Joints in Steel Construction Moment Connections

Published by:

The Steel Construction Institute Silwood Park Ascot Berks SL5 7QN

Tel: 01344 623345 Fax: 01344 622944

In association with: The British Constructional Steelwork Association Limited 4 Whitehall Court, Westminster, London SW1A 2ES © Crown Copyright 1995. Published by permission of the Controller of HMSO

Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page.

Although care has been to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, The British Constructional Steelwork Association Limited, The Building Research Establishment, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to Members of the Institute at a discount are not for resale by them.

Publication Number: 207/95

ISBN 1 85942 018 4

British Library Cataloguing-in-Publication Data.

A catalogue record for this book is available from the British Library.

Reprinted October 1996, January 1997, March 1997 (with amendments)

(iii)

ACKNOWLEDGEMENTS

This publication has been prepared with guidance from the SCI/BCSA Connections Group consisting of the following members:

Peter Allen*	The British Constructional Steelwork Association Ltd.
David Brown*	The Steel Construction Institute
Mike Fewster*	Caunton Engineering Ltd.
Peter Gannon*	Watson Steel Ltd.
Dr Craig Gibbons*	Ove Arup & Partners
Eddie Hole	British Steel Plc.
Alastair Hughes*	Ove Arup & Partners
Abdul Malik	The Steel Construction Institute (Technical Secretary)
Dr David Moore*	Building Research Establishment
Prof David Nethercot	University of Nottingham
Alan Pillinger*	Bison Structures Ltd.
Alan Rathbone*	Computer Services Consultants (UK) Ltd.
Graham Raven	The Steel Construction Institute
John Rushton	Peter Brett Associates
Bernard Shuttleworth	Consultant (Chairman)
Richard Stainsby	Neil R Stainsby Ltd.
Colin Smart	British Steel Plc.
Eric Taylor	Ove Arup & Partners

* Editorial committee members

Valuable comments were received from:

Dr D Anderson	University of Warwick
A N Beal	Thomason Partnership
B A Brown	Scott Wilson & Kirkpatrick
D Chapman	Wescol
B D Cheal	Consultant
Dr R Cunningham	Cunningham Associates
M J Glover	Ove Arup & Partners
R C Hairsine	Graham Garner & Partners
K Leah	Henry Brook & Co.
Dr R. M. Lawson	The Steel Construction Institute
J H Mathys	Waterman Partnership
W Mitchell	Billington Structures
J O Surtees	University of Leeds
J C Taylor	The Steel Construction Institute
E Treadaway	Clark Nicholls & Marcel

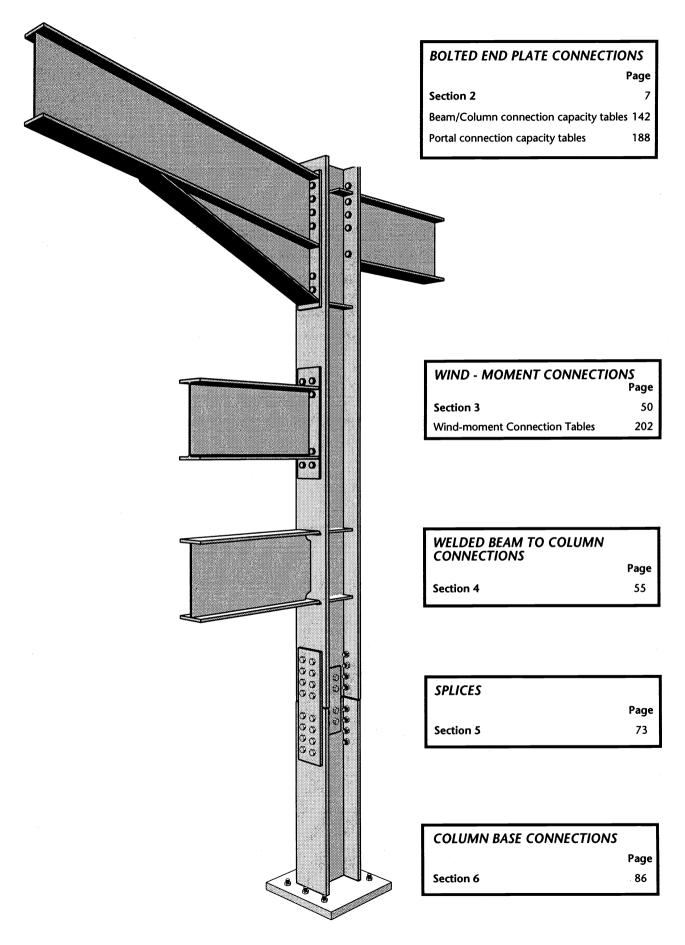
The capacity tables were developed, and the book compiled and typeset by Richard Stainsby assisted by Neil Cruickshank.

In addition to sponsorship by the Building Research Establisment, support on technical and commercial matters was also received from:

E V Girardier	Steel Construction Industry Federation (SCIF)
R A C Latter	British Steel Plc.
Dr G W Owens	The Steel Construction Institute
Dr D Tordoff	The British Constructional Steelwork Association Ltd.

References to BS 5950: Part 1 and Eurocode 3 have been made with permission of British Standards Institution, BSI Customer Services, 389 Chiswick High Road, London, W4 4AL.

FOREWORD


This publication is the third in a series of books which cover the range of structural steelwork connections. It provides a guide to the design of Moment Connections in Steelwork. The other books in the series are *Joints in Simple Construction, Volumes 1 and 2*.

Included in this guide are both bolted and welded connections suitable for use in continuous frame design, together with bolted wind-moment connections, which may be used in semi-continuous design.

The publication is produced by the SCI/BCSA Connections Group with sponsorship from the Building Research Establishment.

The Connections Group was established in 1987 to bring together academics, consultants and steelwork contractors to work on the development of authoritative design guides for structural steelwork connections.

PICTORIAL INDEX

MOMENT CONNECTIONS

CONTENTS

			PAGE
.1.	INT	RODUCTION	1
	1.1	About this design guide	. 1-
	1.2	Classification of connections	1
	1.3	Exchange of information	2
	1.4 1.5	Costs Definitions	3
	1.5	Major symbols	5 6
	1.0		0
2.	BO	TED END PLATE CONNECTIONS	7
	2.1	Scope	7
	2.2	Design philosophy	8
	2.3 2.4	Capacity checks	10
	2.4	Methods of strengthening Connection rotational stiffness	12 12
	2.6	Standardisation	14
	2.7	Using the capacity tables	15
	2.8	Design procedures - Rigorous method	16
	2.9	Abridged method for manual design	42
		Worked example using the abridged method for manual design	44
3.	WIN	D-MOMENT CONNECTIONS	50
	3.1	Introduction	50
	3.2	Design method	50
	3.3	Design rules	51
	3.4	Standard details	51
4.	WEL	DED BEAM TO COLUMN CONNECTIONS	55
	4.1	Scope	55
	4.2	Shop welded connections	56
	4.3	Site welded connections	57
	4.4 4.5	Design philosophy Design percedures	60
	4.5 4.6	Design procedures Site welded worked example	61 68
5.	SPLI	CES	73
	5.1	Scope	73
	5.2	Bolted cover plate splices	73
	5.3	Design procedures	74
	5.4	Bolted splice - worked example	79
	5.5	Bolted end plate splices	82
	5.6 5.7	Beam-through-beam moment connections Welded splices	83 84
6.	COL	UMN BASE CONNECTIONS	86
	6.1 6.2	Scope Design philosophy	86 87
	6.3	Capacity checks	88
	6.4	Rigidity of column base connections	89
	6.5	Standardisation	89
	6.6	Bedding space for grout	89
	6.7 6.8	Preliminary sizing of base plate Stiffened base plates	89 90
	6.9	Design procedures	90
		Column base - Worked example	99
REF	ERENG	ES	103
APP	ENDI	CES	105
	endix	I Worked example - Bolted end plate using the rigorous method	106
•••	endix	I Bolted end plate connections - Background to the design method	135
•••			
•••	endix endix	III Mathematical derivation of alpha chart IV 8.8 Bolts - Enhanced tensile strength	139 140
1.6			
CAF	ACIT	(TABLES and Dimensions for detailing (Yellow Pages)	141

(vii)

1. INTRODUCTION

1.1 ABOUT THIS DESIGN GUIDE

This publication provides methods for designing the following types of moment resisting connections in steel-framed structures:

Beam to column

- Bolted end plates
- Wind-moment connections
- Shop and site-welded connections

Beams

- Bolted splices
- Welded splices

Columns

- Bolted splices
- Welded splices
- Bases

Connections subject to seismic loading are not covered in this publication.

Although each Section of this publication describes connections between I-section members bending about their major axes, the general principles can be adapted for use with other section types and configurations.

Design procedures

The capacity checks on bolts, welds and sections are all based on BS 5950: Part 1 $^{(1)}$.

Other features in the design model are taken from a variety of sources. They include established methods used in the UK and overseas. (2 to 8)

Historically, moment connections have been designed for strength only with little regard to other characteristics i.e. stiffness and ductility. There is growing recognition that in certain situations this practice is questionable and so guidance is given to help designers.

Steel grades

Steel grades have been designated with the commonly used BS 5950: Part 1 notation (Amendment No. 1 1992). The equivalent designations in other specifications are given in Table 1.1.

Table 1.1 Steel grades

	J					
BS 5950 : Part 1	BS 4360	BS EN 10 025				
03 3930 . Part 1	00 4 200	1990	1993			
Design Grade 43	Grade 43	Fe 430	S275			
Design Grade 50	Grade 50	Fe 510	\$355			

Capacity tables

Without access to suitable software, designing efficient moment connections can be a long and tedious process. To help overcome this problem, capacity tables for standardised bolted beam to column connections are provided in the yellow pages of this publication.

The capacity tables have been arranged so that the designer can simply select a beam connection and with the minimum of calculation check whether the column it connects to needs to be stiffened.

The tables serve two other useful functions. Firstly, they can be an aid for frame designers to help with member selection, and secondly they can be used to provide a good 'first guess' in those cases where the standard geometry may not be appropriate.

A key aim during the production of the tables was to standardise the selection of bolts and fittings. This process continues the work on connection standardisation which was introduced in *Joints in Simple Construction* ⁽⁹⁾ and is widely recognised as being an important step towards improving the efficiency of the industry.

Design examples

Worked examples illustrating the design method are included in most Sections, with a further example of a bolted end plate connection in Appendix I. Examples showing use of the capacity tables precede each set of tables.

1.2 CLASSIFICATION OF CONNECTIONS

BS 5950: Part 1 requires that the connections in a steel structure should accord with the assumptions made in the design of the frame. It is not sufficient in all situations to assume that a moment connection is adequate simply because it is capable of resisting the design bending moment, shear and axial forces. It may also be necessary to consider the rotational stiffness and the rotation capacity. The characteristics of a joint can be best understood by considering its rotation under load. Rotation is the actual change in angle which takes place as shown in Figure 1.1.

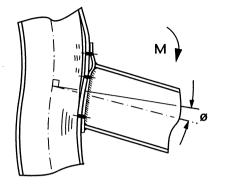


Figure 1.1 Moment - rotation of a connection

Connections can be classified in three ways as illustrated in Figure 1.2 on page 4. These are by:

Moment Resistance;

the connection may be either full strength, partial strength, or nominally pinned (i.e. not moment resisting),

Rotational Stiffness;

the connection may be *rigid*, *semi-rigid* or *nominally pinned* (*i.e. no rotational stiffness*),

Rotation Capacity;

connections may need to be *ductile*. This criterion is less familiar to most designers and introduces the concept that a connection may need to rotate plastically at some stage of the loading cycle without failure. *Joints in simple construction* ⁽⁹⁾ have to perform this way, and the principle also applies to some moment connections such as those in wind-moment frames which are the subject of Section 3.

Table 1.2 gives guidance on the properties that are needed for connections in frames designed by the more popular methods in use today. Definitions for some of the terms used are given in Section 1.5.

Stiffness and ductility

Calculating the stiffness of any connection is a tortuous process. Annex J of EC3 presents a method for bolted end plates although the evidence is that the results are far from satisfactory. A revised version is expected to be issued in 1995.

To compound the problem, the limits which are set in EC3 for rigid, semi-rigid and simple design are defined in various ways and may change depending on whether or not the frame is braced.

Checking for ductility is just as daunting. Assessing the connection is not an easy process and in principle the rotation capacity needed will depend on the arrangement of loading and whether the frame is braced or unbraced.

For these reasons, it is felt that the most realistic approach is for the designer to follow simple rule-of-thumb guidelines which will in most circumstances ensure that the frame design assumptions have not been invalidated. The use of 8mm and 10mm thick fittings with wide bolt spacing recommended in *Joints in Simple Construction* is an example of this approach.

Guidance to help ensure adequate levels of stiffness and ductility can be found in Section 2.5.

1.3 EXCHANGE OF INFORMATION

The design of the frame and its connections is usually carried out in one of the following ways:

- (i) The frame is designed by the Consulting Engineer and the connections are designed by the Steelwork Contractor.
- (ii) The frame and the connections are designed by the Steelwork Contractor.
- (iii) The frame and its principal connections are designed by the Consulting Engineer.

Where method (i) is in operation, care must be taken to ensure that design requirements for the connections are clearly defined in the contract documents and on the design drawings.

The National Structural Steelwork Specification for Building Construction ⁽¹⁰⁾ gives guidance on the transfer of information and there will be great benefits if this is observed. The following items should be considered a minimum:

- a statement describing the design concept.
- drawings showing the size, grade and position of all members.
- the design standards to be used.
- the forces, moments and their combinations required to be transmitted by each connection.
- whether the loads shown are factored or unfactored.
- requirements for any particular type of fabrication detail and/or restriction on the type of connection to be used, such as limits on haunch sizes.

DESI	DESIGN CONNECTIONS		NOTES			
Type of framing	Global Analysis	Properties	Fig 1.2 Example	Method	NOTES	
Simple	Pin Joints	Nominally Pinned	©	Joints in Simple Construction (Note 2)	Economic method for braced multi-storey frames Connection design is made for shear strength only.	
	Elastic	Rigid	1234	Section 2	Conventional elastic analysis.	
Continuous (Note 1)	Plastic	Full strength	124	Section 2	Plastic hinges form in the adjacent member, not in the	
	Elastic-Plastic	Full strength and Rigid	124	Section 2	connections. Popular for portal frame designs.	
Semi-Continuous (Note 1)	Elastic	Semi-rigid	56	Not Covered	Connections are modelled as rotational springs. Prediction of connection stiffness presents difficulties.	
	Plastic	Partial strength and Ductile	\$6	Section 3	Wind-moment design is a variant of this method	
· .	Elastic-Plastic	Partial strength and/or Semi-rigid	Any	Not Covered	Full connection properties are modelled in the analysis. A research tool rather than a practical design method.	

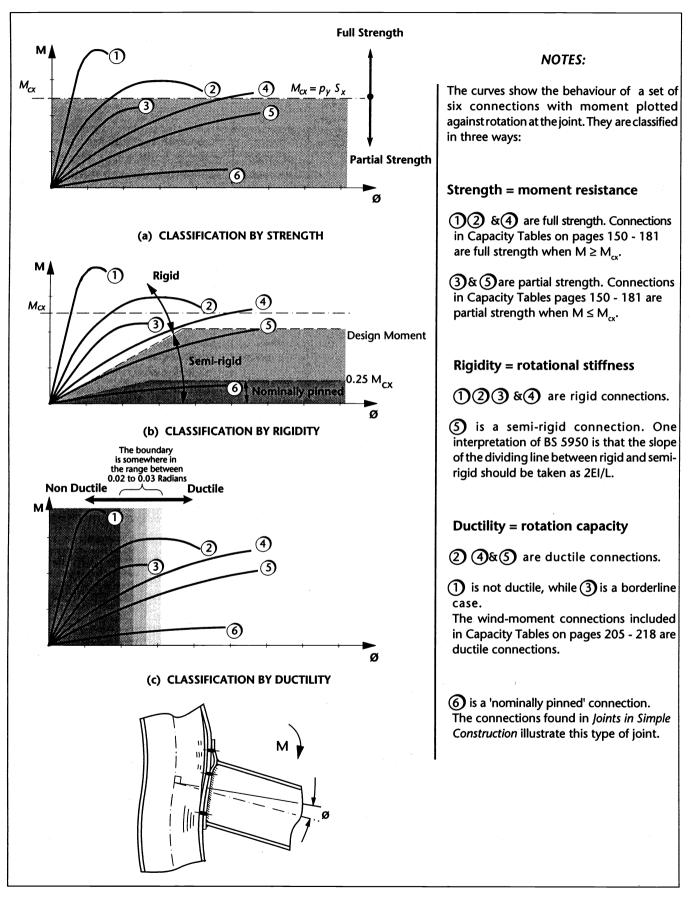
Note 2 See reference 9

1.4 COSTS

Moment connections are inevitably more expensive to fabricate than simple ones, although the degree of extra workmanship can vary enormously.

For partial strength connections, such as those in windmoment frames, the difference can be slight. At the other end of the scale, full strength rigid connections with haunched beams and stiffened columns can be extremely expensive and here the fabrication costs of components can more than double.

For this reason, 'rigid' frame design is not popular in the multistorey building market, although it does have benefits such as permitting longer spans, shallower beams and elevations without bracing.


The single storey portal frame is a special case where the haunch is used to strengthen the rafter, leading to a

significant reduction in the frame weight and an overall saving in cost.

Giving specific guidance on costs is difficult, as fabricators' workmanship rates can vary considerably, and are dependent upon the level of investment in plant and machinery. However, the designer's and the detailer's main objective must be to reduce the work content. The material costs for fittings and bolts are small compared with workmanship costs.

The real costs come from the time taken to design the connection, detail it, make the fittings, mark out the geometry, drill the holes and complete the welding and testing. In a fabrication shop, the disruption caused by having to weld one stiffener into a column that would otherwise have a clear passage through the works can be considerable.

Moment Connections

When moment connections are used, the designer can minimise costs by adopting the following simple rules:

- Avoid complexity caused by eccentricities and skews these can cause serious problems.
- Use standard connections wherever possible.
- Rationalise the sections used for fittings, adopting standard flats where possible. In general, design grade 43 steel is preferred because it is more readily available.
- Limit the range of bolt grades and sizes. Fully threaded M24 8.8 bolts should be the first choice for beam sections 400mm deep or greater, and M20 8.8 bolts for shallower beams.
- Use friction grip connections only as a last resort,
 e.g. where there is a possibility of fatigue or where joint slip is unacceptable.
- Consider increasing the beam depth or column weight to avoid excessive stiffening. Least weight solutions are rarely the most economical.

Most fabricators are happy to give advice about relative costs at the design stage without obligation and this can help to achieve an optimum design.

1.5 DEFINITIONS

Full strength connection

A connection with moment resistance at least equal to that of the member.

Partial strength connection

A connection with moment resistance which is less than that of the member.

Rigid connection

A connection which is stiff enough for the effect of its flexibility on the frame bending moment diagram to be neglected.

Semi-rigid connection

A connection which is too flexible to qualify as rigid but is not a pin.

Nominally pinned connection

A connection which is sufficiently flexible to be regarded as a pin for analysis purposes.

These connections are, by definition, not moment connections although partial strength connections able to resist less than 25% of M_{cx} may be regarded as nominally pinned.

Ductile connection

A connection which has sufficient rotation capacity to act as a plastic hinge.

Connection ductility should not to be confused with ductility of material (elongation to fracture).

Simple design

Method of frame design in which the connections are assumed not to develop moments that adversely affect either the members or the structure as a whole.

Continuous design

Method of frame design in which the connection properties are not modelled in the frame analysis. This covers either elastic analysis where the connections are rigid, or plastic analysis where the connections are full strength.

Semi-continuous design

Method of frame design in which the connection properties have to be modelled in the analysis. This covers elastic analysis where semi-rigid connections are modelled as rotational springs, or plastic analysis where partial strength connections are modelled as plastic hinges.

For ease of description within this manual, moment connections are generally illustrated with tension in the top flange and compression in the bottom flange.

1.6 MAJOR SYMBOLS

Note: Other symbols employed in particular Sections are described where used.

- B Width of section (Subscript c or b refers to column or beam)
- b_p Width of plate
- C Compression force
- D Depth of section (Subscript c or b refers to column or beam)
- d Depth of web between fillets or diameter of a bolt
- e End distance
- g Gauge (Transverse distance between bolt centrelines)
- M Bending moment
- N Axial force
- P_c Capacity in compression
- Pt' Enhanced tension capacity of a bolt when prying is considered
- p Bolt spacing ('pitch')
- py Design strength of steel
- Q Prying force associated with a bolt
- sw Fillet weld leg length
- S Plastic modulus
- T Thickness of flange (Subscript c or b refers to column or beam) or tension force
- t_p Thickness of plate
- t Thickness of web (Subscript c or b refers to column or beam)
- r Root radius of section
- V Shear Force
- Z Elastic modulus

Lengths and thicknesses stated without units are in millimetres.

2. BOLTED END PLATE CONNECTIONS

2.1 SCOPE

This Section deals with the design of bolted end plate connections such as those shown in Figure 2.1.

Experienced designers will recognise a significant departure from traditional UK practice, since the design model includes a plastic distribution of bolt forces as in Eurocode 3. Although it is more complex, the model can provide a greater moment capacity and research has shown that it gives a more accurate prediction of the actual behaviour of a connection. Safeguards are built in to the method to prevent premature bolt failure.

Three design approaches are described:

(1) The rigorous design method

This method is comprehensive, and some of the steps are complicated. For this reason the rigorous method is considered to be suitable primarily as a reference, and as a specification for the preparation of computer software.

Procedures are given for each stage of the design in Section 2.8, and a worked example is given in Appendix I.

(2) Capacity tables

Moment and shear tables are provided for a standardised range of full strength and partial strength connections. A selected range of universal beams is included, connecting to most universal column sections.

Tables for standardised connections for portal frames with inclined rafters are also provided. They are for a typical selection of rafters with universal beams used as columns.

The application of the tables is discussed in Section 2.7. Detailed instructions and examples of their use precede each set of tables.

(3) An abridged method for manual design

Sections 2.9 and 2.10 show how the rigorous method can be abridged to enable quick results to be obtained by hand calculation. This can be useful for unusual connections which do not fit into the standard geometry of the capacity tables.

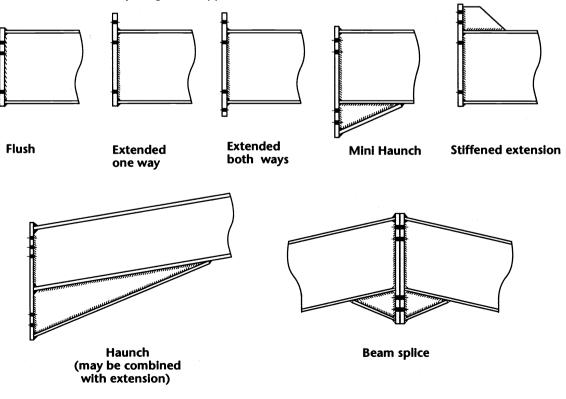


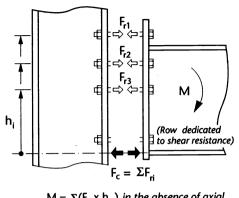
Figure 2.1 Typical end plate connections

2.2 DESIGN PHILOSOPHY

The design model used here is essentially that presented in Annex J of Eurocode 3: Part 1.1. It is based on a plastic distribution of bolt forces. The method is the result of extensive testing in Europe as well as a period of practical use in the Netherlands.

Although the design philosophy is taken directly from EC3, the strength checks on the bolts, welds and steel have been modified to suit BS 5950: Part 1.

Load paths


An end plate connection transmits moment by coupling tension in the bolts with compression at the opposite flange. Unless there is axial force in the beam, the two forces are equal and opposite. (See Figure 2.2.)

Tests show that, by the ultimate limit state, rotation has taken place with the centre of rotation at, or near, the compression flange which bears against the column. It is therefore reasonable to consider that compression is concentrated at the level of the centre of the flange.

The bolt row furthest from the compression flange will tend to attract the most tension, and traditional practice has been to assume a triangular distribution of forces. The method adopted here also gives greater priority to the outer bolts, but differs in that it allows a plastic distribution of bolt forces.

The force permitted in any bolt row is based on its potential resistance, and not just on its lever arm. Bolts near a point of stiffness, such as the beam flange or a stiffener, will therefore attract more load.

Rather than arbitrarily allocating force to each bolt row by a linear or 'triangular' distribution, the method considers

 $M = \Sigma(F_{ri} \times h_{i})$ in the absence of axial load in the beam

Figure 2.2 Forces in the connection

each side of the connection separately, making a precise allocation based on the capacity of each part.

Surplus force in one row of bolts can be transferred to an adjacent row which has a reserve of capacity. This principle is closer to the way connections actually perform in practice.

A plastic distribution of bolt forces is only reasonable, however, if the necessary deformation can take place. An upper limit is therefore set on the thickness of the column flange, or end plate, relative to the bolt strength. Where this limit is exceeded on both sides of the connection, a modification to the bolt tension forces is made to ensure that they do not exceed a triangular distribution for rows below the beam flange. (This triangular limit to the plastic forces is at present under consideration for inclusion in EC3.)

Figure 2.3 compares the two plastic distributions with a more traditional triangular distribution.

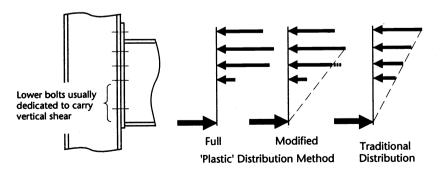
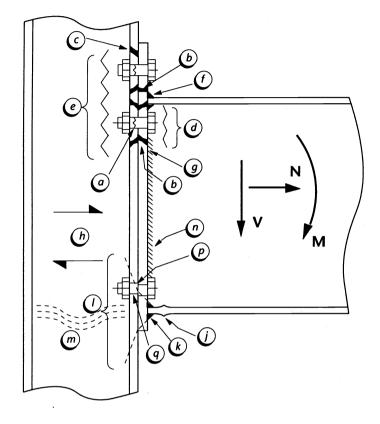



Figure 2.3 Distribution of bolt forces

ZONE	REF	CHECKLIST ITEM	See Procedure
TENSION	a b c d e f g	Bolt tension End plate bending Column flange bending Beam web tension Column web tension Flange to end plate weld Web to end plate weld	STEP 1A STEP 1A STEP 1A STEP 1B STEP 1B STEP 7 STEP 7
HORIZONTAL SHEAR	h	Column web panel shear	STEP 3
COMPRESSION	j k I m	Beam flange compression Beam flange weld Column web crushing Column web buckling	STEP 2 STEP 7 STEP 2 STEP 2
VERTICAL SHEAR	n P q	Web to end plate weld Bolt shear Bolt bearing (plate or flange)	STEP 7 STEP 5 STEP 5

Fig 2.4 Component design checks

2.3 CAPACITY CHECKS

There are 15 principal checks to be made on the beam, the column, and on the bolts. These are shown, with a check list, in Figure 2.4.

Each of these checks is outlined in detail in the procedures later in this Section and a flow chart is included which leads the reader through the design process.

2.3.1 Tension zone

The resistance at each bolt row in the tension zone may be limited by:

- column flange bending and bolt strength
- end plate bending and bolt strength
- column web tension
- beam web tension.

For column flange or end plate bending the method uses the Eurocode 3 approach which converts the complex pattern of yield lines which occurs round the bolts into a simple 'equivalent tee-stub' as shown in Figure 2.5. The capacity of the tee-stub is then checked against three possible modes of failure illustrated in Figure 2.6.

One area of difficulty with bolted moment end plates has always been the treatment of the prying force 'Q'. Depending upon the geometry of the connection, this force can vary from 0% to upwards of 40% of the tension in the bolt.

For this reason, simple design methods make a blanket allowance for prying by assuming it is present, and has a value between 20% and 30% of the bolt capacity. This approach is adopted by BS 5950: Part 1 with the values for P_t given in Table 32 of that standard.

The calculations for modes 1, 2 and 3 do not determine 'Q' directly, but prying forces are implicit in the formulae. The enhanced tension capacities which are shown in table 2.1 for 8.8 bolts can therefore be used in the design method.

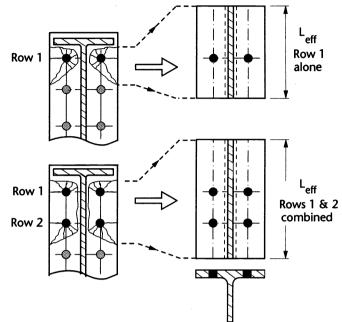


Figure 2.5 Equivalent T-Stubs

Table 2.1Tensile capacity of a single8.8 Bolt				
BS 5950: Part 1 Bolt Size Table 32, P _t		Enhanced value appropriate to the method, P _t '		
	(450N/mm ²⁾	(560N/mm²)*		
M20	110kN	137kN		
M24	159kN	198kN		
M30	252kN	314kN		

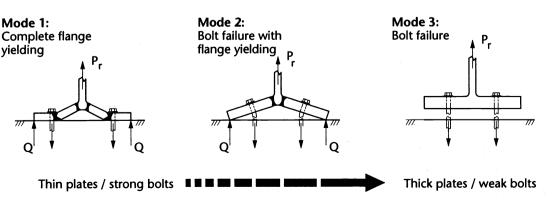


Figure 2.6 Column flange or end plate bending & bolt strength

Distribution of bolt forces

The resistance in each row, $(P_{r1}, P_{r2}, P_{r3} \dots)$, is calculated one row at a time, starting at the top and working down. In this way, priority is automatically given first to Row 1, then to Row 2 and so on.

At each stage, any bolts below the current row are ignored. The resistance of Row 1 is taken solely as the capacity for Row 1 acting alone.

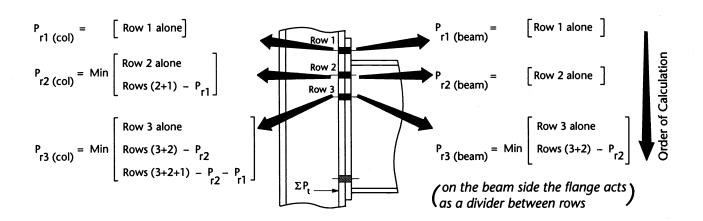
Subsequent rows are checked both in isolation and also as part of a group in combination with successive rows above. The resistance of Row 2 is therefore taken as the lesser of:

- the capacity of Row 2 acting alone, and
- the capacity of Rows (2+1) acting as a group minus the tension already allocated to Row 1.

This process is illustrated in Figure 2.7.

A tension stiffener (or the beam flange) acts as a divider between bolt groups, so that no row below a stiffener need be considered in combination with any row above it for that side of the connection. For example, in Figure 2.7, Rows 2 and 1 are not considered together for group action on the beam side of the connection because the beam flange divides them, but they are considered together for the column side.

The limit on full plastic distribution depending on the ratio of minimum flange or plate thickness to bolt diameter must also be considered, as set out in Step 1C on page 25.


2.3.2 Compression zone

Checks in the compression zone are similar to those traditionally adopted for web bearing and buckling. It is reasonable to expect a properly sawn beam end to provide contact with the end plate, so that compression in the bottom flange is transferred in bearing. Guidance on allowable tolerance between bearing surfaces is given in the National Structural Steelwork Specification for Building Construction. ⁽¹⁰⁾

It is common for the column web to be loaded in this region to a point where it controls the design of the connection. However it can be strengthened as shown in Figure 2.9 (page 13.)

The column web must also be checked for buckling, but in this respect, it may be reasonable to consider whether in some cases buckling is prevented by other beam(s) connecting into the web at right angles to the connection under consideration.

The compression on the beam side can usually be regarded as being carried entirely in the flange, and the centre of compression taken at the centre of the flange. However when large moments combine with axial load, the compression zone will spread up into the beam web with a corresponding movement of the centre of compression.

Note: Pri is the minimum of the column and beam values

Figure 2.7 Steps in calculating the distribution of bolt forces

2.3.3 Shear zone

The column web must also resist the horizontal panel shear forces. To carry out this check, any connection at the opposite flange of the column must also be taken into account, since it is the resultant of the shears which must be borne by the web.

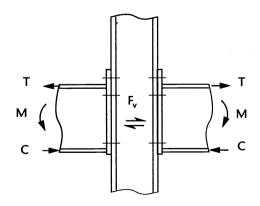
In a one-sided connection with no axial force, the web panel shear F_v is equal to the compressive force 'C'. For a two-sided connection with balanced moments, the column web panel shear will be zero, and in the case of a connection with moments acting in the same sense, such as in a wind-moment frame, the shear will be additive. (See Figure 2.8.)

Table 2.2 Methods of strengthening columns					
		DEF	ICIEN	ICY	
TYPE OF COLUMN STIFFENER	Web in tension	Flange in bending	Web in bearing	Web in buckling	Web in shear
Flange backing plates		•			
Horizontal stiffeners: Full depth Rib	•	••	•	•	
Supplementary web plates	•			•	•
Diagonal stiffeners					•
Morris stiffeners	•	•			•

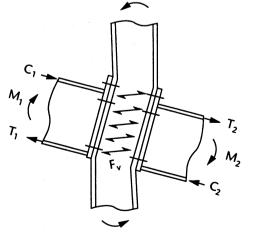
The web of most UC section columns will fail in panel shear well before it fails in bearing or buckling and therefore, for one-sided connections, web shear is likely to govern. Where this is critical, the column web can be strengthened by using diagonal stiffeners, or by supplementary web plates as shown in Figure 2.9.

2.4 METHODS OF STRENGTHENING

Careful selection of the members during design will often avoid the need for strengthening at the connection, and will lead to a more cost-efficient structure. Sometimes however there is no alternative to strengthening one or more of the connection zones. The range of stiffeners which can be employed is indicated in Figure 2.9.

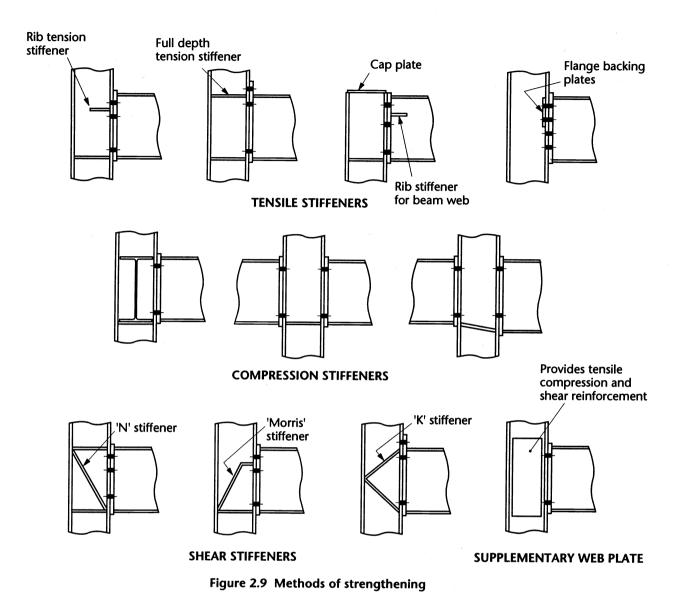

The type of strengthening must be chosen so that it does not clash with other components at the connection. This is often a problem with conventional stiffeners when secondary beams frame into the column web.

There are usually several ways of strengthening each zone and many of them can contribute to overcoming a deficiency in more than one area as shown in Table 2.2.


2.5 CONNECTION ROTATIONAL STIFFNESS

If a continuous frame is analysed elastically, the validity of the result depends upon the connection between the beam and the column having sufficient rotational stiffness. The connections are considered as 'rigid', because their flexibility is low enough to be ignored.

The importance of connection stiffness varies with the type of structure. The following guidance indicates when the rotational stiffness should be considered:



Web panel with no shear $F_v = 0$

Web panel subject to shear force $F_{u} = C_{1} + T_{2}$

Braced frames and single storey portals

Well proportioned connections designed for strength alone may be assumed to be Rigid. The standardised connections indicated in the tables on pages 150-181 and 190-201 are examples of this type of connection.

Wind-moment frames

Wind-moment connections, as described in Section 3, are not regarded as Rigid, and account must be taken of their flexibility in the design of the frame.

For guidance see Wind-Moment Design for Unbraced Frames ⁽¹¹⁾

Multi-storey unbraced frames

Connection rotational stiffness is inherent to the safety of this type of frame. Flexibility in the connection adversely affects frame stability and serviceability.

The connection details must therefore be the responsibility of the frame designer.

