Beam Analysis

$\mathrm{L}:=25 \cdot \mathrm{~m}$
... beam length
$\mathrm{I}:=659997685 \cdot \mathrm{~mm}^{4}$
... beam inertia
$\mathrm{E}:=200 \cdot \mathrm{GPa}$
... material modulus

Distributed Loading

Data $_{\text {DL }}:=\left(\begin{array}{ccccc||}\hline \text { "Distribution" } & \text { "Start Point" } & \text { "Load at Start" } & \text { "End Point" } & \text { "Load at End" } \\ \text { "No" } & "(\mathrm{~m}) " & "(\mathrm{kN} / \mathrm{m}) " & "(\mathrm{~m}) " & "(\mathrm{kN} / \mathrm{m}) " \\ 1 & 10 & 2 & 20 & 2 \\ 2 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \\ \hline\end{array}\right.$

Point Loading

$\operatorname{Data}_{\mathrm{PL}}:=\left(\begin{array}{cccc||}\hline \text { "Load" } & \text { "Location" } & \text { "Point Load" } & \text { "Step Moment" } \\ \text { "No" } & \text { "(m)" } & "(\mathrm{kN}) " & "(\mathrm{kN} . \mathrm{m}) " \\ 1 & 5 & 10 & 0 \\ 2 & 25 & 10 & 0 \\ \hline\end{array}\right.$

Supports
Data $\mathrm{S}:=\left(\begin{array}{ccc\|}\hline \text { "Support" } & \text { "Location" } & \text { "Support" } \\ \text { "No" } & \text { "(m)" } & \text { "Condition" } \\ 1 & 0 & \text { "Fixed" } \\ 2 & 10 & \text { "Pinned" } \\ 3 & 20 & \text { "Pinned" }\end{array}\right)$

Condition	Translation	Rotation
Fixed	Fixed	Fixed
Pinned	Fixed	Free
Guided	Free	Fixed
Free	Free	Free

Distributed Loading

Distributed load function $\ldots \quad \omega(\mathrm{x}, \mathrm{i})=\left[\omega_{1_{\mathrm{i}}}+\left(\omega_{2_{\mathrm{i}}}-\omega_{1_{\mathrm{i}}}\right) \cdot \frac{\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)}{\left(\mathrm{x}_{2_{\mathrm{i}}}-\mathrm{x}_{1_{\mathrm{i}}}\right)}\right] \cdot\left(\mathrm{x}_{1_{\mathrm{i}}} \leq \mathrm{x} \leq \mathrm{x}_{2_{\mathrm{i}}}\right)$

Change in distribution ... $\Delta \omega_{\mathrm{i}}=\frac{\left(\omega_{2_{\mathrm{i}}}-\omega_{1_{\mathrm{i}}}\right)}{\left(\mathrm{x}_{2_{\mathrm{i}}}-\mathrm{x}_{1_{\mathrm{i}}}\right)}$

Giving $\ldots \quad \omega(\mathrm{x}, \mathrm{i}):=\left[\omega_{1_{\mathrm{i}}}+\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)\right] \cdot\left(\mathrm{x}_{1_{\mathrm{i}}} \leq \mathrm{x} \leq \mathrm{x}_{2_{\mathrm{i}}}\right)$

Dist. loading force $\ldots \quad \Sigma \mathrm{P}_{\omega_{\mathrm{i}}}:=\int_{0}^{\mathrm{L}} \omega(\mathrm{x}, \mathrm{i}) \mathrm{dx} \quad \Sigma \mathrm{P}_{\omega}=\left(\begin{array}{c}20 \\ 0 \\ 0 \\ 0\end{array}\right) \mathrm{kN}$
... dist'n No. 1
... distrib'n No. 2 etc

Dist. loading centroid $\ldots \quad \mathrm{x}_{\mathrm{P} \omega_{\mathrm{i}}}:=\frac{\left(\Sigma \mathrm{P}_{\omega_{\mathrm{i}}}>0 \cdot \mathrm{~N}\right)}{\Sigma \mathrm{P}_{\omega_{\mathrm{i}}}} \cdot \int_{0}^{\mathrm{L}} \omega(\mathrm{x}, \mathrm{i}) \cdot \mathrm{xdx} \quad \mathrm{x}_{\mathrm{P} \omega}=\left(\begin{array}{l}15 \\ 0 \\ 0 \\ 0\end{array}\right) \mathrm{m}$
... dist'n No. 1
... distrib'n No. 2 etc

