq. 2-13
where

or

973 Y in 1 0

where k is the permeability near the wellbore region in mD. Values of the
velocity coefficient /3 for various permeability and porosity can be obtained
from Ref. 1 or calculated from Eq. 2-14a or 2-14b. The foregoing equations
2-11 and 2-12 have the forms

p2
e -pi= AAfqsc + BB'q2

K (2-1 Ia)

where

AA' = 50.3 x 103 M * z r P jc [In(^ZrH,) - 0.75 + s] (2-1 Ib)
khTsc

BB' = 50.3 x 103 ^zTPsc
D (2-1 Ic)

khTsc

HP) ~ f(Pw) = AAqsc + Bbql (2-12a)



where

1 422 x 103

AA = —— [ln(r e/rw) - .75 + s] (2-12b)
kh

BB =>A22X 1037D (2-.2C)
kh

Example 2—3 Calculating Influence of Turbulence in a Vertical Well Using
Steady-State Flow Equation

A vertical gas well is drilled in a 45-ft-thick sandstone reservoir with perme-
ability of 12 mD. The initial reservoir pressure is 2150 psia and well spacing is
640 acres. The well could be operated with a minimum bottomhole pressure of
350 psia. The other data are T = 5900R, /xg = 0.02 cP, z = 0.90, yg = 0.70,
rw = 0.29 ft, s' = 0, perforated length hp = 45 ft.

Use the p2 equation to calculate the flow rate.

Solution To solve this problem, the Eq. 2-1 Ia has the form

p] -pi= AAfqsc + BB'ql

where

BB' = 50.3 x I O 6 ^ ^ " D

Substituting these parameters in the above equations, we have

=  237.34

The value of BB' can be calculated using the preceding equation:

= 0.027965 x 106D

where

_ 2.222 x \Q-X5ygkhp
ixgrwh2

p



and

p = 2.73 x 1010 A;-11045, I/ft

= 2.73 x 1010(12)-11045 = 1.7547 x 109l/f t

2.222 x 10-"(0.7)(12)(45) ^
(0.02) (0.29) (45) (45) ^ '

=  1.255 x 10"4, 1/mscfd

Substituting value of D into Eq. 2-1 Ia, BB' is calculated as

BB' = 0.027965 x 103(1.255 x 10~4) = 0.3511/mscfd2

Substituting values of AA' and BB' into Eq. 2-1 Ia:

p1 -pi= 237.34 ĉ + 0.35\q]c

This quadratic equation is rearranged as

0.351?2 + 237.34?« - (p2
e -P

2
w)=0

By solving the above quadratic equation the value of qsc is calculated as

_ -237.34 + 7(237.34J2 + 4(0.351)( ĝ
2 - p2

w)
qsc " 2(0.351)

_ -237.34 + ^56,330.271 + 1.404(/72 - p2
w)

~ 0.7020

Calculated values of qsc, both with and without turbulence for various values
of pw, are summarized in Table 2-2. This table indicates a significant effect
of turbulence on well productivity.

Table 2-2
Effect of Turbulence on Vertical Well Productivit y

No turbulence, With turbulence
Pw (psia) pi — p\ (psia2) D = Oq (mmscfd) q (mmscfd)

1800 138 x 104 5.816 1.673
1400 266 xlO4 11.208 2.435
1000 362 x 104 15.252 2.891
500 437 x 104 18.412 3.207



2.4 Pseudo-Steady-State (Finite) Flow

The equations for pseudo-steady-state flow in terms of pressure squared and
pseudopressure are:

In terms of pressure-squared treatment:

= 0.0007027*/» (/% -pi)
q&c Tp,gz In(OA12re/rw)

The effects of skin damage and turbulence are included in Eq. 2-15 as
follows:

= 0.0007027^(^-/4) (2_m
Qsc Tflgz[ln(0A72re/rw)+s + Dqsc]

It is frequently necessary to solve Eq. 2-16 for pressure or pressure drop
for a known flow rate, qsc.

P2
R-Pl=  1A22Xl^Tllg'Zqsc[ln(0Anre/rw) + s + Dqsc]  (2-17)

Equation 2-17 may be written as follows:

P2R-Pl= Msc + Bq2
sc (2-17a)

where

A = 1.422 xlO^zT^O^y^

and

B=LU2^10%zlD
kh

It is sometimes convenient to establish a relationship between the two pa-
rameters that indicate the degree of turbulence occurring in a gas reservoir.
These parameters are the velocity coefficient P and the turbulence coefficient
D. Equation 2-17a can be written for pseudo-steady-state flow as

/ Q 472r \
p \ -pi =  1.422 x 1 O3PL8ZT f i n ' e +s)qsc

+ 3..«. x . O H ^ < 2_n b)



This form of the equation includes the assumption that re ̂ > rw. Equating the
terms and multiplying qjc in Eqs. 2-17a and 2-17b yields

1.422 x 103AgZr 3.161 x lO~nygzT
Vh D = Tjfi p

or

D = 2.22 x IQ-1V ^
flghrw

Expressing /? in terms of permeability from Eq. 2-14b, the preceding expres-
sion becomes

flghrwk02

In terms of pseudopressure treatment:

is(PR) ~ ^(Pw) = A'qsc + B'ql (2-17d)

where

. 1.422 XlO3Tf (QAlIre\ 1

and

^ 1 . 4 2 2 x 1 0 3 7̂
kh

It is sometimes convenient to establish a relationship between the two pa-
rameters that indicate the degree of turbulence occurring in a gas reservoir.
These parameters are the velocity coefficient P and the turbulence coefficient
D. Equation 2-17d can be written for pseudo-steady-state flow as

/ Q 472r \
tiPR) ~ Ir(Pw) = 1-422 x 103T i In - —  ̂ +s\qsc

+ *.m*«r«r.T,d (2_17e)

This form of the equation includes the assumption that rê > rw. Equating the
terms and multiplying qjc in Eqs. 2-17d and 2-17e yields

1.422 x W3jjL gzT _ 3.161 x W~nygzT



or

D = 2.22 x I Q - 1 V ^
hrw

Expressing /3 in terms of permeability from Eq. 2-14b, the preceding ex-
pression becomes

2.5 Unsteady-State (Transient) Flow

A well flows in the unsteady-state or transient regime until the pressure
disturbance reaches a reservoir boundary or until interference from other
wells takes effect. Although the flow capacity of a well is desired for pseudo-
steady-state or stabilized conditions, much useful information can be obtained
from transient tests. This information includes permeability, skin factor, turbu-
lence coefficient, and average reservoir pressure. The procedures are developed
on transient testing and the relationship among flow rate, pressure, and time
wil l be presented in this section for various conditions of well performance
and reservoir types.

2.6 Gas Radial Diffusivit y Equation

By combining an unsteady-state continuity equation with Darcy's law and
the gas equation of state, one can derive the diffusivity equation. The equation is

>(±>»J.).±lM  (2-1 S,
dx \ ix ox J dt

Equation 2-18 can be written in three-dimensional form:
a (kxPdp\ d (kyPdp\ 3 (kzP (dp \ \ a

Equation 2-19 represents a general form for the combination of the continu-
ity equation and Darcy's law. The final differential equation, which will result
from this equation, depends on the fluid and the equation of state of interest.

For the radial flow case we obtain in a similar manner

ld/rpkrdp\ 3

r Sr \ fi or J dt



In the case of flow of a nonideal gas, the gas deviation factor zg is introduced
into the equation of state to give

'-if f  <2-21)

RT Z8

If we assume laminar flow, neglect gravity, and assume constant rock prop-
erties, then Eq. 2-19 becomes, for isothermal conditions,

' ( i .y + ' (4) +»(±*) .wi ) (2-22)
dx\fjLzgdxJ dy\fizg oy J dz\/xzg dz/ k dt \zg J

For radial flow Eq. 2-22 can be expressed as

lL(jL r*E\ = ±L(E\ (2-23)
rdr\nzg dr/ kdt\zg/

Equation 2-23 in gasfield units is

\L(jL r^E\ = *  d (p\ (2-24)
rdr\iizrdr) 0.000264 3f \ z /

Equation 2-24 can be modified to account for simultaneous flow of gas, oil,
and water; the equation is

rdr\dz) 0.000264A, dt K

where

z = gas deviation factor
ct = total system isothermal compressibility, psi"1

Xt — total mobility

ct = CgSg + coso + cwswcf (2-26)

Xt = *L  + k + bL (2_27)
Hg ixo fiw

2.7 Basic Gas Flow Equations

Gas flow is characterized by Darcy's law and for a gas described by the
equation of state:

M p

»=Rfl <2-28)



Equation 2-19 becomes, for constant <p and k and negligible gravitational
forces,

JL(JL*E) + L(JL*£\ + 1(JL*£\
dx\(iZgdx) dy\nzgdy/ z\I^ZgdzJ

0.000264* 9*Vz«/

Equation 2-29 has a form similar to the following equation:

92p 92p d2p = 4>IMC dp

dx2 dy2 dz2 0.000264fc dt

For radial flow, the corresponding equation is

1 3 / 8p\ _ ^ c dp

rdr\ drj 0.000264fc dt

We define a pseudopressure,J*(/>) , as follows:

p

x{r(p) = 2 f -?-dp (2-32)

Po

where po is a low base pressure, now:

d /P\^d(fg)dp ^cgPdp

dt\Zg) dp dt Zg St

because

8 p dp p dp

and also

dx/s _ dx/s dp dp

dt dp dt dx

Similar expressions apply for ^- and ̂ -. Thus, Eq. 2-29 becomes

dx \ dx ) dy\dy J dz \ dz ) 0.000264A: dt



For radial flow, the equivalent of Eq. 2-33 is

1 3 / 8 V A _ 0/xcg djr

rdr\ dr J 0.000264A; dt

2.8 One-Dimensional Coordinate Systems

Equation 2-29 may be expressed in terms of rectangular, cylindrical, or
spherical coordinates:

V2P = ^ I (2-35)
k at

where V2/? is the Laplacian of p. The expression "one-dimensional" refers to
a specified coordinate system. For example, one-dimensional flow in the x-
direction in rectangular coordinates may be expressed in cylindrical
coordinates.

Linear  Flow

Flow lines are parallel, and the cross-sectional area of flow is constant and
is represented by Eq. 2-36, which is in the rectangular coordinate system and
is the one-dimensional form of Eq. 2-35:

d2p 4>ficdp
T-y = —r- — (2-36)
dx2 k dt

Fractures often exist naturally in the reservoir, and the flow toward the
fracture is linear.