The designer may:

either

- estimate connection stiffness and consider this in evaluating λ_{cr} (BS 5950: Part 1, Clauses 5.6 and 5.7). It is anticipated that a method for calculating connection stiffness will be presented in a revised Annex J of EC 3.
- or satisfy both of the following requirements:
- provide connection details which ensure that Mode 3 is the critical mode. This can be achieved on the beam side of the connection by making the end plate thickness not less than the bolt diameter - spaced within the range given in Section 2.6. The column side of the connection may have to be suitably stiffened with tension and compression stiffeners.
- limit column web panel shear to 80% capacity, failing which provide diagonal stiffeners or supplementary web plates.

2.6 STANDARDISATION

The principles of standardised connections are discussed more fully in *Joints in Simple Construction:* Volume $2^{(9)}$ Most of the benefits apply equally to bolted endplate moment connections. Some general recommendations are given below and summarised in Table 2.3. The capacity tables given in the yellow pages are based on these principles.

Bolts

M24 8.8 bolts in clearance holes should be adopted as the 'standard' bolt for moment connections. For some smaller connections - say beams up to 400mm deep and stanchions with thin or narrow flanges - M20 bolts are adequate.

For larger and more heavily loaded connections the designer may need to resort to M30 8.8 or possibly 10.9 bolts. However, care should be taken when using 10.9 bolts owing to their limited ductility. This will not be a problem where bolts are provided which have a minimum of five threads under the nut after tightening.

As with other types of steel structure, the objective should be to restrict the number of different bolts on any one contract. Variations in length can be kept to a minimum by the use of fully threaded bolts.

End plates

End plates, and other fittings, are commonly specified in design grade 43 steel which is usually readily available in small quantities. Design grade 43 can normally be used even when the parent member is in design grade 50 steel. There should be a sensible relationship between the bolt spacing, bolt size and plate thickness. An efficient solution with design grade 43 steel is to make the plate thickness approximately equal to the bolt diameter, and select bolt spacing, both cross centres and pitch, within the range 80 to 100mm.

For the majority of sections, cross centres of 100mm with M24 bolts and 90mm with M20 bolts are recommended, although the centres must be increased for some Universal Column sections over 200 kg/m to allow sufficient clearance to the root radius.

Within this manual, standard wind-moment connections, portal eaves and portal apex connections use 90mm cross centres with both M24 and M20 bolts.

Haunches

Haunches can be either cut from Universal Beams or built up from flats or plate. The usual practice is to use section cuttings for long haunches, such as those in portal frames, and to size the haunch depth so that the section used can be split diagonally with a single cut.

Whichever method is used, it should be noted that the design procedures assume that the web and flange of the haunch section are at least as thick as the web and flange of the parent member. The design grade of the haunch may have been defined as part of the parent member design.

Table 2.3 Standard components					
ELEMENT	PREFERRED OPTION	NOTES			
BOLTS	M24 8.8 in clearance holes	M20 8.8 bolts for smaller connections M30 8.8 bolts for larger connections			
END PLATES	250 x 25 - M24 bolts 200 x 20 - M20 bolts (All plates in design grade 43 steel)	Plate width may need to increase to suit wider flange beams			
HAUNCHES	Section cuttings	- For long (>2000mm) haunches			
HAUNCHES	Built up plates	- For smaller haunches			
WELDS	Fillet welds - 6, 8, 10, 12mm Partial penetration butt welds	- For beam webs, stiffeners and most flanges - When greater than 12FW required			

Welds

Fillet welds are generally preferred to butt welds. The welds to the beam web and around stiffeners can almost always be fillets. The minimum recommended size is 6mm.

One exception is the tension flange welds for larger heavily loaded beams for which 12mm fillets may not suffice.

Because of the large volume of weld metal needed and the associated problems of distortion, many fabricators prefer to use a partial or full penetration butt weld rather than fillet welds greater than 12mm, as shown in Figure 2.10. This preference also applies to the compression flange where it is not possible to achieve a bearing fit against the end plate.

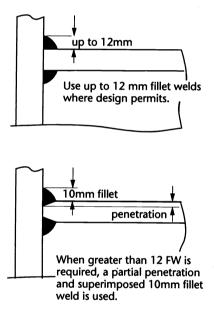


Figure 2.10 Standardised flange welds

Haunch welds

The shear along the haunch length is usually low enough to permit suitably designed intermittent fillet welds to connect the haunch web to the beam flange, although continuous fillets may be specified for aesthetic or corrosion reasons.

The weld between the haunch flange and beam flange is generally made a fillet with a leg length equal to the haunch flange thickness.

2.7 USING THE CAPACITY TABLES

The capacity tables presented in the yellow pages can be used for beam to column connections, and also for portal frame eaves and apex connections. The tables have three uses:

(1) Scheme design stage

When the framing arrangement and member sizes are being considered, the designer can refer to the tables to see if a reasonable connection can be made between the proposed beam and column sections. The necessity of a haunch and the need to stiffen can be investigated.

It will be noted that some connections listed in the tables are partial strength, and do not achieve the full plastic moment resistance of the beam. When it is not possible to achieve a connection capable of developing the full plastic moment of a beam with a flush or extended end plate, the tables will generally provide a haunched connection with a moment capacity greater than that of the beam.

(2) Detailed design stage

The tables may be used to arrive directly at a connection detail, including any stiffening that may be necessary, when the standard range of connections is being used.

(3) Preliminary sizing

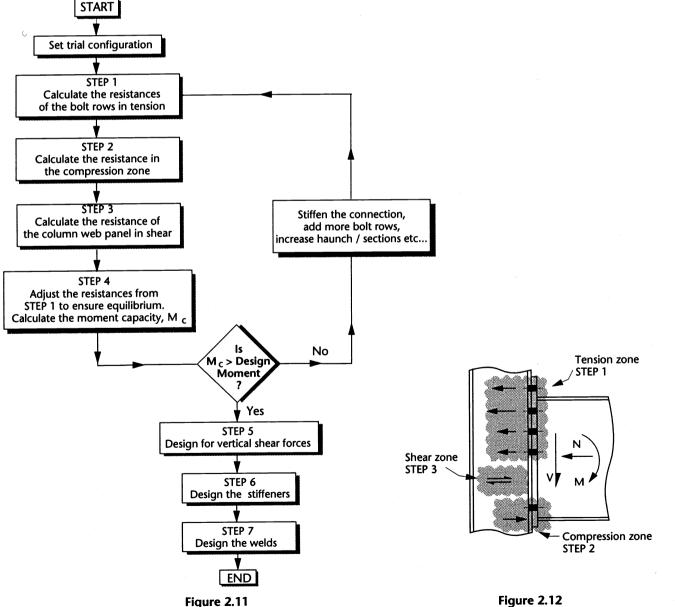
When designing connections which are outside the range of the tables, the tables may be used as a guide for choosing a trial configuration for subsequent analysis by hand or computer.

2.8 DESIGN PROCEDURES - RIGOROUS METHOD

Introduction

The following procedures are **not** advocated for routine hand calculations. They are intended:

- as a source of reference for the full method
- for use in writing computer programs
- for use in checking output from computer programs.


The procedures present the method for assessing the moment resistance of bolted end plates. A beam to column flange connection with an extended end plate is used by way of illustration, although the method can easily be adapted to other similar connections such as those shown in Figure 2.1.

The full set of checks needed is shown in Figure 2.4. These are carried out in a logical sequence in the three zones as shown in Figures 2.11 and 2.12.

A worksheet is included on which can be set down in tabular form the process of calculation of the bolt row forces. (See page 26.)

A worked example showing the design of a bolted end plate connection using the rigorous method is given in Appendix I. Examples of stiffener design are included.

Section 2.9 demonstrates how the method can be abridged for manual use by experienced connection designers.

Flow diagram - design checks

STEP 1 POTENTIAL RESISTANCES OF BOLT ROWS IN THE TENSION ZONE

General

The force in each row of bolts in the tension zone is limited by bending in the end plate or column flange, bolt failure, or tension failure in the beam or column web.

The procedure is to first calculate the *potential* resistance for each row i.e:

The values P_{r1} , P_{r2} , P_{r3} etc. are calculated in turn starting at the top row 1 and working down. Priority for load is given to row 1 and then row 2 and so on.

At every stage, **bolts below the current row are ignored**.

Each row is checked first in isolation and then in combination with successive rows above it, i.e.

 $P_{r1} = [capacity of row 1 alone]$ $P_{r2} = Min. of: [capacity of row 2 alone (capacity of rows 2+1) - P_{r1}]$ $P_{r3} = Min. of: [capacity of row 3 alone]$

(capacity of rows 3+2) – P_{r_2} (capacity of rows 3+2+1) – P_{r_2} – P_r

....and in a similar manner for subsequent rows.

For each of these checks the capacity of a bolt row or a group of bolt rows in the tension zone is taken as the least of the following four values:

- Column flange bending/bolt yielding ... STEP 1A
- End plate bending/bolt yielding STEP 1A
- Column web tension STEP 1B
- Beam web tension STEP 1B

In addition, the force in any bolt row may in some cases be limited by the connection's inability to achieve the plastic bolt force distribution without premature bolt failure. This additional check, and the required modification to the distribution, is given in STEP 1C.

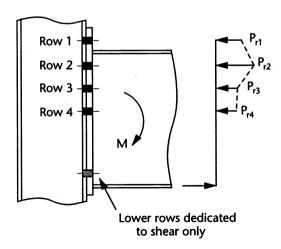
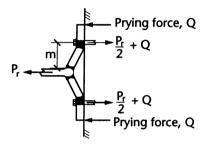
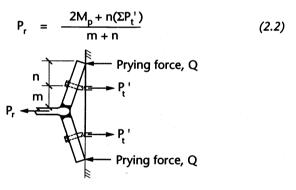


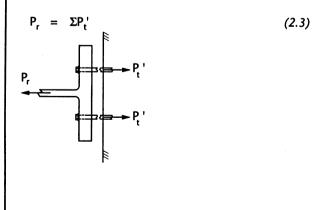
Figure 2.13 Potential resistance of bolt rows


STEP 1A END PLATE OR COLUMN FLANGE BENDING OR BOLT YIELDING

This check is carried out separately for both the column flange and the end plate.


The potential resistance in tension of the column flange or end plate, P_r is taken as the minimum value obtained from the three equations (2.1), (2.2) or (2.3), below:

Mode 1 Complete flange yielding


$$P_r = \frac{4M_p}{m}$$
(2.1)

Mode 2 Bolt failure with flange yielding

Mode 3 Bolt failure

where:

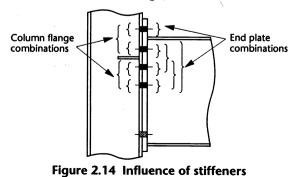
M_p = plastic moment capacity of the equivalent T-stub representing the column flange or end plate

$$= \frac{L_{eff} \times t^2 \times p_y}{4}$$

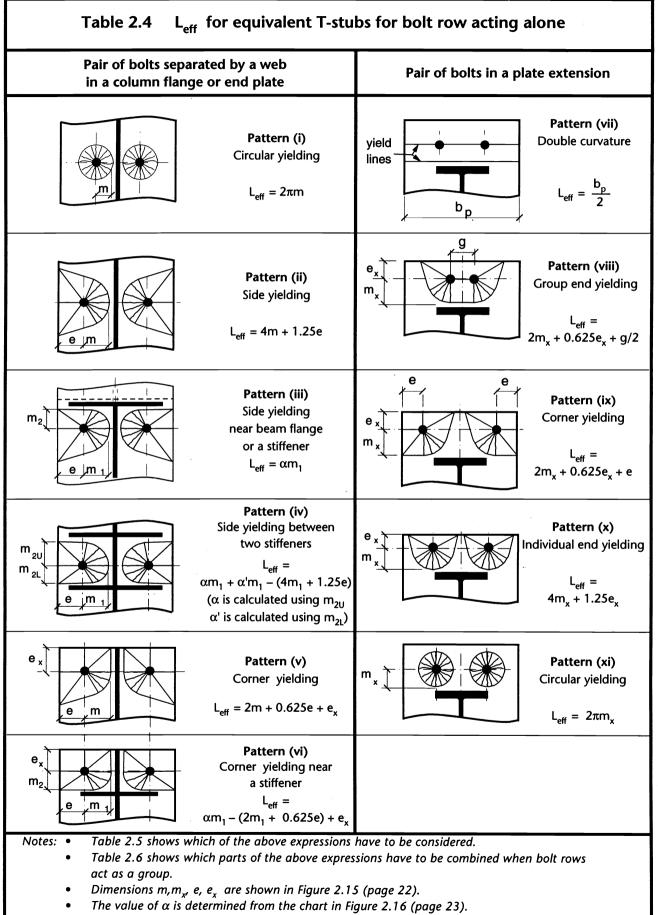
L_{eff} = effective length of yield line in equivalent T-stub (See Tables 2.4, 2.5, 2.6)

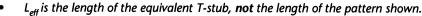
t = column flange or end plate thickness

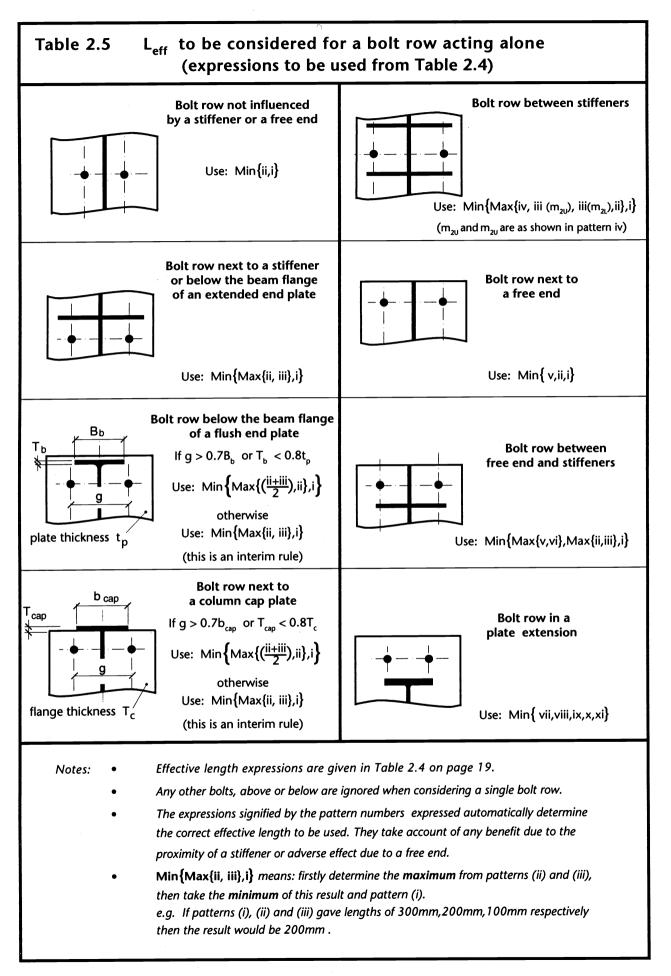
- y = design strength of column/end plate
- P_r = potential resistance of the bolt row, or bolt group
- P_t' = enhanced bolt tension capacity where prying is taken into account (See Table 2.1)
- $\Sigma P_t' =$ total tension capacity for all the bolts in the group
 - m = distance from bolt centre to 20% distance into column root or end plate weld (See Figure 2.15 on page 22)
 - n = effective edge distance. (See Figure 2.15 on page 22)

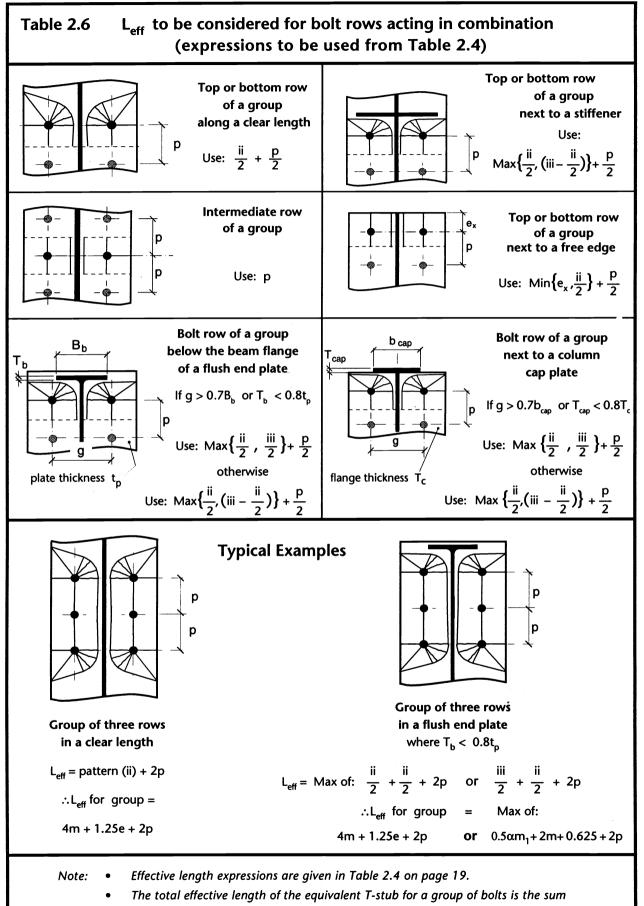

For an extended end plate, dimensions m_x and n_x are required, defined on page 22. (m_x and n_x are **only** used in the extension.)

Backing plates

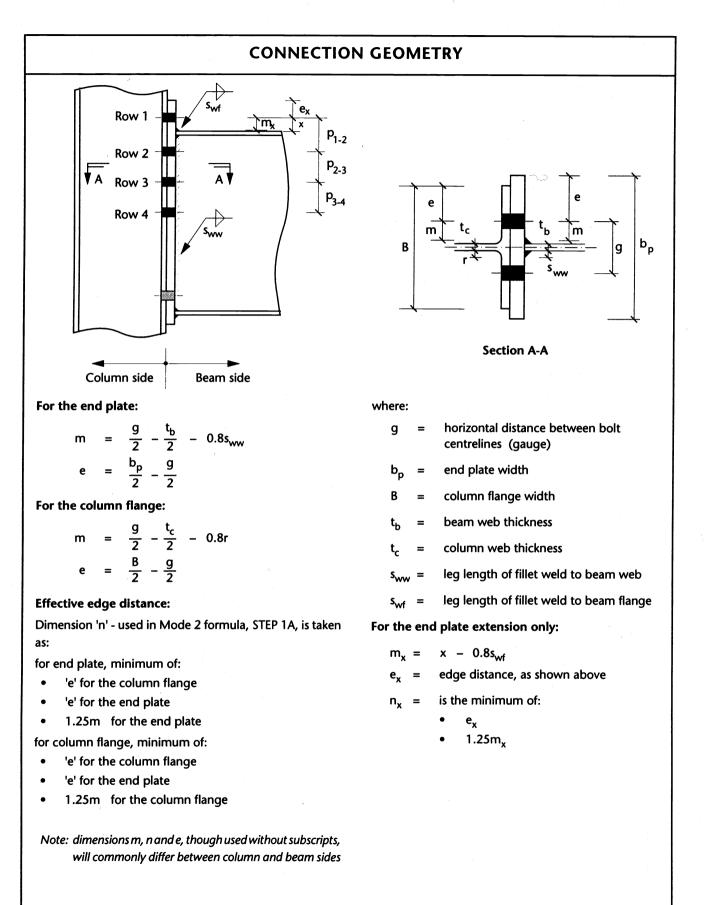

For small section columns with thin flanges, loose backing plates can increase the resistance of the column flange by preventing a Mode 1 type bending failure. Design rules for backing plates are given in STEP 6C.

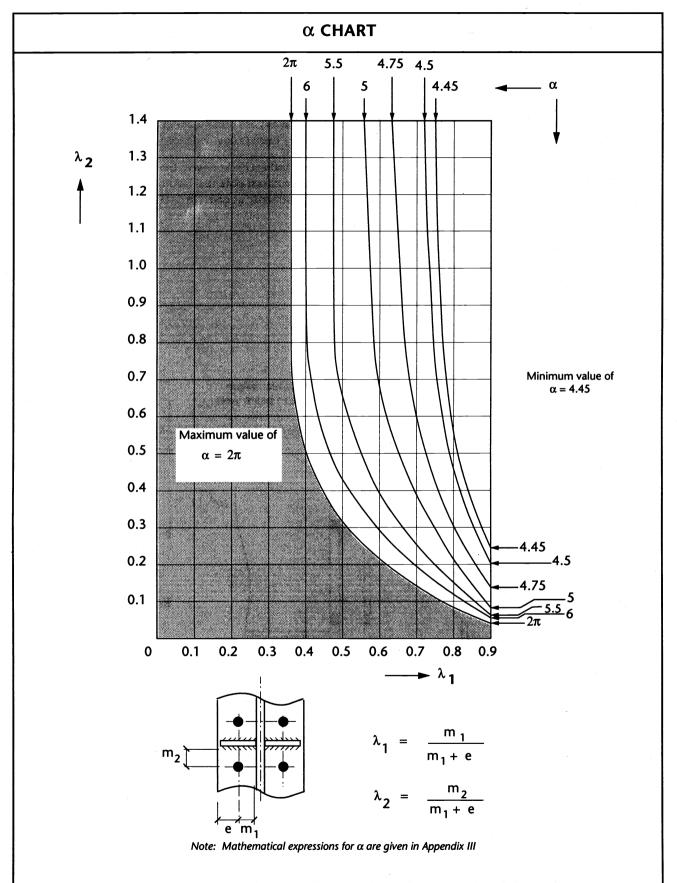

Stiffeners


For end plate or column flange bending, bolt groups must be considered separately between stiffeners or the beam flange as shown in Figure 2.14. i.e. the yield pattern of any bolt row below a stiffener (or flange) cannot combine with any rows above it on the side where the stiffener (or flange) is.



18





of the effective lengths for each row as given above.

Figure 2.15 Connection geometry

STEP 1B

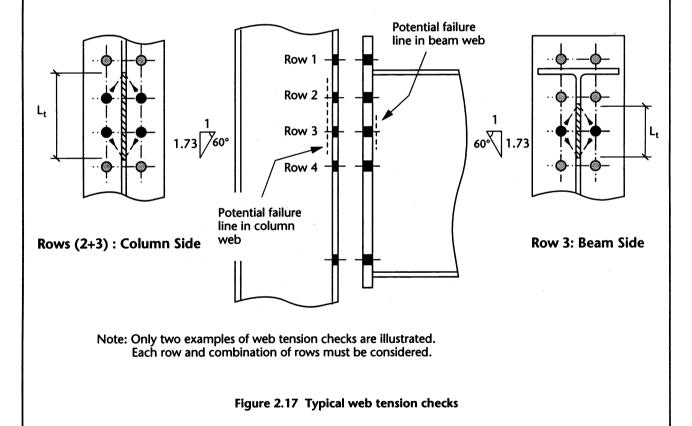
WEB TENSION IN BEAM OR COLUMN

General

This check is carried out separately for both the beam web and the column web. The potential resistance in tension of the web for a row or a group of bolt rows is taken as:

$$P_t = L_t \times t_w \times p_v \qquad (2.4)$$

where:


L_t = effective tensile length of web assuming a maximum spread at 60° from the bolts to the centre of the web (Figure 2.17)

- = thickness of the column or beam web
- p_y = design strength of the steel in the column or beam.

Stiffeners

Web tension will not govern for any row or group of bolts where stiffeners are present along the tensile length, L_t , which have been properly designed as in STEP 6C.

However, further checks on web tension are also necessary along the weakest potential failure line beyond a partial depth rib stiffener as given in STEP 6C.

STEP 1C MODIFICATION OF BOLT ROW FORCE DISTRIBUTION

The method given in STEPS 1A and 1B for assessing the forces in the tension zone produces a plastic distribution of bolt forces.

Often lower rows which are near a flange or stiffener have a greater resistance than higher rows, but some deformation needs to take place to permit them to develop their load.

Some connections with smaller bolts and relatively thick end plates have little deformation capacity. In such cases there is a danger that the upper bolts may fail before resistance is generated in lower rows. See Section 2.2

Plastic distribution limit

The plastic distribution must be modified unless:

Either

(a) on the beam side:

$$t_{p} < \frac{d}{1.9} \times \sqrt{\frac{U_{f}}{p_{yp}}}$$
 (2.5)

Or

(b) on the column side:

$$T_{c} < \frac{d}{1.9} \times \sqrt{\frac{U_{f}}{P_{yc}}}$$
 (2.6)

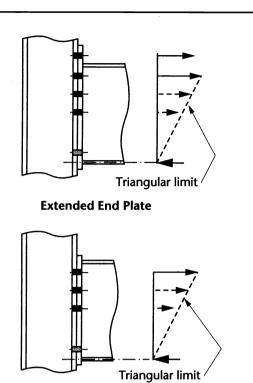
where:

t_p = end plate thickness

= column flange thickness

d = bolt diameter

 p_{yp} = design strength of the end plate

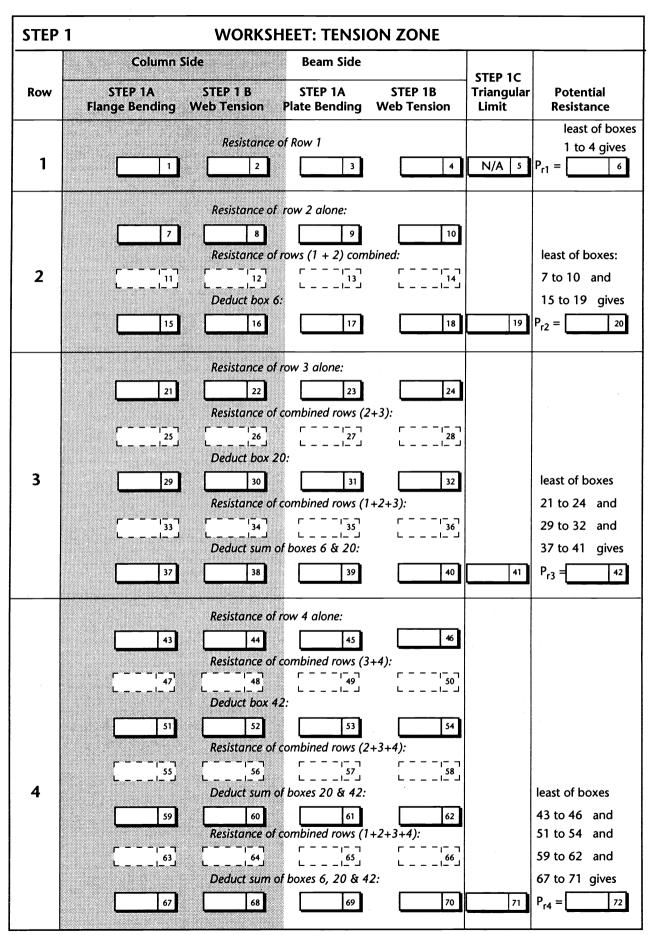

 p_{yc} = design strength of the column

 U_f = ultimate tensile strength of the bolt.

If the above condition is not satisfied, then the force assigned to any lower bolt row is restricted to the value resulting from a 'triangular' limit as shown in Figure 2.18

For this purpose, the centre of rotation is taken as the centre of the compression flange and the triangular limit line should generally be taken from the bolt row immediately below the tension flange. (Where an extended end plate has a vertical stiffener, the line is taken from the top bolt row.)

Where the potential resistance exceeds the triangular limit, it must be reduced, but surplus resistance can be redistributed to the rows below. This process is carried out row by row as potential resistances are calculated.


Flush End Plate

Note that the triangular distribution limit line only needs to be imposed if **both** sides of the connection exceed their respective thickness limits.

When 8.8 bolts are used, the plastic distribution limit equations correspond to maximum thicknesses as shown in Table 2.7.

Table 2.7Maximum thicknesses for unmodified plastic distribution of bolt row forces				
8.8 Bolt	End Plate or Co	olumn Flange (mm)		
Dia.	(Design Grade 43)	(Design Grade 50)		
M20	18.3	16.0		
M24	21.9	19.2		
M30	27.5	24.0		

See the worked example using the worksheet in Appendix I

STEP 2A

COMPRESSION CHECK - COLUMN RESISTANCE OF THE COLUMN WEB IN THE COMPRESSION ZONE

The resistance in the compression zone, P_c is the lesser of (2.7) or (2.8) below.

For the resistance of stiffened columns, reference should be made to STEP 6A.

Column web crushing (bearing)

An area of web providing resistance to crushing is calculated on the force dispersion length taken from Figure 2.19. (BS 5950: Part 1 Cl 4.5.3)

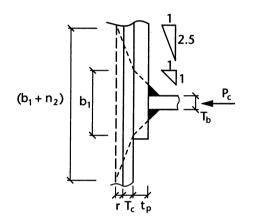


Figure 2.19 Force dispersion for web crushing

 $P_c = (b_1 + n_2) \times t_c \times p_y$ (2.7)

where:

- b₁ = stiff bearing length based on a 45° dispersion through the end plate from the edge of the welds
- n₂ = length obtained by a 1:2.5 dispersion through the column flange and root radius

 $t_c = column$ web thickness

p_{vc} = design strength of the column

 $t_p = end plate thickness$

 $T_c = column flange thickness$

r = column root radius.

Column web buckling

An area of web providing resistance to buckling is calculated on a web length taken from Figure 2.20. (BS 5950: Part 1 Cl 4.5.2.1)

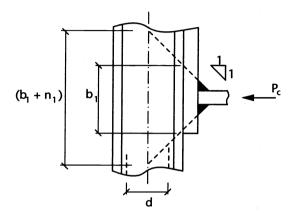


Figure 2.20 Length for web buckling

$$P_c = (b_1 + n_1) \times t_c \times p_c$$
 (2.8)

where,

 $b_1 =$ stiff bearing length as above

- n_1 = length obtained by a 45° dispersion through half the depth of the column
 - = column depth (D_c)
- t_c = column web thickness
- p_c = compressive strength of the column web from BS 5950: Part 1 Table 27(c) with $\lambda = 2.5 d/t_c$
- d = depth of web between fillets

The above expression assumes that the column flanges are laterally restrained relative to one another. (BS 5950: Part 1 clause 4.5.2.1). If this is not the case, further reference should be made to BS 5950: Part 1 clause 4.5.1.5 and 4.5.2.1.

Note: b_1 , n_1 , n_2 , must be reduced if:

- the end plate projection is insufficient for full dispersal.
- the column projection is insufficient for full dispersal.

COMPRESSION CHECK - BEAM

(2.9)

RESISTANCE OF THE BEAM FLANGE AND WEB IN THE COMPRESSION ZONE

Beam flange crushing (bearing)

The potential resistance of the flange in compression is taken as:

where:

STEP 2B

 p_{yb} = design strength of the beam

 $T_b =$ the beam flange thickness

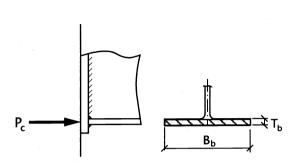
 $P_c = 1.4 \times p_{vb} \times T_b \times B_b$

 $B_b =$ the beam flange breadth.

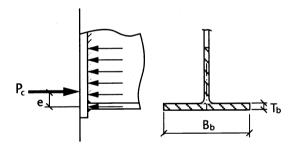
The centre of compression is taken as coinciding with the centre of the beam compression flange as shown in Figure 2.21. This accords with the behaviour of connections under test. (12)

Allowing the flange bearing stress to exceed the yield stress by a factor of 1.4 is justified by two localised effects. It is a combination of strain-hardening and dispersion into the web at the root of the section. Typically (for UB sections) each of these effects will account for around 20% 'overstress', so that an effective $1.4p_{yb}$ can be taken when the flange area is assumed to act alone.

For most moment connections, this simplified check will establish that compression flange crushing does not govern. However, there will be circumstances in which this limit is exceeded, notably when axial compression is present.


In such cases a \perp shaped compression zone should be taken extending some distance up the web, as in Figure 2.22.

But note that:


- The stress in this \perp section is limited to $1.2p_{y'}$ since the contribution of the web is now being taken into account.
- The centre of compression is redefined as the centroid of the \perp section needed to resist F_c , and the lever arm of the bolts is reduced accordingly.
- An iterative calculation process becomes necessary.

Haunched connection

When a haunched connection is adopted, the haunch flange resists compressive forces. See also STEP 8 for the haunch design.

Figure 2.22 Compression in beam flange and portion of web

STEP 3

DESIGN FOR COLUMN PANEL SHEAR RESISTANCE OF THE COLUMN WEB PANEL IN SHEAR

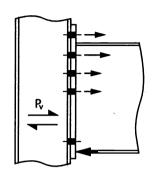
The resistance of an unstiffened column web panel in shear (Figure 2.23) is:

$$P_v = 0.6 \times p_{vc} \times t_c \times D_c$$
 (2.10)

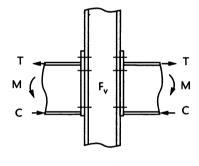
where:

 p_{yc} = design strength of the column

= column web thickness

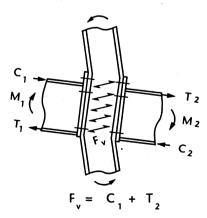

 $D_c =$ column section depth.

It is the resultant panel shear from connections to both column flanges which must be taken into account when checking the web as shown in Figure 2.24.


In a one-sided connection with no axial force, the shear in the column web will be equal to the compressive force F_c.

For a two-sided connection with balanced moments, the shear is zero, but in the case of a connection with moments acting in the same direction, such as in a wind moment frame, the shear is additive.

The resistance of stiffened columns can be determined with reference to STEPS 6D and 6E.



Web panel with no shear

Web panel subject to shear force

Figure 2.24 Forces and deformation of web panel

STEP 4

CALCULATION OF MOMENT CAPACITY

Force distribution

The bolt row forces in the connection are the potential resistances, reduced if necessary to ensure equilibrium in the horizontal direction. Figure 2.25 shows the potential resistances (P) translated into the actual bolt row forces (F).

Equilibrium is satisfied by:

 $\Sigma F_{ri} + N = F_{c}$

where N is the axial load in the beam (positive for compression)

and F_c is the smallest of the following:

$$\Sigma P_{ri} + N$$

or P_c (column web crushing (bearing))

- or P_c (column web buckling)
- or P_c (beam flange crushing (bearing.))
- and Column web panel shear requirements must be satisfied (see STEP 3)

For each bolt row:

where:

 P_{ri} = potential force in bolt row i

 F_{ri} = final force in bolt row i.

If there is a surplus capacity in the bolts in tension, then the forces should be reduced, starting with the bottom row and working up progressively until equilibrium is achieved.

Moment capacity

Basic requirement

 $M_c \ge M$ (or M_m when modified by axial load)

The moment capacity of the connection is :

$$M_{c} = \Sigma (F_{ri} \times h_{i})$$

where:

h_i = distance from the centre of compression to row i.

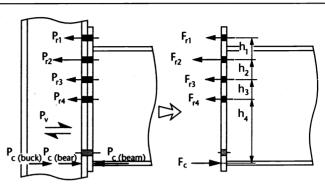
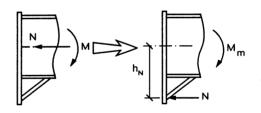



Figure 2.25 Translation of potential resistances into bolt row forces

Applied moment modified by axial load

If an axial load is present it may be considered as being applied at the centre of compression and the applied moment modified accordingly.

The lever arm used must correspond to the location of the force assumed in the analysis (usually the member centre line).

The modified moment M_m is given by:

$$M_m = M - N \times h_N$$

where:

- M = applied moment
- N = axial force
- h_N = distance of axial force from centre of compression.

STEP 5

DESIGN FOR VERTICAL SHEAR FORCES

Comprehensive capacity checks for end plate connections subjected to vertical shear are given in *Joints in Simple* Construction, Volume 1.(9)

However, for full depth, fully welded endplates connected to column flanges, many of these checks can be safely omitted. The vertical shear capacity is calculated using a reduced value for bolt rows which are in the tension zone, plus full shear value for bolt rows ignored when calculating moment capacity.

Therefore it is required that:

$$V \leq n_s \times P_{ss} + n_t \times P_{ts}$$

where:

- V = design shear force
- $n_s =$ number of bolts not in the tension zone
- n_t = number of bolts in the tension zone
- P_{ss} = shear capacity of a single bolt in shear only which is the least of:
 - p, A, for bolt shear, or

d $t_p p_b$ for bolt bearing on the endplate, or

 $dT_f p_b$ for bolt bearing on the column flange

P_{ts} = shear capacity of a single bolt in the tension zone which is the least of:

 $0.4 p_s A_s$ for bolt shear, or

- $d t_p p_b$ for bolt bearing on the endplate, or
- $dT_c p_b$ for bolt bearing on the column flange
- p_s = shear strength of the bolt (BS 5950: Part 1 Table 32)
- A_s = shear area of the bolt (the threaded area is recommended)
- T_c = column flange thickness (Figure 2.26)
- t_p = end plate thickness (Figure 2.26)
- p_b = minimum value of bearing strength for either the bolt, p_{bb} or the connected parts, p_{bs} . (BS 5950: Part 1 Tables 32 & 33)
- Note: The above expression conservatively assumes that all the bolts in the tension zone are fully stressed in tension. Any other assumption involves quantifying the prying force Q, row by row, and is not recommended

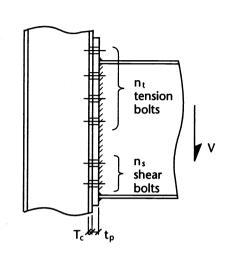


Figure 2.26 Tension and shear bolts

Shear capacities	of single 8.8 bolts
Bolts in shear only	Bolts in shear and tension
kN	kN
91.9	36.8
132	53
210	84.2
	Bolts in shear only kN 91.9 132

Capacities are based on the tensile area of the bolt. See table on page 221 for bearing capacities.