Shear and Moment for Distributions

Shear functions ...
$V_{\omega}\left(x^{\prime}, i\right)=\int_{x_{1}}^{x^{\prime}}\left[\omega_{1_{i}}+\Delta \omega_{i} \cdot\left(x-x_{1}\right)\right] d x=\omega_{1_{i}} \cdot\left(x^{\prime}-x_{1_{i}}\right)+\frac{1}{2} \cdot \Delta \omega_{i} \cdot\left(x^{\prime}-x_{1_{i}}\right)^{2} \ldots$ when $x_{1} \leq x_{i}^{\prime}<x_{2_{i}}$
$V_{\omega}(\mathrm{i})=\Sigma \mathrm{P}_{\omega_{\mathrm{i}}} \cdot\left(\mathrm{x} \geq \mathrm{x}_{2_{i}}\right) \quad \ldots$ when $\quad \mathrm{x}^{\prime} \geq \mathrm{x}_{2} \mathrm{i}$

Combining ...

$$
\mathrm{V}_{\omega}(\mathrm{x}, \mathrm{i}):=\left[\omega_{1_{\mathrm{i}}} \cdot\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)+\frac{1}{2} \cdot \Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)^{2}\right] \cdot\left(\mathrm{x}_{1_{\mathrm{i}}} \leq \mathrm{x}<\mathrm{x}_{2_{\mathrm{i}}}\right)+\Sigma \mathrm{P}_{\omega_{\mathrm{i}}} \cdot\left(\mathrm{x} \geq \mathrm{x}_{2_{\mathrm{i}}}\right)
$$

Bending moment functions ...
$M_{\omega 1}\left(x^{\prime}, i\right)=\int_{x_{1}}^{x^{\prime}}\left[\omega_{1_{i}}+\Delta \omega_{i} \cdot\left(x-x_{1_{i}}\right)\right] \cdot\left(x^{\prime}-x\right) d x=\frac{1}{6} \cdot\left(x^{\prime}-x_{1_{i}}\right)^{2} \cdot\left[3 \cdot \omega_{1_{i}}+\Delta \omega_{i^{\prime}} \cdot\left(x^{\prime}-x_{1_{i}}\right)\right] \ldots$ when $\quad x^{\prime} \geq x_{1_{i}}$
$M_{\omega 2}\left(x^{\prime}, i\right)=\int_{x_{2}}^{x^{\prime}}\left[\omega_{2_{i}}+\Delta \omega_{i} \cdot\left(x-x_{2_{i}}\right)\right] \cdot\left(x^{\prime}-x\right) d x=\frac{1}{6} \cdot\left(x^{\prime}-x_{2}\right)^{2} \cdot\left[3 \cdot \omega_{2_{i}}+\Delta \omega_{i} \cdot\left(x^{\prime}-x_{2_{i}}\right)\right] \ldots$ when $\quad x^{\prime} \geq x_{2_{i}}$

Combining

$$
\begin{aligned}
\mathrm{M}_{\omega}(\mathrm{x}, \mathrm{i}):= & \frac{1}{6} \cdot\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)^{2} \cdot\left[3 \cdot \omega_{1_{\mathrm{i}}}+\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)\right] \cdot\left(\mathrm{x} \geq \mathrm{x}_{1_{\mathrm{i}}}\right) \ldots \\
& +-\frac{1}{6} \cdot\left(\mathrm{x}-\mathrm{x}_{2_{\mathrm{i}}}\right)^{2} \cdot\left[3 \cdot \omega_{2_{i}}+\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{2}\right)\right] \cdot\left(\mathrm{x} \geq \mathrm{x}_{2_{i}}\right)
\end{aligned}
$$

Summing shear $\ldots \quad V\left(x, P_{S}\right):=\sum_{j=0}^{n_{S}} P_{S} \cdot\left(x \geq x_{S_{j}}\right)-\sum_{n=0}^{n_{P}} V_{P_{n}} \cdot\left(x \geq x_{P}\right)-\sum_{i=0}^{n_{d l}} V_{\omega}(x, i)$

$$
+-\sum_{n=0}^{n_{P}} V_{P_{n}} \cdot\left(x-x_{P_{n}}\right) \cdot\left(x \geq x_{P_{n}}\right)-\sum_{i=0}^{n_{d l}} M_{\omega}(x, i)
$$