Radial Cylindrica l Flow

In petroleum engineering the reservoir is often considered to be circular and
of constant thickness h, with a well opened over the entire thickness. The flow
takes place in the radial direction only. The flow lines converge toward a central
point in each point, and the cross-sectional area of flow decreases as the center
is approached. Thus flow is directed toward a central line referred to as a line-
sink (or line-source in the case of an injection well). In the petroleum literature
it is often simply called radial flow in the cylindrical coordinate system and is
given by one-dimensional form of Eq. 2-35:



Radial Spherical Flow

If the well is not opened to the entire production formation because of a
thick reservoir (h is very large), then to measure vertical permeability, the
one-dimensional form of Eq. 2-35, in the spherical coordinate system, is of
interest. It is known as the radial-spherical flow equation and is given by

3 a/ dP\_^cdp

2.9 Radial Gas Flow Equations in Dimensionless
Variables and Groups

Equation 2-35 and the relevant boundary conditions in dimensionless terms
are:

V2(ApD) = -^-(ApD) (2-39)
OtD

where the subscript D means dimensionless, and the dimensionless terms are
defined in the next section for various modes of flow.

Pressure Treatment

The pressure case will be considered along with the boundary and initial
conditions. Assuming a well is producing at a constant rate qg from an infinite
reservoir, the equation governing flow is

B9_/9p\*?c*P
r dr\ or) k dt

with the following boundary and initial conditions:

Inner Boundary Condition:

Assuming at the wellbore, the flow rate is constant and from Darcy's law,

S- =k-  ̂ for,>0 (2-41)
lnrh welI ii  dr wdl

That is,

dr well 2 * k h



and in terms of standard conditions,

rdp =q^^Tl
dr well lnkh pTsc

Outer Boundary Condition:

At all times, the pressure at the outer boundary (radius = infinity) is the
same as the initial pressure, pt, that is,

p —>• pi as r —• oo

for all t.

Initial  Condition

Initially, the pressure throughout the reservoir is constant, that is,

p = pi at t = O

for all t.
At this stage, the variables which affect the solution of Eq. 2-40 are /?, /?/,

r, rw, qsc, Vg, k, h, 0, c, and t. Let

&P = Pi- P
r

rD = —(dimensionless)
rw

APD~~~^~

Then Eq. 2-43 becomes

ro^(AP'D) = -q^Pf_lTsc (2-44)
drD

 u
 rD=1 pilnkhp

Let the dimensionless flow rate be

_ qsciiPscTl

Pi27tkhpTsc

Equation 2^44 becomes

9^DL <ID \rD=x



Let the dimensionless pressure drop be

(Apf

D) pi  - p
ApD  =  =

<7D  Pi q D

Then Eq. 2- 45  becomes

a
rD —  (ApD)  = - 1

3rD rD= \

Equation 2- 37  becomes

1 A [  a( A p D ) l =  ̂ a ( A p D )  (2^6)
?D orD L  orD  J  k  dt

Let  dimensionless  time be

kt
tD ~ 1 T

Equation 2- 37,  the radial cylindrical flow equation, may now be  expressed
in  dimensionless  terms by

i a r a i a
—  TT" VD J - ( A?D)  =  ^ T " ( APD)  ( 2 " 4 7 )

with the boundary and initial conditions as  follows:

1.  rD^(ApD)  =- l  forfD>0
TD = I

2.  ApD  - > 0  as rD  - + oo  for  all rD

3.  A/?z> = 0  attD  =0  for  all rz)

The  solution of Eq. 2- 47, which is the dimensionless form of Eq. 2- 40, now
involves only ApD, to, and rD. The dimensionless  terms in terms of pressure
treatment case are defined  in gasfield units as  follows:

0.0002637fcf
tD  -   . .  -  2  (2- 48)

Ap D = ?LUL^  (2- 49)
Pi 9 D

and

=  7.085 x 1 0 V№ -   ( 2 _ 5 0 )

pkhpi



where/: = formation permeability, mD;f  = time, hours; 0  = porosity, fraction;
flg  =  average  gas  viscosity,  cP; T =   reservoir  temperature, 0R; z  =  gas
compressibility  factor  at average  pressure; APD  =  dimensionless  average
reservoir  pressure, psia; pi =   initial reservoir  pressure, psia; h =   reservoir
thickness, ft; qsc  = gas flow rate, mmscfd; Tsc =  base temperature, 0R; Psc =
base pressure, psia; and c =  gas compressibility, psi"1.

Pressure Squared Treatment

Dimensionless variables in terms of pressure squared treatment are defined
in gasfield units as  follows:

0.0002637**
to =   . .  .  2  (2- 51)

PD =   ^ V^ -   (2- 52)
PiQD

and

qD =   77-2  (2- 53)
khpf

Pseudopressure Treatment

Dimensionless variables  in terms of pseudopressure treatment are defined
in gasfield units as  follows:

0.0002637̂
to = ^ . _ 2  (2- 54)

ApD =   — J~  (2- 55)
№ QD

and

1.417  x lO«Tqsc

<1D  =  —  (2- 56)
khx/ / i

Example 2-4 Calculating Dimensionless Quantities Using p, p2, and x/ r (p)
Treatment

A gas reservoir was produced at a constant rate qsc  of 6.5 mmscfd for a time,
r, of 36 hours. The sandface pressure, pWf, at that time was  1750 psia. General
data are as  follows:



p  =  1925 psia, pt  =  2100 psia, Zi  =  0.842, Zi  =  0.849, Zi750  =  0.855,
Ct =  0.000525  psi"1,  Ci750  =  0.000571  psi"1, c =  0.000548  psi"1, k =
18.85  mD, T =  595°R, rw =  0.39  ft,  1̂- = 0.01495 cp, ft = 0.01430 cp,
/X1750 = 0.01365 cp, h = 40 ft, and </>  = 0.138 fraction.

Calculate the dimensionless quantities to, PD, and qo using the p, p2, and
T/T treatments.

Solution Pressure treatment, /?, from Eq. 2-48:

0.0002637Јr

0.0002637(18.85)(36) = Q g?

" D (0.138)(0.01430)(0.000548)(0.39)2 ' '

From Eq. 2-50:

7.085 x lO5qscflTz

pkhpi

= 7.085 x 105(6.5)(0.0143)(595)(0.849) =Q0lQ9U

"q° (1925)(18.85)(40)(2100)

From Eq. 2-49:

. A  = n-P =
  2 1 0° - 1 7 50

 = _^_ = 15 27
PD piqD 2100(0.010914) 22.92

Pressure-squared treatment, p2, from Eq. 2-51:

0.0002637fcr
to = ——3-^—

0.0002637(18.85)(36) = Q g7

" D (0.138)(0.01430)(0.000548)(0.39)2

From Eq. 2-53:

1.417 x XO6ITqscjl
qD — 7T~i

khpf

= 1.417 x 106(0.849)(595)(6.5)(0.0143) =

(18.85)(40)(2100)2



From Eq. 2-52:

 ̂ = ^
Pi ID

= 21002 - 1.7502 =

21002(0.020010)

Pseudopressure treatment, \fr, from Eq. 2-54:

0.0002637&f
tD = —--rr- 2—

0.0002637(18.85)(36) _

" D (0.138)(0.01430)(0.000548)(0.39)2 ' '

From Eq. 2-56:

1.417 x 106T^
qD = khfi

Pi = 2100 psia 4> r̂1- = 335 mmpsia2/cp

From Eq. 2-55:

A ^i ~ irwf
&PD = —;

p = 1,750 psia «-> yjf(p) = 223 mmpsia2/cp

(335-223)IQ6

' • A P D = 335 x 10^(0.021696) = 1 5 ' 4 1

Calculating Gas-Pseudopressure t/̂ (/; ) Function

Accuracy of gas well test analysis can be improved in some cases if the pseu-
dopressure \/f(p) is used instead of approximations written in terms of pressure
or pressure squared. In this section, we discuss the calculations of pseudo-
pressure. Detailed discussion, including systematic development of working
equations and application to drawdown, buildup, and deliverability tests, is
provided in Ref. 2. The applications of real gas pseudopressure i//(p) to flow
in gas wells under practical conditions are as follows:



1.  When  turbulence  is not present,  the drawdown  test provides  accurate
results. When turbulence is significant,  the drawdown test can be mis-
leading.

2. The buildup test can be interpreted accurately even with extreme
turbulence.

3. The use of a p2 well-test plot is usually equivalent to the A(p) method,
when well pressures are below 2000 psi.

4. Flow capacity can be determined accurately from (p)2 or p well-test
plots if point values, rather than average values, are used for slopes and
gas properties.

Calculation of Pseudopressure

Gas pseudopressure, i/s(p), is defined by the integral

p

Ir(P) = 2 I ^-dp (2-57)
J ^z

pBASE=o

An example will illustrate this calculation.

Example 2-5 Calculating Gas Pseudopressure
Given data are gas gravity = 0.7, T = 2000F. Gas properties as functions

of pressure are given in Table 2-3.

Solution Use the trapezoidal rule for numerical integration.
For p = 150psia,

*(150) = 2 / ^ ^ 2 [ ( ^ ) o + ^ ) l 5 o ] ( 15O-O)
J MZ 2

Phase

=  2 [ Q + 1 2 ? 2 9 0 ]( 1 5 0) = 1.844 x 106 psia2/cp

Table 2-3
Gas Properties as Functions of Pressure

Pressure P Gas viscosity Compressibility p/v>z
(psia) (cP) factor  z (psia/cP)

150 0.01238 0.9856 12,290
300 0.01254 0.9717 24,620
450 0.01274 0.9582 36,860



For p = 300 psia,

[YJl) +(*-)   1
^(300) = 1.844 x 106 + 2 *z  5 0 — ^ 30° (300 - 150)

-..844XlQO + 2 ' ' 2 ' 2 9 0 + 24' 620' (300-.5Q

= 7.381 x 106psia2/cp

2.10 Analytical Solutions of Gas Flow Equations

Radial flow geometry is of greatest interest in gas well testing. This radial
flow equation was developed in terms of dimensionless variables in previous
sections. It is Eq. 2-41 and is repeated below.

i a r a i a
—-r- VD j - (A?D) = ̂ r  (A?D) (2-58)

?D drD L drD J dtD

Equation 2-58 can be solved for pressure as a function of flow rate and
time. Solutions to Eq. 2-47 depend on the reservoir type, the boundary and
initial conditions. Direct analytical solutions will be presented in this section.

Constant Production Rate, Radial Cylindrica l Flow,
Infinite-Actin g Reservoir  (Transient)

The Eq. 2-58 is reduced to an ordinary differential equation by applying the
Boltzmann transformation X = r^/^to). This is then solved by separating
the variables and integrating with the above three conditions. The equation
form of the solution is

ApD = -0.5Ei(-^-) (2-59)

or

a" ° = -a 5 Ј' ( - a=s) ^



Values of Ap D versus to can be found in Ref. 5 for various reservoir sizes,
that is, for various values of rD. Et  is the exponential integral and is defined by

OO

/

e~udu x x x

'-^  = ln(1.781) - Ј + JL  ̂ _ *
u  1!  2  x  2!  3 x  3!