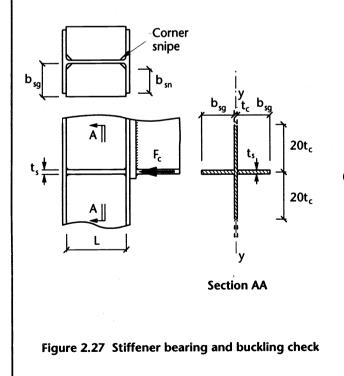
STEP 6A DESIGN OF COLUMN COMPRESSION STIFFENERS

The resistance in the compression zone, P_c of a column web reinforced with full depth stiffeners as shown in Figure 2.27 is the lower value from equations (2.11), and (2.12) below. This must equal or exceed the compressive force, F_c derived in STEP 4.

In addition a further check must be made to ensure that the stiffeners alone can carry, in bearing, 80% of the applied force. See equation (2.13). (This is usually the formula which governs.)

Stiffeners are usually designed in grade 43 steel.

Effective outstand of compression stiffeners


The outstand of grade 43 compression stiffeners b_{sg} should not exceed 19t_s (see Figure 2.27).

When the outstand is between $13t_s$ and $19t_s$ design should be on the basis of a core section of $13t_s$.

(See BS 5950: Part 1 Cl. 4.5.1.2 when stiffeners are designed in other grades of steel.)

where:

- b_{sq} = stiffener outstand (see Figure 2.27)
 - t_s = thickness of stiffener.

Stiffener/Column web crushing and buckling

(BS 5950: Part 1 Clauses. 4.5.4.1, 4.5.4.2 and 4.5.5.)

$$P_{c buckling} = (A_w + A_{sg}) \times p_c \qquad (2.11)$$

$$P_{c \text{ crushing}} = [A_{sn} \times p_{y}] + [(b_{1} + n_{2}) \times t_{c} \times p_{y}] \quad (2.12)$$

and:

$$P_{c \text{ bearing}} = \frac{A_{sn} \times p_{ys}}{0.8}$$
 (2.13)

where:

pc

rv

- A_w = allowable area of column web for buckling (see section AA in Figure 2.27)
 - = 40t_c x t_c (maximum)
- A_{sq} = gross area of stiffeners

 $= 2 \times b_{sq} \times t_s \quad (b_{sq} \le 13t_s)$

- A_{sn} = net area of stiffeners in contact with column flange.
 - $= 2 \times b_{sn} \times t_s$
 - = compressive strength of stiffeners from BS 5950: Part 1 Table 27(c) with $\lambda = 0.7L / r_y^*$

L = Length of stiffener = $D_c - 2T_c$

- radius of gyration of effective area (as shown in section AA, Figure 2.27)
- py = lesser of the design strength of stiffener or column

p_{ys} = design strength of stiffener

(b₁+n₂) = effective bearing length along web. (see STEP 2)

* The effective buckling length of the stiffener given here assumes that the column flanges are laterally restrained relative to one another. For other cases refer to BS 5950 Clause 4.5.1.5.

Mar. 97 Revision: Figure 2.27 and A_w modified

STEP 6A DESIGN OF COLUMN COMPRESSION STIFFENERS (CONTINUED)

Column cap plates

To ensure that yield patterns occur in the column flange and not in the cap plate, the cap plate should be sized such that:

$$b_{cap} \ge g$$
 and $T_{cap} \ge 0.8T_c$

where:

 b_{cap} = width of cap plate

 T_{cap} = thickness of cap plate.

Cap plate/Column web crushing and buckling must also be checked when the cap plate is in compression in a similar manner to that shown on page 32.

Weld design

The welds connecting compression stiffeners to the column web and flanges will generally be fillet welds and should be designed to BS 5950 Clauses 4.5.9 and 4.5.11 as follows:

Welds to Flanges

The stiffener is normally fabricated with a bearing fit to the inside of the column flange. In this case the weld to the flange need only be nominal, say 6mm fillet welds, otherwise the welds should be designed as full strength.

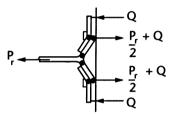
Welds to Web

The web welds must be designed to carry,

for single sided connections :

• the beam compression flange force,

for double sided connections :


- the sum of the beam flange forces, where the forces act in the same global direction, or
- the larger of the beam flange forces, when the forces act in opposite directions.

STEP 6B DESIGN USING COLUMN FLANGE BACKING PLATES

The potential resistance in tension of a column flange strengthened by backing plates is taken as the minimum value obtained from the three equations (2.14), (2.2) and (2.3) below.

Mode 1 Complete flange yielding

$$P_r = \frac{4M_p + 2M_{bp}}{m}$$
 (2.14)

Mode 2 Bolt failure with flange yielding

$$P_r = \frac{2M_p + n(\Sigma P_t')}{m + n}$$
(2.2)

Mode 3 Bolt failure

$$P_r = \Sigma P_t'$$

(2.3)

$$M_{\rm bp} = \frac{L_{\rm eff} \times t_{\rm bp}^2 \times P_y}{4}$$

 t_{bp} = thickness of the backing plate

 p_v = design strength of the backing plate.

other variables as defined in STEP 1A.

The width of the backing plate, b_{bp} should not be less than the distance from the edge of the flange to the toe of the root radius, and it should fit snugly against the root radius.

The length of the backing plate should not be less than the length of effective T-stub for the bolt group (L_{eff}) and be such that it extends not less than 2d beyond the bolts at each end. (d is the bolt diameter)

This type of strengthening is useful for smaller section columns where flanges are particularly thin. The plates are generally supplied loose or tack-welded in place and their effect is to prevent or increase the resistance to a Mode 1 bending failure. Mode 3 is not affected.

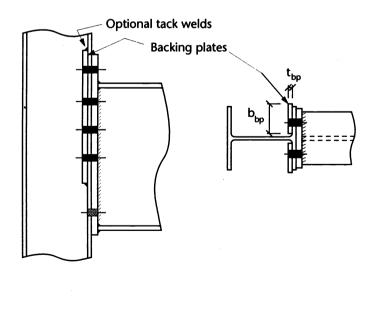


Figure 2.28 Column flange backing plates

STEP 6C

DESIGN OF TENSION STIFFENERS

General

Tension stiffeners as shown in Figure 2.29 are generally used to supplement the tension capacity of the column web and/or the capacity of the column flange in bending. Stiffeners may be full depth or partial depth. Partial depth stiffeners are also known as Rib stiffeners.(Figure 2.29)

The design rules given here apply equally to stiffeners on the beam side.

Stiffener net area

The net area of the stiffeners, A_{sn} must be not less than the values given in equations (2.17) and (2.18).

Web tension

The rib stiffener is designed to carry the tensile load from the bolts immediately above and below it minus the local capacity of the column web.

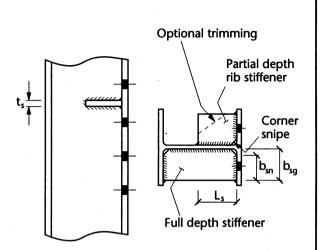
Basic requirement:

$$A_{sn} \ge \frac{(F_{ri} + F_{rj})}{p_v} - (L_t \times t_c)$$
 (2.17)

where:

 A_{sn} = net area of both stiffeners

 $= 2 (b_{sn} \times t_s)$


b_{sg} = width of stiffener. This should generally be proportioned so that the stiffener extends at least 75% across the available flange width,

$$(B_c - t_c)/2$$

b_{sn} = net width of stiffener.

- t_s = thickness of stiffener.
- F_{ri} = tension from bolt row above the stiffener.
- F_{ri} = tension from bolt row below the stiffener.
- p_y = the design strength of stiffener or column web (the lesser of the two).
- L_t = Available length of web assuming a spread of load at 60° from the bolts (See Figure 2.30).

t_c = web thickness.

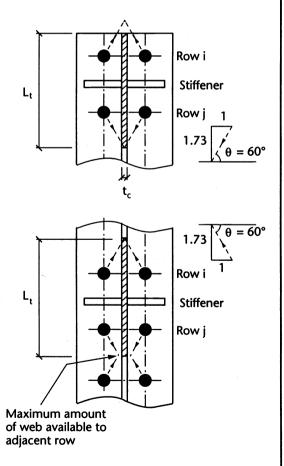


Figure 2.30 Effective web lengths

STEP 6C

TENSION STIFFENERS (CONTINUED)

Flange bending

The force carried by the stiffeners is assumed to be inversely proportional to their distance from the bolts.

Basic requirement:

$$A_{sn} \ge \frac{m_1}{p_y} \left[\frac{F_{ri}}{(m_1 + m_{2L})} + \frac{F_{rj}}{(m_1 + m_{2U})} \right]$$
 (2.18)

where:

A_{sn} = net area of both stiffeners

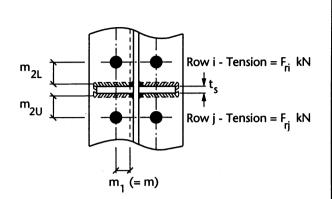
 $m_1 m_{2L} m_{2U} F_{ri}$ and F_{ri} are as shown in Figure 2.31.

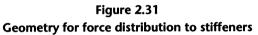
p_y = the design strength of stiffener or column (the lesser of the two).

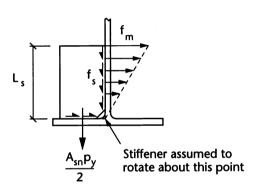
Stiffener length and weld design

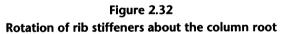
If $L_s \ge 1.8 b_{sg}$ and full strength welds are provided to the flange and web, no further calculations for the welds are required. The column web must still be checked (see below).

If $L_s < 1.8 b_{sg}$, the welds to the stiffener should be designed assuming rotation about the root of the column. (Figure 2.32).


Additional web tension check


Partial depth rib stiffeners should also be long enough to prevent web tension failure along any line beyond the end of the stiffener.


The stiffener length, L_s should be such that this condition is prevented. See Figure 2.33.


In this particular illustration, for rows 1+2+3 considered as a group, the basic requirement is:

$$(L_1 + L_2) \ge \frac{F_{r(1+2+3)}}{t_c \times p_v}$$
 (2.19)

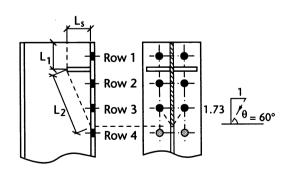


Figure 2.33 Web tension in the presence of stiffeners

STEP 6D

DESIGN OF SUPPLEMENTARY WEB PLATES

General

A supplementary web plate (SWP) may be provided to increase the capacity of the column web. Its effect (to EC3) is to:

- Increase web tension resistance by: 50% with a plate on one side or 100% with plates on both sides
- Increase web crushing resistance by: 50% with a plate on one side or 100% with plates on both sides
- Increase web panel shear resistance by: about 75% (see expression for P_v).

Note that in the case of panel shear, plates on both sides provide *no additional* increase over a plate on one side.

The supplementary web plate must have:

- Thickness, t, not less than the column web thickness.
- The same **design strength** as the column.
- Welds all round should be, as a minimum, fillet welds of leg length equal to the plate thickness t_s. However, if the supplementary web plate is being used to increase web tension resistance, the vertical weld on the side where the increased capacity is required should be a 'fill in' weld. (See Figure 2.34.) Plug welds are required if b_s exceeds 37t_s (design grade 43) or 33t_s (design grade 50).
- **Breadth**, b_s so that $b_s \ge d 2t_s$

(b_s = d for a "fill in" weld)

• Length,

where:

g = horizontal spacing of bolts (gauge)

 $L_s \ge g + L_c + \frac{D_c}{2}$

 L_c = length of beam connection end plate

 $D_c = depth of column$

(strictly, the length g may be taken as $1.73\frac{g}{2}$, and measured from the top row of bolts.)

Column web tension

For the purpose of column web tension calculations (STEP 1B), the effective web thickness, t_{eff} should be taken as:

For a SWP on one side only, $t_{eff} = 1.5t_c$

For SWP's on both sides, $t_{eff} = 2t_c$

Where t_c is the column web thickness.

Column web crushing and buckling

For the purpose of column web crushing and column web buckling calculations (STEP 2), the effective web thickness, t_{eff} should be taken as:

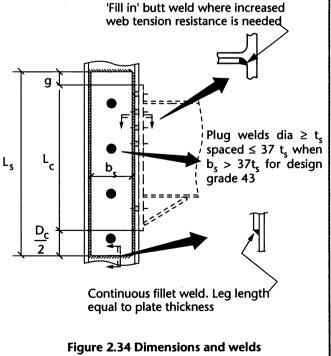
For a SWP on one side only, $t_{eff} = 1.5t_c$

For SWP's on both sides, $t_{eff} = 2t_c$

Where t_c is the column web thickness.

Column panel shear

The resistance, P_v of a column web panel with a SWP on one side is given by:


$$P_v = 0.6 \times p_v \times A_v$$

where:

 $p_v = design strength of the column$

 $A_v = \text{shear area of the column web and SWP combined}$ = $t_c \times (D_c + b_c)$.

No further increase of the shear area is made if a SWP is added on the other side of the web.

STEP 6E

DESIGN OF DIAGONAL SHEAR STIFFENERS

Three types of diagonal shear stiffener are shown in Figure 2.35. They are normally designed in grade 43 steel.

Area of stiffeners

The area of the stiffeners, A_{sg} is given by:

$$A_{sg} \geq \frac{(F_v - P_v)}{p_v \cos \theta}$$
 (2.20)

where:

 $A_{sg} = 2 \times b_{sg} \times t_s$

A

b_{sq} = Width of stiffener on each side

t_s = thickness of stiffener

 F_v = the applied shear force (see STEP 3)

- P_v = resistance of the unstiffened column web panel (see STEP 3)
- p_v = lower design strength of stiffener or column
- θ = angle of stiffener from horizontal (see Figure 2.35).

'K' stiffener

This type of stiffener is used when the connection depth is large compared with the depth of the column.

Care should be taken to ensure adequate access for placing and tightening bolts.

The bottom half of a 'K' stiffener acts in compression and should be checked as a compression stiffener, as in STEP 6A.

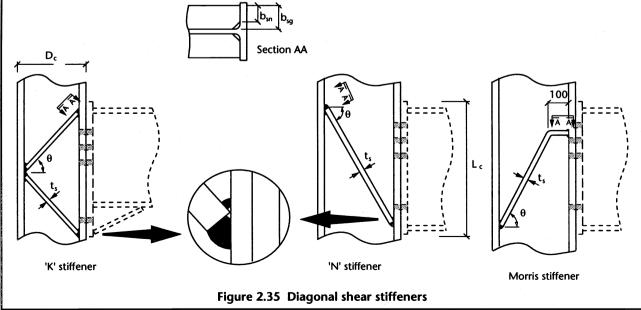
'N' stiffener

'N' stiffeners are usually placed so that they act in compression due to problems of bolt access if placed so as to act in tension. Check as a compression stiffener as in STEP 6A, unless a horizontal compression stiffener is also present.

Morris stiffener

The Morris stiffener is structurally efficient and overcomes the difficulties of bolt access associated with the other forms of diagonal stiffener.

It is particularly effective for use with UBs as columns, but is difficult to accommodate in the smaller UC sizes.


The horizontal portion carries the same forces as a tension stiffener located in the same position. The length should be sufficient to provide for bolt access (say 100mm).

Welds

Welds connecting diagonal stiffeners to the column flange should be 'fill-in' welds with a sealing run providing a combined throat thickness equal to the thickness of the stiffener as shown in Figure 2.35.

Welds connecting the horizontal portion of Morris stiffeners to the column flange should be designed to provide a net throat area at least equal to A_{sn} calculated by formula (2.18) in STEP 6C. The throat should be based on b_{sn} .

The welds to the column web may be nominal 6mm or 8mm fillet welds.

STEP 7 DESIGN OF WELDS

Tension flange welds

The welds between the tension flange and the end plate may be full strength, or should be designed to carry a force which is the lesser of:

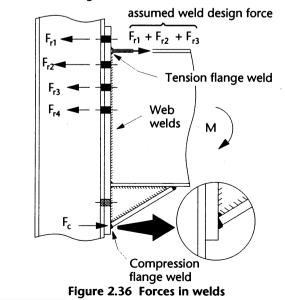
(a) The tension capacity of the flange,

$$= B \times T \times p_v$$

(b) The total tension force in the top three bolt rows for an extended end plate (see Figure 2.36),

$$= (F_{r1} + F_{r2} + F_{r3})$$

or the total tension force in the top two bolt rows for a flush end plate.

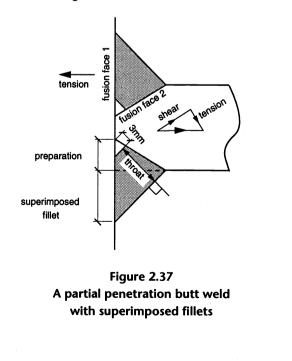

$$= (F_{r1} + F_{r2})$$

For most small and medium sized beams, the tension flange welds will be symmetrical, full strength fillet welds. Once the leg length of the required fillet weld exceeds 12mm then a full strength detail with partial penetration butt welds and superimposed fillets may be a more economical solution.

The transition between a larger flange weld and the web weld should take place where the root of the section meets the web.

The approach given above may appear conservative but, at ultimate limit state, there can be a tendency for the end plate to span vertically between the beam flanges. As a consequence, more load is attracted to the tension flange than from the adjacent bolts alone.

For this reason, care should be taken not to undersize the weld to the tension flange. A simple and safe solution is to provide full strength welds.



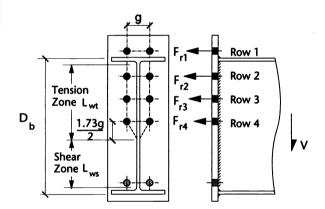
A full strength weld to the tension flange can be achieved by:

- a pair of symmetrically disposed fillet welds, with the sum of the throat thickness equal to the flange thickness, or
- a pair of symmetrically disposed partial penetration butt welds with superimposed fillets, or
- a full penetration butt weld.

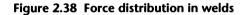
If designing a partial penetration butt weld with superimposed fillet, as shown in figure 2.37, note that:

- the weld throat required should be calculated based on the strengths given in BS 5950 Part 1 Table 36. (i.e. 215N/mm² for design grade 43 and 255N/mm² for design grade 50.)
- the shear and tension stress on the fusion lines should not exceed 0.7p_y and 1.0p_y respectively. (See BS 5950 Part 1 clause 6.6.5.5.)
- the depth of preparation should be 3mm deeper than the required penetration.
- the angle between the fusion faces for a 'V' preparation should be normally not less than 45°.
- the minimum penetration of 2√t specified in BS 5950 Part 1 clause 6.6.6.2 does not apply to the detail shown in figure 2.37.

STEP 7


DESIGN OF WELDS (CONTINUED)

Compression flange welds


In cases where the compression flange has a properly sawn end, a bearing fit can be assumed between the flange and end plate and nominal 8mm fillet welds will suffice. For some of the lighter beams (with flange thicknesses of 12mm or less) 6mm fillet welds may be appropriate.

This 'bearing' assumption will be the usual case for most plain beams or for haunches which have been cut from UB's or UC's. Guidance on the necessary tolerances for bearing fit can be found in the NSSS. ⁽¹⁰⁾

If a bearing fit cannot be assumed, or if the haunch is built up from plate as shown in Figure 2.36, then the weld must be designed to carry the full compressive force, F_c .

Note: The tension zone welds are assumed to start at the bottom of the root radius and must extend down below the bottom bolts resisting tension by a distance of $\frac{1.73g}{2}$

Web welds

It is recommended that web welds in the tension zone should be full strength.

For beam webs up to 11.3mm thick, full strength can be achieved with 8mm fillet welds. It is therefore sensible to consider using full strength welds for the full web depth in which case no calculations are needed for tension or shear.

For thicker webs, the welds to the web may be treated in two distinct parts, with a Tension Zone around the bolts which have been dedicated to take tension, and with the rest of the web acting as a Shear Zone as described below:

1. Tension zone:

Use full strength welds, i.e. generally fillet welds with the sum of the throat thicknesses not less than the web thickness, t_b .

The full strength welds to the web tension zone should extend below the bottom bolt row resisting tension by a distance of $\frac{1.73g}{2}$ (see Figure 2.38)

2. Shear zone:

The capacity of the beam web welds for vertical shear forces should be taken as:

$$P_{sw} = 2 \times a \times p_w \times L_{ws}$$

where:

p

a = fillet weld throat thickness $(0.7s_w)$

ws = length of shear zone welds

$$= D_b - 2(T_b + r_b) - L_{wt}$$

Mar. 97 Revision: Web weld to tension zone and Figure 2.38 modified

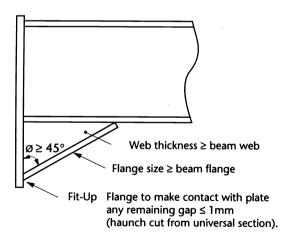
STEP 8

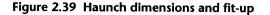
DESIGN OF A HAUNCHED CONNECTION

General

Haunches may be used to:

- provide a longer lever arm for the bolts in tension;
- increase member size over part of its length, in addition to providing a longer lever arm.


Sizing the haunch


The haunch should be proportioned so that welding can be carried out without difficulty, and to ensure that it can resist the bending moment, shear force and axial force in the member. To achieve this the haunch should be arranged with:

- Design grade to match that of the member (or adjust the calculation accordingly)
- flange size not less than that of the member
- web thickness not less than that of the member
- the angle of the haunch flange to the end plate not less than 45°. See Figure 2.39.

 when using haunches cut from universal sections, the butting surface of the haunch flange to the end plate to be in accordance with the NSSS⁽¹⁰⁾, which in this situation permits a maximum gap of 1mm.

When building up a haunch from plate, bearing contact will generally not be achieved.

Haunch design checks

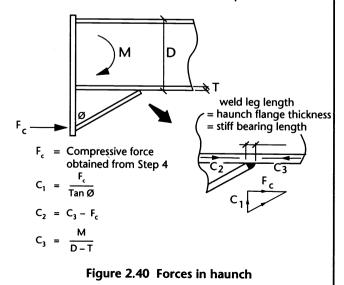
The haunch flange and (when needed) some parts of its web provides the resistance in compression. The lower beam flange is ignored for purposes of calculation. The design of the haunch flange is the STEP 2B compression check. No design checks are needed except that the web of the beam must be checked locally at the sharp end of the haunch for web crushing and buckling.

The distribution of forces in the web and flange of the haunch will depend upon its proportions. For design purposes, it may be conservatively assumed that the compressive force F_c is resolved into the haunch flange.

The beam web is checked for the component of the force normal to the member. See Figure 2.40. The force C_1 is applied to the main member and the checks carried out for bearing and buckling of the web are as those made in Step 2 on the column web. The length of stiff bearing being as shown in Figure 2.40.

Haunch welds

Flange weld to end plate


See STEP 7 (Compression flange weld)

Flange weld to main member

It is sufficient to provide a fillet weld with a leg length equal to the flange thickness, as Figure 2.40

Web weld

The force in the web weld can be taken as C_2 as shown in Figure 2.40. Usually 6mm fillets will suffice. Suitably designed intermittent welds may be used where aesthetics and corrosion conditions permit.

2.9 ABRIDGED METHOD FOR MANUAL DESIGN

Although the rigorous method is mainly intended as a specification for computer software, it can be adapted for designing connections by hand.

All steps in the rigorous method can be important to the integrity of the connection but, by making a number of simplifications, and by using engineering judgement to omit many checks altogether, the experienced connection

designer will be able to achieve reasonable results quite quickly.

The process for manual design is likely to be different from the 'Connection Check' sequence described in Section 2.8. It can be tailored to suit conditions. The worked example which follows proceeds along the lines of the flow diagram in Figure 2.41.

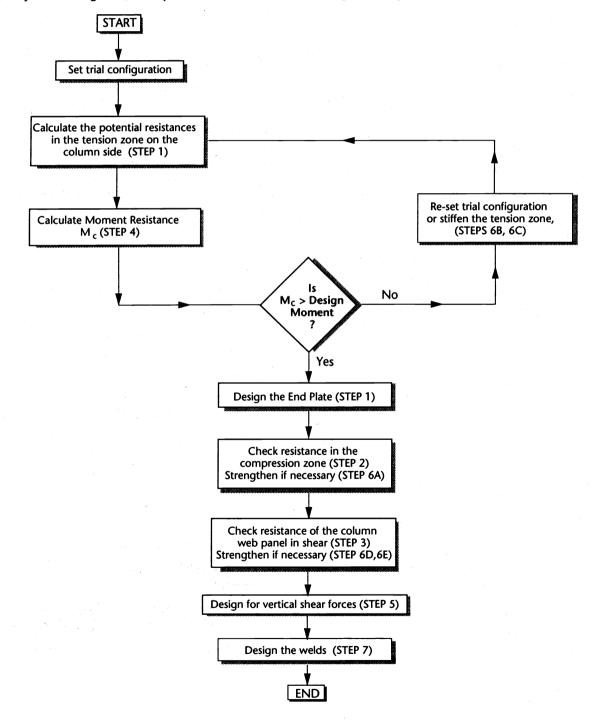
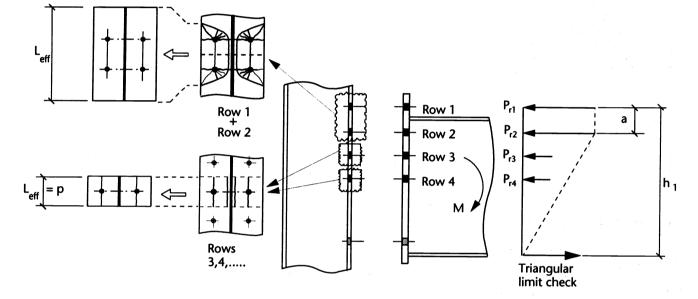
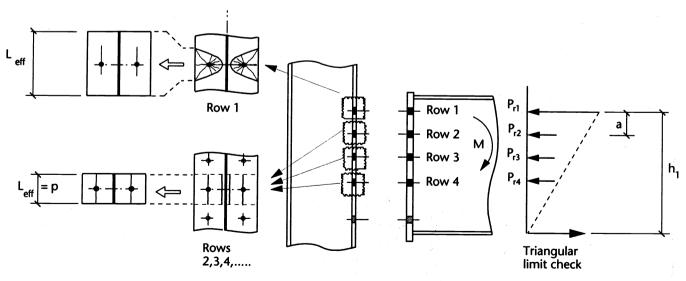


Figure 2.41 Typical flow diagram for abridged manual design

42


Bolt row force distribution

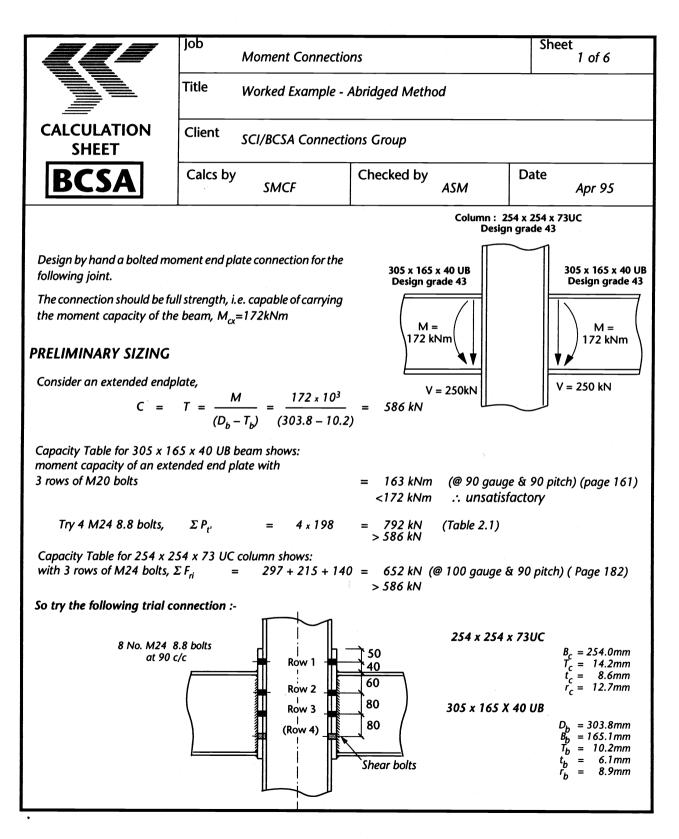
Most of the short cuts can be taken in the tension zone by assuming a simplified distribution of bolt forces and by sizing the beam end plate so that it is at least as strong as the column flange.


On the column side of an extended end plate connection, the two top bolt rows can be taken as acting together as a group with the combined potential resistance shared equally between rows 1 and 2. Each lower row is then conservatively based on a T-stub length of vertical pitch 'p', but they are also checked to ensure they are within the triangular limit.

A similar approach can be used for flush end plate connections, but only the top bolt row is taken in isolation. (See Figure 2.42 - mechanisms 'A' and 'B'.)

For deep flush end plate connections where $a \le 0.1 h_1$, it is reasonable to assume the development of mechanism 'A', with the combined potential resistance shared equally between rows 1 and 2.

Mechanism 'A': Extended end plate connection



Mechanism 'B' : Flush end plate connection

Figure 2.42 Simplified distribution of bolt row forces

2.10 WORKED EXAMPLE USING THE ABRIDGED METHOD FOR MANUAL DESIGN

In this example a non-standard end plate has been deliberately chosen to illustrate the need for manual calculation when the capacity tables for standard sizes cannot be used. However, the capacity tables are employed to provide a guide to a suitable bolt configuration.