Beam Deflection

$y^{\prime \prime}\left(x, P_{S}, M_{S}\right)=\frac{M\left(x, P_{S}, M_{S}\right)}{E \cdot I} \quad \ldots$ 2nd derivative
$y_{b}^{\prime}\left(x^{\prime}, P_{S}, M_{S}, \theta_{1}\right)=\theta_{1}+\int_{0}^{x^{\prime}} y_{b}^{\prime \prime}\left(x, P_{S}, M_{S}\right) d x \quad \ldots 1$ st derivative (gradient)

Let $\ldots \quad y_{\omega}^{\prime}\left(x^{\prime}\right)=\int_{0}^{x^{\prime}} M_{\omega}(x, i) d x \quad \ldots$ integral of moment due to distributed loading
$\frac{1}{6} \cdot \int_{x_{1_{i}}}^{x^{\prime}}\left(x-x_{1_{i}}\right)^{2} \cdot\left[3 \cdot \omega_{1_{i}}+\Delta \omega_{i} \cdot\left(x-x_{1_{i}}\right)\right] d x=\frac{1}{24} \cdot\left(x^{\prime}-x_{1_{i}}\right)^{3} \cdot\left[\Delta \omega_{i} \cdot\left(x^{\prime}-x_{1_{i}}\right)+4 \cdot \omega_{1_{1}}\right] \quad \ldots$ when $\quad x^{\prime} \geq x_{1_{i}}$
$\frac{1}{6} \cdot \int_{x_{2}}^{x^{\prime}}\left(x-x_{2_{i}}\right)^{2} \cdot\left[3 \cdot \omega_{2_{i}}+\Delta \omega_{i} \cdot\left(x-x_{2}\right)\right] d x=\frac{1}{24} \cdot\left(x^{\prime}-x_{2}\right)^{3} \cdot\left[\Delta \omega_{i} \cdot\left(x^{\prime}-x_{2_{i}}\right)+4 \cdot \omega_{2_{i}}\right] \quad \ldots$ when $\quad x^{\prime} \geq x_{2_{i}}$

Let $\ldots \quad y_{\omega}\left(\mathrm{x}^{\prime}\right)=\int_{0}^{\mathrm{x}^{\prime}} \mathrm{y}^{\mathrm{y}^{\prime}(\mathrm{x}, \mathrm{i}) \mathrm{dx} \quad \ldots \text { integral of gradient due to distributed loading }}$

$$
\frac{1}{24} \cdot \int_{\mathrm{x}_{1_{\mathrm{i}}}}^{\mathrm{x}^{\prime}}\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)^{3} \cdot\left[\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)+4 \cdot \omega_{1_{\mathrm{i}}}\right] \mathrm{dx}=\frac{1}{120} \cdot\left(\mathrm{x}^{\prime}-\mathrm{x}_{1_{\mathrm{i}}}\right)^{4} \cdot\left[\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}^{\prime}-\mathrm{x}_{1_{\mathrm{i}}}\right)+5 \cdot \omega_{1_{\mathrm{i}}}\right] \quad \ldots \text { when } \quad \mathrm{x}^{\prime} \geq \mathrm{x}_{1_{\mathrm{i}}}
$$

$$
\frac{1}{24} \cdot \int_{x_{2_{\mathrm{i}}}}^{\mathrm{x}^{\prime}}\left(\mathrm{x}-\mathrm{x}_{2_{\mathrm{i}}}\right)^{3} \cdot\left[\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{2_{\mathrm{i}}}\right)+4 \cdot \omega_{2_{\mathrm{i}}}\right] \mathrm{dx}=\frac{1}{120} \cdot\left(\mathrm{x}^{\prime}-\mathrm{x}_{2_{\mathrm{i}}}\right)^{4} \cdot\left[\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}^{\prime}-\mathrm{x}_{2_{\mathrm{i}}}\right)+5 \cdot \omega_{2_{\mathrm{i}}}\right] \quad \ldots \text { when } \quad \mathrm{x}^{\prime} \geq \mathrm{x}_{2_{\mathrm{i}}}
$$