JC

X4 (~x)n

4 x 4! n x n\
For values of x less than 0.02, Eq. 2-62 can approximate the exponential

integral with an error of less than 0.6:

Ei(-x) = ln(1.78Lc) for*  < 0.02 (2-62)

For computing pressures at the borehole such as drawdown pressures or
buildup pressures Eq. 2-61 may be used. However, if practical units are used
and logarithms to the base 10 are used, constants for Eq. 2-62 must be evalu-
ated. Darcy units apply to Eq. 2-62. Table 2^- lists Darcy units and practical
units.

For x > 10.9 the exponential integral is closely approximated by zero. To
evaluate the Ei function, we can use Table 2-5 for 0.02 < x 10.9.

Thus Eq. 2-59 becomes

pD = 0.5 l n f - ^ f y ) for ^ > 100 (2-59a)

pD = 0.5| In(-J 1 + 0.809071 for % > 25 (2-63)
L  \rD/  J rD

Table 2-4
Darcy and Practical Units for  Parameters in the
Exponential Solution of the Diffusivit y Equation

Parameter  or
variables Darcy units Practical units

C vol/vol/atm vol/vol/psi
(f> Porosity Porosity
h cm ft
K Darcy Millidarcies
/x Centipoise Centipoise



Table 2-5
Values of the Exponential Integral, -Et(-x) (after  Lee, © SPE, Well

Testing, 1982)5

-Ei(-x), 0.000 < 0.209, interval - 0.001

Z 0 1 2 3 4 5 6 7 8 9

0.00  oo  6.332  5.639  5.235  4.948  4.726  4.545  4.392  4.259  4.142
0.01  4.038  3.944  3.858  3.779  3.705  3.637  3.574  3.514  3.458  3.405
0.02  3.355  3.307  3.261  3.218  3.176  3.137  3.098  3.062  3.026  2.992
0.03  2.959  2.927  2.897  2.867  2.838  2.810  2.783  2.756  2.731  2.706
0.04  2.681  2.658  2.634  2.612  2.590  2.568  2.547  2.527  2.507  2.487
0.05  2.468  2.449  2.431  2.413  2.395  2.378  2.360  2.344  2.327  2.311
0.06  2.295  2.280  2.265  2.249  2.235  2.220  2.206  2.192  2.178  2.164
0.07  2.251  2.138  2.125  2.112  2.099  2.087  2.074  2.062  2.050  2.039
0.08  2.027  2.016  2.004  1.993  1.982  1.971  1.960  1.950  1.939  1.929
0.09  1.919  1.909  1.899  1.889  1.879  1.870  1.860  1.851  1.841  1.832
0.10  1.823  1.814  1.805  1.796  1.788  1.770  1.770  1.762  1.754  1.745
0.11  1.737  1.729  1.721  1.713  1.705  1.697  1.690  1.682  1.675  1.667
0.12  1.660  1.652  1.645  1.638  1.631  1.623  1.616  1.609  1.603  1.696
0.13  1.589  1.582  1.576  1.569  1.562  1.556  1.549  1.543  1.537  1.530
0.14  1.524  1.518  1.512  1.506  1.500  1.494  1.488  1.482  1.476  1.470
0.15  1.465  1.459  1.453  1.448  1.442  1.436  1.431  1.425  1.420  1.415
0.16  1.409  1.404  1.399  1.393  1.388  1.383  1.378  1.373  1.368  1.363
0.17  1.358  1.353  1.348  1.343  1.338  1.333  1.329  1.324  1.319  1.315
0.18  1.310  1.305  1.301  1.296  1.292  1.287  1.283  1.278  1.274  1.269
0.19  1.265  1.261  1.256  1.252  1.248  1.244  1.239  1.235  1.231  1.227
0.20  1.223  1.219  1.215  1.211  1.207  1.203  1.199  1.195  1.191  1.187

-Et(-x),0.00 < x < 2.09, interval = 0.01

0.0 oo 4.0380 3.3548 2.9592 2.6813 2.4680 2.2954 2.1509 2.0270 1.9188
0.1 1.8230 1.7372 1.6596 1.5890 1.5242 1.4645 1.4092 1.3578 1.3099 1.2649
0.2 1.2227 1.1830 1.1454 1.1099 1.0763 1.0443 1.0139 0.9850 0.9574 0.9310
0.3 0.9057 0.8816 0.8584 0.8362 0.8148 0.7943 0.7745 0.7555 0.7372 0.7195
0.4 0.7024 0.6860 0.6701 0.6547 0.6398 0.6354 0.6114 0.5979 0.5848 0.5721
0.5 0.5598 0.5479 0.5363 0.5350 0.5141 0.5034 0.4931 0.4830 0.4732 0.5721
0.6 0.4544 0.4454 0.4366 0.4281 0.4197 0.4116 0.4036 0.3959 0.3884 0.3810
0.7 0.3738 0.3668 0.3600 0.3533 0.3468 0.3404 0.3342 0.3281 0.3221 0.3163
0.8 0.3107 0.3051 0.2997 0.2944 0.2892 0.2841 0.2791 0.2742 0.2695 0.2648
0.9 0.2602 0.2558 0.2514 0.2471 0.2429 0.2388 0.2348 0.2308 0.2270 0.2232
1.0 0.2194 0.2158 0.2122 0.2087 0.2053 0.2019 0.1986 0.1954 0.1922 0.1891
1.1 0.1861 0.1831 0.1801 0.1772 0.1744 0.1716 0.1689 0.1662 0.1636 0.1610
1.2 0.1585 0.1560 0.1536 0.1512 0.1488 0.1465 0.1442 0.1420 0.1398 0.1377
1.3 0.1355 0.1335 0.1314 0.1294 0.1274 0.1255 0.1236 0.1217 0.1199 0.1181
1.4 0.1163 0.1146 0.1129 0.1112 0.1095 0.1079 0.1063 0.1047 0.1032 0.1016



Table 2-5 (Continued)
1.5 0.1002 0.0987 0.0972 0.0958 0.0944 0.0930 0.0917 0.0904 0.0890 0.0878
1.6 0.0865 0.0852 0.0840 0.0828 0.0816 0.0805 0.0793 0.0782 0.0771 0.0760
1.7 0.0749 0.0738 0.0728 0.0718 0.0708 0.0698 0.0679 0.0669 0.0669 0.0660
1.8 0.0651 0.0642 0.0633 0.0624 0.0616 0.0607 0.0599 0.0591 0.0583 0/0575
1.9 0.0567 0.0559 0.0552 0.0545 0.0537 0.0530 0.0523 0.0516 0.0509 0.0503
2.0 0.0496 0.0490 0.0483 0.0477 0.0471 0.0465 0.0459 0.0453 0.0448 0.0432

2.0 < x < 10.9, interval = 0.1

2 4.89 4.26 3.72 3.25 2.84 2.49 2.19 1.92 1.69 1.48
3 1.30 1.15 1.01 8.94 7.89 6.87 6.16 5.45 4.82 4.27
4 3.78 3.35 2.97 2.64 2.34 2.07 1.84 1.64 1.45 1.29
5 1.15 1.02 9.08 8.09 7.19 6.41 5.71 5.09 4.53 4.04
6 3.60 3.21 2.86 2.55 2.28 2.03 1.82 1.62 1.45 1.29
7 1.15 1.03 9.22 8.24 7.36 6.58 5.89 5.26 4.71 4.21
8 3.77 3.37 3.02 2.70 2.42 2.16 1.94 1.73 1.55 1.39
9 1.24 1.11 9.99 8.95 8.02 7.18 6.44 5.77 5.17 4.64
10 4.15 3.73 3.34 3.00 2.68 2.41 2.16 1.94 1.74 1.56x60"6

ApD  varies with the boundary conditions, but for  the case of constant pro-
ductivity rate from an infinite-acting reservoir, Ap& is given by

ApD = -0.5Ei(-^-\ (2-64)

When r = rw, rD =  1. In terms of the logarithmic approximation, from
Eq. 2-63

ApD =  0.5 (In tD + 0.809) for tD >  25 (2-65)

It is evident that pD for an infinite-acting reservoir is identical to the rD = 1
curve for po, is expressed in dimensionless terms, and is the value at the
well without inertial-turbulent and skin effects.1 The effects of skin inertial-
turbulent flow are treated earlier.

Example 2-6 Calculating Flowing Pressure at the Well due to Laminar
Flow in an Infinite-Acting Reservoir Using py p

2, and Pseudopressure Treat-
ments.

Using the following data, calculate the pressure at the well after a flowing
time of 24 hours using p, p2, and ty treatment. Given data are h = 40 ft,
k — 20 mD, pi = 2000 psia, rw = 0.399 ft, T =  5800R, qsc = 7.0 mmscfd,
0 = 0.16, z =  0.850, (I =  0.0152 cP, c =  0.00061 psi"1.



Solution  Pressure treatment:
From Eq. 2-54:

0.0002637**
tD = , - - 9

=  0-0002637(20)(24) =

0.16(0.0152)(0.00061)(0.399)2

From Eq. 2-65, since tD > 25:

:.ApD = 0.5(lnfD+0.809)

= 0.5(ln(535,935) + 0.809)) = 7.00

The value of ApD can also be obtained from Ref. 5, rp = 1.0 curve.
First trial:

Assume

p = Pi = 2000 psia

From Eq. 2-50:

7.085 x 105zTqscfl
QD = —TT

pkhpt
 ̂ 7.085 x 105(0.85)(580)(7.0)(0.0152) ^

(2000) (20) (40) (2000)

Using Eq. 2^9:

PiQD

P = Pi- Pi&PDQD == 2000 - 2000(0.01161)(7.00)
= 2000- 163 = 1837 psia

Second trial:
Assume

„  Pi+p 2000+1837 .
P = — y - = 2 = pSia

From Eq. 2-50:

7.085 x 105(0.85)(580)(7.0)(0.0152)
H 1919(20)(40)(2000)



or

p = 2000 - 2000(7.0)(0.01210) = 1831 psia

Third trial:
Assume

_ Pi+p 2000+1831 .
p = —j- = = 1916 psia

= 7.085 x 105(0.85)(0.0152)(580)(7.0)
qD 1916(20)(40)(2000)

or

p = 2000 - 2000(7.0)(0.01212) = 1830 psia

Pressure-squared treatment:
Assuming /2, z, and c are constants, therefore, using Eqs. 2-65 and 2-53:
From Eq. 2-53:

1.417 x 106zTqscfl
q° = TTi

khpf

= 1.417 x 106(0.85)(580)(7.00)(0.0152)
(20) (40) (2000)2

From Eq. 2-52:

AP. = ^

PiQD
or

p = yjpf - pfApDqD = [20002 - 20002(7.00)(0.02323)]a5

= 1830 psia

(the same as the results from the pressure treatment).