Bolted End Plate Connections

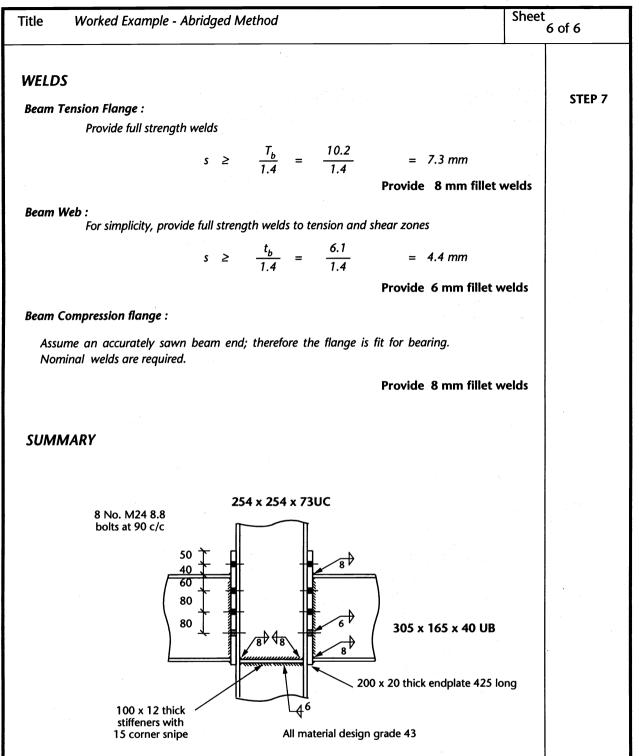
TENSION ZONE Assume a distribution of bolt forces with Rows 1 and 2 acting together as a group with equal distribution of force, and Row 3 based on a T-stub with $L_{eff} = p$ At this stage no checks will be made on the end plate. A suitable plate will be selected later. For the column :: $m = \frac{90}{2} - \frac{8.6}{2} - 0.8 \times 12.7 = 30.5 \text{ mm}$ $e = \frac{254.0 - 90}{2} = 82.0 \text{ mm}$ $m_p = \frac{1 \times 17^2}{4} \times p_{p_c} = \frac{1 \times 14.2^9 \times 275}{4 \times 10^3} = 13.9 \text{ kNmm/mm of T-stub}$ For the end plate :- (Assume $b_p = 200 \text{ mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column finage yielding :- $L_{eff} = 4m + 1.25e + p_{f1,2j} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325 \text{ smm}$ $m_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $m_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $m_p = 325 \times 13.9 = 4518 \text{ kNmm}$ Mode 1 $m = \frac{2M_p + n\Sigma P_i}{(m + n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572kN$ Mode 2 or $= \Sigma P_i^{-1} = 4 \times 198 = 792kN$ Mode 3 Check column web tension :- $L_i = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1,2)} = (lower of 572 \text{ kN and 605 kN}) = 572 \text{ kN}$ $\therefore P_{r(1,2)} = (lower of 572 \text{ kN and 605 kN}) = 572 \text{ kN}$ $\therefore P_{r(1,2)} = (lower of 572 \text{ kN and 605 kN}) = 572 \text{ kN}$	Title	Worked Example - Abridged Method	Sheet			
STEP 1 Assume a distribution of bolt forces with Rows 1 and 2 acting together as a group with equal distribution of force, and Row 3 based on a T-stub with $L_{aff} = p$ At this stage no checks will be made on the end plate. A suitable plate will be selected later. For the column : $m = \frac{90}{2} - \frac{8.6}{2} - 0.8 \times 12.7 = 30.5 \text{ mm}$ $e = \frac{254.0 - 90}{2} = 82.0 \text{ mm}$ $m_p = \frac{1 \times 1^2}{4} \times p_{p_c} = \frac{1 \times 14.2^2 \times 275}{4 \times 10^2} = 13.9 \text{ kNimm/mm of T-stub}$ For the end plate :- (Assume $b_p = 200 \text{ mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column finange yielding :- $L_{eff} = 4m + 1.25e + p_{(1,2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325 \text{ mm}$ $m_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $M_p = 325 \times 13.9 = 25.7 \text{ mm}$ $M_{c1+20} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593\text{ kN}$ $Mode 1$ $Mode 2$ $Check column web tension ::$ $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $R_{c1+20} = (1_{v} e_x P_{p_v} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{c1+20} = (1_{v} e_x P_{p_v} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{c1+20} = (1_{v} e_x P_{p_v} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{c1+20} = (1_{v} e_x P_{p_v} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{c1+20} = (1_{v} e_v = 0572 \text{ kN} \text{ mode 5} \text{ mm}$ $P_{c1+20} = (1_{v} e_v = 722 \text{ kN} \text{ mode 5} \text{ mm}$			2 of 6			
distribution of force, and Row 3 based on a T-stub with $L_{eff} = p$ At this stage no checks will be made on the end plate. A suitable plate will be selected later. For the column :- $m = \frac{90}{2} - \frac{8.6}{2} - 0.8 \times 12.7 = 30.5 \text{ mm}$ $e = \frac{254.0 - 90}{2} = 82.0 \text{ mm}$ $m_p = \frac{1 \cdot T_c^2}{4} \times p_{yc} = \frac{1 \times 14.2^2 \times 275}{4 \times 10^3} = 13.9 \text{ kNmm/mm of T-stub}$ For the end plate :- (Assume $b_p = 200 \text{ mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column finange yielding :- $L_{eff} = 4m + 1.25e + p_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325 \text{ mm}$ $m_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ Mode 1 $\sigma = \frac{2M_p + n\Sigma P_1}{m} = \frac{4 \times 4518}{30.5} = 593 \text{ kN}$ Mode 1 $\sigma r = 2\frac{2M_p + n\Sigma P_1}{(m + n)} = \frac{(2 \times 4518) + (38.1 + 4 \times 198)}{(30.5 + 38.1)} = 572 \text{ kN}$ Mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = (lower of 572 \text{ kN and 605 kN}) = 572 \text{ kN}$ $\therefore P_{r(1+2)} = (lower of 572 \text{ kN and 605 kN}) = 572 \text{ kN}$	TENSION ZO	DNE				
For the column : $m = \frac{90}{2} - \frac{8.6}{2} - 0.8 \pm 12.7 = 30.5 \text{ mm}$ $e = \frac{254.0 - 90}{2} = 82.0 \text{ mm}$ $m_p = \frac{1 \times 17^2}{4} \times p_{px} = \frac{1 \times 14.2^2 \times 275}{4 \times 10^2} = 13.9 \text{ kNmm/mm of T-stub}$ For the end plate :- (Assume $b_p = 200 \text{ mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum } [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column flonge yielding :- $l_{eff} = 4m + 1.25e + p_{(1,2)} = 4 \times 30.5 \pm 1.25 \times 82.0 \pm 100 = 325 \text{ mm}$ or $= 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383 \text{ mm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{n(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593 \text{ kN}$ Mode 1 or $= 2M_p + n\Sigma P_1^*$ $e = 4 \times 198 = 792 \text{ kN}$ Check column web tension :- $l_t = 2\left[\frac{90}{2} \times 1.73\right] \pm 100 = 255.7 \text{ mm}$ $P_{n(1+2)} = (l_1 \times l_x \times p_{px}) = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{n(1+2)} = (l_0 \text{ wer of } 572 \text{ kN and 605 kN}) = 572 \text{ kN}$ $\therefore P_{n(1+2)} = (l_0 \text{ wer of } 572 \text{ kN and 605 kN}) = 572 \text{ kN}$						
$m = \frac{90}{2} - \frac{8.6}{2} - 0.8 \pm 12.7 = 30.5 \text{ mm}$ $e = \frac{254.0 - 90}{2} = 82.0 \text{ mm}$ $m_p = \frac{1 \pm 17^2}{4} \times p_{pc} = \frac{1 \pm 14.2^2 \pm 275}{4 \pm 10^3} = 13.9 \text{ kNmm/mm of T-stub}$ For the end plote :- (Assume $b_p = 200\text{ mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum [82.0, 55.0, (1.25 \pm 30.5)]} = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column flange yielding :- $L_{eff} = 4m + 1.25e + p_{(1,2)} = 4 \pm 30.5 \pm 1.25 \pm 82.0 \pm 100 = 325\text{ mm}$ or $= 2\pi m \pm 2 = 2 \pm \pi \pm 30.5 \pm 2 = 383\text{ mm}$ $M_p = 325 \pm 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \pm 4518}{30.5} = 593\text{ kN}$ Mode 1 Mode 1 or $= \frac{2M_p + n\Sigma P_1'}{(m + n)} = \frac{(2 \pm 4518) + (38.1 \pm 4 \pm 198)}{(30.5 \pm 38.1)} = 572\text{ kN}$ Mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \pm 1.73\right] \pm 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = L_1 \pm t_c \pm P_{pc} = 255.7 \pm 8.6 \pm 275 \pm 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of 572 kN and 605 kN}) = 572 \text{ kN}$	At this stage	no checks will be made on the end plate. A suitable plate will be selected later.				
$e = \frac{254.0 - 90}{2} = 82.0 \text{ mm}$ $m_p = \frac{1 \times T_c^2}{4} \times p_{px} = \frac{1 \times 14.2^2 \times 275}{4 \times 10^3} = 13.9 \text{ kNmm/mm of T-stub}$ For the end plate :- (Assume $b_p = 200 \text{ mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column flange yielding :- $l_{eft} = 4m + 1.25e + p_{(1,2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325 \text{ mm}$ or $= 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383 \text{ mm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593 \text{ kN}$ Mode 1 or $= \frac{2M_p + n\Sigma P_t'}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572 \text{ kN}$ Mode 2 Mode 3 Check column web tension :- $l_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = l_t \times t_c \times p_{px} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$	For the colum	ın :-				
$m_{p} = \frac{1 \times T_{c}^{2}}{4} \times p_{\kappa} = \frac{1 \times 14.2^{2} \times 275}{4 \times 10^{2}} = 13.9 \text{ kNmm/mm of T-stub}$ For the end plate :- (Assume $b_{p} = 200\text{mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column flange yielding :- $l_{eft} = 4m + 1.25e + p_{(1,2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325\text{ mm}$ or $= 2\pi m \times 2$ $= 2 \times \pi \times 30.5 \times 2$ $= 383\text{ mm}$ $M_{p} = 325 \times 13.9$ $= 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_{p}}{m} = \frac{4 \times 4518}{30.5} = 593\text{ kN}$ or $= \frac{2M_{p} + n\Sigma P_{1}^{*}}{m} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572\text{ kN}$ Mode 1 Mode 2 $r = \Sigma P_{1}^{*} = 4 \times 198 = 792 \text{ kN}$ Check column web tension :- $l_{1} = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = (\text{lower of } 572 \text{ kN} \text{ and } 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN} \text{ and } 605 \text{ kN})$ $\therefore P_{r(1} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$		$m = \frac{90}{2} - \frac{8.6}{2} - 0.8 \times 12.7 = 30.5 mm$				
For the end plate :- (Assume $b_p = 200 \text{ mm}$) $e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 x 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column flange yielding :- $L_{eff} = 4m + 1.25e + p_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325 \text{ mm}$ or $= 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383 \text{ mm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r_1(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593 \text{ kN}$ or $= \frac{2M_p + n\Sigma P_1'}{(m + n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572 \text{ kN}$ $Check column web tension :- L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}P_{r_1(1+2)} = (lower of 572 \text{ kN} \text{ and } 605 \text{ kN})\therefore P_{r_1} = P_{r_2} = \frac{572}{2} = 286 \text{ kN}$		$e = \frac{254.0 - 90}{2} = 82.0 \text{ mm}$				
$e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column flange yielding :- $L_{eff} = 4m + 1.25e + p_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325 \text{ mm}$ or $= 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383 \text{ mm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593 \text{ kN}$ Mode 1 or $= \frac{2M_p + n\Sigma P_t}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572 \text{ kN}$ Mode 2 mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = (lower of 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$ STEP 1B $\therefore P_{r(1+2)} = (lower of 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$		$m_p = \frac{1 \times T_c^2}{4} \times p_{yc} = \frac{1 \times 14.2^2 \times 275}{4 \times 10^3} = 13.9 \text{ kNmm/mm of}$	T-stub			
$e = \frac{200 - 90}{2} = 55.0 \text{ mm}$ and $n = \text{minimum} [82.0, 55.0, (1.25 \times 30.5)] = 38.1 \text{ mm}$ Bolt Rows 1 and 2 combined: Check column flange yielding :- $L_{eff} = 4m + 1.25e + p_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325 \text{ mm}$ or $= 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383 \text{ mm}$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593 \text{ kN}$ Mode 1 or $= \frac{2M_p + n\Sigma P_t}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572 \text{ kN}$ Mode 2 mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = (lower of 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$ STEP 1B $\therefore P_{r(1+2)} = (lower of 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$		For the end plate :- (Assume $b_{x} = 200 \text{ mm}$)				
and $n = \min[R \ge 0, 55.0, (1.25 \times 30.5)] = 38.1 mm$ Bolt Rows 1 and 2 combined: Check column flange yielding :- $l_{eff} = 4m + 1.25e + P_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325mm$ or $= 2\pim \times 2 = 2 \times \pi \times 30.5 \times 2 = 383mm$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593kN$ or $= \frac{2M_p + n\Sigma P_1'}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572kN$ or $= \Sigma P_1' = 4 \times 198 = 792 \text{ kN}$ Check column web tension :- $l_1 = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = l_1 \times t_c \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (lower of 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r(1+2)} = l_{r2} = \frac{572}{2} = 286 \text{ kN}$		•				
Bolt Rows 1 and 2 combined: STEP 1A $L_{eff} = 4m + 1.25\varepsilon + p_{(1,2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325mm$ Table 2.6 $or = 2\pim \times 2 = 2 \times \pi \times 30.5 \times 2 = 383mm$ $M_p = 325 \times 13.9 = 4518$ kNmm $M_p = 325 \times 13.9 = 4518$ m $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593kN$ Mode 1 $or = 2M_p + n\Sigma P_t' = 4 \times 198$ $572kN$ $or = \Sigma P_t' = 4 \times 198$ $792 kN$ $Mode 3$ Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 mm$ STEP 1B $P_{r(1+2)} = (lower of 572 kN and 605 kN)$ $= 572 kN$ $\therefore P_{r(1+2)} = (lower of 572 kN and 605 kN)$ $= 572 kN$ $\therefore P_{r(1+2)} = (lower of 572 kN and 605 kN)$ $= 572 kN$		2				
Check column flange yielding :- STEP 1A $L_{eff} = 4m + 1.25e + p_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325mm$ Table 2.6 $or = 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383mm$ $m_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $M_p = 325 \times 13.9 = 4 \times 4518$ $= 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593kN$ Mode 1 $or = \frac{2M_p + n\Sigma P_t'}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572kN$ Mode 2 $or = \Sigma P_t' = 4 \times 198 = 792 \text{ kN}$ Mode 3 STEP 1B Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ STEP 1B STEP 1B P_{r(1+2)} = (lower of 572 kN and 605 kN) $\therefore P_{r(1+2)} = (lower of 572 kN and 605 kN)$ $\therefore P_{r(1+2)} = \frac{572}{2} = 286 \text{ kN}$	and	$n = minimum [82.0, 55.0, (1.25 \times 30.5)] = 38.1 mm$				
$L_{eff} = 4m + 1.25e + p_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325mm$ or $= 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383mm$ $M_p = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593kN$ Mode 1 Mode 1 or $= \frac{2M_p + n\Sigma P_t}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572kN$ Mode 2 Mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ STEP 1B $P_{r(1+2)} = L_t \times t_c \times p_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r(1+2)} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$	Bolt Rows	a 1 and 2 combined:				
$\sigma = 2\pi m \times 2 = 2 \times \pi \times 30.5 \times 2 = 383 mm$ $M_{p} = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_{p}}{m} = \frac{4 \times 4518}{30.5} = 593 \text{ kN}$ $\sigma = \frac{2M_{p} + n\Sigma P_{1}'}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572 \text{ kN}$ $\sigma = \Sigma P_{1}' = 4 \times 198 = 792 \text{ kN}$ $Mode 3$ $Check column web tension :-$ $L_{t} = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = L_{1} \times t_{c} \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (lower of 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r(1} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$	Check col	umn flange yielding :-	STEP 1A			
$M_{p} = 325 \times 13.9 = 4518 \text{ kNmm}$ $P_{r(1+2)} = \frac{4M_{p}}{m} = \frac{4 \times 4518}{30.5} = 593\text{ kN}$ Mode 1 $or = \frac{2M_{p} + n\Sigma P_{t}^{\prime}}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572\text{ kN}$ Mode 2 $or = \Sigma P_{t}^{\prime} = 4 \times 198 = 792 \text{ kN}$ Mode 3 Check column web tension :- $L_{t} = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = L_{t} \times t_{c} \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN} \text{ and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r(1} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$		$L_{eff} = 4m + 1.25e + p_{(1-2)} = 4 \times 30.5 + 1.25 \times 82.0 + 100 = 325mm$	Table 2.6			
$P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593kN$ Mode 1 or $= \frac{2M_p + n\Sigma P_t'}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572kN$ Mode 2 or $= \Sigma P_t' = 4 \times 198 = 792 kN$ Mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 mm$ STEP 1B $P_{r(1+2)} = L_t \times t_c \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 kN$ $\therefore P_{r(1+2)} = (\text{lower of } 572 kN \text{ and } 605 kN) = 572 kN$ $\therefore P_{r(1} = P_{r2} = \frac{572}{2} = 286 kN$		or = $2\pi m \times 2$ = $2 \times \pi \times 30.5 \times 2$ = $383mm$				
$P_{r(1+2)} = \frac{P}{m} = \frac{30.5}{30.5} = 593kN$ Mode 1 or $= \frac{2M_p + n\Sigma P_t'}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572kN$ Mode 2 or $= \Sigma P_t' = 4 \times 198 = 792 kN$ Mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 mm$ $P_{r(1+2)} = L_t \times t_c \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 kN$ $\therefore P_{r(1+2)} = (\text{lower of } 572 kN \text{ and } 605 kN) = 572 kN$ $\therefore P_{r(1+2)} = P_{r2} = \frac{572}{2} = 286 kN$		$M_p = 325 \times 13.9 = 4518 \text{km}$	Vmm			
or = $\Sigma P_t'$ = 4×198 = 792 kN Mode 3 Check column web tension :- $L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = L_t \times t_c \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r(1} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$		$P_{r(1+2)} = \frac{4M_p}{m} = \frac{4 \times 4518}{30.5} = 593kN$	Mode 1			
Check column web tension :- $L_{t} = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = L_{t} \times t_{c} \times p_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r1} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$		or $= \frac{2M_p + n\Sigma P_t'}{(m+n)} = \frac{(2 \times 4518) + (38.1 \times 4 \times 198)}{(30.5 + 38.1)} = 572kN$	Mode 2			
$L_{t} = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = L_{t} \times t_{c} \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r1} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$		or = $\sum P_t'$ = 4 x 198 = 792 kN	Mode 3			
$L_{t} = 2 \left[\frac{90}{2} \times 1.73 \right] + 100 = 255.7 \text{ mm}$ $P_{r(1+2)} = L_{t} \times t_{c} \times P_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$ $\therefore P_{r(1+2)} = (\text{lower of } 572 \text{ kN and } 605 \text{ kN}) = 572 \text{ kN}$ $\therefore P_{r1} = P_{r2} = \frac{572}{2} = 286 \text{ kN}$	Check col	la de la companya de	STED 1R			
$\therefore P_{r(1+2)} = (lower of 572 kN and 605 kN) = 572 kN$ $\therefore P_{r1} = P_{r2} = \frac{572}{2} = 286 kN$		$L_t = 2\left[\frac{90}{2} \times 1.73\right] + 100 = 255.7 \text{ mm}$				
$\therefore P_{r1} = P_{r2} = \frac{572}{2} = 286 kN$		$P_{r(1+2)} = L_t \times t_c \times p_{yc} = 255.7 \times 8.6 \times 275 \times 10^{-3} = 605 \text{ kN}$				
2		$P_{r(1+2)}$ = (lower of 572 kN and 605 kN) = 572 kN				
(hear web tension not applicable here due to presence of hear flange)		$P_{r1} = P_{r2} = \frac{572}{2} = 286 kN$				
(beam web tension not applicable here due to presence of beam hange)	(bec	m web tension not applicable here due to presence of beam flange)				

45

Moment Connections

Title Worked Example - Ab	ridged Method	Sheet	t 3 of 6
Bolt Row 3		-	
Check for column flange yielding wi	th L _{eff} = 80 mm		STEP 1A
$M_p = 80 \times 13.9$	= 1112 kN mm		
$P_{r3} = \frac{4M_p}{m}$	$= \frac{4 \times 1112}{30.5}$	= 146kN	Mode 1
or $= \frac{2M_p + n\Sigma P_t}{m+n}$	$- = \frac{(2 \times 1112) + (38.1 \times 2 \times 198)}{(30.5 + 38.1)}$	= 252kN	Mode 2
or $= \sum P_t'$	$= 2 \times 198$	= 396kN	Mode 3
Check beam web tension (the beam	web is thinner than the column web) :-		STEP 1B
$L_t = p_{(2-3)}$	= 80mm		
$P_{r3} = 80 \times 6.1 \times 27$	'5 x 10 ⁻³	= 134 kN	
	6 kN and 134 kN)	= 134 kN	
13	, in the second s		
CALCULATE RESISTANCE MO	MENT		STEP 4
339 Row 1	286kN $286 \times 339 \times 10^{-3} = 97.0$ $286 \times 239 \times 10^{-3} = 68.4$ 286kN $134 \times 159 \times 10^{-3} = 21.3$	t in the second s	
Bow 3	42kN = 186.7 134kN)	' kNm > 172 kNm	
	OK, but the full potential of row 3	is not needed:-	
	Moment contribution require		
614kN	= 172 - (97.0 + 68.4) = 6.6 kNm	
∴ гес	luced force in Row 3 = $\frac{6.6}{159 \times 10^{-3}}$	= 42 kN	
Σι	$F_{ti} = F_c = 286 + 286 + 42$	= 614 kN	
END PLATE DESIGN			STEP 1
• •	actical size with a thickness equal to or greater the en the plate is narrower than the column flange		
Maximum force per bolt row in o	column	= 286kN	
Try 200mm wide by 20mm th	ck plate		
Web tension on the beam side not the team side not the flange and Row 3 bolts he	eed not be checked since Row 2 bolts are adjace ave been checked above	nt	
Check the plate extension in ber	nding:		STEP 1A
	$L_{eff} = \frac{b_p}{2} = \frac{200}{2} =$	100mm	Table 2.4(vii)
with 8mm tension flange welds	$m_x = 40 - (0.8 \times 8) =$	33.6 mm	
	<i>e_x</i> = =	50 mm	
	$n_x = min[50, (1.25 \times 33.6)] =$	42mm	

46

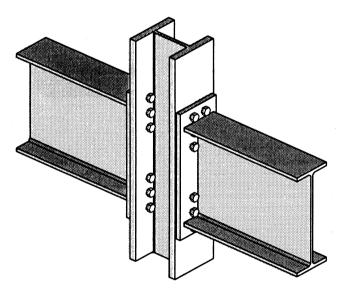

Bolted End Plate Connections

Title Worked Example - Abridged Method		Sheet 4 of 6
		4016
$M_p = \frac{L_{eff} \times t_p^2 \times p_{\gamma p}}{4} = \frac{100 \times 20^2 \times 265 \times 10^{-3}}{4} =$	2650 ki	Nmm
$P_{r1} = \frac{4M_p}{m_x} = \frac{4 \times 2650}{33.6} =$	316 kN	Mode 1
$or = \frac{\frac{2 M_p + n (\Sigma P_t')}{m_x + n_x}}{\frac{2 M_p + n (\Sigma P_t')}{m_x + n_x}}$		Mode 2
··· X · ·· X		
$= \frac{(2 \times 2650) + (42 \times 2 \times 198)}{(33.6 + 42)} =$	290 kN	I
$or = \Sigma P_t' = 2 \times 198 =$	396kN	Mode 3
critical value of $P_{r1} = 290kN >$	285kN, Ok	с.
By Inspection:		
 the end plate design for bolt row 2 will not be c to the strengthening effect of the web compared plate extension. 		
 the end plate design for subsequent bolt rows w critical as the end plate is thicker than the colur 		
the selected 200 x 20 end plate	is satisfacto	ry.
COMPRESSION ZONE		CTED OD
On Beam side:		STEP 2B
$P_c = 1.4 \times p_{yb} \times T_b \times B_b$		
= 1.4 x 275 x 10 ⁻³ x 10.2 x 165.1 = 648kN > 6 On Column side:	51 <i>4k</i> N OK	STEP 2A
Web crushing(bearing) is usually critical for UC's, so checking crushing first		
$b_1 = 10.2 + 8 + 8 + 20 + 20 = 66.2 \text{ mm}$		
$n_2 = (14.2 + 12.7) \times 2.5 \times 2 = 134.5 \text{ mm}$		
$\therefore P_c = (66.2 + 134.5) \times 8.6 \times 275 \times 10^{-3} = 475 \text{ kN} < 614$	4 kN -Unsati	isfactory Eqn (2.7)
Provide a con	mpression st	iffener
COMPRESSION STIFFENER DESIGN		STEP 6A
Column web is over stressed by 614/475 = 29%		
by inspection 80% rule will govern		
$P_c = \frac{A_{sn} \times P_{ys}}{0.8} \ge F_c = 614 \text{ kN}$		
required $A_{sn} = \frac{614 \times 10^3 \times 0.8}{275} = 1786 \text{ mm}^2$		Eqn <i>(2.13)</i>

Moment Connections

Title Worked Example - Abridged Method	Sheet 5 of 6
Try 100 wide stiffeners with 15 corner snipe	»
∴ b _{sn} = 100 – 15 = 85 mm	
$t_s > \frac{1786}{2 \times 85} = 10.5 \text{ mm}$	
Use 100 x 12 thick stiffener	.2
Weld to flanges:	
Assuming stiffeners are not fitted, full strength weld required, $s = \frac{10.5}{1.4} = 7.5$ Use 8 mm	n FW
Weld to web:	
$F_c = 614kN$	
length of weld = $4 \times (254 - 2(14.2 + 15)) = 782mm$.	Weld capacity
try 6mm fillet welds, capacity = 782 × 0.903 = 706kN > 614kN	V OK table is on
Provide 6mm fillet welds to	web page 224
COLUMN WEB PANEL SHEAR	STEP 3
For a balanced two-sided connection, such as this, the check is unnecessary.	
However, if the connection was one-sided then:	
$F_v = F_c = \Sigma F_{ti} = 614 \text{ kN}$	
	Eqn. (2.10)
and $P_v = 0.6 \times p_{yc} \times t_c \times D_c$	
$P_v = 0.6 \times 275 \times 10^{-3} \times 8.6 \times 254.0 = 360 \text{ kN} < 614 \text{ k}$ Unsatisfactory	kN
The web panel is inadequate for a one sided connection. Stiffen as shown in Step 6D or 6E.	
	STEP 5
VERTICAL SHEAR IN BOLTS	SIEF 5
Shear capacity = $n_s \times P_{ss} + n_t \times P_{ts}$	
M24 8.8 bolts, 14.2 thick flange, $P_{ss} = 132 \text{ kN}$	Bolt capacity
and $P_{ts} = 0.4 \times 132 = 52.8 \text{ kN}$	table is on
∴ Shear capacity = (2 x 132) + (6 x 52.8) = 581 kN > 250k	N OK page 221
	n An Anna Anna Anna Anna Anna Anna Anna

Bolted End Plate Connections


3. WIND-MOMENT CONNECTIONS

3.1 INTRODUCTION

The 'wind-moment' method for unbraced frames is well established, having been used to design many of the first multi-storey steel buildings which appeared at the beginning of the 20th century.

Under gravity loads, the connections are assumed to be pinned and the beams are designed by the 'simple' method. Then, for lateral wind loads, the frame is designed as if the joints are rigid with points of contraflexure at the mid point of each column.

The strong axis beam-to-column connections in windmoment frames are partial strength and generally consist of flush or extended end plates with little or no stiffening in the columns as shown in Figure 3.1.

Figure 3.1 Typical wind-moment connection

Because the fabrication remains simple it provides a costeffective solution for low-rise unbraced buildings.

Detailed rules for designing building frames by this method are given in the SCI publication *Wind-moment design for unbraced frames*⁽¹¹⁾. This section gives guidance for designing the strong axis connections to such frames. A set of standard details is provided with full dimensions and capacity tables on pages 205-219.

3.2 DESIGN METHOD

Apart from the obvious need to resist the design forces, the key requirement for wind-moment connections is that they should be **ductile**. In other words, they must be able to rotate as plastic hinges under gravity loading and still retain sufficient strength to withstand the wind moments.

It is important to remember that in many cases the moment induced in the connection by gravity loads will exceed the design wind moment, and the connection will therefore need to rotate plastically until equilibrium is reached. This plastic rotation is likely to take place even under service loads.

Rotation capacity

The actual rotation capacity needed will vary depending on the circumstances but is usually expected not to exceed 0.02 to 0.03 radians (approaching 2°) for windmoment frames.

End plate connections can achieve this **provided** that the end plate is thin enough to be a 'weak link' relative to the bolts (i.e. mode 1 failure occurs). Bending deformation of the end plate provides ductility to such a large degree that it is considered unnecessary to carry out any checks to quantify it.

It is necessary to ensure that non-ductile failure mechanisms are prevented, especially those involving bolt tension and welds. End plate deformation is not the only ductile failure mechanism, but it is the one which can most easily be controlled by the connection designer. Other ductile mechanisms are column web shear deformation and column flange bending deformation.

End plate thickness

The end plate thickness, in relation to the size and strength of the bolts, must be carefully selected. If it is too thick, the bolts will fail first making the connection non-ductile; if too thin, both stiffness and strength will suffer.

Using grade 8.8 bolts, and the geometry set out in the standard details, it is found that the appropriate end plate thickness is around 60% of the bolt diameter.

3.3 DESIGN RULES

Wind-moments may act in either direction so the connections will normally be symmetrical, i.e. the lower half mirrors the upper half, except that any additional bolts required for vertical shear should be in the lower half.

The connection should be designed for strength using the methods given in Section 2, ensuring adequate rotation capacity by checking that the moment capacity is governed by a ductile mechanism in accordance with Table 3.1.

Guidance on the design of ductile connections can be found in Eurocode 3 Annex J which simply states that adequate rotation capacity is achieved as long as Mode 1 failure controls. Applied literally, this can lead to end plates which could be unacceptably thin for use in windmoment frames, where connection flexibility reduces the stability and increases service deflections of the frame. The standard connections presented here are designed to cope with these problems and have been verified by testing⁽¹³⁾. They can therefore be used as connections in frames designed by the methods given in *Wind-moment design for unbraced frames*⁽¹¹⁾

3.4 STANDARD DETAILS

Four standard wind-moment connections are presented in Table 3.2 and these have been designed to provide quick-reference solutions to most practical wind-moment frames. They are based on UB beams and UC columns although some sections at the extremes of the ranges have been excluded. The bolts, end plate thickness and geometry have been chosen to ensure that the connections perform in a ductile manner. The plates must be made from design grade 43 steel.

Dimensionally they have much in common with the standard details of Section 2 for conventional moment connections. Bolt sizes M24 and M20 are offered. The first preference for a wind-moment frame should normally be M24 bolts which are used with a thicker end plate and, therefore, make a stiffer connection. It should be noted that a horizontal bolt spacing of 90mm is maintained here for M24 bolts as well as M20.

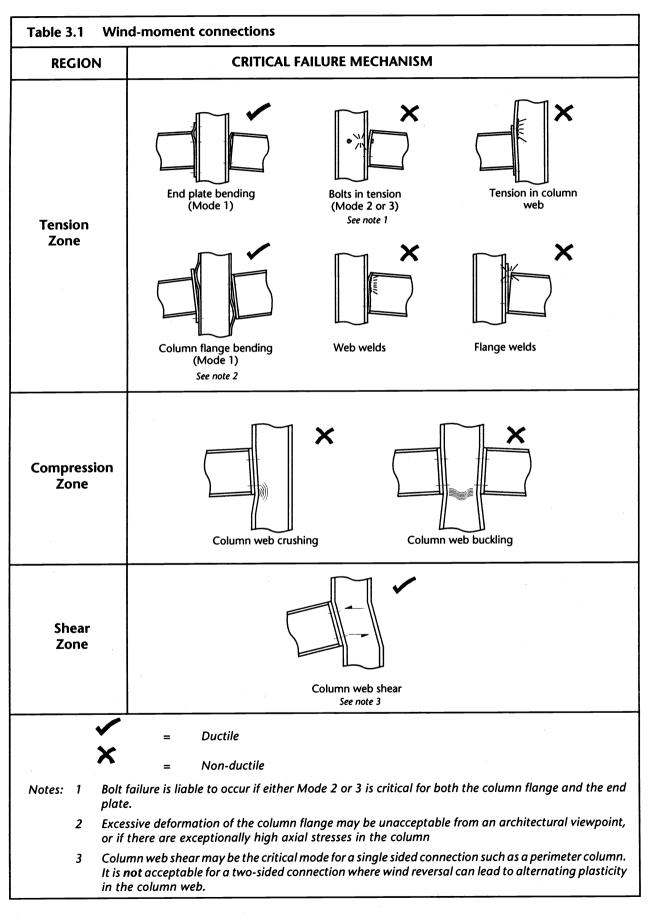
Table 3.3 shows the comparative performance of the standard wind-moment connections for a selection of beam sizes. Moment capacity is shown both in kNm and as a percentage of the moment capacity of the beam.

The standard connection details presented are designed to maximize stiffness within the ductility constraint. They feature 'compact' bolt spacings in an end plate whose thickness is approximately 60% of the bolt diameter, and would generally be expected to fail by Mode 2. Their ductile performance has been verified by testing on beams up to and including 686 x 254 Universal Beams⁽¹³⁾.</sup>

The deeper the beam, the greater the deformation required to achieve the target rotation capacity. At the time of writing (December 1994), there is insufficient test evidence to justify the application of the standard details to beams deeper than 686×254 Universal Beams. In the interim, the conservative approach of reducing the end plate thickness to 50% of the bolt diameter could be followed for deeper beams (i.e. 12mm thick plates with M24 bolts). Moment resistance should be calculated using the normal design procedures in Section 2.

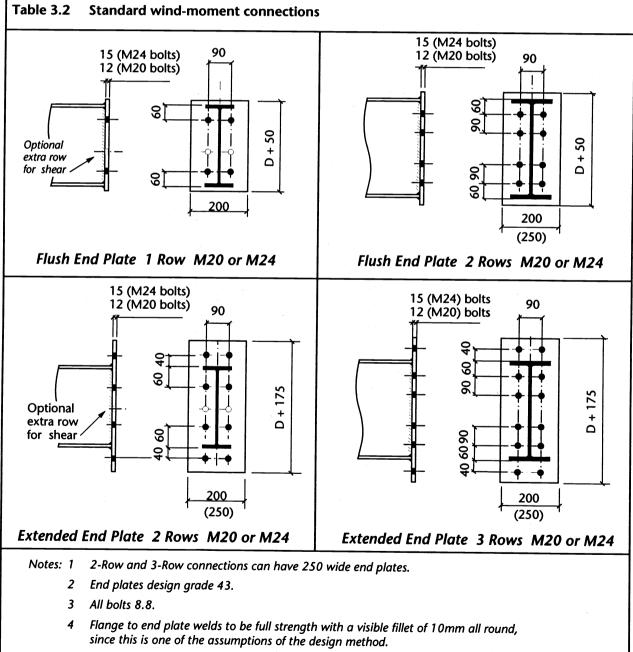
Capacity Tables

Capacity Tables for the standard wind-moment connections are included in the yellow pages, with notes on their use. Both flush and extended end plate types are included. Two standard plate widths are offered with both M24 and M20 bolts.


Beam sections which are deeper than 686 Universal Beams are excluded from the tables for the reasons given above.

For each connection type the following is provided:

- A table giving the moment capacity of the beam side of the connection calculated according to the procedures in Section 2.
- A table which is a checklist for the column, indicating which UC sections are able to carry the tabulated moments. Where the column is unable to carry the tabulated moment without being stiffened, the table also shows reduced bolt row forces from which a reduced moment can be calculated.
- The vertical shear capacity of the connection.


In practice, many UC sections are capable of accepting most of the standard connections without any strengthening. This is as it should be. It is fundamental to the wind-moment philosophy that the columns should not become costly stiffened fabrications which would be more appropriate to a 'rigid' frame.

In cases where column flange bending is the limiting factor for the design of the connection, ductility is not impaired and a reduced moment resistance may be calculated. It should be noted that this means accepting that the column flange rather than the end plate is deforming - perhaps visibly.



Some warnings:

- Standard wind-moment connections use design grade 43 steel end plates designed to be the weakest element, even though the beams may be in design grade 50 steel. Care must be taken **not** to substitute design grade 50 steel or other excessively over-strong material for the end plates.
- A 'minimum connection' capable of resisting ±20% of the free moment of the beam is recommended. This is intended to avoid alternating plasticity under variable gravity load when the wind moment is relatively small.
- The column checks assume that the column is continuous past the top of the beam. If this is not possible, for example at roof level, then either a cap plate should be provided or a separate check must be carried out on the column capacity. In most cases 100mm above the top bolt row will suffice.
- Dimensions shown in the standard details are, in many cases, critical. Deviations may either reduce the resistance of the connection, compromise its ductility or invalidate the column check.

5 Web to end plate welds to be 8 FW both sides.

54

4. WELDED BEAM TO COLUMN CONNECTIONS

4.1 SCOPE

This Section gives guidance for the design and detailing of welded moment connections. The design rules are modelled around beam to column flange connections, although they can be adapted for other joints such as welded beam or column splices.

Two main types of connections are covered in this publication :

- Shop welded beam-column connections.
- Site welded beam-column connections.

The intention with shop welded construction is to ensure that the main beam-column welds are made in a factory environment. This is achieved by shop welding short stubs of the beam section to the columns. The remainder of the beam is erected separately with a simple site splice at each end as shown in Figure 4.1. Site welded moment connections are used extensively in America and Japan where continuous unbraced frames are a popular structural solution for buildings in seismic zones. Despite their efficiency for resisting high moments, and suitability for a number of framing systems such as the parallel beam approach⁽¹⁴⁾, site welded moment connections are currently under used in the UK. However, with careful planning and sensible procedures there is no reason why there should not be a place for them in UK construction.

When site welded connections can be accommodated, the beams are prepared in the shop so that the flanges can be welded directly to the column on site as shown in Figure 4.2. Column splices are also site welded, but secondary and tertiary steel may be site bolted.

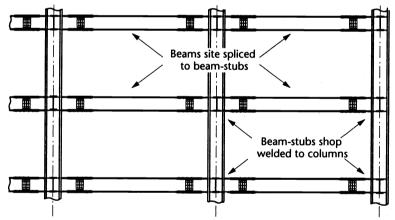


Figure 4.1 Shop welded beam to column connections

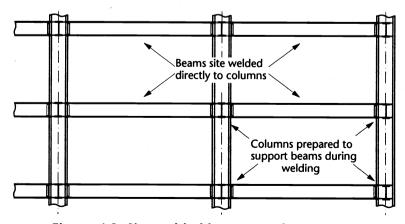


Figure 4.2 Site welded beam to column connections

4.2 SHOP WELDED CONNECTIONS

The shop welded connection, shown in Figure 4.3, consists of a short section beam stub shop welded on to the column flanges, and a tapered stub welded into the column inner profile on the other axes. The stub sections are prepared for bolting or welding with cover plates to the central portion of beam.

The benefits of this approach are:

- efficient, full strength moment connections
- all the welding to the column is carried out under controlled conditions
- the workpiece can be turned to avoid or minimize positional welding.

The disadvantages are:

- more connections and therefore higher fabrication costs
- the 'Column Tree' stubs make the component difficult to handle and transport

- the beam splices have to be bolted or welded in the air some distance from the column
- the flange splice plates and bolts may interfere with some types of flooring such as pre-cast units or metal decking.

Practical considerations

Continuous fillet welds are the usual choice for most small and medium sized beams with flanges up to 17 mm thick. However, many fabricators prefer to switch to partial penetration butt welds with superimposed fillets, or full penetration butt welds, rather than use fillet welds larger than 12mm (Figure 4.3).

To help provide good access for welding during fabrication, the column shafts can be mounted in special manipulators and rotated to facilitate welding in a downhand position to each stub (Figure 4.4).

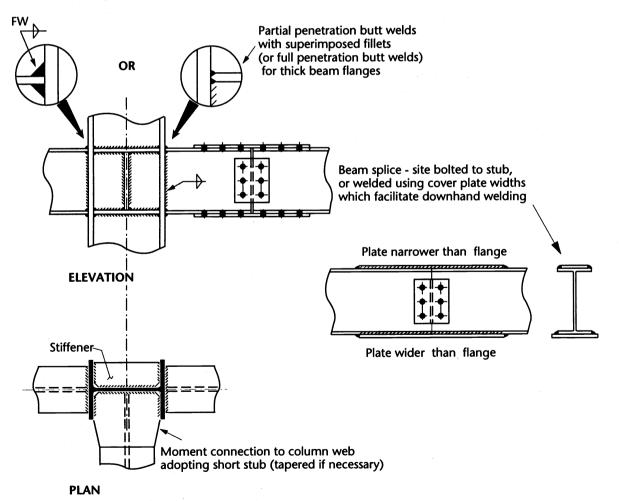


Figure 4.3 Shop welded beam stub connection

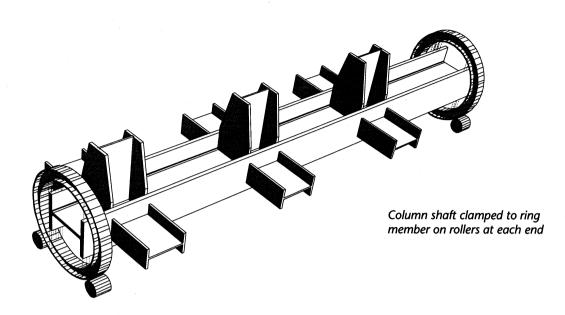


Figure 4.4 Column manipulator for welding beam stubs to columns

4.3 SITE WELDED CONNECTIONS

General

In this type of connection, the beams are prepared in the shop so that the flanges can be welded directly to the column on site using full strength butt welds. The beam web is either butt welded directly to the column, or connected using preloaded ('HSFG') bolts to a fin plate.

Beams framing into the web of the column are connected to vertical and horizontal stiffeners in the column web.

Advantages:

- Relatively cheap shop fabrication and extremely efficient connections.
- A neat solution with aesthetically clean lines.

Disadvantages:

- Care must be taken to provide good working access and weather protection for site welding.
- Ultrasonic (U/S) examination of site butt welds must be carried out.
- High level of site works may be required, although it will often be found that site welding is not on the critical path.
- Some corrosion protective systems can be difficult to make good on site.