Combining ... $\quad y_{\omega}(x, i):=\frac{1}{120} \cdot\left(x^{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)^{4} \cdot\left[\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{1_{\mathrm{i}}}\right)+5 \cdot \omega_{1_{\mathrm{i}}}\right] \cdot\left(\mathrm{x} \geq \mathrm{x}_{1_{\mathrm{i}}}\right) \ldots$

$$
+-\frac{1}{120} \cdot\left(\mathrm{x}-\mathrm{x}_{2_{\mathrm{i}}}\right)^{4} \cdot\left[\Delta \omega_{\mathrm{i}} \cdot\left(\mathrm{x}-\mathrm{x}_{2_{\mathrm{i}}}\right)+5 \cdot \omega_{2_{\mathrm{i}}}\right] \cdot\left(\mathrm{x} \geq \mathrm{x}_{2_{\mathrm{i}}}\right)
$$

$$
\begin{aligned}
& \text { Combining ... } \quad y_{\omega}^{\prime}(x, i):=\frac{1}{24} \cdot\left(x^{x}-x_{1_{i}}\right)^{3} \cdot\left[\Delta \omega_{i} \cdot\left(x-x_{1_{i}}\right)+4 \cdot \omega_{1_{i}}\right] \cdot\left(x \geq x_{1_{i}}\right) \ldots \\
& +-\frac{1}{24} \cdot\left(x-x_{2}\right)^{3} \cdot\left[\Delta \omega_{i} \cdot\left(x-x_{2_{i}}\right)+4 \cdot \omega_{2_{i}}\right] \cdot\left(x \geq x_{2_{i}}\right) \\
& y_{b}^{\prime}\left(x, P_{S}, M_{S}, \theta_{1}\right):=\theta_{1}+\frac{1}{E \cdot I} \cdot\left[\sum_{j=0}^{n_{S}}\left[\begin{array}{l}
M_{S_{j}} \cdot\left[\begin{array}{l}
-(j>0) \ldots \\
+(j=0)
\end{array}\right] \cdot\left(x-x_{S_{j}}\right) \ldots \\
+\frac{1}{2} \cdot P_{S_{j}} \cdot\left(x-x_{S_{j}}\right)^{2}
\end{array}\right] \cdot\left(x \geq x_{S_{j}}\right)-\sum_{i=0}^{n_{d l}} y_{\omega}^{\prime}(x, i) \ldots\right. \\
& \left.+\sum_{n=0}^{n_{P}} M_{P_{n}} \cdot\left(x-x_{P_{n}}\right) \cdot\left(x \geq x_{P_{n}}\right)-\frac{1}{2} \cdot \sum_{n=0}^{n_{P}} V_{P_{n}} \cdot\left(x-x_{P_{n}}\right)^{2} \cdot\left(x \geq x_{P_{n}}\right)\right] \\
& y_{b}\left(x^{\prime}, P_{S}, M_{S}, \theta_{1}, y_{1}\right)=y_{1}+\int_{0}^{x^{\prime}} y_{b}^{\prime}\left(x, P_{S}, M_{S}, \theta_{1}\right) d x \quad \ldots \text { displacement }
\end{aligned}
$$

$$
y_{b}\left(x, P_{S}, M_{S}, \theta_{1}, y_{1}\right):=y_{1}+\theta_{1} \cdot x+\frac{1}{E \cdot I} \cdot\left[\begin{array}{l}
\sum_{j=0}^{n_{S}}\left[\begin{array}{l}
\frac{1}{2} \cdot M_{S_{j}} \cdot\left[\begin{array}{l}
-(j>0) \ldots \\
+(j=0)
\end{array}\right] \cdot\left(x-x_{S_{j}}\right)^{2} \ldots \\
+\frac{1}{6} \cdot P_{S_{j}} \cdot\left(x-x_{S}\right)^{3}
\end{array}\right] \cdot\left(x \geq x_{S_{j}}\right) \ldots \\
+\frac{1}{2} \cdot \sum_{n=0}^{n_{P}} M_{P_{n}} \cdot\left(x-x_{P_{n}}\right)^{2} \cdot\left(x \geq x_{P_{n}}\right)-\sum_{i=0}^{n_{d l}} y_{\omega}(x, i) \ldots \\
+-\frac{1}{6} \cdot \sum_{n=0}^{n_{P}} V_{P_{n}} \cdot\left(x-x_{P_{n}}\right)^{3} \cdot\left(x \geq x_{P_{n}}\right)
\end{array}\right]
$$

Defining Support Conditions

Defining beam deflection and / or loading to be set to zero based on support condition ...
$\operatorname{Support}\left(\mathrm{P}_{\mathrm{S}}, \mathrm{M}_{\mathrm{S}}, \theta_{1}\right):=\mid$ for $\mathrm{j} \in 0 . . \mathrm{n}_{\mathrm{S}}$