Pseudopressure  treatment:
The values of z,, /z, and c,- are calculated at pt; therefore

ft = 329.6 mmpsia2/cP, zi = 0.84, /x, = 0.0156 cP,

Ci = 0.00058 psi"1

From Eq. 2-54:

_ 0.0002637̂

(frliiCtrl

=  0.0002637(20)(24) =

(0.16)(0.0156)(0.00058)(0.399)2

Since to > 25 and using Eq. 2-65:

Ap D = 0.5 (In f z) +0.809)

= 0.5[ln(549,203) + 0.809] = 7.013

From Eq. 2-56:

1.417 x 106 Tqsc

APD = khtt

= 1.417 x ltf(S8O)C7.O) =

(20) (40) (329.6 x 106)

From Eq. 2-55:

ApD = —: L

^tq D

Therefore:

^wf= ^i  - 1^i  q D Ap D

=  329.6 x 106 - 329.6 x 106(0.02182)(7.013)

= 279.16 mmpsia2/cP =1818 psia

The values of pwf calculated by the /?, p2, and ^ treatments are 1830,1830,
and 1818 psi respectively.

Example 2-7 Calculating Flowing Pressure away from the Well due to
Laminar Flow in an Infinite-Acting Reservoir Using p, p2, and Pseudopressure
Treatments



A gas well is situated in an infinite-acting reservoir. Calculate the flowing
pressure, due to laminar flow, at a radius of 100 feet from the well, after 24
hours of production. Reservoir and well data are as follows:

Pt = 2000 psia, V, = 329.6 mmpsia2/cP, n = 0.835, fit = 0.0159 cP,
C1 = 0.00055 psia"1, r = 50 ft, rw = 0.33 ft, 0 = 0.15, k = 20 mD,
t = 24 hours, qsc = 7.50 mmscfd, T = 5800R, h = 40 ft.

Solution From Eq. 2-54:

0.0002637JU
tD  —  1  9

= 0-0002637(20X24)

(0.15)(0.0159)(O.0O055)(0.33)2

rw .33

tD _ 886,079 _

- ̂  - " w -38-35
Since -z- > 25 and using Eq. 2-63:

ApD = 0.5[ln( % J + 0.809071

= 0.5[ln(38.35) + 0.80907] = 2.228

From Eq. 2-56:

1.417 x \06Tqsc
qD = TTTi

= 1.417 x ltf(S80)(7.50) =

(20)(40) (329.6 x 106)

From Eq. 2-55:

^PD = ~

.'-fwf= ft -fi&pDqD

=  329.6 x 106 - 329.6 x 106(2.228) (0.02338)

= 327.88 mmpsia2/cP

Using the \(r-p curve, pwf = 19Al psia.



Radial-Cylindrica l Flow, Finit e Reservoir, Constant
Production Rate, with No Flow at Outer  Boundary
(Pseudo-Steady-State)

Equation 2-58 can be written as follows:

d2 Id d
—=- (Ap D) + — — (Ap D) = — (Ap D) (2-66)
drp rD drD dtD

Using Laplace transform15 and Bessel functions, ApD, which is the solution
at the well, is obtained as follows.

For values of tD < 0.25 r2
eD :

ApD = 0.5 Info + 0.80907) (2-67)

For -^- > 0.25: the equation of the form solution is

ApD = -f+ ln(0.472 reD) (2-68)

where

rereD —
rw

Values of ApD versus tD can be found in Ref. 5 for various reservoir sizes.
At early times the solution is represented by Eq. 2-61 and for large times and
where rw « r e , the solution at the well is given by Eq. 2-68. The transition
from infinite to finite behavior occurs at

tD  ̂ 0 .25 r2
eD (2-68a)

Example 2-8 Calculating Flowing Sandface Pressure in Finite-Acting
(Closed) Reservoir

A gas well in a finite-acting (closed) reservoir (re = 1850 ft) was produced
at a constant rate of 7.5 mmscfd. Assuming gas composition, reservoir, and
well data pertinent to the test are the same as in Example 2-1, calculate the
flowing sandface pressure, /?w/, after 80 days of production.

Solution Since the gas is the same as that of Example 2-1, the \js-p curve
already constructed for Figure 2-1 is applicable to this problem.

t = 80 x 24 = 1920 hours



From Eq. 2-54:

0.0002637fo

=  0-0002637(20)(l,920) =

(0.15)(0.0159)(0.00055)(0.33)2

From Eq. 2-56:

1.417 x W6Tqsc

kh\j/i

= 1.417 x 10*(580)(7.5)
(20)(40)(329.6 x 106)

re 1850
reD = — = —— = 5606

rw .33

r2
eD = 56062 = 31,427,236

70,886,315
lreD 31,427,236

Since 1^Li > 0.25, A/?/) is given by Eq. 2-68:
"  eD

ApD = ^- + ln(0.472 reD)

= 2(2.256) + ln(0.472 x 5606)

= 12.392

:.fwf= ft -fiApDqD

=  329.6 x 106 - 329.6 x 106(12.392)(0.02338)

= 234.11 mmpsia2/cP

pwf=  1790 psia (Figure 2-1)

The transition from infinite to finite behavior occurs at

025^/w2,
0.0002637)k

0.25(31,427,236)(0.l5)(0.0159)(0.00055)(0.33)2

= 0.0002637(20) ~ =  2U*  h°WS



Radial-Cylindrica l Flow, Finit e Circular  Reservoir,
Constant Production Rate with Constant Pressure
at Outer  Boundary (Steady-State Conditions)

The conditions for  this situation are:

1.  Flow rate at the well  is constant
2.  The pressure at the boundary  is constant at all times, pe  = pv  for  all t
3.  Initially  the pressure throughout  the reservoir is  uniform

By the use of the Laplace transform, Bessel functions,3 and the above bound-
ary conditions, the solution of the Eq. 2-66 is found to be (Carslaw and Jaeger,
1959, p. 334)20

ApD = In reD fovtD > 1.0 r*D (approximately) (2-69)

This equation may also be derived directly by integration of Darcy's law
for a radial flow. Equation 2-69 represents the steady-state condition. Values
of ApD versus to can be found in Ref. 5 for various reservoir sizes, which are
for various values of rr>.

Example 2-9 Calculation of Flowing Bottom-Hole Pressure Assuming
Steady-State Conditions

Rework Example 2-9, assuming a steady-state condition is achieved after
long producing time. Calculate the flowing bottom hole pressure, pwf, after
1920 hours of production.

Solution From Example 2-8, we have tD = 70,886,315, qD = 0.02338,
reD = 5606, (reD)2 = 31,427,236. Since tD > l.Or^,, ApD is given by
Eq. 2-69,

ApD = ln(reD) = ln(5606) = 8.632

From Eq. 2-55:

V v = ^i -fi^PDqD

=  329.6 x 106 - 329.6 x 106(8.632)(0.02338)

= 263.8 mmpsia2/cP

From Figure 2-1, pwf = 1970 psia.



Radial-Cylindrica l Flow, Infinit e and Finit e Circular
Reservoir, Constant Production Rate, Solution at the Well

The Apr> functions  may  also be  expressed  in steady-state form by intro-
ducing the idea of an effective drainage radius. This concept, along with the
concepts of radius of investigation and time to stabilization, is discussed in de-
tail hereafter. Possible expressions for the effective drainage radius for various
systems are as follows.

Infinite reservoir:

ln( — ) = -OntD + 0.809) fortD > 25. (2-70)
\rw J 2

Closed outer boundary:

rd = 0A72re for tD > 0.25r2eD (2-7Oa)

Constant-pressure outer boundary:

rd = re for rd = re

In terms of pressure treatment:

ApD = ^ ^ = I n ( ^ ) (2-71)
Pi q D \rw/

In terms of pressure-squared:

f\Pli = JrA (2-72)
pf q D VwJ

In terms of pseudopressure:

±J^l  = drA\ (2_73)
VtqD VwJ

Radial-Cylindrica l Flow, Constant Well Pressure, Infinit e
and Finit e Circular  Reservoir

When the well is producing at a constant pressure, the flow rate is not
constant but declines continuously. The cumulative production is given by
Katz et al. (1959, p. 414)21 and may be written as

Gp = 2ncl>crlh^^-(pi - pwf)QpD (2-74)



where

Gp = cumulative gas produced, and
QpD — dimensionless total production number which has been tabulated

for certain boundary conditions, and can be found in Ref. 5.

For tD < 0.01:

QPD = i f ) (2-75)

For tD > 200 or

-4.29881 + 2.02566rDto oc QpD = ^ : (2-76)
mtD

0.0002631kt

In terms of pressure-squared treatment:

O.m<phrlc(pf - plf)
P = T ^ QpD (2-77)

where

Gp- cumulative gas produced, mscf, and
rD = r/rw

Values of QpD as a function of dimensionless time to and dimensionless
radius can be found in tabular form in Ref. 5.