Detailed procedures for site welding should be prepared and agreed before work commences. The procedures should include details such as:

- The geometry and tolerance of the weld preparation and fit-up, and any requirement for run-on/run-off plates.
- The weather conditions that would preclude welding, or means of protection to be used.
- The means of access for the welders.
- The amount if any of preheat required.
- The weld consumables.
- The number and size of weld runs.
- The specification for the weld testing (see the National Structural Steelwork Specification for Building Construction⁽¹⁰⁾ for scope of visual, MPI and U/S inspection).

It is essential that a temporary working platform is provided for the welders in accordance with Guidance Note GS28⁽¹⁵⁾. The simplest method is to build a small cubicle around the columns at each floor to provide a platform for welding and inspection, protection from the weather, and a screen to shield others against the weld arc. It can be made by slinging scaffold over the beam, or using purpose-made platforms.

4.3.1 Fully welded connections

In this type of connection, both flanges and the beam web are welded to the column, as shown in Figure 4.5. The flanges are prepared for full penetration butt welds, prepared for down hand welding as shown. Cope holes in the beam web give access for welding and for the backing strips. Small cope holes do not need to be filled, and backing strips may normally remain in position. The flange bevels and web copes will usually be prepared by machine flame cutting. Numerically controlled (NC) coping machines are able to carry out these operations in one pass. The web should be butt welded to the column flange, using a fin plate or angle cleat as a permanent backing strip. Normally, no preparation of the web is required. The fin plate or angle cleat is used to temporarily support the beam until welding is complete.

After the connections have been site bolted and the frame has been plumbed and lined, the backing strips are tack welded in place ready for applying the butt welds. The strips must be at least 5mm thick to prevent weld blowthrough.

It may be necessary to provide run-on/run-off plates which are tack welded into position. Like the backing strips, these plates should be at least equal in steel grade to the beams and are usually left in place after welding.

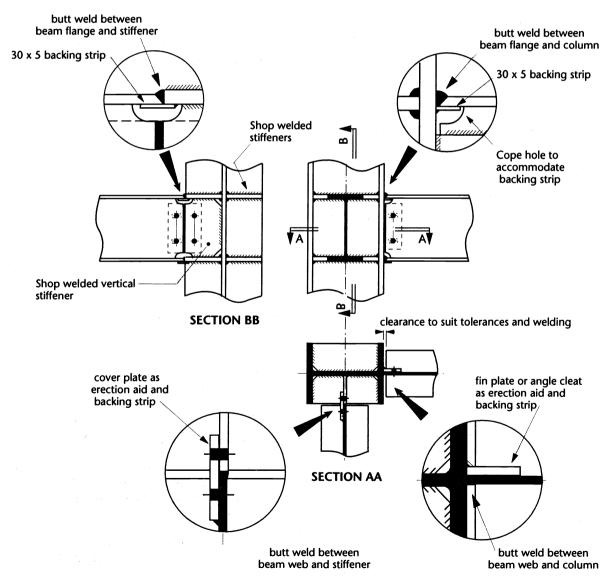


Figure 4.5 Site connection - fully welded

4.3.2 Flange welded, web bolted connections

In this type of connection, shown in Figure 4.6, the beam flanges are prepared and welded in similar fashion to the all-welded connection. The beam web is connected to the column flange by preloaded ('HSFG') bolts to a fin plate.

The fin plate is designed to resist the vertical shear, and is shop welded to the column. The final tightening of the preloaded ("HSFG") bolts must be strictly controlled, and must be carried out only after the flanges have been welded, to allow the welds to shrink without restraint.

Since non-preloaded bolts can only take up load after slip has taken place between the joining surfaces, they cannot be used (other than as temporary erection bolts) in this detail.

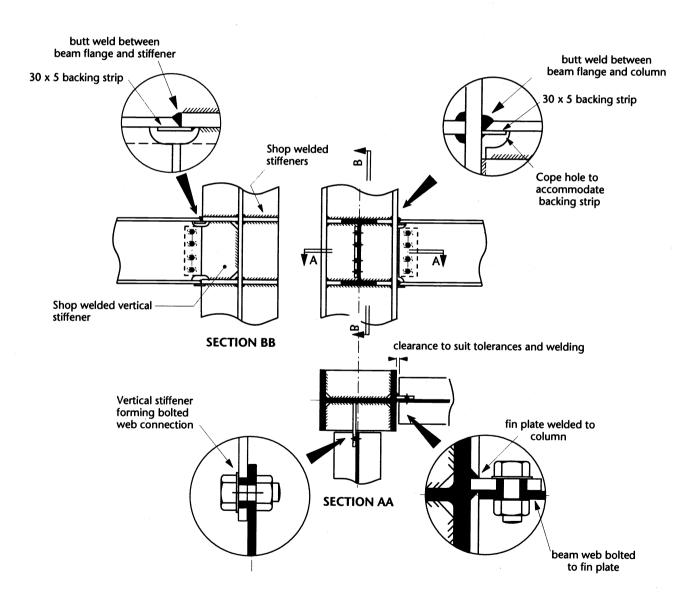
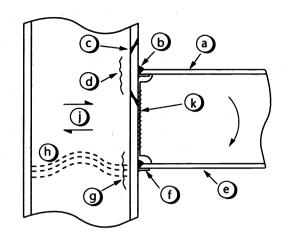


Figure 4.6 Site connection - flanges welded, web bolted

4.4 DESIGN PHILOSOPHY

In statically determinate frames, a partial strength connection designed for the applied moment is satisfactory.

If the frame is statically indeterminate, the connections must have sufficient ductility to accommodate any inaccuracy in the design moment arising, for example, from frame imperfections or settlement of supports. To achieve this, the welds in the connection must be made full strength.


Figure 4.7 illustrates the full set of design checks required which are in accordance with BS 5950.

The distribution of forces in the beam is modelled on the well established assumption that the bending moment is resisted entirely by the beam flanges, with the vertical shear being resisted by the beam web. Any axial load in the beam is shared between the flanges.

American research⁽¹⁶⁾ has shown that under certain conditions, connections modelled with the bending moment resisted entirely by the beam flanges can develop the full plastic moment capacity of the beam. Until this research is validated in the UK, it is recommended that the beam flange stress should be limited to $1.2p_y$, which allows for strain hardening. This rule should be used unless full strength welding is employed for both flanges and web.

A welded flange/bolted web connection designed under these interim rules will therefore not achieve the moment capacity of the beam section in most cases. When a full strength connection is required, the beam web and flanges will have to be fully welded to the column (except for small cope holes).

Fully welded connections made either in the fabrication shop, or directly between beam and column on site, are described in Sections 4.2 and 4.3.

ZONE	REF.	CHECKLIST ITEM	See Procedure
	а	Beam flange capacity	2A
TENSION	b	Flange weld	5
	с	Column flange in bending	2B
	d	Column web in tension	2C
	е	Beam flange capacity	2A
COMPRESSION	f	Flange weld	5
	g	Column web crushing	3
	h	Column web buckling	3
HORIZONTAL SHEAR	j	Column web panel shear	4
VERTICAL	k	Fin plate or	6
SHEAR		direct weld to column	5

Figure 4.7 Components of the connection requiring design checks

4.5 **DESIGN PROCEDURES**

The following procedures present a method for checking the strength of beam to column flange welded connections.

The full set of checks needed is shown in Figure 4.7. They are carried out in sequence in the three zones as shown in Figures 4.8 and 4.9.

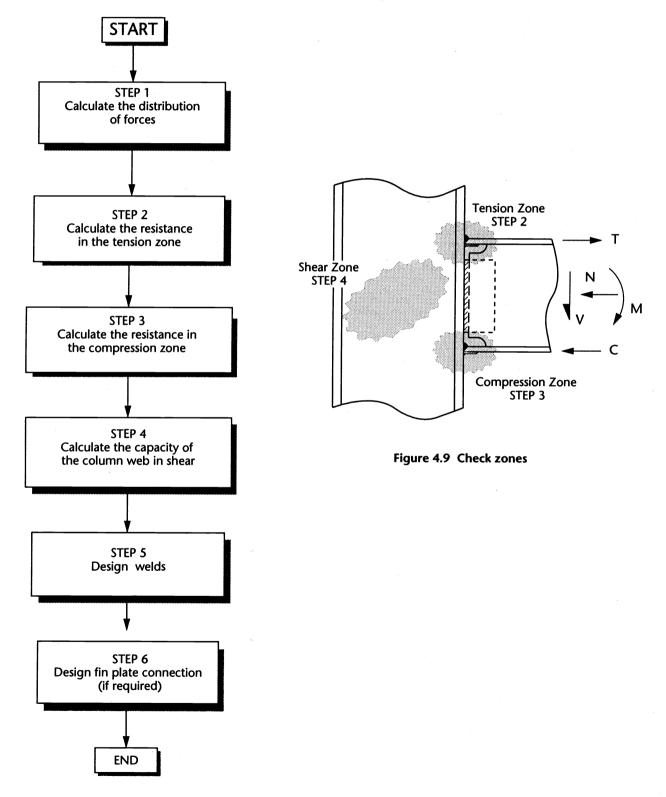
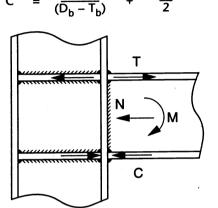


Figure 4.8 Flow diagram - design checks

61


Moment Connections

STEP 1

DISTRIBUTION OF FORCES IN BEAM

The forces in the beam tension flange 'T' and in the beam compression flange 'C', shown in Figure 4.10, are given by:

$$T = \frac{M}{(D_b - T_b)} - \frac{N}{2}$$

where:

- M = design moment
- N = axial force in the beam (+ve for compression)

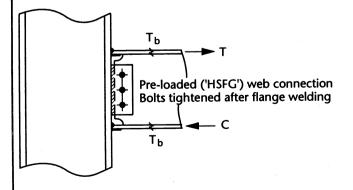
 D_{h} = overall depth of beam section

 T_{b} = beam flange thickness.

Figure 4.10 Calculation of flange forces

STEP 2A

BEAM FLANGE CAPACITY CHECK

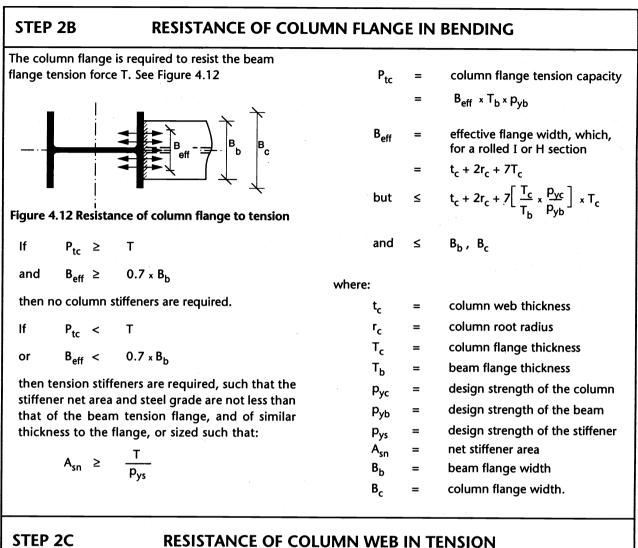

This check only applies if the web of the beam is connected with preloaded ('HSFG') bolts to a fin plate; or if $B_b > B_c$.

It is required that:

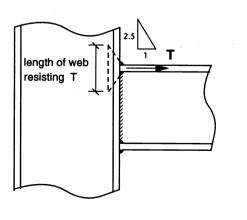
$$P_{tf} \geq T$$
 , and :

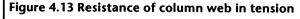
$$P_{cf} \ge C$$

Note. This is an interim rule until further research validation is carried out. It is discussed in Section 4.4.



where:		
т	=	force in tension flange (STEP 1)
С	=	force in compression flange (STEP 1)
P _{tf}	=	P _{cf}
	=	beam flange capacity in tension or compression
	= ,	1.2 × (minimum B_b , B_c) × T_b × p_{yb}
Bb	= "	beam flange width
B _c	=	Column flange width
т _ь	= '	beam flange thickness
P _{yb}	= 2	design strength of the beam.


If P_{tf} < T, or P_{cf} < C then both web and flanges must have full strength welds to the column. (excepting cope holes.)


Figure 4.11 Typical connection requiring a STEP 2A check

62

The spread of tension force T is taken as 1:2.5, as shown in Figure 4.13. When the beam is near an end of the column the effective length of web must be reduced to that available.

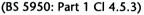
lf Ρ, Т ≥ no stiffeners are required.

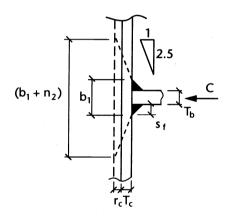
lf Ρ, < т

then a pair of tension stiffeners are required, such that the stiffener net area and steel grade are not less than that of the beam tension flange, and of similar thickness to the flange, or sized such that:

where:	A _{sn}	≥	T Pys
	Pt	=	tension capacity of the unstiffened column web
		=	$p_{yc} \times t_c \times [T_b + 2s_f + 5(T_c + r_c)]$
	s _f	=	weld fillet leg length to beam tension flange (when available)
	p _{ys}	=	design strength of the stiffener
	A _{sn}	=	net stiffener area.

STEP 3


COMPRESSION CHECK - COLUMN RESISTANCE OF THE COLUMN WEB IN THE COMPRESSION ZONE


The resistance in the compression zone, P_c is the lesser of the values given by (2.7) or (2.8) below.

For the resistance of stiffened columns, reference should be made to Section 2 STEP 6A.

Column web crushing (bearing)

An area of web providing resistance to crushing is calculated on the force dispersion length taken from Figure 4.14.

$$P_{c} = (b_{1} + n_{2}) \times t_{c} \times p_{vc}$$
 (2.7)

where:

 $b_1 = stiff bearing length$

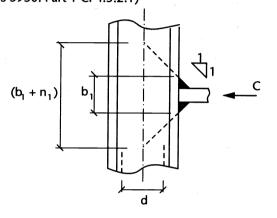
 $= T_b + 2s_f$

 $T_b = beam$ flange thickness

- s_f = fillet weld leg length to beam flange (if available)
- n₂ = length obtained by a 1:2.5 dispersion through the column flange and root radius

t_c = column web thickness

 p_{vc} = design strength of the column


 T_c = column flange thickness

$$r_c = column root radius.$$

Note: b_1 , n_1 , n_2 , must be reduced if the column projection is insufficient for full dispersal.

Column web buckling

An area of web providing resistance to buckling is calculated on a web length taken from Figure 4.15. (BS 5950: Part 1 Cl 4.5.2.1)

$$P_c = (b_1 + n_1) \times t_c \times p_c$$
 (2.8)

where:

- $b_1 = \text{stiff bearing length as above}$
- n₁ = length obtained by a 45° dispersion through half the depth of the column
 - = column depth (D_c)
- t_c = column web thickness
- p_c = compressive strength of the column web from BS 5950: Part 1 Table 27(c) with λ = 2.5d/t_c

d = depth of web between fillets.

The above expression assumes that the column flanges are laterally restrained relative to one another. (BS 5950: Part 1 clause 4.5.2.1). If this is not the case, further reference should be made to BS 5950: Part 1 clause 4.5.1.5 and 4.5.2.1.

STEP 4 RESISTANCE OF THE COLUMN WEB PANEL IN SHEAR

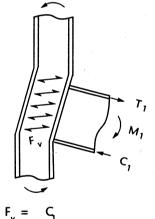
The resultant local panel shear from connections to both column flanges must be taken into account when checking the web. Examples are shown in Figure 4.16.

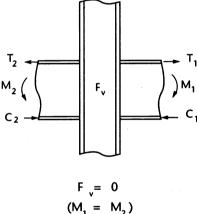
In a one-sided connection, with no axial force in the beam, the shear in the column web F_v will be equal to the compressive force C.

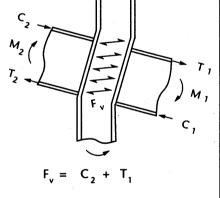
For a two-sided connection with balanced moments, the panel shear is zero, but in the case of a connection with moments acting in the same direction, as in an unbraced frame, the shears are additive.

For resistance of a stiffened column refer to Section 2 STEPS 6D and 6E.

the basic requirement is:


 $P_v \ge F_v$


where:


- F_v = column web panel shear (See Figure 4.16)
- P_v = column web panel shear capacity

= $0.6 \times t_c \times p_{yc} \times D_c$

- p_{yc} = design strength of the column
 - c = column web thickness
- $D_c = column depth.$

one-sided condition

two-sided condition with balanced moments

two-sided condition with moments in same direction

Figure 4.16 Examples of shear conditions in web panel

STEP 5

DESIGN OF WELDS

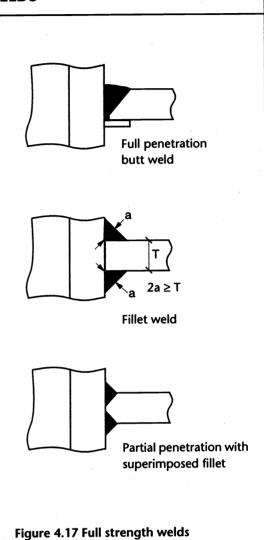
Statically indeterminate situations

All welds must be full strength welds.

Statically determinate situations

Full strength welds may be provided. Alternatively, the tension and compression flange welds may be designed to resist the flange forces T or C as appropriate, distributed over the effective width B_{eff} . If the column is stiffened, B_{eff} is replaced by the lesser of B_c or B_b .

The web weld may be designed to resist the vertical shear.

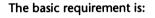

Full strength welds

Full strength welds are illustrated in Figure 4.17.

In the fabrication shop, these welds may be achieved by:

- symmetrically disposed fillet welds, where the sum of the throat thicknesses equals the thickness of the element being connected (beam flange or web).
- symmetrically disposed partial penetration butt welds with superimposed fillet welds. These are described in section 2, step 7.
- full penetration butt welds.

Owing to the practical difficulties of overhead welding in the site situation, full penetration butt welds prepared for down-hand welding onto a backing strip should be specified for the flanges. The web weld should be made with a full penetration butt weld using the fin plate or angle cleat as a backing plate.



DESIGN OF FIN PLATE CONNECTIONS

A bolted connection for the beam web onto a fin plate is illustrated in Figure 4.18. The design procedures for such plates, including the design of welds connecting the fittings to the column, are given in *Joints in Simple Construction* ⁽⁹⁾.

The procedure for preloaded ("HSFG") bolts connecting the beam web to the fitting is provided here.

Note that the final tightening of the bolts must be carried out only after completion of the welding.

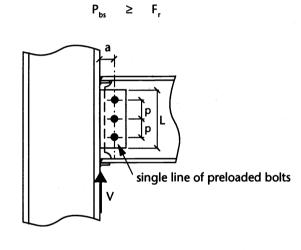


Figure 4.18 Preloaded ("HSFG") bolts to fin plate

where:

$$F_r =$$
 the resultant bolt load

$$= \sqrt{(F_m^2 + F_v^2)}$$
$$F_m = \frac{V \times a}{Z_b}$$

 Z_b = elastic modulus of bolt group

$$= \frac{n (n + 1) p}{6}$$
 (for a single line of bolts)

n = number of bolts

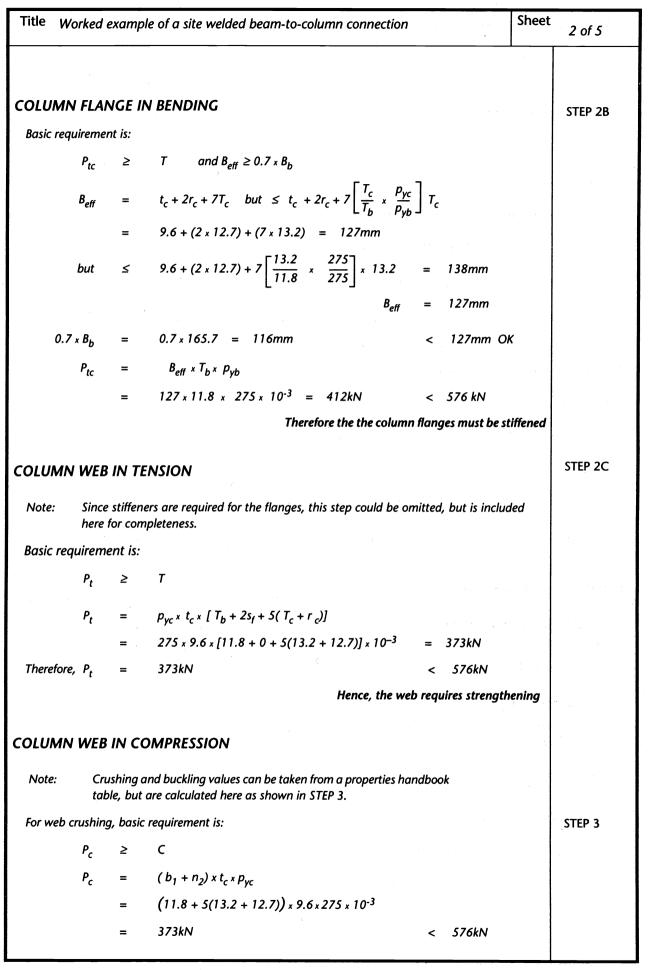
$$F_v$$
 = force on bolt due to direct shear

$$=\frac{v}{n}$$

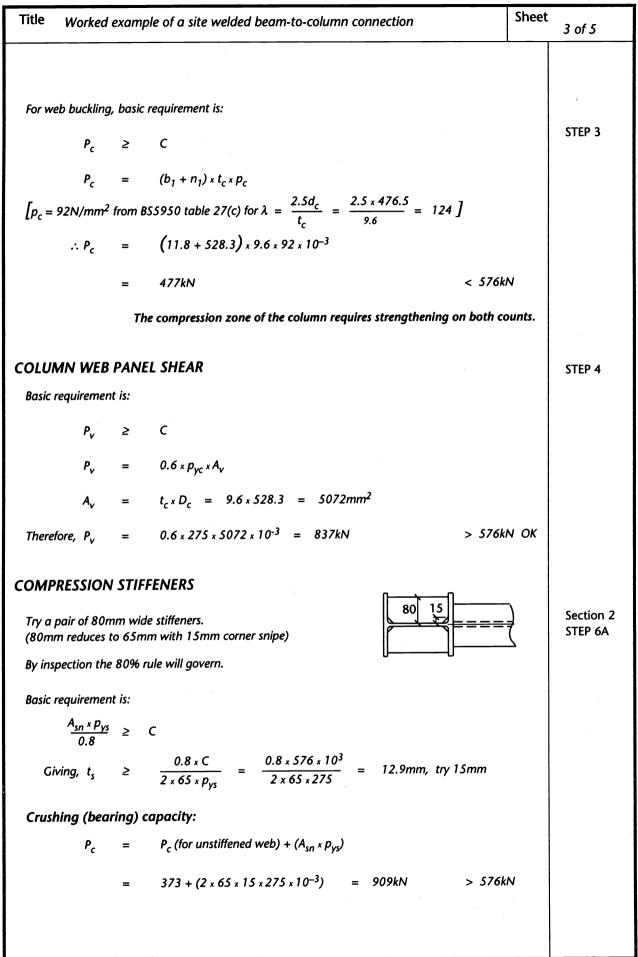
P_{bs}

the lesser of:
 the slip resistance of the bolt per interface

- or the bearing capacity of the bolt on the fin plate
- or the bearing capacity of the bolt on the web.


4.6 SITE WELDED WORKED EXAMPLE

The connection shown in the worked example is subject to a bending moment and shear force where, if it was in a statically determinate situation, partial strength welds would suffice (See STEP 5 procedure). In a statically indeterminate situation full strength fillet welds would


provide for design requirements. However, since the welding has to be carried out after erection of the beam, full penetration downhand welds on to backing strips are adopted for either situation.

	Job Moment Connections	Sheet 1 of 5
	Title Worked example of a site welded beam-to-colu	mn connection
CALCULATION SHEET	Client SCI/BCSA Connections Group	
BCSA	Calcs by NC Checked by RS	Date Apr 95
305 x 165 x 46 UB (Des a 533 x 210 x 82 UB (D Any column stiffening re in the fabrication shop. The moment and shear fo values. The column flanges are res steelwork not shown. DISTRIBUTION OF FO Force T in beam tension fl and C in beam compression	lange,	n kNm 46 UB 07.1mm 11.8mm 6.7mm
BEAM FLANGE TENSIC	ON CAPACITY	STEP 2A
Check not needed since fu	Il strength welds to flanges and web will be specified.	

Welded Beam to Column Connections

Moment Connections

Welded Beam to Column Connections

Title Worked example of a site welded beam-to-column connection	Sheet 4	of 5
Buckling capacity:		
$P_c = (A_w + A_{sg}) \times p_c$		
A _w = allowable area of column web for buckling		
$= 40t_c \times t_c = (40 \times 9.6) \times 9.6 = 3686 mm^2$		
A_{sg} = gross area of stiffeners = $2 \times 80 \times 15$ = 2400mm^2		
p_c = compressive strength from table 27(c) of BS 5950, with:		
$\lambda = \frac{0.7 L}{r_{\rm y}}$		
$L = D_c - 2T_c = 528.3 - (2 \times 13.2) = 502mm$		
$r_{y} = \sqrt{\frac{I}{A}}$ (of the section shown opposite)		
$I = \frac{15 \times 169.6^3}{12} + \frac{384 \times 9.6^3}{12} = 6.12 \times 10^6 \text{mm}^4$		
$r_{\gamma} = \sqrt{\frac{6.12 \times 10^6}{(3686 + 2400)}} = 32mm$	= 192	
$\lambda = \frac{0.7 \times 502}{32} = 11$	= 192	
$\therefore p_c = 275 N/mm^2$		
and, $P_c = (3686 + 2400) \times 275 \times 10^{-3} = 1674 \text{kN} > 576 \text{kN OK}$		
Therefore use 2 N°. 80 x 15 stif	feners	·
Compression stiffener welds:		
Weld to flanges:		
As these stiffeners will be fitted, provide 6mm fillet weld to flanges		
Weld to web:		
length of weld = $4 \times (528.3 - 2(13.2 + 15))$ = 1888mm.		ld capacity
try 6mm fillet welds, capacity = 1888 x 0.903 = 1705kN > 576		able is on Dage 224
Provide 6mm fillet welds to	web	
TENSION STIFFENERS		
Provide an area equivalent to the beam flange area and of similar dimensions.		
Use 2 N°. 80 x 15 stiffer	ners.	
(same size as compression stiffer	ners)	
Flange area = $B_b \times T_b = 165.7 \times 11.8$ = $1955 mm^2$		
Effective stiffener area = $(2 \times 65 + 9.6) \times 15 = 2094 \text{mm}^2 > 1955 \text{mm}^2 \text{ O}$	ж	

Mar. 97 Revision: A_w calculation modified

Moment Connections

Title Worked example of a site welded beam-to-column connection	Sheet 5 of 5
	5015
Tension stiffener welds	
Provide full strength welds to the flange, (based on effective thickness needed, ie beam flange = 11 .	8mm).
Leg length required per fillet weld,	
$s_f = \frac{11.8}{2 \times 0.7} = 8.4 mm$, therefore use 10mm fillet w	velds
Assuming that the total force is transferred to the web via the welds, the load per mm o required is:	f weld
Load/mm = $\frac{576}{4 \times (528.3 - 2 \times 13.2 - 2 \times 15)} = 0.31 \text{kN/mm}$, therefore use 6mm welds to the (0.903kN/mm)	he web Weld capacity table is on page 224
STEP 5 FLANGE WELDS	
Because of the stiffeners, the full width of the beam flange is effective. Provide a full penetration butt weld using a backing strip to facilitate site we	lding.
STEP 6 VERTICAL SHEAR	
Web welded directly to column	
A full penetration butt weld will be provided, using a fin plate which acts both as a backing strip facilitate site welding and provides a temporary support for the beam until welding is complete. Use 100 x 6 plate of length equal to the depth between the cope holes, and weld in position on far side only.	
The first convertion is three	
The final connection is thus:	
2 No. pairs 80 x 15 stiffeners 15 x 15 snipes	t es
Z NO. pairs 80 x 13 stilleners	

72

5. SPLICES

5.1 SCOPE

This section deals with the design of beam and column splices subjected to bending moment in addition to axial force and transverse shear force.

Both bolted and welded splices are considered, assuming the bending moment is resisted by the flanges alone. An example of a deep plate girder splice designed with the web cover plates sharing in the transfer of moment can be found in *Structural Steelwork Connections*⁽¹⁷⁾.

The procedures for column splices subject to dominant compressive forces, where bolt slip is not a factor, are dealt with in *Joints in Simple Construction*⁽⁹⁾

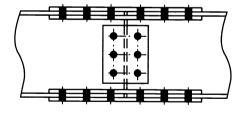
5.2 BOLTED COVER PLATE SPLICES

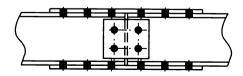
5.2.1 Connection details

Typical bolted cover plate splice arrangements are shown in Figure 5.1.

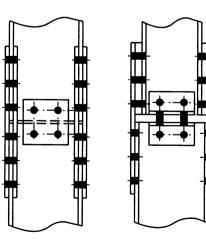
It is generally the case that joint rotation within a beam splice as a result of bolt slip is both visually and functionally unacceptable. Rotation at the splice may also invalidate the frame analysis where continuity has been assumed.

It is therefore recommended that friction grip bolted connections are used in bolted cover plate splices.


Bolt slip can also be minimized by the use of fitted precision bolts in close tolerance holes, but this is expensive to produce in the fabrication shop and difficult to assemble on site.


It is usual to place the same number of bolts in each set of flange cover plates. However, in beam splices not subject to reversal, the compression flange force may be transferred in direct bearing with a reduced number of bolts. Bearing contact must be achieved to the tolerance specified in the $NSSS^{(10)}$. The designer must, however, consider the requirements for continuity about both axes, and any moment due to strut action (see Section 5.2.2).

When bearing contact has been assumed in design, the fabrication details must clearly show that a bearing contact is required, and the site erection procedure must ensure the members are brought into contact before tensioning the bolts.


Bolted cover plate splices can be used over the whole range of section sizes, and are not always required to be full strength. For these reasons no formal standard sizes or details are recommended. M24 or M20 should be the first choice for bolt assemblies.

Fastener spacing and edge distances should comply with Clauses 6.2 and 6.4 of BS 5950: Part 1.

Beam splices

Column splices

Figure 5.1 Typical bolted cover plate splices

5.2.2 Design philosophy

The design philosophy for bolted cover plate splices subject to moment is:

- The applied moment is resisted by the flange plates.
- Transverse shear is resisted by the web plates.
- Any axial force in beams is divided equally between the flange plates.

The designer should note that bolt holes in the flanges may prohibit the development of a full strength connection at that point.

An unrestrained member in bending must also be capable of resisting a weak axis moment in its length due to lateral torsional buckling effects. Similarly, axial compression gives rise to a weak axis design moment between points of restraint. When a splice is located away from a point of restraint, account has to be taken of this moment which can be calculated from the strut action formula given in Appendix C3 of BS 5950: Part 1.

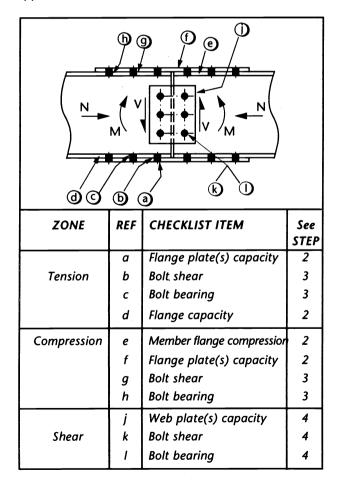


Figure 5.2 Design checks for bolted splices

5.2.3 Capacity checks

Figure 5.2 illustrates three sets of checks to be made on the member, splice plates and bolts. Each of these checks is outlined in detail in the procedures in Section 5.2.5. If member centrelines do not coincide, the additional forces arising from the eccentricity of force should be included in design.

5.2.4 Stiffness and continuity

Splices must have adequate continuity about both axes. The flange plates should therefore be, at least, similar in width and thickness to the beam flanges, and should extend for a minimum distance equal to the flange width or 225mm, on either side of the splice.

5.3 DESIGN PROCEDURES

Figure 5.3 presents the design sequence for a bolted splice in the form of a flow chart. The procedures are given on the following pages.

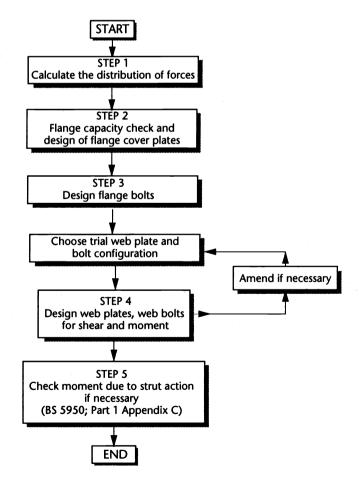


Figure 5.3 Design sequence

Splices

STEP 1

DISTRIBUTION OF FORCES IN MEMBER FLANGES

where:

The forces in the member tension flange 'T' and in the member compression flange 'C', shown in Figure 5.4, are given by:

$$T = \frac{M}{(D_b - T_b)} - \frac{N}{2}$$
$$C = \frac{M}{(D_b - T_b)} + \frac{N}{2}$$

$$= (\frac{N}{D_{b} - T_{b}}) + \frac{N}{2}$$

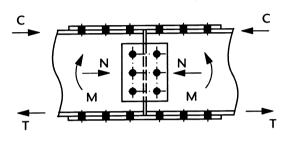


Figure 5.4 Calculation of flange forces

- design moment Μ =
- axial force in the member Ν (+ve for compression)
- overall depth of member D, =
- member flange thickness T۲ =
 - area of the member flange = B_b x T_b =

member flange width B

member cross-sectional area (UB table pages 229-231) (UC table page 232)

FLANGE CAPACITY CHECK AND DESIGN OF FLANGE PLATES STEP 2

These procedures are for friction grip connections using preloaded bolts. If the designer considers the circumstances allow the use of ordinary bolt assemblies the detail checks should be adjusted accordingly.

Flange capacity

This check ensures that, where holes occur in the member flanges, the effective area satisfies the requirements of BS 5950: Part 1, clause 3.3.3. The basic requirement is:

$$A_{ef} \geq \frac{F_{f}}{P_{y_{2}}}$$

Flange plates

The effective area of the cover plates must also be in accordance with the requirements of BS 5950: Part 1, clause 3.3.3. The basic requirement is:

$$A_{ep} \geq \frac{F_{f}}{P_{yp}}$$

where:

- the effective flange area A_{ef}
 - K x net area of flange after deduction of holes,
- gross area but <
- the effective area of the flange plate A_{ep} = (or plates if both internal and external plates are used).
 - K_x x net area of plate(s) after deduction of holes,
- but ≤ gross area
- 1.2 for design grade 43 K _
- 1.1 for design grade 50 Kړ =
- the force in the flange Ff = C or T as appropriate (STEP 1) =
- the design strength of the section P_{vs}
- the design strength of the plate. P_{yp}

Note: The use of inner and outer splice plates may reduce the number of bolts required. The effective area can be conservatively taken as taken as twice the effective area of the inner plates and the plates made the same thickness.

DESIGN OF FLANGE BOLTS

Design of friction grip connection

 F_{f}

It is required that:

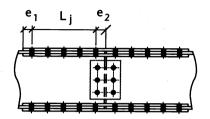
where:

 F_f = the force in the flange

= C or T as appropriate (STEP 1)

 $\leq n_b \times P_s$

 $P_s =$ the lesser of:


the slip resistance of the bolt per interface

- or the bearing capacity of the bolt in the flange plate(s)
- *or* the bearing capacity of the bolt in the flange.

The slip resistance of the bolt

where $n_p =$ number of flange plates (1 or 2)

See page 222 for slip resistance and bearing values.

Note:

.

- For friction grip connections, the slip resistance/ shear capacity should be reduced if the length of the bolted connection each side of the splice, L_j exceeds 500mm (BS 5950: Part 1, clause 6.3.4 and 6.4.2.3).
- If end distance e_1 or e_2 are less than 3d, the bearing capacity of the affected pair of bolts should be reduced (BS 5950: Part 1, clause 6.4.2.2).

Where: d = bolt diameter

In friction grip connections, the outer plies (in this case the cover plates) should not be thinner than d/2 or 10mm, whichever is less. This requirement is contained in BS 4604.

Splices

STEP 4

DESIGN OF WEB PLATES AND BOLTS

Web plates and their fasteners are designed to resist the vertical shear force V only, but account must be taken of the moment in the bolt group as in Figure 5.5. A single line of bolts each side of the splice is considered here.