Setting support conditions to zero ... Conditions := \quad for $\mathrm{j} \in 0 . . \mathrm{n}_{\mathrm{S}}$

$$
\begin{aligned}
& \operatorname{Con}^{\langle j\rangle} \leftarrow\binom{0}{0} \\
& \operatorname{Con}
\end{aligned}
$$

Setting Equations and Solving

Given $\quad \mathrm{V}\left(\mathrm{L}, \mathrm{P}_{\mathrm{S}}\right)=0 \cdot \mathrm{~N} \quad \ldots$ shear at end of beam

$$
\mathrm{M}\left(\mathrm{~L}, \mathrm{P}_{\mathrm{S}}, \mathrm{M}_{\mathrm{S}}\right)=0 \cdot \mathrm{~N} \cdot \mathrm{~mm} \quad \ldots \text { moment at end of beam }
$$

$$
\text { Support }\left(\mathrm{P}_{\mathrm{S}}, \mathrm{M}_{\mathrm{S}}, \theta_{1}\right)=\text { Conditions } \quad \ldots \text { beam support conditions }
$$

Solving the above equations permit the unknowns to be derived.

Beam Loading and Deflection Equations

Let $\ldots \quad \mathrm{V}_{\mathrm{S}}(\mathrm{x}):=\mathrm{V}\left(\mathrm{x}, \mathrm{P}_{\mathrm{S}}\right)$

$$
\begin{aligned}
& M_{S}(x):=M\left(x, P_{S}, M_{S}\right) \quad \ldots 2 \text { equations for beam loading and } \ldots \\
& y_{S}^{\prime}(x):=y_{b}^{\prime}\left(x, P_{S}, M_{S}, \theta_{1}\right) \\
& y_{S}(x):=y_{b}\left(x, P_{S}, M_{S}, \theta_{1}, y_{1}\right) \quad \ldots 2 \text { equations for beam deflection }
\end{aligned}
$$

x

Gradient

x

Results

Reaction forces $\ldots \quad \mathrm{P}_{\mathrm{S}}=\left(\begin{array}{c}6.071 \\ 9.464 \\ 24.464\end{array}\right) \mathrm{kN} \quad \ldots$ at $\ldots \quad \mathrm{x}_{\mathrm{S}}=\left(\begin{array}{c}0.000 \\ 10.000 \\ 20.000\end{array}\right) \mathrm{m}$

Check $. . . \quad \sum \mathrm{P}_{\mathrm{S}}-\sum \mathrm{V}_{\mathrm{P}}-\sum \Sigma \mathrm{P}_{\omega}=0 \mathrm{~N}$

Reaction moments $\ldots \quad \mathrm{M}_{\mathrm{S}}=\left(\begin{array}{c}-16.071 \\ 0.000 \\ 0.000\end{array}\right) \mathrm{kN} \cdot \mathrm{m}$

Max. BM occurs at ... $\quad x_{B M_{_} \max }=5.000 \mathrm{~m} \quad \ldots$ with a value of $\ldots \quad M_{\max }=14.286 \mathrm{kN} \cdot \mathrm{m}$

Min. BM occurs at ... $\quad x_{B M _\min }=20.000 \mathrm{~m} \quad \ldots$ with a value of $\ldots \quad M_{\min }=-49.998 \mathrm{kN} \cdot \mathrm{m}$

Max. deflection occurs at $\ldots \quad x_{y_{-} \max }=25.000 \mathrm{~m} \quad \ldots$ with a value of $\ldots \quad y_{\text {max }}=-6.65136 \mathrm{~mm}$

Deflection and gradient \ldots
at supports and point
load locations

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{S}}\left(\mathrm{x}_{\mathrm{P}}\right)=\binom{-0.56367}{-6.65136} \mathrm{~mm} & \mathrm{y}_{\mathrm{s}}^{\prime}\left(\mathrm{x}_{\mathrm{P}}\right)=\binom{-0.33820}{-16.45929} 10^{-4} \\
\mathrm{y}_{\mathrm{S}}(0 \cdot \mathrm{~mm})=0.00000 \mathrm{~mm} & \mathrm{y}_{\mathrm{s}}^{\prime}(0 \cdot \mathrm{~mm})=0.00000 \\
\mathrm{y}_{\mathrm{S}}(\mathrm{~L})=-6.65136 \mathrm{~mm} & \mathrm{y}_{\mathrm{s}}^{\prime}(\mathrm{L})=-1.6459310^{-3}
\end{array}
$$