Linear  Flow, Constant Production Rate, Infinit e Reservoir

When flow is in the vicinity of a fracture (of length x/), the flow will be
linear and the pressure at any distance x from the sandface {x / 0) is given
by Katz et al. (1959, p. 411)21 as

*•- M%T'->(-Ј)-4K^)I <2-78)
where

0.0002637fo
to = .__ 2 (2-79)

<t>ixcxj



Xf  is half fracture  length, ft

x
xD =  —

xf

In terms of pressure treatment:

4.467 x UPzTqxJh
qo = — (2-80)

pkhpi

In terms of pressure-squared treatment:

8.933 x l06zTqscfl

<lD  = TT—2 (2-81)
khpf

In terms of pseudopressure treatment:
8.933 x 106Tqsc

qu = — (2-82)
khfi

and erf is the error function defined as
X

erf X = -^- [ e~t2dt (2-83)
V* J

o

erf(oo) = 1, the complementary error function, and is defined by

OO

erfc x = 1 - erf x = -^= f e~{''dt (2-83b)
x

The values of error and complementary functions are given in Table 2-6.
Radial-Spherical Flow, Constant Production Rate,
Infinit e Reservoir

The dimensionless ApD, at any radius r, is given by (Carslaw and Jaeger,
1959, p. 261)20

1 / r 2 \ a 5

ApD = -erfc(-^\ (2-84)
2 \4fD/



Table 2-6
Complementary Error  Function (after  Katz et al., 1959,

© McGraw-Hill) 21

X erf x erfc x = 1 — erf x

0.0 0.0000 1.0000
0.1 0.1114 0.8887
0.2 0.2227 0.7773
0.3 0.3256 0.6745
0.4 0.4284 0.5716
0.5 0.5162 0.4839
0.6 0.6039 0.3961
0.7 0.6730 0.3268
0.8 0.7421 0.2579
0.9 0.7924 0.2076
1.0 0.8427 0.1573
1.1 0.8765 0.1235
1.2 0.9103 0.0897
1.3 0.9313 0.0687
1.4 0.9523 0.0477
1.5 0.9643 0.0356
1.6 0.9763 0.0237
1.7 0.9827 0.0173
1.8 0.9891 0.0109
1.9 0.9922 0.0078
2.0 0.9953 0.0047
2.1 0.9967 0.0033
2.2 0.9981 0.0019
2.3 0.9987 0.0013
2.4 0.9993 0.0007
2.5 0.9996 0.0005
2.6 0.9998 0.0002
2.7 0.9999 0.0001
2.8 0.9999 0.0001
2.9 1.0000 0.0000
3.0 1.0000 0.0000
3.1 1.0000 0.0000
3.2 1.0000 0.0
3.3 1.0000 0.0
3.4 1.0000 0.0
3.5 1.0000 0.0
3.6 1.0000 0.0
3.7 1.0000 0.0
3.8 1.0000 0.0
3.9 1.0000 0.0
4.0 1.0000 0.0



where

0.0002637fr

In terms of pressure treatment:

7.110 XlOPzTqxH
qD =  — (2-86)

pkrpt

In terms of pressure-squared treatment:

1.422xl06zr^c/2
#Ј> = ;—5 (2-87)

In terms of pseudopressure treatment:

1.422 x IVTq30qD = j — (2-85)

In thick formations, radial-spherical flow may exist in the vicinity of the well
when only a limited portion of the formation is opened to flow.

2.11  Application of Superposition Techniques

Superposition may be considered to be a problem-solving technique in
which the pressure behavior at any point at any time is the sum of the histories
of each of the effects that may be considered to affect the solution at that point.
Particular applications of superposition, which are important in the analysis of
pressure test data, are discussed in the following section.

Investigating for  Rate Change Effects

The following example wil l illustrate the principle of superposition as
applied to the pressure drawdown due to two different flow rates. The method
may be extended to any number of changing flow rates. Thus the total pressure
drop for the well would be

(Axj/)totai = \^iApDiqm\qi + \i/iApD2qD2\q2-qi

+ I x/fi ApD3qD3 \q3.q2 + • • •. (2-89)

fmf = r̂1. - (Aif)total (2-90)

The variable-rate production history is illustrated in Figure 2-2.



Time t, hours

Figure 2-2. Variable-rate production of a gas well.

Example 2—10 Calculating Flowing Sandface Pressure Accounting for Rate
Change Effects

A well situated in an infinite-acting reservoir was produced at constant rate
of 5 mmscfd for 55 hours, at which time the flow rate was changed to 15
mmscfd. The stabilized shut-in pressure, pR, prior to the test was 2100 psia.
General data pertinent to the test are as follows: k = 25 mD, T = 6000R,
rw = 0.35 ft, h = 35 ft, 0 = 0.16, a = 0.00053 psi"1, /x, = 0.0147 cP,
i/ri  = 320 mmpsia2/cP, t\ = 45 hours, ^ = 70 hours, q\ = 5 mmscfd, ^2 = 15
mmscfd.

Using the principle of superposition, calculate the flowing sandface pres-
sure, pwf, after 40 hours of production at the increased flow rate.

Solution Total production time = t\ + ti — 45 + 70 = 115 hours.
From Eq. 2-54:

0.0002637JU
to = — Y~

_ 0.0002637(25) (115) _
tm ~ (0.16)(0.0147)(0.00053)(0.35)2 = ' ' ?

tm = (0.16)(0.0147)(0.00053)(0.35)2 = 3 ' 0 2 2 ' 0 3 1
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From Eq. 2-56:

1427 x 103r^c
qD = —kWt—

qm = (25X35X320 *: 106) = 0 0 1 5 18

1427 x 106(600)(10)
qm = (25)(35)(320 x 10«) = a O 3 0 36

Since the reservoir is infinite-acting, Eq. 2-65 applies, so that

Ap D - 0.5 [lnfD + 0.809]

APDI = 0.5 [ln(4,964,765) + 0.809] = 8.1134

ApD2 = 0.5 [In(3,022,031) + 0.809] = 7.86522

(A\/r) totai = iriApDiqDi + tiApmqm

=  320 x 106(8.1134)(0.01518) + 320 x 106(7.86522)(0.03036)

= 115.82 mmpsia2/cP

ftwf= ^i - (Al//)total

= 320 x 106 - 115.82 x 106 = 204.18 mmpsia2/cP

from Figure 2-1; .-. pwf— 1604 psia.

Estimating for  Effects of More Than One Well

In some cases more than one well is producing from a common reservoir.
As an example, consider three wells A, B, and C that start to produce at the
same time, from an infinite-acting reservoir, the pressure at a point C in the
producing wells (see Figure 2-3). Thus the pressure at a point C in the reservoir
is obtained by superposing (adding) the solution at point C due to well A to
that at point C due to well B. Each of these solutions is independent of the
other and, to obtain it, the pressure behavior at any point r in the reservoir is
required: that is, the general solution of the partial differential equation and



Figure 2-3. Three wells in an infinite reservoir,

not just the solution at the well. Thus

Ap\PointC = A<7AJ-0.5Ј, ( Jf )1 + PiqBD\-0.5Ei ( ^ ) ] (2-91)

where

rA — distance from C to well A.
rAD = rA/rw

rB = distance from C to well B
rBD = rB/rw

This is the basis of "interference" type tests used to determine reservoir
characteristics. In such a test, point C is really an observation well and the
interference of other producing wells is measured at C. Figure 2-3 illustrates
this concept.

Example 2-11 Accounting for the Effects of More Than One Well
Consider the three wells in Figure 2-4. Well B is put on production at rate

of 3.0 mmscfd after well A has produced for 2 months at a rate of 5.2 mmscfd.
After well A has produced 3 months, what is the pressure at well C, where a
well C is to be drilled? Rock and fluid properties are as follows:

Pi = 3700 psia, 1̂- = 772.56 mmpsia2/cP, a = 0.00023 psi"1, fit =
0.0235 cP, 0 = 0.1007 fraction, rw = 0.4271 ft, T = 7100R, A = 41 ft,
k = 8.5 mD.

WeIlC Weil B

Distance, rAB

WeIlA

Distance, rAC



Well A  Well B
Ii  = 2 months  '2 = 3 months

qsc, = 5.2 mmscfd qsc2 = 3.0 mmscfd

Figur e 2-4. Illustratio n of thre e well s in infinit e system .

Solution  From Eq. 2-51:

0.0002637/:?
tD = — 5—

- ° -0 0 0 2 6 37 x 8.5 x 2 x 30.5 x 24
tDA ~ 0.1007(0.0235) (0.00023) (0.4271 )2 ' ' "

- ° -0 0 0 2 6 37 x 8.5 x 3 x 30.5 x 24
tm ~ 0.1007(0.0235)(0.00023)(0.4271)2 ' ' "

From Eq. 2-56:

1427 x 1037tfsc
qD= kWt

1427 x 103(710)(5.2)
qm = (8.5)(41)(772.56 x 10') = ° -°1 9 5 68

1427 x 103(710)(3.0)
qm = (8.5)(41)(772.56 x 10«) = °-°1 1 2 89

rA = distance from well C to well A = 700 ft

rA 700
' " = ; ; = a427T = 1638-96

rB = distance from well C to well B = 1000 ft

r"> =  o ^ r   = 2-341-37

WeIlC



Using Eq. 2-91:

ApLeuc = Pi(qAD)\o.5Ei(^-X\ + p, (̂ Z>B) fo.5^ ( ^p - )l

8370^HHiS] ]
+ 3,700(0.011289)[0.5Јi(^|fl|^)]

= 72.4016[0.5E,-(0.020318)] +41.7693[0.5E1-(0.027644)]

From Table 2-5, E1-(0.020318) = 3.355 and E1-(0.027644) = 3.062

... ApU//c = 72.4016[0.5(3.355)] +41.7693[0.5(3.062)]

= 185.40 psia

Pressure at well C = 3700 - 185.50 = 3515 psia.

Determining Pressure Change Effects

Superposition is also used in applying the constant pressure-rate case. In
cases where two pressure changes have occurred, the constant-pressure solu-
tion will be applied to each individual pressure change. This means that in this
particular case we have to use Eq. 2-92 two times. The following generalized
form of Eq. 2-92 will be used in applying the principle of superposition to
pressure changes in the constant-pressure case:

Gp = -— 2L [ ~^~) Qp° ( 2" 9 2)

1  y=i \ z /

AP2j = Pirn - PLw

and

i t x j A / PoId + Pnew \

z is calculated at I — — 1

For illustration, let us assume that a well has experienced the pressure history
shown in Figure 2-5,



/ hours

Figure 2-5. Variable pressure history of a gas well.

Simulating Boundary  Effects

The principle of superposition concept can be applied to infinite-acting
solutions to reservoirs that are limited in one or more direction, i.e., pressure
behavior in bounded fault. Figure 2-6 shows a well, A, located at a distance
L/2 from a no-flow barrier and producing at a constant rate. This system can
be treated by replacing the barrier by an imaging well Ar identical to the real
well but situated at a distance L from it. Thus the pressure history of the well
wil l be that of an infinite-acting well at A, plus the effect at point A' of an
infinite-acting well at A', that is,

ApD]-"  = PiqD[-°-5Ei(-^iki)]
«— caused by A ->

-> effect of A' at A - •

Equation 2-67 may approximate the first Et term because the agreement is
usually less than 0.01 for all practical times. However the second Et term is not
true because of the presence of L2 (usually a large number) in the argument.
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Figure 2-6. Well near no-flow boundary illustrating use of imaging.

Therefore:

*PD =  PiqD\o.5(\ntD +0.809) - °-5E<(-Q^Wkt)] (2~94)

The following example will illustrate the principle of superposition applied
to the simulation of no-flow barriers within a reservoir.