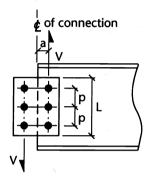


Figure 5.5 Eccentricity of bolt row Web plate design

It is required that:

 $V \leq P_v$

 $M \leq M_c$

where:

V = applied shear force

 $P_v =$ shear capacity of the web plates

= $0.6 \times A_{vnet} \times p_{yp}$

= 0.6 × 0.9 × (L - $n_r × d_h$) × $t_p × p_{yp} × n_p$

$$M_c = p_{yp} \times Z_{net}$$

- Z_{net} = is section modulus of plates minus holes
 - n_r = number of bolt rows

d_h = hole diameter

 $n_p =$ the number of web plates (normally 2)

 p_{yp} = design strength of the web plate

t_p = thickness of web plate

 $(t_p \ge 10$ mm or d/2 (whichever is less) for friction grip connections.)

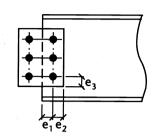


Figure 5.6 End and edge distances critical for bearing

Design of friction grip connection

It is required that:

$$F_r \leq P_s$$

where:

$$F_r =$$
 the resultant bolt load
= $\sqrt{(F_m^2 + F_v^2)}$

$$F_m = \frac{V \times a}{Z_{\perp}}$$

 $Z_{\rm b}$ = elastic modulus of bolt group

$$= \frac{n_r (n_r + 1) p}{6}$$
 (for a single line of bolts)

 F_v = force on bolt due to direct shear

$$=\frac{v}{n_b}$$

n_b = the number of bolts per side of the joint

- P_s = the lesser of: the slip resistance of the bolt per interface (See STEP 3)
 - or the bearing capacity of the bolt in the cover plate(s)
 - *or* the bearing capacity of the bolt in the web.

Note:

If any end distances $e_1 e_2$ and e_3 shown in Figure 5.6 are less than 3d, the resultant end distances should be calaculated and the bearing capacity reduced if necessary (BS 5950: Part 1, clause 6.4.2.2).

Where: d = bolt diameter

DESIGN FOR MOMENT FROM STRUT ACTION (ALSO APPLICABLE TO BIAXIAL BENDING)

When a splice is located away from a point of restraint, this check is required to ensure that moments generated by strut action can be resisted. (Figure 5.7)

Derivation of the applied moment M_{yy} is from Appendix C3, BS 5950: Part 1 and is illustrated in *The Steel Designers' Manual* ⁽¹⁸⁾

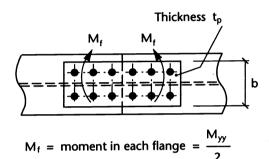


Figure 5.7 Weak axis moment to be considered

Flange plates

This check is not necessary if the flange plates are equal, with respect to area and modulus, to the flange itself.

Checking the flange plates under axial load and bending.

the basic requirement is:

$$\frac{F_{f}}{A_{e} \times p_{yp}} + \frac{M_{f}}{M_{cx}} \leq 1$$

where:

 A_e = the effective area = $K_e \times$ net area, but ≤ gross area K_e = 1.2 for design grade 43 K_e = 1.1 for design grade 50 F_e = maximum axial force in the flange

 p_{yp} = the design strength of the plate

M_f = the moment in each flange due to strut action or any biaxial bending moment (Appendix C3 BS 5950: Part 1)

$$M_{cx} = the moment capacity of the flange plate
 $p_y \times Z_{net}$$$

Z_{net} = is section modulus of plates minus holes.

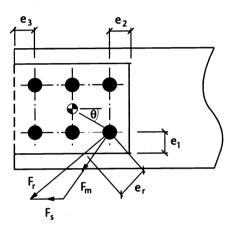


Figure 5.8 Maximum bolt force

Check preloaded bolts

It is required that:

where:

P_c = bolt capacity (see STEP 3)

$$F_r = maximum bolt force (Figure 5.8)$$

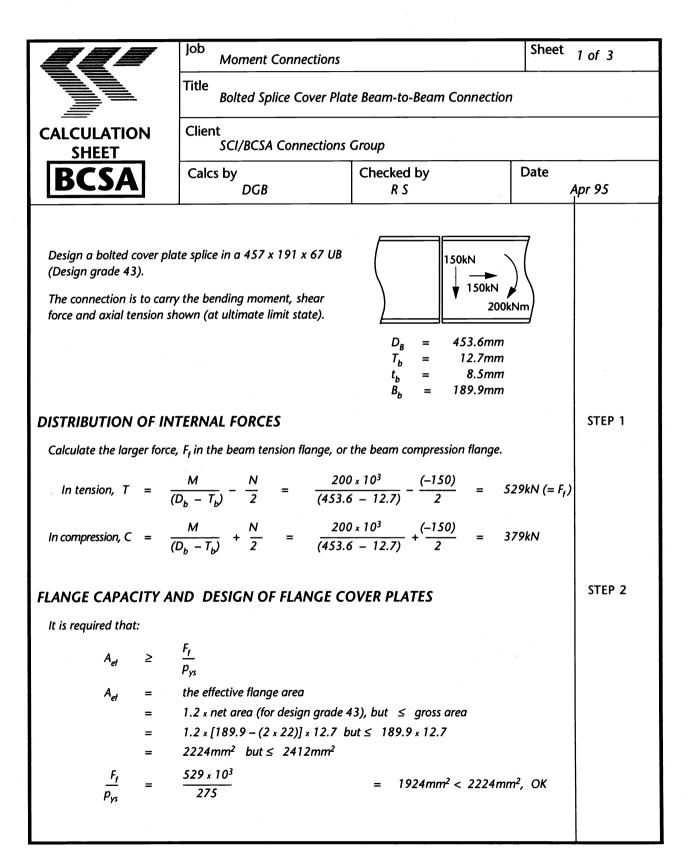
$$= \sqrt{[F_s^2 + F_m^2 + (2 \times F_s \times F_m \cos \theta)]}$$

$$F_e$$

$$F_s = \frac{r_r}{n}$$

$$F_m = \frac{M_f}{Z_b}$$

 Z_{b} = elastic modulus of bolt group

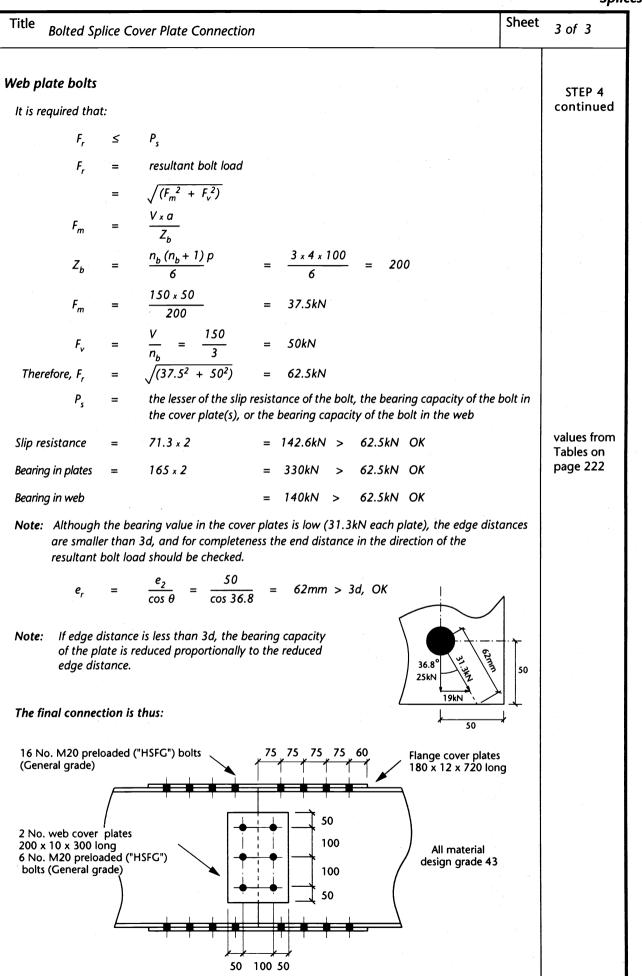

 θ = angle determined in figure 5.8.

Note: that if e_1 , e_2 or e_3 is less than 3d, the resultant end distance e_r should be determined and the bearing capacity reduced if necessary.

Where: d = bolt diameter.

BOLTED SPLICE - WORKED EXAMPLE 5.4

In this worked example the splice is subjected to bending restraints prevent out-of-plane buckling and therefore moment, shear and axial forces. It is assumed that local STEP 5 need not be considered.


Moment Connections

Title Bolted Splice Cover Plate Connection	Sheet 2 of 3
Plates Try a single, external cover plate, 180mm wide (design grade 43), with M20 preloaded ("HSFG" (General grade) in 22mm clearance holes. Design the plates for the (larger) tension force. By inspection, A _{ep} will govern.	") bolts
It is required that:	
$A_{ep} \geq \frac{F_f}{P_{\gamma p}}$	
$1.2 \times t_p \times [180 - (2 \times 22)] \ge \frac{529 \times 10^3}{275}$	
Giving $t_p \ge \frac{529 \times 10^3}{275 \times 1.2 \times [180 - (2 \times 22)]} = 11.8 \text{ mm, say } 12 \text{ mm}$	m
Use 180 x 12 cover pla DESIGN OF FLANGE BOLTS	STEP 3
It is required that: $F_f \leq n_b \times P_s$	
P, = minimum of slip resistance or bearing capacity of bolt in flange or cove	er plate values from
Slip resistance = 71.3kN (Slip factor = 0.45)	Tables on page 222
Cover plate thickness (12mm) is less than the flange thickness (12.7mm), therefore will be more in bearing.	
Bearing capacity in 12mm plate is more than 148kN, > 71.3kN, OK.	
Therefore, $P_{s} = 71.3$ kN per bolt	
and $n_b = \frac{F_i}{P_e} = \frac{529}{71.3} = 7.4$, therefore use 8 Bolts (4 pairs) each side	ide
Note: Compression flange forces are lower, but an identical detail is chosen for consistency avoid potential errors.	and to
WEB PLATES AND BOLTS	STEP 4
Try the following:	
2 Nº 10 mm web plates	
M20 preloaded ("HSFG") bolts (General grade)	
Web plates	
In shear it is required that: 50 100 50	
$V \leq P_{v}$	
$P_v = 0.6 \times A_{vnet} \times p_{yp}$	
$= 0.6 \times 0.9 \times (L - n_r \times d_h) \times t_p \times p_{yp} \times n_p$	
$= 0.6 \times 0.9 \times (300 - 3 \times 22) \times 10 \times 275 \times 2 \times 10^{-3} = 695 \text{kN} > 150 \text{kN} < 0.00 \text{kN}$	ок
In bending:	
$M \leq M_c$	
$M = V \times a = 150 \times 0.05 = 7.5 kNm$	
$I_p = \frac{10 \times 300^3}{12} - \frac{3 \times 10 \times 22^3}{12} - (2 \times 10 \times 22 \times 100^2) = 18.1 \times 10^6 \text{mm}^4$	
$M_{c} = p_{yp} \times Z_{net} = 275 \times 10^{-3} \times \frac{2 \times 18.1 \times 10^{6}}{150 \times 10^{3}} = 66.4 \text{kNm} > 7.5 \text{kNm}$	n OK

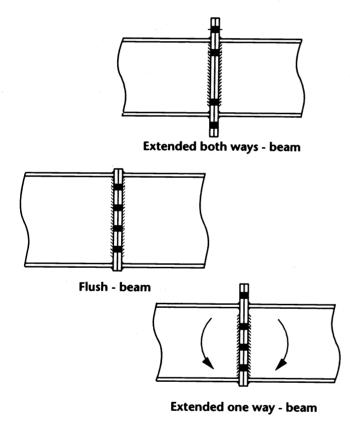
ş,

80

Splices

5.5 BOLTED MOMENT END PLATE SPLICES

5.5.1 Connection details


Bolted moment end plate connections, as splices, are simply the beam side of the connections covered in Section 2 mirrored to form a pair. They have the advantage over the cover plate type in that preloaded bolts and faying surfaces are not required. However they provide less rigidity than cover plate splice details.

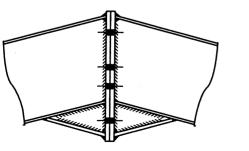
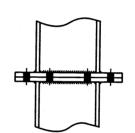
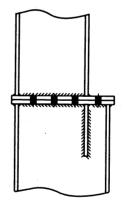
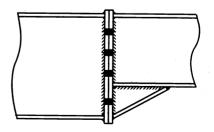

Connection rotational stiffness is discussed in Section 2.5. The bolted moment end plate splice is regularly used in single storey portal frames for both apex connections and intermediate splices in rafters where it is commonly assumed to be 'Rigid' for the purposes of elastic global analysis. When they are used in multi-storey unbraced frames, a more cautious approach is recommended.

Figure 5.9 illustrates a variety of bolted moment end plate splices.


Some of the details shown will only provide partial strength splices, or full strength for a moment in one direction.

A bolted end plate splice can be used for columns in multistorey braced frames, and may be considered for unbraced frames where the criteria in Section 2.5 are met.




Portal apex hauch

Extended both ways - column

Different size - column sections

Different size - beam haunch

Figure 5.9 Typical bolted moment end plate splices

5.5.2 Design procedures

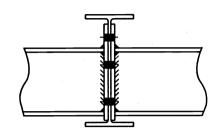
Design procedures are those employed in Section 2 for the 'beam side' of the beam-column connection. The moment capacity tables on pages 150 to 181 can be used directly for splice connections of this type, providing moment and shear capacities.

When splicing beams of different depths, the longitudinal stiffeners should be sized to equal in area the opposing flange. They must be of sufficient length to transfer the applied force from the flange to the adjacent web in shear, and to develop the force in the weld between the stiffener and the web.

5.6 BEAM-THROUGH-BEAM MOMENT CONNECTIONS

5.6.1 Connection details

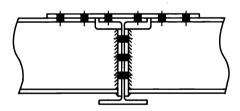
Typical beam-through-beam connections are shown in Figure 5.10. The extended end plate and flush end plate types would normally employ non-preloaded 8.8 bolts. The connection using end plates to the web and a cover plate to the tension flange would require preloaded bolts to avoid slip. Although the web connection could be made with normally tightened ordinary bolts, the $NSSS^{(10)}$ discourages a mix of preloaded and non-preloaded bolts being used in the same connection.


The effect of the rotational flexibility of end plate type splices must be borne in mind. The guidance given in Section 5.5.1 applies here.

5.6.2 Design procedures


Design principles for the elements of each connection are as presented in earlier sections. The procedures in section 2.8 apply to the end plate elements, and the moment capacity tables on pages 150 to 181 can be used directly.

Where end plate connections are made to the web of the supporting beam the vertical shear from the beams on both sides must be considered when checking bolts in bearing on the web.


When the end plate/cover plate detail is used, the cover plate element is designed in accordance with the procedures in 5.3. The bolts shown in Figure 5.10 between the cover plate and the supporting beam serve only to keep the parts in contact. The end plate bolts are assumed to carry vertical shear only and should be checked in the normal way.

Extended end plates to beam web

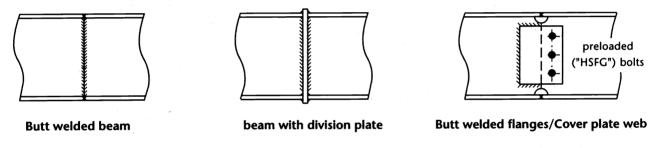
Flush end plates to beam web stiffeners

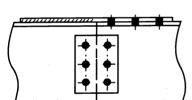
End plate and cover plate

Figure 5.10 Typical beam through beam splices

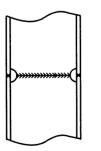
5.7 WELDED SPLICES

5.7.1 Connection details

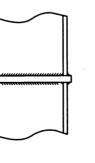

Typical welded splices are shown in Figure 5.11.

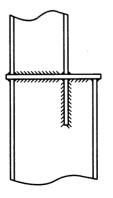

Welded shop splices are often employed to join shorter lengths delivered from the mills or stockists. In these circumstances the welds are invariably made 'full strength', although the effect of small cope holes may be neglected.

Where the sections being joined are not from the same 'rolling' and consequently vary slightly in size because of rolling tolerances a division plate separates the two. When joining components of a different serial size a web stiffener is needed, or a haunch to match the depth of the larger size. A site splice can be made with fully welded cover plates. In this case the width of the top and bottom flange plates are chosen to allow downhand welding of the longitudinal welds. Bolts in the web covers are for temporary erection purposes.


In connections where a division plate is used, the plate must be able to sustain tensile forces through its thickness. "Hy-zed" material (BS EN 10164) should be considered for the plate, and checking for laminations before and after welding is recommended.

It is also possible to weld one flange and one web plate to each member, and complete the splice by bolting on site. This detail has the disadvantage that both pieces require both drilling and welding in the fabrication shop. In addition the projecting splice plates are prone to damage during transportation.





Cover plates shop welded/site bolted

Cover plates to suit site welding

Butt welded column

column with division plate

Different size column sections

Figure 5.11 Typical welded splices

5.7.2 Design Philosophy

For fully welded splices the general design philosophy is:

- The applied moment is carried entirely by the flanges.
- Any axial forces are shared in proportion to the area of flanges and web.
- Transverse shear is carried by the web.
- Full strength welds must always be used in connections for statically indeterminate frames, whether designed plastically or elastically.

The full strength requirement is needed to ensure that a splice is strong enough to accommodate any inaccuracy in the design moment, arising for example, from frame imperfections, modelling approximations or settlement of supports.

In statically determinate frames splices may be designed to resist an applied moment which is less than the member moment capacity.

Where there are mixed bolted and welded elements the design philosophy is that the bolted portions can be designed for the applied forces, since it is considered that sufficient ductility is present; however, the flange welds must be full strength.

American research⁽¹⁶⁾ has shown that the full moment capacity of the section can be achieved when a bolted web is used with welded flange connections, but until this work has been validated in the UK, the stress in the flange should be limited to $1.2p_y$ when a bolted, or partly bolted, web detail is used.

A welded flange/bolted web splice designed under these interim rules will therefore not achieve the moment capacity of the beam in most cases. When a full strength connection is required, the beam web and flanges will have to be fully welded (except for small cope holes).

Practical details

When butt welds are used to connect the flanges and the web, care must be taken to ensure that full penetration is achieved.

When welding is from both sides, the weld procedure would normally include back gouging after the first side has been welded to remove slag from the root of the weld.

When welding from one side, a backing strip is provided and full penetration is then achieved. This is the type of weld commonly used on site. See Figure 5.12

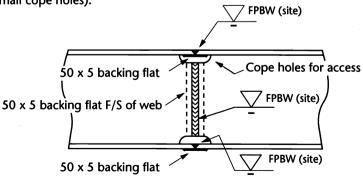
Where a division plate is used, the weld will be continuous round the profile of the section, and the fillet welds or partial penetration welds employed should be designed in accord with Section 2, Step 7. The division plate itself should be of the same grade as the component it connects, and have a thickness at least equal to the flange thickness. As stated in Section 5.7.1, "Hy-zed" material should be considered for the division plate, and checking for laminations before and after welding is recommended.

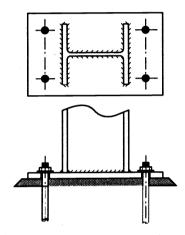
5.7.3 Capacity checks

Separate procedures are not included for each of the splices shown in Figure 5.11 but the appropriate steps in Section 4.5 for beam to column welded connections may be used.

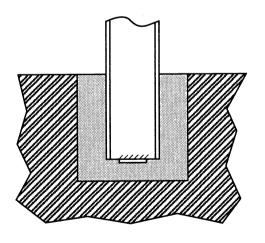
When designing such splices the following points must not be overlooked:

- Welds may be designed for the applied loads in statically determinate all welded details only. In all other cases, welds must be full strength.
- In splices with plate and bolt elements the flange stresses must not exceed 1.2 py (See discussion under 4.4 on page 60).

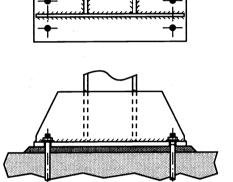


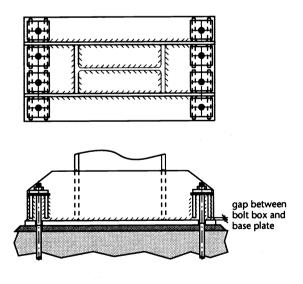

Figure 5.12 Full strength site welds with backing strips

6. COLUMN BASE CONNECTIONS


6.1 SCOPE

This chapter deals with the design of connections which transmit moment between steel members and concrete substructures.


In practice most such connections occur at the feet of columns, but the same principles may be applied to non-vertical members. Typical details are shown in Figure 6.1.


Unstiffened Slab Base

Pocket Base

Stiffened Base

Stiffened base with bolt boxes (for heavy crane gantries)

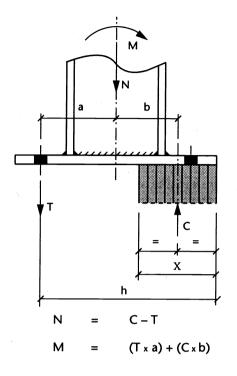
Figure 6.1 Typical column base connections

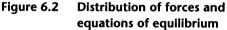
6.2 **DESIGN PHILOSOPHY**

In terms of design, the column base connection is essentially a bolted end plate connection with certain special features:

- Axial forces are more liable to be important than is generally the case in end plate connections.
- On the compression side force is distributed over an area of steel-to-concrete contact which is determined by the strength of the concrete and packing mortar or grout.
- On the tension side the force is transmitted by holding down bolts which must be adequately anchored in the concrete substructure.
- Unlike steel-to-steel contact, concrete on the tension side cannot be relied upon to generating prying forces so as to reduce the bending moment in the end plate. The base plate must be considered to bend in single curvature similar to Mode 3 for a bolted end plate.

As a consequence, the base plate tends to be either very thick, or heavily stiffened, by comparison with end plates of steel-to-steel connections. However the principle is similar:


An interface compression force is coupled with a tensile force in the bolts to balance the applied axial compression and bending moment.


The method is analogous to reinforced concrete design, with a plastic distribution of bolt force, and concrete/ grout compression taken as a rectangular stress block. There are certain provisos, discussed in Section 6.3.

More often than not the moment may act in either direction and symmetrical details are chosen. However, there may be circumstances (e.g. some portal frames) in which asymmetrical details are appropriate.

The connection will usually be required to transmit horizontal force (base shear), either by friction or via the bolts. If the latter, it must be remembered that the concrete may limit the force that can be accepted. Shear keys set in pockets (or shallow pockets embracing the feet of the columns) can be used to transfer higher shear forces.

Figure 6.2 shows the distribution of forces and gives the equations which must be satisfied simultaneously for a simple base with one row of bolts on each side.

More complicated bases (eg unsymmetrical, or more than one tensile bolt row) can be treated similarly.

When there is biaxial bending, a similar approach can be used, but with a certain amount of trial and error, since the extent of the stress block must be assumed so as to satisfy equilibrium in both directions.

Pocket bases

The 'Cast in Pocket' base is entirely different and is not dealt with in detail here. Design must take account of the horizontal and vertical pressures on the concrete encasement. A small plate or angle can be welded to the underside of the member to assist with levelling of the column. See Figure 6.1.

Bolt boxes

When bases have to be designed for heavy gantries with large cranes causing an overturning moment at the base from high surge loads, holding down bolts as large as M100 are sometimes necessary. In these cases, bolt boxes are provided to carry bolt tensions directly into the column shaft, or into the base stiffening gussets. Base plate bending is then only considered on the compression side.

6.3 CAPACITY CHECKS

Compression stress block

The magnitude of the assumed compressive stress depends on:

- The compressive strength of the concrete.
- The compressive strength of the grout/packing mortar.
- The quality of workmanship to be expected.

Normal practice is to choose a bedding material (grout) at least equal in strength to that of the concrete base. It can be mortar, fine concrete or one of many proprietary nonshrink grouts.

Table 6.1 gives typical cube strengths for mortar, fine concrete and non shrink grout, and is taken in part from *Holding Down Systems for Steel Stanchions* ⁽¹⁹⁾.

Table 6.1 Strength of bedding materia				
Bedding Material	Characteristic cube strength at 28 days f _{cu} (N/mm²) ^			
Mortar	20 - 25			
Fine Concrete	30 - 50			
Non shrink Grout	50 - 60			

Table 6.2 gives values of characteristic cube strengths and bearing strengths which are used for concrete bases. They are based on the grades of concrete given in BS 5328: Part 1.

Table 6.2 Concrete Strengths					
Concrete grade	Cube strength at 28 days f _{cu} (N/mm²)	Design bearing stress for stress block 0.6 f _{cu} (N/mm²)			
C25	25	15			
C30	30	18			
C35	35	21			
C40	40	24			

It must be emphasized that the use of high strength bedding material implies special control over the placing of the material to ensure that it is free of voids and air bubbles etc. In the absence of such special control, a design strength limit of 15 N/mm² is recommended irrespective of concrete grade.

Bolt tension

A plastic distribution of bolt force may be adopted provided that all bolts assumed to act in tension are a reasonable distance outside the area of the compressive stress block. It is recommended that the extent of the compression stress block 'X' is limited to two-thirds of the distance 'h' from the compression edge to the tension bolts ('X' and 'h' are shown in Figure 6.2).

Recommended bolt design tensions are the enhanced values given in Table 2.1.

Anchorage lengths depend on the concrete properties and foundation details. Commonly used bolt sizes and lengths are given in Table 6.3.

All holding down bolts should be equipped with an embedded anchor plate for the head of the bolt to bear against. Sizes of anchor plates are also given in Table 6.3. They are chosen to apply not more than 30 N/mm² at the concrete interface assuming 50% of the plate is embedded in concrete.

When necessary, more elaborate anchorage systems (eg traditional back-to-back channel sections) can be designed. If a combined anchor plate for a group of bolts is used as an aid to maintaining bolt location, such plates may need large holes to facilitate concrete placing.

Table 6.3Preferred sizes of holding down bolts & anchor plates					
Diameter M20 M24 M30					
Length (mm)		300 375 450	375 450 600	450 600	
Anchor	size	100 x 100	120 x 120	150 x 150	
Plates (mm) thickness		12 (4.6) 15 (8.8)	15 (4.6) 20 (8.8)	20 (4.6) 25 (8.8)	
Standard lengths of holding down bolts are in bold type.					

6.4 RIGIDITY OF COLUMN BASE CONNECTIONS

The rigidity of the base connection has generally greater significance on the performance of the frame than other connections in the structure. Fortunately most base plates, whether stiffened or unstiffened, are substantially more rigid than the typical end plate detail. The thickness of the base plate and pre-compression from the column contribute to this.

However, no base connection is stiffer than the concrete and, in turn, the soil to which its moment is transmitted. Much can depend on the characteristics of these other components, which include propensity to creep under sustained loading.

The base connection cannot be regarded as 'Rigid' unless the concrete base it joins is itself relatively stiff. Often this will be evident by inspection, but borderline cases present difficulties as with steel-to-steel connections. In principle, a target stiffness needs to be defined and the stiffness of the proposed connection needs to be quantified and compared. In practice, this is generally not done.

Base connections for wind-moment frames are generally treated no differently from other moment-resisting base connections. Although the collapse mechanism is likely to involve a plastic hinge at each column foot, the normal requirement for ductility (to redistribute end moments) does not apply.

6.5 STANDARDISATION

Moment-resisting base plates are less amenable to standardisation than steel-to-steel connections, as more variables are involved. However some general recommendations are given here.

Before steelwork is erected, holding down bolts are vulnerable to damage. Every care should be taken to avoid this, but it is prudent to specify with robustness in mind. Larger bolts in smaller numbers are preferred. Size should relate to the scale of the construction, including the anchorage available in the concrete.

In *Joints in Simple Construction*⁽⁹⁾, 4.6 holding down bolts are advocated as standard. However, such a restriction is an unacceptable handicap where high bending moments are to be transmitted, and 8.8 bolts are preferred.

In many cases M24 bolts will be appropriate, but M30 is often a practical size for more substantial bases. M20 is the smallest bolt which should be considered.

A preferred selection of bolt lengths and anchor plate sizes based on these diameters is given in Table 6.3.

6.6 BEDDING SPACE FOR GROUTING

A bedding space of at least 50mm is normal. This gives reasonable access for grouting the bolt sleeves (necessary to prevent corrosion), and for thoroughly filling the space under the base plate. It also makes a reasonable allowance for levelling tolerances.

In base plates of size 700mm x 700mm or larger, 50mm diameter holes should be provided to allow trapped air to escape and also for inspection. A hole should be provided for each $0.5m^2$ of base area. If it is intended to place grout through these holes the diameter should be increased to 100mm.

6.7 PRELIMINARY SIZING OF BASE PLATE

When using grade 8.8 holding down bolts and the suggested 'default' bearing stress of 15N/mm², suitable approximate base plate dimensions can be determined as a first trial from Table 6.4.

Table 6.4 First trial plate dimensions							
Bolt Size	Size Base plate Maximum Edge Bo thickness outstand distance space (unstiffened)						
	mm	mm	mm.	mm			
M20	35	100	50	120			
M24	45	150	75	150			
M30	50	150	75	180			

For UC column serial sizes the dimensions given in Table 6.4 translate into the preferred sizes of square base plate given in Table 6.5. The table also provides some indication of the moment resistance available.

Moment resistances are approximate (they vary with actual section size used) and should be considered as a guide to preliminary sizing only.

When axial loads are higher than those given in Table 6.5 the base should be checked for axial load combined with the overturning moment, to see if there is tension in the holding down bolts. Where a viable stress block can be postulated within the confines of the base plate, equilibrium may be achieved without tension in the bolts.

The distance from the column centre line to the centre of the stress block is found by dividing the moment by the axial force. If there is no tension in the bolts, the calculated reaction will be equal to or greater than the axial load.

Table 6.5 Preliminary sizing chart for UC column bases with C25 concrete							
Column		305UC 254 UC 203 UC 15			152 UC		
Base Plate	(mm)	600 x 600	550 x 550	450 x 450	500 x 500	400 x 400	350 x 350
Plate thickness	(mm)	50	50	35	50	35	35
8.8 HD Bolts (ead	ch side)	4 M24	4 M24	4 M20	3 M24	3 M20	3 M20
Bolt edge distance	(mm)	75	75	50	75	50	50
Axial Load kN		Moment Resistance (kNm)			·		
Zero		381	338	197	229	130	107
250		430	379	228	267	157	125
500		473	413	250	298	175	132
750		509	438	263	320	182	
1000		537	457		333		
1250		559	467				
1500	-	574					
1750		582		2			
2000		577					

6.8 STIFFENED BASE PLATES

Holding down bolts cannot be as compactly spaced as bolts in other situations in the structure. An unstiffened slab base therefore tends to require a plate which is thick by comparison with bolted end plate connections. There is little scope to increase bolt spacing and base plate dimensions before the thickness gets out of hand.

Most steelwork contractors would prefer to use unstiffened bases of plate thickness up to 75mm. Above this thickness, the decision becomes a balance between weldability and availability of the thicker material, compared to the high work content of a stiffened base. The base plate must be free from lamination in the area of the welds and flat enough to ensure bearing as required by the NSSS⁽¹⁰⁾.

When a stiffened base is chosen, it is normally appropriate to use the base plate thicknesses given in Table 6.6.

The stiffener arrangement should be made such that the holding down bolts are about 50 mm from the face of the stiffener.

Table 6.6Suitable base plate thickness for stiffened column bases					
Bolt size M20 M24 M30					
Thickness (mm)	30	35	40		

The design of a stiffened base generally follows the same procedures as outlined for the unstiffened base, whilst the stiffeners themselves must be designed to resist the local load they attract by virtue of their position.

Stiffeners may be sized using the following guidelines:

- Outstand from column to extend to approximately 20mm inside the edge of the base plate.
- Height equals two times outstand (corner may be trimmed at 2:1).
- Thickness not less than 10 mm or height/16 (unless restrained by an intersecting stiffener).
- Stiffeners must be sufficiently thick to resist the compression they attract from the assumed compressive stress block.
- Tension side is checked on similar basis to web tension in a beam end plate.

Base moments are usually reversible; welds between stiffeners and base plate may therefore be sized for tension plus any shear assigned to them, provided that the stiffeners bear directly on the base plate.

Welds between stiffeners and column must be sized to resist all forces attracted by stiffener.

6.9 **DESIGN PROCEDURE**

An iterative approach must be taken in the design procedure for a base plate connection.

The starting point is to determine the eccentricity (M/N). This leads to an indication of the necessary base size if no bolt tension was available. If, with different load cases, the eccentricity is substantially greater for one direction than the other, it may be appropriate to consider an asymmetrical base detail.

An unstiffened base plate should be considered first. Even if fairly thick, it will be cheaper than a stiffened base. If the eccentricity is high, stiffening may be unavoidable.

The procedure given on the following pages is for the simple case of uniaxial bending and a single row of bolts acting in tension. The design sequence is indicated in Figure 6.3 and the critical dimensions in Figure 6.4.

For biaxial bending the determination of a compressive stress block in STEP 1 is more complex and requires a trial-and-error process, but the design sequence is otherwise the same.

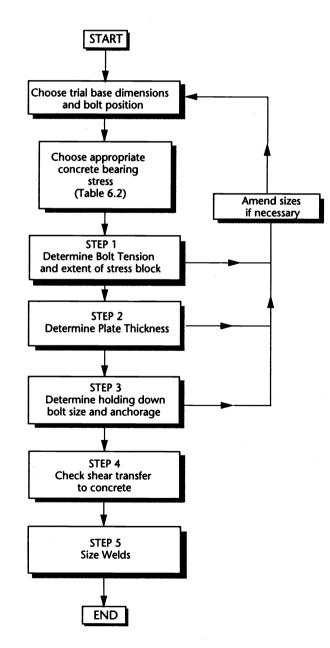


Figure 6.3 Flow diagram for base design

STEP 1 CALCULATION OF BOLT TENSION AND CONCRETE COMPRESSION

With the trial base plate dimensions chosen, and the design bearing stress decided (Figure 6.4), the equilibrium equations are:

N = C - T (6.1)

 $M = Ta + Cb \tag{6.2}$

Substituting for a and b, equation (6.2) becomes:

$$M = T\left(h - \frac{h_{p}}{2}\right) + C\left(\frac{h_{p} - X}{2}\right)$$
 (6.3)

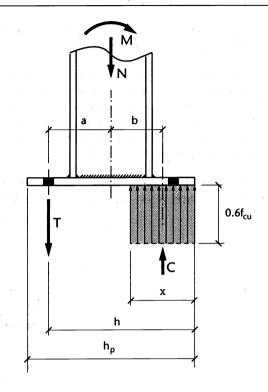
also,

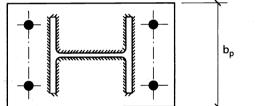
 $C = 0.6f_{cu}b_pX \tag{6.4}$

$$T = C - N \tag{6.5}$$

Substituting (6.4) and (6.5) into (6.3) gives

$$M = 0.6f_{cu} b_p X \left(h - \frac{X}{2} \right) - N \left(h - \frac{h_p}{2} \right) \quad (6.6)$$


Note that the effective width is limited to the width of the column plus twice the cantilever L_1 (see Figure 6.7).


The quadratic equation is solved to determine X. (See figure 6.4)

Caution:

If the above equations do not give a sensible solution it could be because:

- No tension required to resist the moment. (ie M ÷ N shows only a small eccentricity and the whole area of the base is in compression.)
- The base plate is not big enough to resist the imposed forces, ie the wrong trial size has been chosen.

- b_p = breadth of base plate
 - = length of base plate

h_o

h

Х

0.6f_{cu}

- = length from tension bolts to compression edge
- design bearing stress on concrete (An upper limit of 15N/mm² is recommended unless there will be special control over the placing of the bedding material.)

= length of compressive stress block

Figure 6.4 Base dimensions and compression block

DESIGN BASE PLATE THICKNESS

(6.7)

Plate bending on either the tension side or the compression side may govern.

Both sides must be investigated and the required plate thickness is the larger value resulting from these checks.

(a) Compression Side Bending

Projecting portion of base as a cantilever: (Figure 6.5)

t_p = required base plate thickness

where:

m_c = moment per mm width applied to plate from stress block

$$= 0.6f_{cu} - \frac{e^2}{2}$$

 p_{yp} = design strength of plate

$$e = L_1 - 0.8s_w$$

L₁ = cantilever length of base plate (see Figure 6.5)

s_w = weld size

Stiffened bases

In the case of stiffened bases (and occasionally unstiffened bases with a low axial force) the situation may occur when the width, X, of the stress block is smaller than the outstand, L_1 as shown in Figure 6.6. In these cases the value of m_c should be calculated as below and used in equation (6.7) to calculate t_n .

$$m_c = 0.6 f_{cu} X (e - \frac{X}{2})$$

Note:

This approach is conservative because two-way spanning has been neglected.

Base plate spanning between column flanges

If the compressive stress block needs to extend into the area between column flanges, the effective cantilever cannot be more than L_1 without increasing plate thickness. The stress block therefore changes from a rectangular area to a 'T' shaped area around the flange and web of the column as shown in Figure 6.7.