Example 2—12 Simulating No-Flow Boundaries within a Reservoir
In an infinite-acting gas reservoir, a well is situated 150 ft from a barrier and

produced at a constant rate of 5 mmscfd for 36 hours. The stabilized shut-in
reservoir pressure, /?#, prior to the test was 2100 psia. Calculate the flowing
bottom hole pressure. Other data are as follows:

k = 25 mD9 T = 5S0°R,h = 41ft,rw = 0.35 ft, 0 = 0.16, [X1 = 0.0157 cP,
Ct = 0.00059 psi"1, pi = 2,100 psia, Vv = 320 mmpsia2/cR

Solution From Eq. 2-51:

0.0002637fcf

=  0-0002637(25)(36) = ^ 3 0 7 3 9

(0.16)(0.0157)(0.00059)(0.35)2

From Eq. 2-56:

1417 x 103r^e
qD = khfi

_ 1417xlQ3(580)(5) _

(25)(41)(320 x 106)

No flow barrier

Image well, A

Real well A



Equation 2-55 may be written in terms of pseudopressure as

^Wf= ti -^i ApDqD

where

ApD = 0.5QntD + 0.809) - 0 . 5 Ј , ( - ^ ^ )

= 0.5(ln 1,307,209+ 0.809)

0 5 E ( (0-1 6)(0'0 1 5 7)(a 0 ( ) Q 5 9)(1 5 Q)2^
1V (0.00105)(25)(36) /

= 7.446 - 0.5E1-(-0.353) = 7.447 - 0.5(2.75) = 6.07

Therefore

VV = 320 x 106 - 320 x 106(6.07)(0.01253)

= 320 x 106 - 24.34 x 106 = 295.66 mmpsia2cP

from .-. pWf = 1865 psia.

Use of Horner' s Approximation

In 1951, Horner11 introduced an approximation that could be used in many
cases to avoid the use of the tedious superposition principle as applied to model
production history of a variable-rate well instead of using the sequence of E1-
functions, i.e., one Et function for each rate change. With the help of this
approximation, we are able to use one equation with one single producing rate
and one single producing time.

Thus, mathematically,

., - ^ (2-95)
tflast

where

Gp = cumulative production, mmscf, and
qlast z= constant-rate just before shut-in, mmscfd.



Accounting for  Different Reservoir Geometry

Ramey22 has presented models of pseudo- steady- state flow in more general
reservoir  shapes.  For practical  applications,  the concept of  the  shape  factor,
CA,  which  depends  on  the  shape  of  the  area  and  the well  position,  is  quite
useful.  Defining  a dimensionless  time based  on drainage area, A,  as

0.0002637A*
tD =   ——  (2- 51)

(pficA

tDA = tD

r- f  (2- 96)

Pi  -   Pw/ =  PiqD\ |ln(2'24^AfzM j  +  4ntDA  -   F\  (2- 97)

where dimensionless pressure ApD  is

A № = > [ l n ( ^p) + 4 ^_ F ]   <2_98)
and  F  is  the Matthews, Brons, and H azebroek23  dimensionless  pressure  func-
tion that has been evaluated for various reservoir  shapes and well locations. For
small values of tDA,  that is, the transient region of flow, the well is  infinite- acting
and

F  =  4ntDA  (2- 99)

and

A P D = 0 . 5 1 n (2 - 2 4 5 ^ )  (2- 100)

For  large values of  tDA,  when all  the boundaries have been felt,  that is,  at
pseudo- steady state,

F  =   In(C  AtDA)  (2- 101)

and

ApD  =   0.5  l n ( 2 ' r

2

2

4 ^ 8 A )  +   2^tDA  (2- 102)

The  late  transient  between  transient  and  pseudo- steady- state  varies  with
each situation. During this period, the pressure drop function may be obtained
from

APD  = 0.5[ ln (2- 2 4 5J?A f n 4)  +  Antm  -  F ]  (2- 103)



Figure 2-7. Gas well is situated in the center of a rectangle.

Dimensionless pressure function / is obtained from Table B-I23 or graphic-
ally23 from Figures B-I through B-7. Shape factors CA for various drainage
shapes and well locations can be found from Table B-I.13

Example 2-13 Accounting for Different Reservoir Geometry
A gas well is situated in the center of a rectangle, as shown in Figure 2-7,

having closed no-flow boundaries and an area A of 8 x 106 sq ft, was produced
at a constant rate of 5 mmscfd. The stabilized shut-in reservoir pressure, /?#,
prior to the test was 2100 psia. Use gas composition given in Example 2-1.
Other data are as follows: k = 25 mD, T = 5800R, h = 41 ft, rw = 0.35 ft,
0 = 0.16, & = 0.0157 cP, Ci = 0.0059 psi"1, pR = 2100 psia, \jrR = 320
mmpsia2/cP.

Calculate flowing pressure, pwf, after 40 and 2000 hours of production.

Solution Since the gas is the same as that of Example 2-1, the ^ — P curve
already constructed (Figure 2-1) is applicable to the problem.

t = 40 hours:
From Eq. 2-51:

0.0002637Јr
*DA  = —7 :—

= 0-^637(25)(40) =

(0.16)(0.0157)(0.00059) (8 x 106)

From Eq. 2-56:

1417 x 103r^c
QD = TT-.

k hyi
=  "1 7 x 103(580X5) , a 0 1 2 53

(25)((41)(320 x 106)



Calculate F from Table B-I:23 F = 0.2806.

From Eq. 2-103:

Apo=0.5[ln^!^ +4^-F ]

= 05̂  2.2458(8 x g)(0.02224) + 4(22/7)(0 M253) _ „  2 g 0 6]

= 7.29

Also,

^PD = —:
^iq  D

After rearranging:

^wf - ft -fiApDqD

=  320 x 106 - 320 x 106(7.29)(0.01253) = 290.77 mmpsia2/cP

From the V - P curve (Figure 2-1), Pwf = 1845 psia.

t = 2000 hours:

From Eq. 2-51:

0.0002637̂
tDA = 1 A

_ 0.0002637(25) (2000) _
~ (0.16)(0.0157)(0.00059)(8 x 106) ~

From Eq. 2-56:

1417 x 103r^c

4° = TTi
khy/i

= 1417 x 103(580X5)
(25)(41)(320 x 106)



Calculate F  from Table B-I:23 F = 3.2000

From Eq. 2-103:

ApD = 0.5 In h 4ntDA - F
L ^w J

_ ^TMX9XgHUm +4(22/7)(0.01253) _ 3.200]

= 14.84

Also,

A n in - jfmf
^PD = —;

After rearranging the preceding equation:

^Wf= ^i -\lriApDqD

=  320 x 106 - 320 x 106(14.84)(0.01253) = 260.50 mmpsia2/cP

From the x// — p curve (Figure 2-1), Pwf = 1746 psia.
Alternatively, from Table B-2,13 tDA required for stabilization equals 0.15

and CA = 21.8369. Because tDA at 2000 hours = 1.1120 > 0.15, Eq. 2-102
can be used to evaluate ApD.

From Eq. 2-102:

/2.2458 A \
ApD =  0.5 InI   ^2 c J + 2ntDA

Therefore,

^Wf= fi -fiApDqD

=  320 x 106 - 320 x 106(14.84)(0.01253) = 260.50 mmpsia2/cP

From the x/r - p curve (Figure 2-1), Pwf = 1746 psia.



2.12  Choice of Equation for  Gas Flow Testing
and Analysis

This section will discuss correlation of the gas flow solutions in terms of
the pressure; pressure  squared, and real-gas pseudopressure approaches. An
analysis of these approaches has been conducted by Aziz, Mattar, Ko, and
Brar.7 They consider the analytical solution at the well for an infinite reservoir
given by Eq. 2-104:

ApD = -0.5Ei(-^-) (2-104)

Calculate the sandface pressure from this equation, using different ap-
proaches.

Pressure Case

For pressure >3000 psi the simpler form is in terms of pressure, p. The
differential equation is

±jL(r-\  =  0/XC  gg (2-105)

rdr\ drj 0.000263Ik dt v ;

The diffusivity equation in dimensionless variables becomes

i a r a i a
— ^-\rD--(ApD) = —(ApD) (2-106)
rD drD L drD J dtD
The dimensionless time, ̂ , in Eq. 2-106 is defined by

| p = 0.0002637*,/JN

<t>rl  \iLcJ

The definition of Ap#, however, is different for this approach. For the
pressure case,

kh K p )

Both quantities (^) and (^) in Eqs. 2-107 and 2-108 are evaluated at

(Pi + P) /2.



Pressure- Squared  Case

For  pressure  <2000  psi  a  simple  form  in  terms  of  p2  is  more  generally
applicable.

a y  i  dp2

  =  <t>^c  dp2

dr2  r  dr  0.0002637/t  dt

The diffusivity  equation  in dimensionless  variables  becomes

a ^   +  1 3 A ^  a
dr2

D  rD  drD  dtD

The  definition  of  Ap#,  however,  is  different  for  this  approach.  For  the
pressure- squared  case,

^  =  M.7xL" Z  )  ( 2- 1H )

The quantities  ( ^ )  and  (fiz)  in Eqs. 2- 107  and 2- 108  are evaluated  at  p(.

Pseudopressure  Case

For both low  and high pressures  the equation in terms of pseudopressure  is
best  fitted  to this role, is  denoted by  x/ r (p), and is  defined  by  the  integral10

p

Ir(P) = 2  f  —dp  (2- 112)
J  VZ

Phase

The differential  equation in terms of  this approach  is

i aW_ №, w  r2_113)

rdr\   dr  J  0.0002637A:  dt

The diffusivity  equation  in dimensionless  variables  becomes

± J L( , 0 ^ )  =  ^  <2_I14)

?D  orD  \  drD  J  dtD

The definition  of  Axj/ j) is

The properties  are evaluated  at initial  conditions.



2.13  Skin, IT Flow, and Wellbore Storage  Effects

In the derivation of the equations  it was assumed  that the porous  medium
was homogeneous  and isotropic  and that  flow was single-phase and obeyed
Darcy's law. It was also supposed that opening and shut-in of the well was
done at the sandface. In actual fact these idealizations are not realistic, and
derivations from the ideal model are too frequent and important to be ignored.
Ways of accounting for skin effects; IT flow, and wellbore storage wil l be
treated in the following sections.

Accounting for  Effects of Formation Damage

The permeability of the formation immediately around the well can be
damaged by the well drilling process or improved by fracturing or acidizing
the well on completion. To account for this altered permeability a skin factor
was defined by Van Everdingen8 as

(ApD)skin = s, a constant (2-116)

so that

&PD \weii (including skin) = pD + s (2-117)

This essentially states that there wil l be an added pressure difference due to
the skin effect given by Eq. 2-117. A position value of s indicates a damaged
well, and a negative value, an improved well. Hawkins9 proposed that the skin
be treated as a region of radius rskin with permeability ksidn, with the skin factor
given by

s = (-^-l)ln^ (2-118)
\  ̂skin / f\v

Equation 2-118 is valid for both positive skin (Jc5Jdn < k) and negative skin
(ksktn > k) but there is no unique set of values of kskm and rskin for a particular s.