This changes the position of the centroid to that of a 'T' section and necessitates the recalculation of the equilibrium equations of STEP 1 to re-establish C and T.

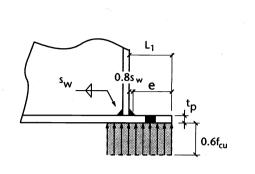


Figure 6.5 Uniform pressure on cantilever

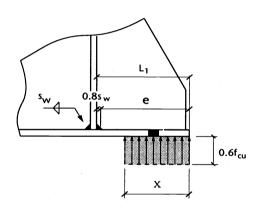
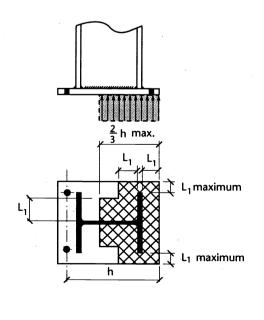



Figure 6.6 Uniform pressure on part of cantilever

DESIGN BASE PLATE THICKNESS (CONTINUED)

(b) Tension Side Bending

With precautions taken as figure 6.8 to ensure that bending across corners of plate is avoided, the required plate thickness to resist bolt tension is based on a calculation for a pure cantilever, with no prying assumed.

Note: Plate bending across the corners may only be avoided by ensuring bolts are positioned within lines 45° from the corner of the column flange. (See Figure 6.8)

t_p = required base plate thickness

$$= \sqrt{\frac{4m_T}{p_{vp} b_p}}$$

Where,

 $m_r = T \times m$

- p_{yp} = design strength of plate
- $m = L_1 k 0.8s_w$
- L, = cantilever length of base plate
- s_w = weld size
- k = edge distance

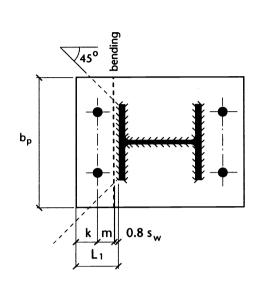


Figure 6.8 Plate bending on tension side

HOLDING DOWN BOLTS AND ANCHORAGE

HOLDING DOWN BOLTS

Force T in the row of bolts resisting tension is assumed to be shared equally among all bolts in the row.

The force per bolt should not exceed the value given in Table 6.7.

If it proves impractical to accommodate sufficient bolts of reasonable size, it is necessary either to:

- increase base plate dimensions (return to Step 1) or
- add a second row of bolts behind the flange, if space permits

See Step 5 for the transfer of shear force from the base plate to the concrete.

Suggested practical limits of bolt spacing are given in Table 6.8. These minimum spacings apply in both directions. The minimum edge distances in the concrete should be of the same order, with reinforcement passing around and, where practical, between the bolts.

Table 6.7 Tensile capacity of H D bolts						
Bolt	Enhanced Tensior	Enhanced Tension Capacity P _t '(kN)				
size	8.8	4.6				
M20	137	59.5				
M24	198	85.7				
M30	314	136				
Note: See appendix IV for derivation of bolt strengths						

Table 6.8 Suggested minimum practical bolt spacing for H D bolts (mm)						
M20 M24 M						
Adjustable H D Bolts (using sleeves)	120	150	180			
Non-adjustable HD Bolts accurately held in position during concreting	100	120	150			

ANCHORAGE TO THE CONCRETE

Normally the objective is to ensure that the anchorage is as strong as the bolt that is used. See also discussion on bolt tension in Section 6.3.

The anchorage may be developed either by bond along the embedded length or, more commonly, by bearing via an anchor plate at the end of the bolt.

Bond along the embedded length

Where bond is relied upon, the bolt can be regarded as a reinforcing bar. To avoid unduly high strains, the bolt design strength should be limited to 400 N/mm².

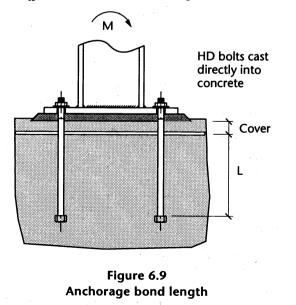
From BS 8110 clauses 3.12.8.3 and 3.12.8.4, the basic requirement is:

$$f_{b} \leq f_{bu}$$

where:

 $f_b = anchorage bond stress$ = $\frac{T}{T}$

$$n \times \pi \times d \times L$$


T = total tension force in the H D bolts

n = number of H D bolts on the tension side

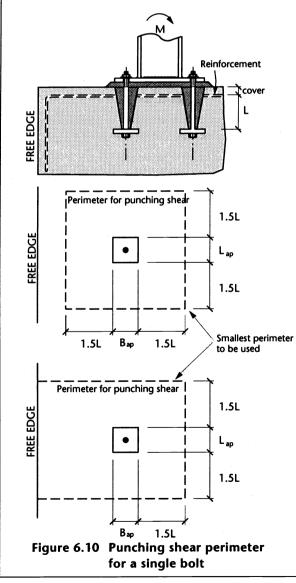
d = H D bolt diameter

- L = anchorage length (See Figure 6.10)
- f_{bu} = design ultimate anchorage bond stress = $0.28/\overline{f_{cu}}$

 f_{cu} = concrete cube strength.

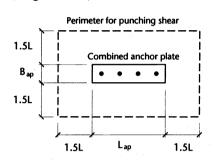
HOLDING DOWN BOLTS AND ANCHORAGE (CONTINUED)

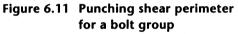
Anchor plates


STEP 3

An approximate rule for individual square anchor plates is (see table 6.3 on page 88):

		where $d = bolt size$		
4.6 bolts	٠	5d x 5d x 0.6d thick		
8.8 bolts	•	5d x 5d x 0.8d thick		


If combined anchor plates are made to serve two or more bolts, a similar area should be provided symmetrically disposed about each bolt location.


Although traditional methods have been based on pull out of cones, it is recommended that checks should be based on a reinforced concrete analogy with the concrete section being checked for punching shear in accordance with BS 8110, clause 3.7.7. However, the procedure can only be used for reinforced concrete bases.

In BS8110, punching shear is considered at a rectangular perimeter 1.5L outside the loaded area. (See Figure 6.11) The perimeter may also be reduced by proximity to a free edge.

If bolts are placed such that their perimeters overlap, they should be checked as a group with the rectangular perimeter being at 1.5L around the group. (See Figure 6.12)

Basic requirement is:

where:

average shear stress over effective depth f = т =

٧

- PxI total tension force in the bolts being т = considered within the perimeter
- Ρ perimeter for punching shear (see Fig. 6.10)
- effective depth of the H D bolt
- length of anchor plate
- B_{ap} width of anchor plate =
 - design concrete shear stress obtained from = table 3.9 of BS 8110 or alternatively: $[1004]^{1/3}$ $[400]^{1/4}$ [11/3 f<u>cu</u>

25

$$= \frac{0.79}{1.25} \times \left[\frac{100A_s}{P \times L}\right]^{1/2} \times \left[\frac{400}{L}\right]^{1/2} \times \left[\frac{100A_s}{L}\right]^{1/2}$$

where:

v_c

area of tension reinforcement in the base A, = which includes all tensile reinforcement which passes through the zone within the perimeter and extends at least one effective depth, L or 12 bar diameters beyond on either side.

 f_{cu} = concrete cube strength or 40N/mm² if lower.

If the term $\left[\frac{100A_s}{P \times L}\right]$ is < 0.15, use 0.15 and if the term $\begin{bmatrix} 400 \\ -L \end{bmatrix}$ is < 1, use 1.

SHEAR TRANSFER TO CONCRETE

In principle, shear may be transferred between the base plate and concrete in three ways:

- By friction. Available resistance of 0.3C may be assumed.
- In bearing, between the shafts of the bolts and the concrete surrounding them.
- Directly, either by setting the base plate in a shallow pocket which is filled with concrete or by providing a shear key welded to the underside of the plate. A minimum practical size - say grout space plus 50 mm into the concrete - is often ample.

In practice, most moment connections are able to rely on friction except where outlined below.

If high shear is combined with low moment and low axial compression, or if there is axial tension, friction may not suffice. In these circumstances it is safest to provide a direct shear connection (the third of the options listed above).

The second route, using the bolts to resist shear, can be effective but is difficult to depend on when the bolts are grouted in sleeves.

When bolts are solidly cast into concrete the bolts can be relied upon to resist shear. The design may be based on an effective bearing length in concrete of 3d and an average bearing stress of 2 f_{cu} . When this approach is used, all bolts must be completely surrounded by reinforcement and bolts whose centre is less than 6d from the edge of the concrete in the direction of loading should not be considered.

 $H = n_s P_{ss} + n_t P_{ts}$

where:

H = the design horizontal shear force

- n_s = number of bolts in the non-tension zone
- $n_t = number$ of bolts in the tension zone
- d = bolt diameter
- P_{ss} = the shear capacity of a single bolt in the non-tension zone which is the lesser of:

p_sA_s for bolt shear or

 $dt_p p_b$ for bolt bearing on the base plate or

6d²f_{cu} for bolt bearing on the concrete

 P_{ts} = the shear capacity of a single bolt in the tension zone which is the lesser of: 0.4 $p_s A_s$ for bolt shear or

dt_p p_b for bolt bearing on the base plate or

- 6d²f_{cu} for bolt bearing on the concrete
- $p_s = the shear strength of the bolt$
- A_s = the shear area of the bolt (taken as the tensile area)
- f_{cu} = lower cube strength of concrete or bedding material

 p_b = the bearing strength of the baseplate (p_{bs} from Table 33 of BS 5950:Pt1).

STEP 4

WELDS - BASE PLATE TO COLUMN SHAFT

Welds between base plates and columns are sized in the same way as those between end plates and beams. Usually compression predominates and it is economical to ensure direct bearing between an accurately sawn column end and the base plate bearing surface. The weld can them be sized for tension and shear. Since moments are usually reversible, it is common to specify a single weld size all round (see Figure 6.12) and a minimum 8mm FW is appropriate for plate thicknesses up to 30mm.

Tension flange welds

The welds should be designed to carry a force which is the lesser of:

(a) The tension capacity of the flange,

 $= B_c \times T_c \times p_y$

(b) The force in the tension flange,

$$= \frac{M}{D_c - T_c} - N \times \frac{A_f}{A_c}$$

For most small and medium sized columns, the tension flange welds will be symmetrical, full strength fillet welds. Once the leg length of the required fillet weld exceeds 12mm then a partial penetration butt welds with superimposed fillet welds, or full penetration butt welds will probably be a more economical solution.

Compression flange welds

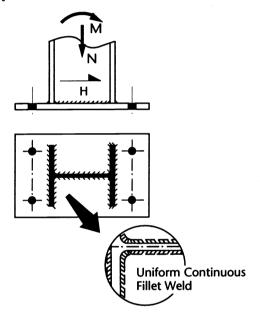
As noted above, it is preferable to ensure direct bearing between an accurately sawn column end and the base plate bearing surface. Guidance on the necessary tolerances for bearing fit can be found in the NSSS. ⁽¹⁰⁾ If necessary the top surface of the base plate slab will have to be machined to achieve this.

If a bearing fit cannot be assumed then the weld must be designed to carry the lesser of:

(a) The crushing capacity of the flange, (see STEP 2B in Section 2)

 $= B_c \times T_c \times p_y$

(b) The force in the compression flange,


_

$$\frac{M}{D_c - T_c} + N \times \frac{A_f}{A_c}$$

where:

- M = design moment
- N = axial force in the column (+ve for compression)
- D_c = overall depth of column section
- T_c = column flange thickness
- $A_f = area of the column flange$
- $= B_c \times T_c$ B_c = column flange width

$$A_c = column cross-sectional area.$$

Web welds

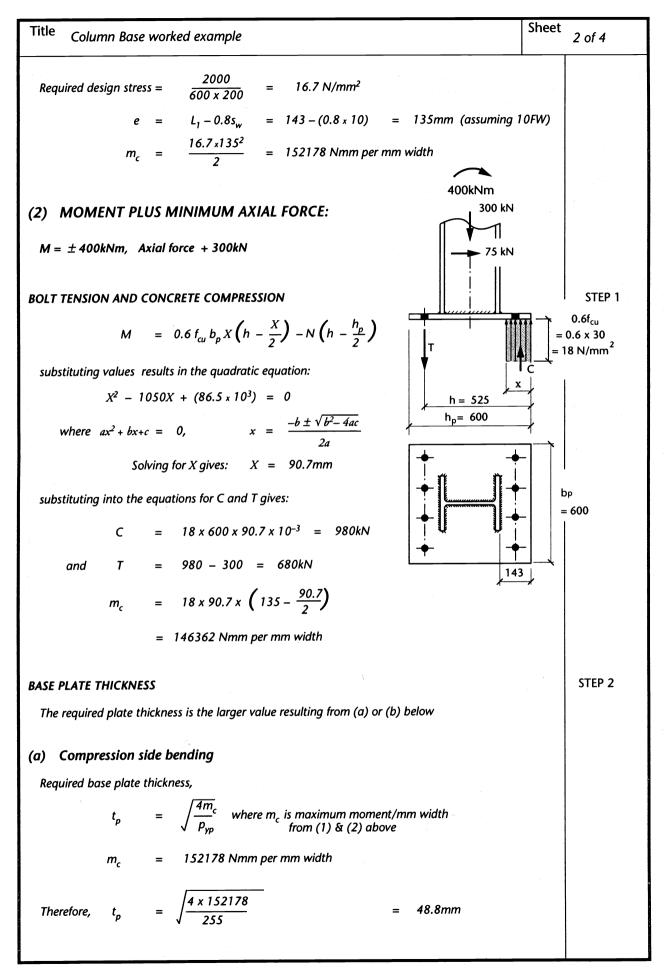
As already stated the weld is normally made the same size around the whole perimeter of the column section, but in cases where moments and axial loads are small compared with horizontal shears, a check on the web portions, considered to carry all shear, may be necessary.

The capacity of the column web welds for horizontal shear forces should be taken as:

$$P_{sw} = 2 \times 0.7 \times s_w \times p_w \times L_{ws}$$

where:

sw	=	fillet weld leg length				
pw	=	design strength of fillet weld				
		(BS 5950 Table 36)				
L _{ws}	=	length of web welds between fillets				


6.10 COLUMN BASE WORKED EXAMPLE

In the following example an unstiffened base plate is to be designed. The column is to bear on a reinforced concrete base.

The design uses a bearing strength of 18N/mm² for C30 concrete so special control of the grouting operation must be exercised as advised in section 6.3.

	Job	Moment Connection	75	Sheet 1 of 4		
	Title	Column Base worke	d example			
CALCULATION SHEET	Client	SCI/BCSA Connectio	ons Group			
BCSA	Calcs b	y _{RS}	Checked by DGB D	ate Apr 95		
Design an unstiffened column base for the column shown:						
The base connection is overturning moment, axis	-		. × 118 UC ↓ + 2000kN or			
All forces are at ultimate The foundation is to be i			+300kN			
PRELIMINARY SIZING			600 75 450 75	r		
A first guess can be obtained from Table 6.5 giving a 600 x 600 x 50 base plate with 4 M24 8.8 bolts each side. An axial load/moment of 300kN/400kNm and 2000kN/400kNm compares favourably with 250kN/ 430kNm and 2000kN/577kNm shown in the table (for C25 concrete).						
Try base plate as shown:						
(1) MOMENT PLUS MAXIMUM AXIAL FORCE: $M = \pm 400 k Nm$, Axial force + 2000kN 400 k Nm						
Check whether there is ter			400kNm 2000 kN			
First suppose there is r	First suppose there is no tension in the bolts:					
$b = \frac{M}{N} =$	400 x 2000	— = 200mn				
Distance to edge of compl $\frac{X}{2} = \frac{60}{2}$	00	ss block 200 = 100mn		0.6f _{cu} = 0.6 x 30		
Compression = $2 \times 100 \times 600 \times 18$ N/mm ² × 10 ⁻³						
= 216		2000kN .:. OK ension in the bolts	h = 525			
C = 2000ki			$h_{\rm b} = 600$			

Moment Connections

100

Column Base Connections

Title Column Base worked example S	heet 3 of 4
(b) Tension side bending	a an
Required base plate thickness,	
$t_p = \sqrt{\frac{4m_T}{p_{\gamma p} b_p}}$	
$m_T = T \times m$	
$m = L_1 - k - 0.8s_w = 143 - 75 - (0.8 \times 10) = 60mm$ (assuming 10FV	(1)
Hence, $m_T = 680 \times 60 \times 10^3 = 40.8 \times 10^6 \text{Nmm}$	
Therefore, $t_p = \sqrt{\frac{4 \times 40.8 \times 10^6}{255 \times 600}} = 32.7 \text{mm}$	
Larger plate thickness from (a) and (b) is 48.8mm, therefore Use 50mm plate.	
HOLDING DOWN BOLTS AND ANCHORAGE	STEP 3
Holding down bolts	
Force T is assumed to be shared equally between all the bolts in the tension row:	
Force per bolt = $\frac{680}{4}$ = 170kN < 198kN M24 8.8 bolts at 150mm crs.satisfactor	γ Table 6.7
Anchorage to concrete	
Use anchor plates and check the concrete base for punching shear in accordance with BS 8110.	en e
Anchor plate size (8.8 bolts) = 5d × 5d × 0.8d = 120 × 120 × 20mm	
Assume an effective depth of the holding down bolts, L = 450 – 50 (50mm cover to reinforcement)	
 = 400mm The perimeter for punching shear check will encompass the group of four bolts: (it is assumed that there are no free edges which would reduce the perimeter) 	
$P = (12 \times L) + P_{ap}$ where,	
P_{ap} = total perimeter of anchor plates	
$= 2 [(3 \times 150) + (2 \times 60)] + (2 \times 120) = 1380 mm$	
Therefore, $P = (12 \times 400) + 1380 = 6180 mm$	
Average shear stress	
$f_v = \frac{T}{P \times L}$	
$= \frac{680 \times 10^3}{6180 \times 400} = 0.28 \text{N/mm}^2$	
Assuming an area of tension reinforcement less than or equal to 0.15%	
Design concrete shear stress, v _c taken from table 3.9 of BS 8110	
$v_c = 0.35 N/mm^2 > 0.28 N/mm^2 OK$	
Provide 4 M24 8.8 holding down bolt	S
Overall embedment depth in the concrete (excluding the grout beneath the base plate) is 450mm	1.

Moment Connections

Title Column Base worked example		Sheet 4 of 4			
<u></u>					
SHEAR TRANSFER TO CONCRETE					
Check if the horizontal shear is transferred	by friction.				
Available shear resistance = 0.3 x C (min)	= 0.3 x 300 = 90kN >	75kN O.K.			
WELDS - BASE PLATE TO COLUMN		STEP 5			
Tension flange weld					
Force in the tension flange welds is the less	er of:				
(a) The tension capacity of the flange	$= B_c \times T_c \times p_y = 306.8 \times 18.7 \times 265 \times 10^{-3} = 1520$)kN			
(b) The force in the tension flange	$= \frac{M}{D_c - T_c} - N \times \frac{A_F}{A_c}$				
	$= \frac{400 \times 10^3}{314 - 18.7} - 300 \times \frac{5737}{15000} = 1240k$	N			
Therefore, Weld force per mm	$= \frac{1240}{(2 \times 306.8) - 11.9} = 2.06kt$	v/mm			
Weld throat required at 215N/mm ²	$= \frac{2.06 \times 10^3}{215} = 9.6m$	m			
If based on a 10mm superimposed fillet weld: preparation = $\sqrt{2 \times (9.6 + 3)^2} - 10 = 7.8$ mm					
length of fusion face $1 = 10 + 7.8 - 3$	= 14.8mm fusion face 2	I			
length of fusion face $2 = \sqrt{7.8^2 + 10^2} - 3$	θ ^Δ .2. ⁴ ⁴ .0 ³ .	10			
$\theta = tan^{-1} (10 / 7.8) = 52^\circ, > 45^\circ, O$	fusion face 1 prep.	10			
Fusion face 1. tensile force	= 2.06kN/mm				
tensile stress	$= \frac{2.06 \times 10^3}{14.8} = 139N/mm^2 < 265N/mm^2$, ОК			
Fusion face 2. tensile force	$= 2.06 \times \cos 52^\circ = 1.27 \text{kN/mm}$				
shear force	= 2.06 x sin 52° = 1.62kN/mm				
tensile stress	$= \frac{1.27 \times 10^3}{9.7} = 131 \text{N/mm}^2 < 265 \text{N/mm}^2$, ОК			
shear stress	$= \frac{1.62 \times 10^3}{9.7} = 167 \text{N/mm}^2$				
allowable	$= 0.7 \times 265 = 185 \text{N/mm}^2 > 167 \text{N/mm}^2$, ОК			
Provide partial penetration butt welds (8mm preparation) with 10mm superimposed fillet welds.					
Compression flange weld					

Assuming bearing contact, nominal welds only are required. However, since the moment is reversible, the tension weld must be made to both flanges.

Web welds

Assuming bearing contact to transfer the axial force, then by inspection 8mm fillet weld is adequate for the applied shear of 75kN.

Provide 8mm fillet weld both sides of the web.

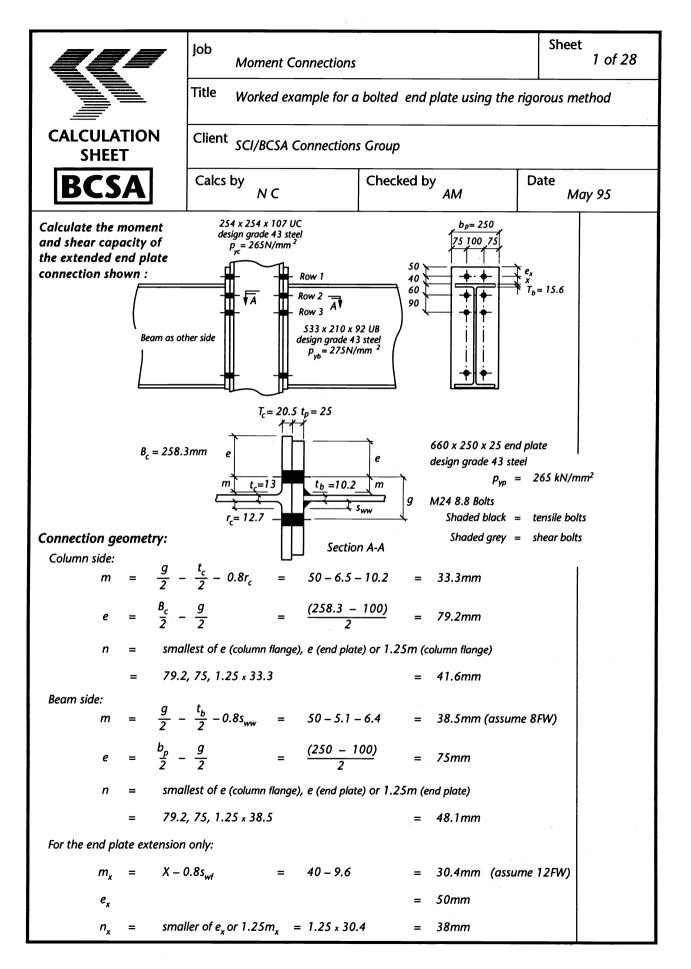
REFERENCES

- BRITISH STANDARDS INSTITUTION
 BS 5950: Structural use of steelwork in building:
 Part 1: 1990: Code of practice for design in simple and continuous construction: hot rolled sections.
 BSI, 1990
- 2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Manual of steel construction: Volume II: Connections AISC, 1992
- 3 DStV/DASt Catalogue Deutscher Stahlbau-Verband/Deutscher Ausschuss für Stahlbau, 1978
- 4 AUSTRALIAN INSTITUTE OF STEEL CONSTRUCTION Standardised structural connections AISC, 1985
- 5 HORNE, M.R., and MORRIS, L.J. Plastic design of low rise frames CONSTRADO, 1981
- 6 BRITISH STANDARDS INSTITUTION DD ENV 1993-1-1 Eurocode 3:Design of steel structures Part 1.1 General rules and rules for buildings BSI, 1993
- 7 EUROCODE 3 EDITORIAL GROUP
 Eurocode 3: Background documentation. Chapter 6. Document 6.09
 CEN, 1989
- 8 GRANSTON, A.
 Bolted end plate connections EHS steel beam-to-column application Swedish Institute of Steel Construction, 1980
- 9 THE STEEL CONSTRUCTION INSTITUTE, and THE BRITISH CONSTRUCTIONAL STEELWORK ASSOCIATION LTD Joints in simple construction
 Volume 1: Design methods (2nd. Edition), 1993
 Volume 2: Practical applications, 1992
 SCI, BCSA
- 10 THE BRITISH CONSTRUCTIONAL STEELWORK ASSOCIATION LTD, and THE STEEL CONSTRUCTION INSTITUTE National structural steelwork specification for building construction (3rd. Edition) BCSA, 1994
- ANDERSON, D., READING, S.J., and KAVIANPOUR, K. Wind-moment design of unbraced frames The Steel Construction Institute, 1991

- 12 BAILEY, J.R. Strength and rigidity of bolted beam-to-column connections Proceedings, Conference on Structures University of Sheffield, 1970
- BOSE, B.
 Tests to verify the performance of standard ductile connections
 Dundee Institute of Technology, 1993
 (Confidential report to The Steel Construction Institute)
- BRETT, P., and RUSHTON, J.
 Parallel beam approach a design guide The Steel Construction Institute, 1990
- 15 HEALTH AND SAFETY EXECUTIVE Guidance note GS 28 Safe erection of structures Part 1: initial planning and design, 1984 Part 2: site management and procedures, 1985 Part 3: working places and access, 1986 Part 4: legislation and training, 1986 HMSO
- HUANG, J.S., CHEN, W.F., and BEEDLE, L.S.
 Behaviour and design of steel beam-to-moment connections Welding Research Council, 1988
- 17 OWENS, G.W., and CHEAL, B.D. Structural steelwork connections Butterworths, 1989
- 18 OWENS, G.W., and KNOWLES, P.R. Steel designers manual (5th. Edition) Blackwell Scientific Publications, 1992
- 19 THE CONCRETE SOCIETY, THE BRITISH CONSTRUCTIONAL STEELWORK ASSOCIATION LTD, and CONSTRADO Holding down systems for steel stanchions The Concrete Society, BCSA, CONSTRADO, 1980

104

APPENDICES


Appendix l	Worked example - Bolted end plate using the rigorous method	106
Appendix II	Bolted end plate connections - Background to the design method	135
Appendix III	Mathematical derivation of alpha chart	139
Appendix IV	8.8 Bolts - Enhanced tensile strength	140

APPENDIX I WORKED EXAMPLE - BOLTED END PLATE USING THE RIGOROUS METHOD

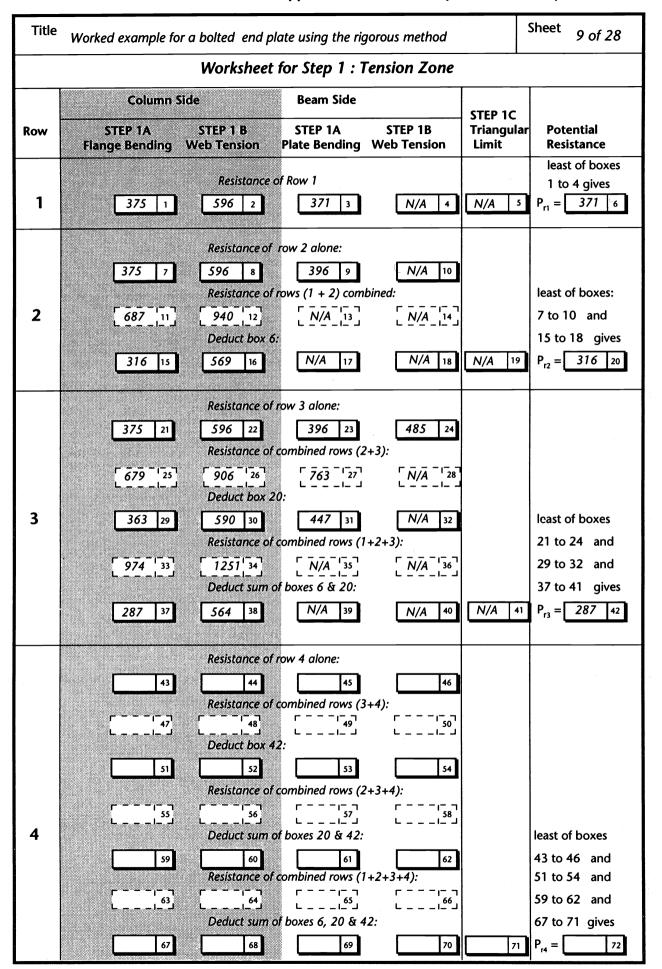
This example has been made using the full rigorous procedures in Section 2.8. It also includes the design of the various stiffeners covered in the procedures but, in order to show the use of stiffeners, the example has been changed where necessary to illustrate the application of each type.

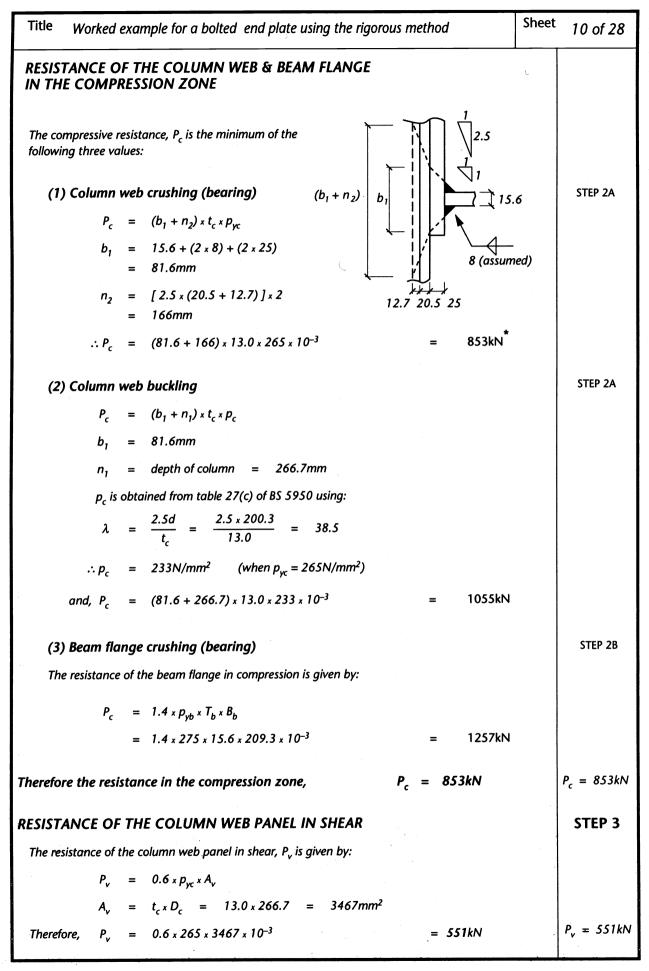
The calculation sheets are numbered consecutively and show:

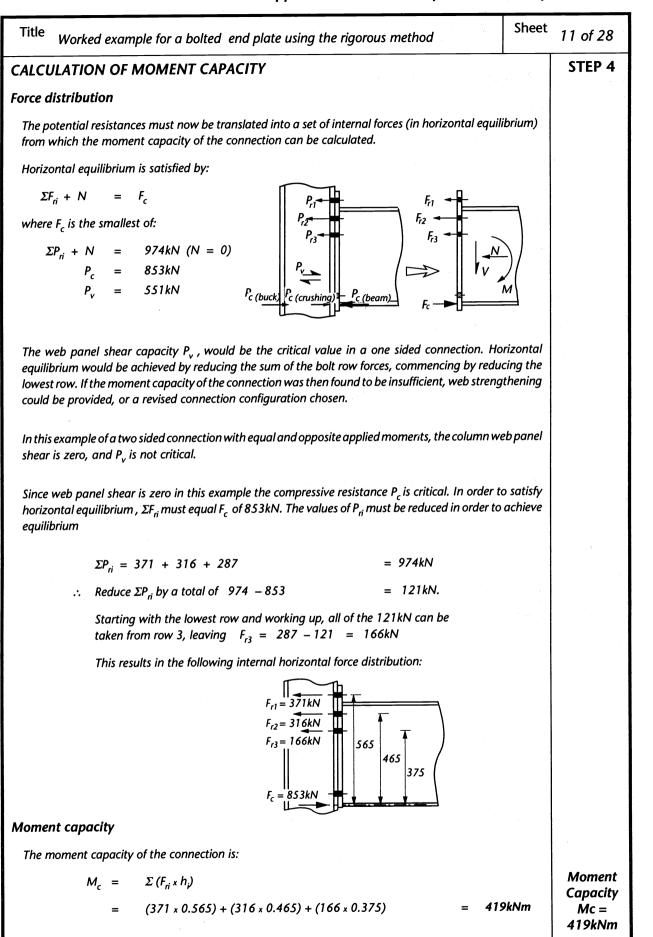
Calculation Sheets 1 - 13	Calculation of the moment and shear capacity of a typical standard Extended End-Plate type connection of a 533 x 210 x 92 UB beam connecting to a 254 x 254 x 107 UC column using three tensile bolt rows.
Calculation Sheets 14 - 16	The column section is $254 \times 254 \times 107$ UC, as in the previous example, but the compression force is increased to show the use of Compression Stiffeners .
Calculation Sheets 17 - 22	The column section is assumed to be 254 x 254 x 73 UC to show the use of Column Flange Backing Plates .
Calculation Sheets 23 - 24	The column section is assumed to be 254 x 254 x 73 UC to show the use of Tension Rib Stiffeners.
Calculation Sheets 25 - 26	The column section is 254 x 254 x 107 UC, as in the first example, but the web panel shear is increased to show the use of Supplementary Web Plates .
Calculation Sheets 27 - 28	The column section is assumed to be a 686 x 254 x 125 UB with the web panel shear force increased to show the use of Morris Stiffeners .