An alternative treatment of the skin effect is that of an "effective wellbore
radius" (Matthews and Russell, 1967, p. 21),15 defined as that radius which
makes the pressure drop in an ideal reservoir equal to that in an actual reservoir
with skin. Thus:

rw (effective) = rwe~s (2-119)

For positive skin, rw (effective) < rw, that is, the fluid must travel through
additional formation to cause the observed pressure drop, Ap. For negative
skin, rw (effective) > rw. This is a useful concept in hydraulically fractured
wells.



Accounting for  Effects of Turbulence

For  gas  flow,  however,  inertial  and/or  turbulent  (IT)  flow  effects,  not
accounted  for by Darcy's  law, are frequently  of significance  and should not
be  ignored.  IT flow is most pronounced  near the well and results  in an addi-
tional pressure drop similar to the skin effect, except that it is not a constant
but varies directly with flow rate.24 Smith25 confirmed with actual test results
and with numerical solutions that IT flow could be treated as an additional,
rate-dependent skin effect.

(ApD)IT = Dqsc (2-120)

Where D — IT flow factor for the system, the pressure at the well is given
by

Apz)U// = PD + s + Dqsc (2-121)

or

s' = (ApD)skin +  (&PD)IT = s + Dqsc (2-122)

The following example wil l show how pressure drop is attributed to laminar
flow, skin, and IT flow effects. It assumes negligible effects of viscosity on
turbulence.

Example 2-14 Calculating Pressure Drop due to Laminar Skin and IT Flow
Effects

In an infinite-acting gas reservoir, a well was produced at a constant rate,
qscU of 8 mmscfd for a period of 35 hours. The flowing bottom hole pressure,
pwp, at that time was 1550 psia. The same well was produced at a constant
rate, qsc2, of 11 mmscfd for a time of 25 hours. The flowing bottom hole
pressure, p^p, at that time was 1300 psia. The stabilized shut-in pressure, PR,
prior to each of the two flowing periods, was 2100 psia. Other data pertinent
to the test are given below:

k = 25 mD, rw = 0.35 ft, h = 35 ft, T = 6000R,
0 = 0.16, [ii  = 0.0147 cP, Ci = .00053 psi"1, f{ = 320.00 mmpsia2/cP
t\ = 35 hours, qscl = 8 mmscfd, pWfj = 1550 psia
h = 25 hours, qSC2 = 11 mmscfd, pwf2 = 1300 psia

Calculate the skin and IT flow effects, s and D, respectively. Also calculate,
for the second flow rate, using the same gas composition given in Example 2-2:

(a) the pressure drop due to the laminar flow effect
(b) the pressure drop due to skin effects



(c)  the pressure drop due to IT flow effects
(d)  total pressure drop

Solution  From Eq. 2-54:

0.0002637Jfcf
tD =  — —

Therefore

0.0002637(25)(35) _
D1 (0.16)(0.0147)(0.00053)(0.35)2 ' '

and

0.0002637(25)(25) _
D2 (0.16)(0.0147)(0.00053)(.35)2 ' '

From Eq. 2-56:

1417 x 103Tqsc
<ld =  —

khx/fi

Therefore

1417 x 103(600)(8)

^ = (25) (35) (320xm= 0- ° 2 4 29

1417xl03(600)(ll) . „ , . .
g D 2 =( 2 5 ) ( 3 5 ) ( 3 2 0 x l 06 )

= ° - 0 3 3 40

Since the reservoir is infinite-acting, Eq. 2-65 applies, so that

pt = pD = 0.5 [In tD + 0.809]

Therefore,

pn =  Pm = 0.5 [In(1,511,015) + 0.809] = 7.519

Pt2 =  Pm = 0.5 [In(1,079,296) + 0.809] = 7.351

From Eq. 2-55:

A fi ~ fwf
^PD = — ~

^i  q D

From the \/f — p curve, Pwfj = 1550 psia ^> ijr wfi = 207 x 106 psia2/cP
pwf2 = 1300 psia «e> x//Wj2 = 145 x 106 psia2/cP



Therefore,

320 x  106 - 207 x 106

APDI = 320 x 106(0.02429) = UM

32Ox 106-145x 106

APD2 = 320 x 106(0.03340) = l631

From Eq. 2-121:

^PD = PD or pt=s + Dqsc

Substituting the calculated values of ApD, pD, or pt and qsc in the above
equation gives

14.54 = 7.519+ J + 8D

16.37 = 7.351+5 + H D

Solving these equations simultaneously gives

^ (16.37 - 14.54) - (7.351 - 7.519) n , _
D = ^ - ^ = 0.666

s = 14.54-7.519(8)(0.666) = 1.69

For the second production rate, qsc2 is as follows:

(a) Pressure drop due to laminar flow effects is given by

Pa = —

Therefore

 ̂ = XJf1- fiPaqDi

=  320 x 106 - 320 x 106(7.351)(0.3340)

= 241.43 mmpsia2/cP

= 1720 psia (from x// — p curve)

and Apiaminarfiow = Pi~P = 2100-1720 = 380 psia.

(b) Pressure drop due to skin effects is given by

ttqDi
... ilr  = \ln- ft sqD2 = 320 x 106 - 320 x 106 x 1.69 x 0.03340

= 302 mmpsia/cP *>  p = 1910 psia

kPskin = Pi- P = 2100 - 1910 = 190 psia



(c)  Pressure drop due to IT flow effects  is given by

Dqsc2 = —
^iq D2

:. xjf = ^ - xj/iDqsc2qD2

=  320  x  106 - 320 x 106 x 0.666 x 11 x 0.03440

= 239.35 mmpsia2/cP op = 1690 psia

... ApITflow = pi - p = 2100 - 1690 = 410 psia

(d) Total pressure drop = Apiaminarflow + Apskin + Ap17 flow = 380 + 190 +
410 = 980 psia.

Wellbore Storage Effects

Wellbore storage effects are associated with a continuously varying flow
rate in the formation. One solution8 is to assume that the rate of unloading
of, or storage in, the wellbore per unit pressure difference is constant. This
constant is known as the wellbore storage constant, Cs, and is given by

C5 = Vws x Cws (2-123)

where

Vws = Volume of the wellbore tubing (and annulus, if there is no packer) ft3

Vws = irrlL,  ft3

L = well depth, ft
Cws = compressibility of the wellbore fluid evaluated at the mean

wellbore pressure and temperature, psi"1

The wellbore storage constant may be expressed in a dimensionless term as

^ - ^  <2- i24>

<t>hCrl

The rate of flow of fluid from the formation may then be obtained from

q = qJl.O - CSD̂ -(ApD) 1 (2-125)
L  <™0 wellborn J



The time for which wellbore storage effects  are significant  is given by

twss = 60CSD (2-126)

The time at which wellbore storage effects become negligible is given by

36,177MC5t h o u ig

kh

Example 2-15 Finding the End of Wellbore Storage Effects
The following characteristics are given: well depth = 5500 ft, rw — 0.39 ft.,

Cws = 0.000595 psi"1, h = 5 ft, k = 25 mD, /x = 0.0175 cR Assume there is
no bottomhole packer. Calculate the time required for wellbore storage effects
to become negligible.

Solution From Eq. 2-123:

Vws = nrlL = 22/7(0.39)2(5500) = 2629 ft3

From Eq. 2-123: C5 = CWSVWS = 0.000595 x 1629 = 1.565 ftVpsi"1

From Eq. 2-127:

36,177(0.0175)(1.565)
tws = 25(45) = rS

After a time of 0.88 hours, wellbore storage effects become negligible and
the analytical solutions for transient flow apply.

Radius of Investigation

The radius of investigation has several uses in pressure transient test analysis
and design:

1. Provides a guide for well test design
2. Estimates the time required to test the desired depth in the formation
3. Provides a means of estimating the length of time required to achieve

"stabilized" flow (i.e., the time required for a pressure transient to reach
the boundaries of a tested reservoir)

An infinite reservoir may be considered to be a limited reservoir with a
closed outer boundary at r, provided r is allowed to increase with t&. This
changing value of r is defined as the radius of investigation, rinv, that is,

tD = O.25rjk

or (2-128)

r2
eD = 4tD



fa?.\2 = 4tD (2-128a)

/0.00105fcAa5

r™ = —2 ' ft- f o r r'«v < re (2-128b)

If the value of rim obtained from Eq. 2-128a is greater than re, then the
radius of investigation is taken to be re.

Time of Stabilization

If a well is centered in a cylindrical drainage area of radius re, then setting
r im = re, the time required for stabilization, ts, is defined as follows:

tD = Q25r2eD

or

1. (j)iiCr 2
e

ts - 4 * 0.0002637fe
(2-129)

9480/xCre
2
 u

= L , hours

Example 2-16 Estimating Radius of Investigation
We want to conduct a flow test on an exploratory gas well for a long enough

time to ensure that the well wil l drain a radius of more than 1500 ft. Well
and fluid data are as follows: 0 = 0.18 fraction, k = 9.0 mD, rt = 1500 ft,
fit = 0.0156 cP, Cti = 2.2 x 10~4 psi"1. What length of flow test appears
advisable? What flow rate do you suggest?

Solution From Eq. 2-128a, the time required is

/0.00105i tAa5
 Ј

r inv = T » f t ' for rinv < re

\ <t>^ct )
In principle, any flow rate would sufficient required to achieve a particular
radius of investigation is dependent of flow rate.



2J4  Numerical Solutions of Partial  Differential
Equations

Numerical methods must be used for  cases where the partial  differential
equation and its boundary conditions cannot be linearized, where the reservoir
shape is irregular, or when the reservoir is heterogeneous. In some complex
situations, analytical solutions may be so difficult to apply that numerical meth-
ods are preferred. In this section a brief discussion of the numerical approach
is presented including difference equations.

Three-Dimensional Models

Gas flow equations are different from those for liquid flow in that the equa-
tions of state that are used are quite different in functional form from those for
liquids. The ideal gas law gives the equation of state for an ideal gas:

m m M
PV = -RT and ? = - P = p

where p is the density.
In the case of flow of a nonideal gas, the gas deviation factor zg is introduced

into the equation of state to give

If we assume laminar flow, neglect gravity effects, and assume constant
rock properties, Eq. 2-130 becomes

*-(j-*L\  + L(^dj\ + A(_ЈJ\ = ±L(L\ n on

dx\nzgdx) ^dy\nzgdy) dz\v.Zg%) kdt\zg)

In field units Eq. 2-131 can be written as

dx\nzgdx) dy\iizgdy) dz\ ẐgfJ 0.000264*  dt \z J

(2-132)

In terms of pseudopressure, \jf{p), the equation can be written as follows:

p

fip) = 2 I -^- dp (2-133)
J HZg
Po



where po is a low base pressure. Now,

d (p\^d(f~g) dp ^cgPdp

dt\Zg) dp dt Z8 dt'

because

Co  = l dp =  Zg ^
8 p dp p dp

Also note that

dx/r drfr dp 2p dp

dt dp dt fjLZg dt

and

df _  2/7 dp

dx fjLZg dx

d\lr dx/f
Similar expressions apply for —  and — . Thus Eq. 2-131 becomes

dy dz

d_(djr\ B(W\ + JL(W\ = ^cs W (2_l34)
dx\dx J dy\dy) dz\dz) 0.000264fc dt

Equations 2-131 and 2-134 are in three-dimensional form for single-phase
flows and can be used for the study of completely heterogeneous reservoirs.

Radial One-Dimensional Model

For radial flow, the equivalent of Eq. 2-131 is

i_a_(2_rap\ = 4> Z ( P ) ( 2_1 3 5)

rdr\nzg drj 0.000264k 8t\zg J

In terms of pseudopressure, W(p) is

l d / d * \ _ 0 df

rdr\ dr ) 0.000264it dt

For single-well problems, the use of the cylindrical coordinates provides
greater accuracy than other coordinate systems. For the study of multiwell
systems it is usually necessary to use rectangular coordinates with closely
spaced grid points near the well.



Radial Two-Dimensional Coning Model

Where vertical  flow is important, a two-dimensional radial model must be
considered. The equation to be solved in this case is

rdr\jjiz g
r dr) dz \^zg dz) 0.000264Ј dt \zg)

In terms of pseudopressure, ^(p) is

i d _ ( ty\ a ( W \ = 4>nc8 d/P\
rdr\ dr ) dz\dz) 0.000264Jfc dt \zg)

Models of this type can be used to study the effects of anisotropy on the
transient pressure analysis of buildup and drawdown tests.

Areal Two-Dimensional Models

Multiwell problems can be solved through the solution of Eq. 2-139:

The injection or production from different wells is accounted for by the
q term. The reservoir shape may be completely arbitrary and there may be
different types of boundary conditions such as no-flow or constant pressure.
This model can also be used for interference test analysis.

Studies of this type for Darcy's flow have been reported in the literature, for
example, by Carter.12

Multiphase (Gas-Condensate Flow) Model

In this section we outline a detailed derivation of an equation describing
radial, and a multiphase mixture of gas, condensate, and water. We assume that
a porous medium contains gas condensate and water, and that each phase has
saturation-dependent effective permeability (kg, ko, and kw)\ time-dependent
saturation (Sg, S0, and Sw); and pressure-dependent viscosity (/x ,̂ /JLO, and
jiw). When gravitational forces and capillary pressures are negligible, the
differential equation describing this type of flow is

1A/3VA *,ct 3±

rdr\ dr J 0.000264A, dt



where

ct = Sgcg  + S0C0 + Swcw + Cf (2-141)

ct is the effective total compressibility and is the sum of the fractional
compressibilities. The fractional compressibility of a fluid is its compressibil-
ity multiplied by the fraction of the pore space that it occupies (that is, its
saturation). The effective total mobility, (k//ji)t, is given in terms of the in situ
permeability to each of the phases by

kt = (-) = ^ - + ^ + — (2-142)

The in situ permeability to each phase is the product of the permeability
of the formation and the relative permeability to that phase. This latter factor
depends on the prevailing saturation conditions. The effective total production
rate is simply the sum of the individual fluid flow rates.

9t=qg+qo + qw (2-143)

Substituting these effective total properties and the total porosity, <j> t, for their
single-phase equivalents in Eq. 2-108 makes it possible to use the solutions of
this equation for multiphase (gas-condensate flow) problems.

Compositional  (Multicomponent) Model

In a reservoir system there are generally several species of chemical com-
pounds. These components vary in composition in different phases, and each
phase flows at a different rate. Therefore a mass balance must be made on
every flowing fraction instead of each phase. Figure 2-8 shows compositional
mass balance on element. Detailed discussion and numerical equations can be
found in Refs. 16 and 17.

Compositional Mass Balance on Element

There are Af species of chemical compounds flowing into the reservoir
element in three phases. With the element there are changes due to either or
all of the following:

1. Pressure change
2. Production
3. Injection



Figure 2-8. Composition mass balance on element (after Roebuck et al.
© SPE, AIME 1969).16

Then we can write

° (Kpor °Po kgpg dpg kwpw dpw\

ax  \ IJL0 ox fig ox jiw ox )

3
= —WSQPOCMOJ  + <t>SgPgCMgj + <t>SwpwCMwj) (2-144)

ot

Consider the conservation of mass applied to one compound. Let

CMoj = mass fraction of y'th component in oil
CMgj = mass fraction of jth component in gas
CMwj = mass fraction of jth component in water

Equation 2-117 describes the flow of a single component, e.g., CH4 in a
linear system without any sources or sinks. Equation 2—117 also shows that
each term on the left represents the mass flux of the j th component in each
phase, which is simply derived by the following:

Total mass flux = Density x Volumetric rate

Kpo op 0 / o ....
= poqo = — (2-145)

fio dx

Component mass flux = CMoi-^—— —- (2-146)
/ji o dx

Water

Gas

Oil Oil

Production or injection

Gas

Water



Table 2-7

Unknown Number

Cmij  37V
Pi  3
Si  3
Pi  3
1I1  3
*/  3

3A^+ 15

N o t e: Cmij  =  1 , 2 ,3 7  = I , - - - , N;
to tal = 3AT

Similarly, the accumulation term embodies the changes in each phase of the
specific component:

n t Mass at time (t + Ar) - Mass at time t
Mass rate of change =

A general equation for the Af species under observation wil l be of the form

T-[ / ^ CMij— = —I }<S>SiPiCMij , J = 1,...,N

(2-147)

where

i = represents the phases and
j = the number of components.

We must determine the number of independent variables in the system.
These data are listed in Table 2-7 for an AT-component system.

In order to solve the system we must have 3 N+15 independent relationships.
These relationships come from several sources:

1. Differential equations
2. Phase equilibrium
3. PVT data
4. Relative permeability data
5. Conservation principles
6. Capillary data



Relationship Development

Develop the necessary relationships as follows:

1.  Write one partial differential equation for each component in the system,
thus providing N relationships.

2.  Since the pore space is always fluid-filled, the fluid phase saturations
must always sum to unity:

S0 + Sg + Sw = 1 (2-148)

This is one relationship.
3. The mass fraction of each component in each fluid phase must sum to

unity, since mass conservation of each component is required.
Thus:

N

E CMOJ = 1
7 = 1

E CMgj = 1 (2-149)
7 = 1

z2 CMWJ =  i
7 = 1

This provides three relationships.
4. The following can be obtained from the PVT data.

V>o = J (POXMOJ)

VS = I (PS, CM,) (2-15°)

A6W = / (Pw, CMWJ)

Po= J (Po, CMOJ)

P8 = f(Pg> CM,) (2-151)

Pw = / (Pw> CMWJ)

Note: These provide six more relationships. Viscosity and density are
computed experimentally or from well-known correlations, which relate
these parameters to compositions and pressures.

5. For mobility calculations, we need relative permeability data:

ko = f(Sg,So,Sw)
kg = f (S89 S0, Sw) (2-152)

Kw
 == J \^g> ^Oi ^w)

This provides three more relationships.



6.  For distribution of a component between  its liquid and gaseous states,
the equilibrium constant can be derived from thermodynamic principles.
For example,

CMgj _ v

r
m (2-153)

LMgj _
r — Ajgw

These equilibrium constants are a function of several variables:

Kjgo = J (Pi T, Ctj) (2-154)

from which

Kj0 Kjgw

— — ——  — &gow (Z-IDD)

Equations 2-154 and 2-155 provide an independent relationship when
written for each component in the system.

7. Capillary pressure provides the remaining relationship:

Pg ~ Po = Pego — J (Sgi S0, Sw)
(2-156)

Po ~ Pw = Pcow — J (SgI S0, Sw)

These relationships are summarized in Table 2-8.
Therefore, according to Table 2-8, we have 3 Af + 15 independent unknown

and 3N + 15 independent relationships that can be used to solve the system.

Assumptions

Several simplifying assumptions are usually made to make the problem
more amenable to solution:

Table 2-8

Relationship Unknown Equations

Differential equation N 2-147
Phase equilibrium 2N 2-153
PVT data 6 2-150 and 2-151
Relative permeability 3 2-152
J2 Mass fraction 3 2-149
J2 Saturation 1 2-148
Capillary pressure 2 2-156



1.  Capillary pressure between oil and gas is generally  neglected.
2.  Several components are grouped  together, e.g., a system containing  the

following  nine components wil l be grouped as shown below:

Ci Component 1

C2

C3

Ci 4
Ctn  Component  2
C15

Cn5

C6

C7+  Component  3

3.  The mass fraction of components present in the water is so small that the
CMwj terms are also zero. This means that oil and gas are the only phases
in which mass transfer occurs. The equation for the water present is still
needed.

Sources and Sinks

Sources and  sinks can be  included  in Eq. 2-139 by the addition of a term
representing the source or sink:

f ( E ~ C ^ ) - Ј>**«(*) = Ј(][>*AC W) (2-157)ox Vf-f № ox )  f- f dt Vfr f  /

where

qt  = Mass injection rate of phase in suitable units

atj =  Mass fraction of jt h component in / th phase

8(x)  =  Delta function

The delta function 8(x)  is defined as  follows:

Production or injection in all at x  : <$(*) = 1

N o production or injection in all at x : 8(x) =   0

The locations of these wells  are shown in F igure 2- 9.



Figure 2-9.  Well locations.

Procedure Outline for Solution of Flow Equations

The solution of the compositional model is an iterative one. The process
indicated in Figure 2-10 is essentially the solution outline.

2.15 Summary

Chapter 2 provides the basic flow theory for gas well testing and anal-
ysis techniques. General equations are used for transient pressure behavior
with dimensionless pressure solutions desired. Some important dimensionless
pressure functions are presented in this chapter and references to others are
provided. The dimensionless pressure approach provides a way to calculate
pressure response and to devise techniques for analyzing transient tests in
a variety of systems. Sections covering turbulence, wellbore storage effects,
wellbore damage, and improvement are included, since the effects have a sig-
nificant influence on transient well response.



Flash at initial conditions to obtain original mole
fraction  in each phase

Using gas or extrapolated thermodynamic data,
set up coefficients  for the flow  equations

Recalculate mole fractions  of each component

Determine fluid  compositions at new pressure

Solve flow  equations

Figure 2-10. Solution Outline.
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