Title Worke	d example	for a bolt	ed end	plate us	ing the rigoro	us method		Sheet	2 of 28
POTENTIAL RE BOLT ROW 1	SISTANC	E OF BO	LTS IN	TENSIC	ON ZONE				STEP 1
Column flange l	bending				• •				STEP 1A
Calculate effectiv From tables 2.5					luenced by a stil	fener or a free	end.		
	2πm	=	2 x π x 33	3.3		=	209mr	n *	Min. values indicated
or 4m	+ 1.25e	=	(4 x 33.3	3) + (1.25	5 x 79.2)	. =	232mr	n	thus *
Calculate M _p for	the column	flange.						-	
	M _p	$= \frac{L_{eff} x}{2}$	$\frac{T_c^2 \times p_{yc}}{4}$	= 20	9 x 20.5 ² x 265 4	<u>× 10⁻³ =</u>	5819kNr	nm	
Find the critical i	failure mode	. This is th	e minim	um of the	following three	formulae:			
Mode 1:	P _r	= 4	M _p m	=	4 x 5819 33.3	=	699kN		
Mode 2:	P _r	$= \frac{2M_p}{m}$	$+ n\Sigma P'_t$ + n	= <u>(2 × 5</u>	819) + (41.6 x 33.3 + 41.6	2 x 198) =	375kN *		375 1 Value inserte
Mode 3:	P _r	= 2	EP _t '	=	2 x 198	=	396kN		in worksheet on page115
Column web to	ension								
	P _t	$= L_t x$	$t_c \times p_{yc}$						STEP 1B
L _t is the tensile le	ngth of web	assuming	ı a sprea	d of load	of 1:1.73 from	the bolts.			
	L _t	$=\frac{g}{2} \times 1.$	73 x 2	$= \frac{100}{2}$	x 1.73 x 2	=	173mm		
	P _t	= 173	8 x 13.0 x	265 x 10) -3	=	596kN		596 2
End plate bend	ding								
Calculate effectiv From tables 2.5 d					the extension of	the end plate	2.		STEP 1A
	$\frac{b_p}{2}$	= 2	50 2			=	125mm	*	
or 2m _x + 0.62	$25e_x + g/2$	=	(2 × 30.	4) + (0.6	25 x 50) + 100,	/2 =	142mm		
or $2m_x + 0$.	625e _x + e	=	(2 x 30.	4) + (0.6	25 x 50) + 75	=	167mm		
or 4m	_x + 1.25e _x	=	(4 x 30.4	4) + (1.2.	5 x 50)	=	184mm		
or	$2\pi m_x$	=	2 × π	x 30.4		=	191 <i>mm</i>		
Calculate M _p for	the end plat	е.							
•	M _p	= L _{eff ×}	$\frac{t_p^2 \times p_{yp}}{4}$	= 1	25 x 25 ² x 265 4	× 10 ⁻³ =	5176kNr	nm	

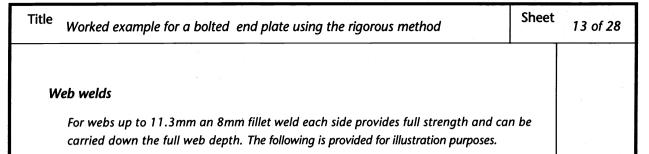
Title Worked	example for a bolted	l end plate usi	ng the rigorou	s method		Sheet	3 of 28
Find the critica	failure mode. This is t	he minimum of t	the following 3 f	formulae.			STEP 1A
Mode 1:	$P_r = \frac{4M_p}{m_x}$	=	4 x 5176 30.4		= 681kN	v l	u .
Mode 2:	$P_r = \frac{2M_p + n_x}{m_x + r}$	$\frac{\Sigma P_t'}{D_x} = \frac{(2x)}{2}$	5176) + (38.0 x 30.4 + 3	(2 x 198) 8.0	= 371kN	v*	371 3
Mode 3:	$P_r = \Sigma P_t'$	=	2 x 198		= 396kN	v	
Beam web tens	ion						STEP 1B
Since row 1 is i	n the extension, beam	web tension doe	es not apply.				N/A 4
-	limit does not apply to ential resistance of row		-		xes 1 to 4		STEP 1C N/A 5
	otential Resistance	of row 1,	-	P _{r1}	= 371k	N	371 6
BOLT ROW 2							
Row 2 alone							
Column flange	bending						STEP 1A
P _r is calculated	as for row 1.						
Therefore,				P _r	= 375K	(N	375 7
Column web te	nsion						STEP 1B
As before,				P _t	= 596k	:N	596 8
End plate bend	ing						STEP 1A
end plate. From	ive length of T-stub. R tables 2.5 and 2.4, L { Max{pattern ii, patt e	_{eff} is given by:	0	of an extena	led e m	1.	
Pattern (ii): 4m +	$1.25e = (4 \times 38)$	8.5) + (1.25 x 75)) = [·] 248mn	n			
Pattern (iii): αm	α is obtained from	figure 2.16 using	g the following p		· 14		
	$m_1 = m$		= 38.5m		€ _ <u></u>	•	
	A	5.6 – (0.8 x 12) 38 5		m			
	$\lambda_1 = \frac{m_1}{m_1 + e}$						
	$\lambda_2 = \frac{m_2}{m_1 + \epsilon}$	$= \frac{34.8}{38.5+7}$		the chart s	hows α :	$= 2\pi$	
	$\alpha m_1 = 2\pi x$	38.5	= 242mm				2 2
	imum of patterns (ii) a						
Pattern (i):	$2\pi m = 2 \times \pi \times$ $M_p = \frac{L_{eff} \times t_p}{4}$	38.5 ${}^{2} \times P_{yp} =$	= 242mm 242 x 25 ² x 26		= 10020	0kNmm	
	P4		4				

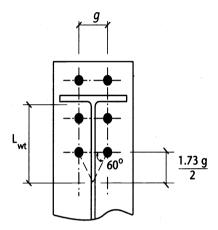

Title Wo	orked	exar	nple for a bolted end plate using the rigorous met	hod		Sheet	4 of 28
Mode 1:	Pr	=	$\frac{4M_p}{m} = \frac{4 \times 10020}{38.5}$	=	1041kN		
Mode 2:	P _r	=	$\frac{2M_p + n\Sigma P_t'}{m+n} = \frac{(2 \times 10020) + (48.1 \times 2 \times 198)}{38.5 + 48.1}$	=	451kN		
Mode 3:	P _r	=	$\Sigma P_t' = 2 \times 198$	=	396kN*		396 9
Beam web te	ensio	n					STEP 1B
			v the beam flange, the underside of which is only 44mm f within the tensile length and therefore beam web tensio				N/A 10
Rows 1 + 2 d	comb	ined					
Column flan	ge be	endiı	ng				STEP 1A
	is influ L _{eff}	uence =	th of T-stub. Ed by stiffeners or free edges. From tables 2.6 and 2.4, L_{ef} 2 ($\frac{ii}{2} + \frac{p}{2}$)				
	L _{eff}	=	$2 \times (2m + 0.625e + p/2) = 2 \times [(2 \times 33.3) + (0.6)]$	525 x .	79.2) + (10	0/2)]	
				=	332mm		
Hence,	М _р	=	$\frac{L_{eff} \times T_c^2 \times p_{yc}}{4} = \frac{332 \times 20.5^2 \times 265 \times 10^{-3}}{4}$	=	9243kNn	nm	
Critical failu	re mo	de:					
Mode 1:	Pr	=	$\frac{4M_p}{m} = \frac{4 \times 9243}{33.3}$	=	1110kN		
Mode 2:	Pr	=	$\frac{2M_p + n\Sigma P_t'}{m+n} = \frac{(2 \times 9243) + (41.6 \times 4 \times 198)}{33.3 + 41.6}$	=	687kN *		687 11
Mode 3:	Ρ,	=	$\Sigma P_t' = 4 \times 198$	=	792kN		
P, for row 2	is take	en as	the minimum from modes 1 to 3 minus P _{r1}				
			687 - 371	=	316kN		316 15
Column web	tens	ion					STEP 1B
			$L_t \times t_c \times P_{yc}$				
	L.	=	$\left[\frac{g}{2} \times 1.73 \times 2\right] + p = \left[\frac{100}{2} \times 1.73 \times 2\right] + 100$) =	273mm		
P,,			273 x 13.0 x 265 x 10 ⁻³		940kN		940 12
			$P_{t(1+2)} - P_{r1} = 940 - 371$	=	569kN		569 16
End plate be							STEP 1A
Not applical		-	gure 2.14)				N/A 13
							N/A 17


Title Worked example for a bolted end plate using the rigorous method She	eet 5 of 28
Beam web tension	STEP 1B
Not applicable. (see Figure 2.17)	N/A 14
Triangular limit	N/A 18
Since the colummn flange thickness does not exceed 21.9mm (Table 2.7), the triangular limit does no apply.	ot <u>N/A</u> 19
The potential resistance for row 2, P _{r2} is the smallest of the values from boxes 7 to 10 and 15 to 19	
i.e. 375kN, 596kN, 396kN, 316kN, 569kN	
Therefore the Potential Resistance of row 2, $P_{r2} = 316$ kN	316 20
BOLT ROW 3	
Row 3 alone	
Column flange bending	STEP 1A
P _r is calculated as for row 1.	
Therefore, $P_r = 375 kN$	375 21
Column web tension	STEP 1B
$P_t = 596kN$	596 22
End plate bending	STEP 1A
Calculate effective length of T-stub. The bolt row is not influenced by a stiffener or a free end. From tables 2.5 and 2.6, L _{eff} is the minimum of:	
$2\pi m = 2 \times \pi \times 38.5$ = 242mm *	
or 4m + 1.25e = (4 × 38.5) + (1.25 × 75) = 248mm	
Therefore P _r is the same as for row 2 alone,	
P _r = 396kN Beam web tension	396 23
$P_t = L_t \times t_b \times p_{yb}$	STEP 1B
$L_t = \frac{g}{2} \times 1.73 \times 2 = \frac{100}{2} \times 1.73 \times 2 = 173 \text{ mm}$	
$P_t = 173 \times 10.2 \times 275 \times 10^{-3} = 485 kN$	485 24
Rows 2 + 3 combined	
Column flange bending	STEP 1A
Calculate effective length of T–stub. Neither row is influenced by stiffeners or free edges. From tables 2.6 and 2.4, L _{eff} for the group is given by:	
$L_{eff} = 2\left(\frac{ii}{2} + \frac{p}{2}\right)$	
$L_{eff} = 2 \times (2m + 0.625e + P/2) = 2 \times [(2 \times 33.3) + (0.625 \times 79.2) + (90/2)] = 322mm$ Hence $M_p = \frac{L_{eff} \times T_c^2 \times P_{yc}}{4} = \frac{322 \times 20.5^2 \times 265 \times 10^{-3}}{4} = 8965kNmm$	


Title Worked example for a bolted end plate using the rigorous met	hod		Sheet	6 of 28
Critical failure mode:				
Mode 1: $P_r = \frac{4M_p}{m} = \frac{4 \times 8965}{33.3}$	=	1077kN		
Mode 2: $P_r = \frac{2M_p + n\Sigma P_t'}{m+n} = \frac{(2 \times 8965) + (41.6 \times 4 \times 198)}{33.3 + 41.6}$	=	679kN *		679 25
Mode 3: $P_r = \Sigma P_t' = 4 \times 198$	=	792kN		
$P_r = (min. modes 1 to 3) - P_{r2} = 679 - 316$	-	363kN		363 29
Column web tension	r		н	
$P_t = L_t \times t_c \times p_{yc}$				
$L_t = \left[\frac{g \times 1.73 \times 2}{2}\right] + p = \left[\frac{100 \times 1.73 \times 2}{2}\right] + 90$	0 =	263mm		1.
$P_{t(2+3)} = 263 \times 13 \times 265 \times 10^{-3}$		906kN		906 26
For row 3, $P_t = P_{t(2+3)} - P_{r2} = 906 - 316$	=	590kN		590 30
End plate bending				STEP 1A
Calculate effective length of T-stub. Row 2 is adjacent to a beam flange. Row stiffener or a free edge. From tables 2.6 and 2.4, L _{eff} is given by:	3 is n	ot influence	d by a	
$Max\left\{\frac{ii}{2}, (iii-\frac{ii}{2})\right\} + \frac{p}{2} + \frac{ii}{2} + \frac{p}{2}$				
<i>i.e.</i> $L_{eff} = \frac{4m + 1.25e}{2} + \frac{4m + 1.25e}{2} + p$				
= 4m + 1.25e + p				
$= (4 \times 38.5) + (1.25 \times 75) + 90 = 338mm$				
or $L_{eff} = (\alpha m_1 - \frac{(4m + 1.25e)}{2}) + \frac{p}{2} + \frac{4m + 1.25e}{2} +$	р 2			
$= \alpha m_1 + p$ and α (as for row 2 alone) $= 2\pi$			· · · ·	Page 109
$= (2 \times \pi \times 38.5) + 90 = 332mm$			н. 1	
hence L _{eff}	-	338mm		
and, $M_p = \frac{L_{eff} \times t_p^2 \times p_{\gamma p}}{4} = \frac{338 \times 25^2 \times 265 \times 10^{-3}}{4}$	=	13995kN	mm	
Mode 1: $P_r = \frac{4M_p}{m} = \frac{4 \times 13995}{38.5}$	=	1454kN		
Mode 2: $P_r = \frac{2M_p + n\Sigma P_t'}{m+n} = \frac{(2 \times 13995) + (48.1 \times 4 \times 198)}{38.5 + 48.1}$	=	763kN *		<u>763</u> 27
Mode 3: $P_r = \Sigma P_t' = 4 \times 198$	=	792kN		
P_r for row 3 is taken as the minimum from modes 1 to 3 minus P_{r2}				
Therefore, $P_r = 763 - 316$	=	447kN	•	447 31

Title Worked example for a bolted end plate using the rigorous methodShee	^{et} 7 of 28
Beam web tension Not applicable. (stiffener (beam flange) is within the tensile length L_t)	STEP 1B
Rows 1 + 2 + 3 combined	N/A 32
Column flange bending	STEP 1A
Calculate effective length of T-stub. The group is not influenced by a stiffener or free end. From tables 2.6 and 2.4, L _{eff} is given by (see typical example in table 2.6 – but note p varies):	
$L_{eff} = 4m + 1.25e + p_{1-2} + p_{2-3}$	
$= (4 \times 33.3) + (1.25 \times 79.2) + 100 + 90 = 422mm$	
Hence, $M_p = \frac{L_{eff} \times T_c^2 \times p_{yc}}{4} = \frac{422 \times 20.5^2 \times 265 \times 10^{-3}}{4} = 11749 \text{kNmm}$	4
Mode 1: $P_r = \frac{4M_p}{m} = \frac{4 \times 11749}{33.3} = 1411kN$	
Mode 2: $P_r = \frac{2M_p + n\Sigma P_t'}{m+n} = \frac{(2 \times 11749) + (41.6 \times 6 \times 198)}{33.3 + 41.6} = 974KN^*$	9 <u>74</u> 33
Mode 3: $P_r = \Sigma P_t' = 6 \times 198$ = 1188kN	
P_r for row 3 is taken as the minimum from modes 1 to 3 minus P_{r1} minus P_{r2}	
Therefore, $P_r = 974 - 371 - 316 = 287kN$	287 37
Column web tension	STEP 1B
$P_t = L_t \times t_c \times P_{yc}$	р. 1
$L_{t} = \left[\frac{g}{2} \times 1.73 \times 2\right] + p_{1-2} + p_{2-3}$	
$= \left[\frac{100}{2} \times 1.73 \times 2\right] + 100 + 90 \qquad = 363 mm$	
$P_{t(1+2+3)} = 363 \times 13.0 \times 265 \times 10^{-3} = 1251 \text{ kN}$	1251 34
For row 3, $P_t = P_{t(1+2+3)} - P_{r1} - P_{r2} = 1251 - 371 - 316 = 564kN$	564 38
End plate bending	STEP 1A
Not applicable. (see Figure 2.14)	N/A 35


Title Worked example for a bolted end plate using the rigorous method	Sheet 8 of 28
Beam web tension	STEP 1B
Not applicable.(stiffener (beam flange) is within the tensile length L _t)	<u>N/A</u> 36 <u>N/A</u> 40
Triangular limit	
Since the column flange thickness does not exceed 21.9mm (Table 2.7), the triangular limit do apply.	N/A 41
The potential resistance for row 3, P_{r3} is the smallest of the values from boxes 21 to 24, 29 to 3. 37 to 41.	2 and
i.e. 375kN, 596kN, 396kN,485kN; 363kN, 590kN, 447kN; 287kN, 564kN	
Therefore the Potential Resistance of row 3, $P_{r3} = 287k$	kN 287 42
Distribution of bolt forces	
potential bolt forces shown: 371kN Row 1 371kN Row 2 Row 3 287kN $\Sigma = 974kN$	
$\Sigma P_{ri} = 974kN$	
If both T _c and t _p had been too thick for full plastic distribution (see eq 2.5 and 2.6), the force distribution would have been limited as follows (shown for illustration purposes only). By similar triangles, P _{r3} for row 3 is limited by: $P_{r3} = 316 \times \frac{375}{465}$ $= 255 \text{kN}$ Triangular limit	STEP 1C



Title Worked	example for a bolted end plate using the	rigorous method S	heet 12 of 28
DESIGN FOR V	RTICAL SHEAR FORCE		
The vertical shea	capacity of the connection is:		STEP 5
P _v	$= n_s P_{ss} + n_t P_{ts}$		D. It
P _{ss} is the shear co	pacity of a single bolt in the shear zone and is	the lesser of:	Bolt capacity table is on
$p_s A_s$	= 132kN *		page 221
$dt_p p_b$	$= 24 \times 25 \times 460 \times 10^{-3} = 276 \text{kN}$		
$dT_c p_b$	$= 24 \times 20.5 \times 460 \times 10^{-3} = 226 \text{kN}$		
P _{ts} is the shear co	pacity of a single bolt in the tension zone and i	s the lesser of:	
$0.4p_sA_s$	$= 0.4 \times 132 = 53kN^*$		
$dt_p p_b$	$= 24 \times 25 \times 460 \times 10^{-3} = 276 kN$		
$dT_c p_b$	$= 24 \times 20.5 \times 460 \times 10^{-3} = 226 \text{kN}$		
Therefore, P _v	$= (2 \times 132) + (6 \times 53)$	= 582kN	Shear Capacity, P _v = 582kN
	e martin de la construcción de la c	1	
STEP 6 Sti	fener Designs are illustrated by the examples on s	neets 14 to 28	
WELD DESIGN			
Tension fla	ae welds		STEP 7
	strength fillet weld.		
	leg length = $\frac{T_b}{2 \times 0.7}$ = $\frac{15.6}{2 \times 0.7}$ =	= 11.1 <i>mm</i>	
		Use 12mm FW.	
	ne weld		
Compression fla	ge weid		
•	ring fit and provide nominal fillet welds.	Use 8mm FW.	
•	-	Use 8mm FW.	
•	-	Use 8mm FW.	

(1) Tension Zone

Tension in the bottom bolt row is considered as dispersed at an angle of 60° thus:

$$L_{wt} = (60 - T_b - r_b) + 90 + (1.73 \times 100/2)$$

$$(60 - 15.6 - 12.7) + 90 + 87 = 209mm$$

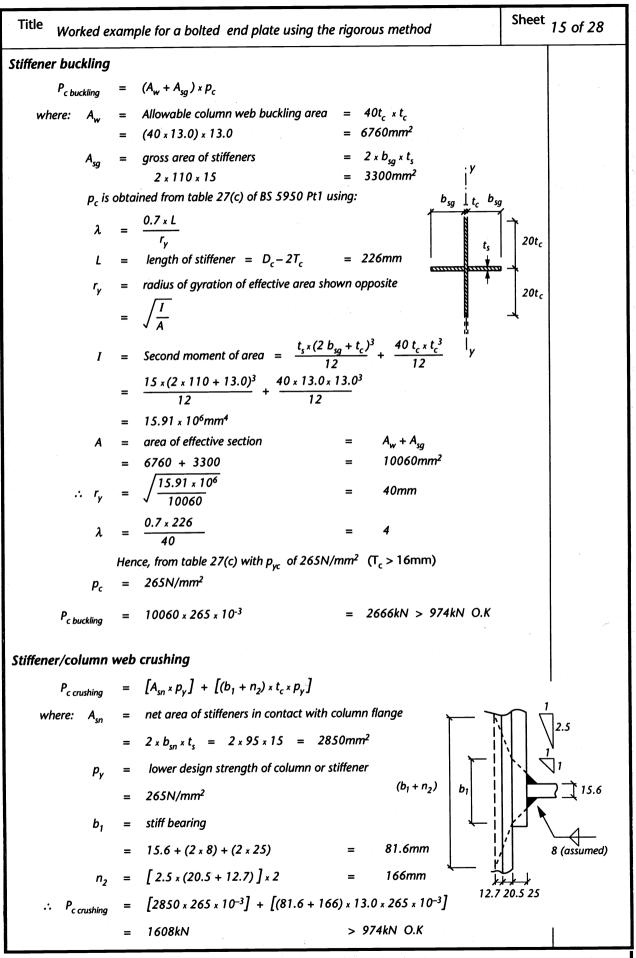
Leg length of fillet welds providing full strength = $\frac{t_b}{2 \times 0.7}$ = $\frac{10.2}{2 \times 0.7}$ = 7.3mm Use 8mm FW.

(2) Shear Zone

If the 8mm fillet is continued for the full depth, the capacity of the beam web weld for vertical shear is given by:

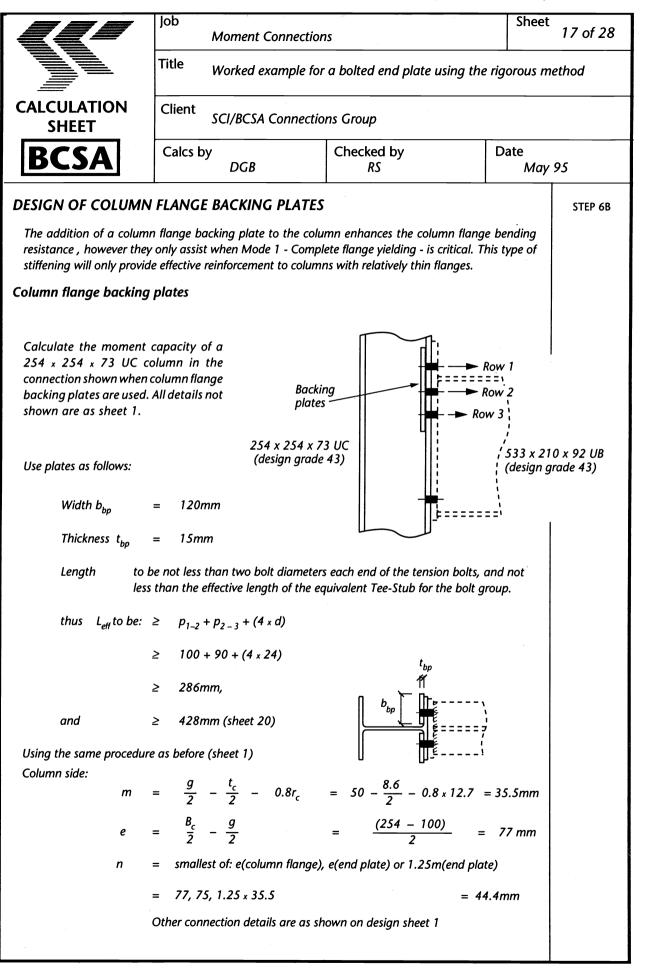
$$P_{sw} = 2 \times a \times p_w \times L_{ws}$$


$$L_{ws} = D_b - 2(T_b + r_b) - L_{wt}$$


$$= 533.1 - 2(15.6 + 12.7) - 209 = 268mm$$

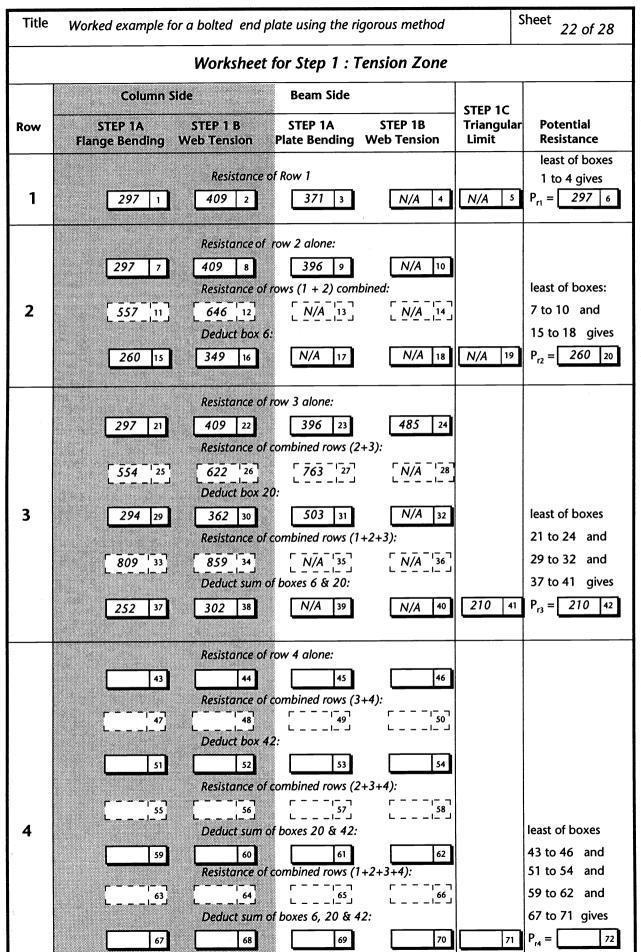
$$\therefore p_{sw} = 2 \times (0.7 \times 8) \times 215 \times 268 \times 10^{-3} = 645kN$$

Therefore, with a 8mm fillet weld in the shear zone providing a resistance of 645kN, the shear capacity of the connection is limited by the shear resistance of the bolts, 582kN (sheet 12).

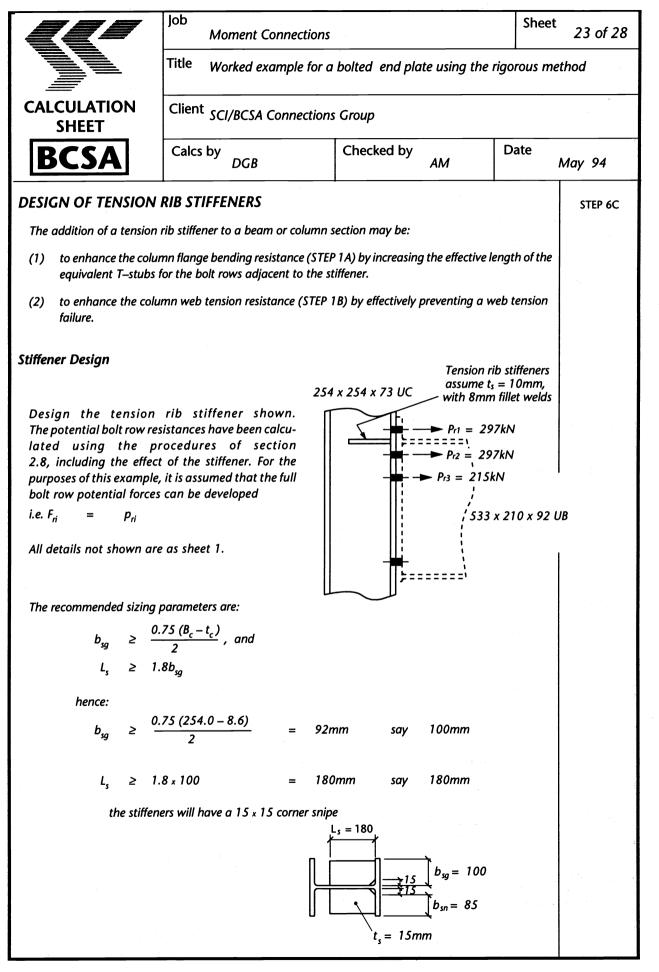

Mar. 97 Revision: tension and shear zone modified

Mar. 97 Revision: A_w calculation modified

Title Worked exam	ple for a	bolt	ed end plate using	g the rigor	ous r	nethod	Sheet	16 of 28
Weld design								
- · ·								
Welds to Flanges:								
It is usual for the	stiffeners	to be	e fitted for bearing.			use: 6mm fillet weld Use full strength wel		
Welds to web				(11 1101 111	leu -	ose full screnger wer	us)	
Design welds for	974kN							
Effective weld len	gth, L _w	=	4 x L _{sn}					
	L _{sn}	=	net stiffener leng (i.e. Distance bel		nn fla	nges minus snipes)		
		=	D _c – 2T _c – corner	snipes				
		=	266.7 – (2 x 20.5)	- (2 x 15)	=	196mm		
	L _w	=	4 x 196		=	784mm		
Force per mm in weld, mm	F _w	= ,	974 784		=	1.24kN/		
					Use	10mm fillet welds		weld
						(1.5kN/mm)		capacities of page 224
		× .						
			. * •					
							2000	



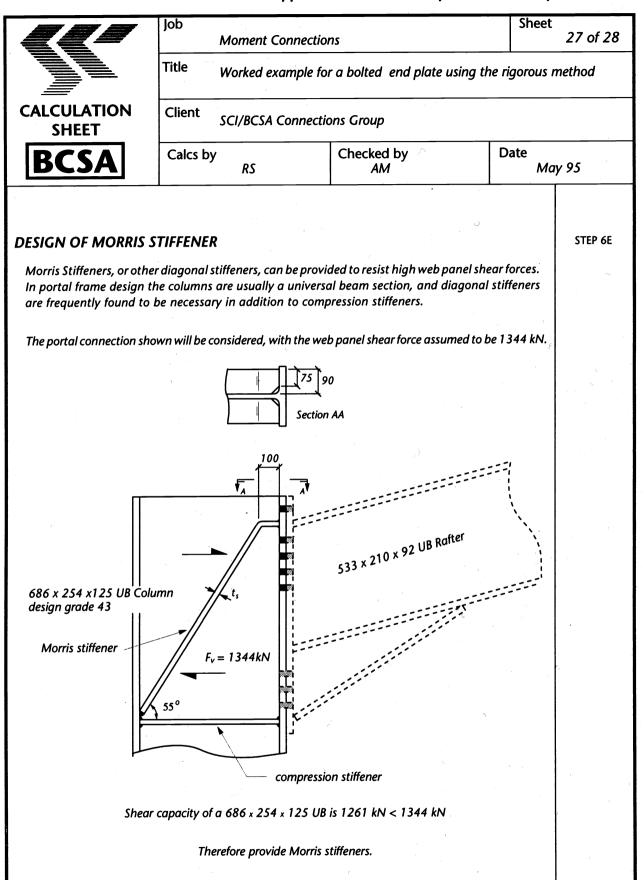
Title Worked example for a bolted end plate using the rigorous n	nethod	Sheet	18 of 28
CALCULATE BOLT ROW RESISTANCES			
$M_p per mm = t^2 p_y / 4$			
For the end plate, $t_p = 25mm$, $p_y = 265N/mm^2$. $M_p/mm =$	41.41kNmm/m	im	
For the column flange, $T_c = 14.2mm$, $p_y = 275N/mm^2$ $\therefore M_p/mm =$	13.86kNmm/m	im 🗄 I	
For the backing Plates $t_{bp} = 15 mm$, $p_y = 275 N/mm^2$ \therefore $M_p/mm =$	15.47kNmm/m	m	
The effective lengths of the equivalent T-stubs and potential resistance calculated previously on design sheets 2 to 5. Effective lengths of the equiv column must be calculated and resistances checked.			
BOLT ROW 1			
Column flange bending with backing plate			
As sheet 2, L _{eff} is the minimum of:			
$2\pi m = 2 \times \pi \times 35.5 =$	223mm*		
or $4m + 1.25e = (4 \times 35.5) + (1.25 \times 77) =$	238mm		
M_p for the column flange: = 223 x 13.86 =	3091kNmm		
M_{bp} for the backing plate: = 223 x 15.47 =	3450kNmm		
Find the critical failure mode:			
Mode 1:			
$P_r = \frac{4M_p + 2M_{bp}}{m}$			
$P_r = \frac{(4 \times 3091) + (2 \times 3450)}{35.5} =$	543kN		
Mode 2:			
$P_r = \frac{2M_p + n(\Sigma P_t')}{m + n}$			
$= \frac{(2 \times 3091) + (44.4 \times 2 \times 198)}{35.5 + 44.4} =$	297kN*		297 1
Mode 3:			Value inserted in worksheet
$P_r = \Sigma P_t' = 2 \times 198 =$	396kN		on page128
Column web tension (see sheet 2) $P_t = 173 \times 8.6 \times 275 \times 10^{-3} =$	409kN		409 2
End plate bending (sheet 3) $P_r = 371kN$			371 3
Beam web tension (sheet 3) N/A			N/A 4
			N/A 5
	0 007/11		297 6
Therefore the Potential Resistance of row 1,	$P_{r1} = 297kN$		


Title Worked exan	nple for a	bolte	d end plate using the	rigorous meth	od	Sheet 19 of 28
BOLT ROW 2:						
Row 2 alone:						297 7
Column flange wit	h backing	plate,	as above.	P _r =	297kN	
Column web tensi	on (as abo	ove)	F	$P_t =$	409kN	409 8
End plate bending	(sheet 4)		P		396kN	396 9
Beam web tension	(sheet 4)				N/A	N/A 10
Rows 1 + 2 combined	Ι.					
Column flange ber	nding: (see	e sheet	4)			
For the two rows a	icting in co	ombina	ation, L _{eff} is obtained from	n tables 2.6 and	2.4.	
	L _{eff}	=	2 x (2m + 0.625e + p,	/2)		
		=	2 x [(2 x 35.5) + (0.62	25 x 77) + (100,	/2)]	
		•=	338mm			
M _p for the colum	nn flange	=	338 x 13.86	=	4685kNi	mm
M _{bp} for the back		=	338 x 15.47	=	5229kNi	mm
Critical failure mode:						
Mode 1:						
	P,	_	(4 x 4685) + (2 x 5 35.5	=	822kN	
Mada 2:	' r		35.5		022814	
Mode 2:			(2 x 4685) + (44.4 x 4	4 x 198)		
	Pr	=	(2 x 4685) + (44.4 x 4 35.5 + 44.4		557kN*	
Mode 3:				-		
	P _r	=	$\Sigma P_t' = 4 \times 19$		792kN	557 11
For row 2,	Pr	. =	557 - 297	=	260kN	260 15
Column web tension (s	see sheet 4	4)				
	$P_{t(1+2)}$	=	273 x 8.6 x 27	$75 \times 10^{-3} =$	646kN	646 12
For row 2,	P _t	=	646 - 297	=	349kN	349 16
End plate bending						
(see	sheet 4)		not applicable			N/A 13
						N/A 17
Beam web tension						<u>N/A</u> 14
	sheet 5)		not applicable			N/A 18
Triangular limit		,	a			
will apply.			flange / backing plate bo an extended end plate, o		-	
			s the least of the values f	rom the boxes 7	to 10 and 15 to) <i>19.</i>
i.e. 297kN, 409kN, 39				_		260 20
Therefore the Potentic	al Resistar	nce of l	Row Z	P _{r2}	= 260kN	

BOLT ROW 3:								
Row 3 alone								
Column flange with b	ackina i	olate, d	is above.		P,	=	297kN	297 2
Column web tension	. 7				, P _t	=	409kN	409 2
End plate bending (sl			Pr	=	396kN	396 2		
Beam web tension (sl					Ρ,	=	485kN	485 2
Rows 2 + 3 combined.					·			
Column flange bendin	ia (see si	heet 5)						
L _{eff} obtained from ta	-			m + 0.625e	+ p/2)			
-eff Observed Horn Sa		=	2 x [(2 x 35.5			90/2)]		
		=	328mm		- 1			
M _n for the column fl	ange	=	328 x 13.86			= 4	546kNmm	
ہ M _{bp} for the backing		=	328 x 15.47			= 50	074kNmm	
Critical failure mode								
Mode 1:								Alteration
	P _r	=	<u>(4 × 4546) +</u> 35.			=	798kN	
Mode 2:	P _r	=		+ (44.4 × 4 5 + 44.4	x 198)	=	554kN*	
Mode 3:	•		50 /	4 100			792kN	554 2
For row 3,	P _r P _r	=	$\Sigma P_t' = 554 - 260$	4 x 190		=	294kN	294 2
			554 - 200					274 2
Column web tension			263 x 8.6 x 2.	75 10-3		_	622kN	
	P _{t(2+3)}		203 x 8.0 x 2. 622 - 260	/3 x 10 -		-	362kN	62 <u>2</u> 2 362 3
For row 3,	P _t	=	022 - 200			-	JUZKIN	
End plate bending (s			763 360				50261	763 2
For row 3,	Pr	=	763 – 260			=	503kN	
Beam web tension	hast 7)		not annlicati	0				503 3
(see s Rows 1 + 2 + 3 combin	sheet 7) I ed.		not applicable	5				
L_{eff} is obtained from t		6 and .	2.4					
	L _{eff}	=	4m + 1.25e	$+ p_{1_{-}}, +$	p ₂₋₃			
. ,	C11	=	(4 × 35.5) + (90		a an tha an the
		_	(4 x 55.5) + (428mm	(
M _p for the column flang	е	-	428 x 13.86			=	5932kNmm	
F						-	6621kNmm	
M _{bp} for the backing plat	e	=	428 x 15.47			. = ,/	002 I KINIIIIII	

Title Worked exampl	e for a bolted end p	plate using the rig	orous me	thod	Sheet	21 of 28
Critical failure mode			·			
Mode 1:						
	$\frac{(4 \times 5932) + (2 \times 66)}{35.5}$	521)	=	1041kN		
Mode 2:						
$P_r =$	$\frac{(2 \times 5932) + (44.4 \times 35.5 + 44.4)}{35.5 + 44.4}$	(6 x 198)	=	809kN*		809 33
Mode 3:						
$P_r =$	6 x 198		=	1188kN		
P _r for row 3 is taken as n	ninimum for modes 1 t	o 3 minus P _{r1} minu	s P _{r2}		• .	
For row 3, $P_r =$	809 - 297 - 260			252kN		252 37
Column web tension (see	sheet 7)					
· · · · · · · · · · · · · · · · · · ·	363 x 8.6 x 275 x 1	0-3	=	859kN		859 34
For row $3, P_t =$	859 - 297 - 260		=	302kN		302 38
End plate bending (see sh	eet 7)	not applicable				N/A 35
Beam web tension						
(see sl	heet 8)	not applicable				<u>N/A</u> 36
Triangular limit						N/A 40
Triangular limit applies, v						
	260 x 375 465	= 210kN				210 41
The potential resistance f to 41. i.e. 297kN, 409k					32 and 37	
Therefore the potential		P		210kN		
Step 1 has produced the	distribution of potenti	al bolt forces showr	i below.			210 42
Assuming that neither the zone limit the developme						
Moment capacity =	297 x 0.565 + 260 x	0.465 + 210 × 0.3	75			
=	367kNm					
				20 x 15 plates x 4 may be tack welde	d	
	\		t	o column for delive	ery	
	120		Ь			
	100	297kN				
	90	260kN		Ŧ \		
	120	210kN				
			565			
				465 375		
		-				
		L	∐ -≉	* *		
			· · · · ·			

1*2*8


Title Worked example for a bolted end plate using the rigorous method	Sheet 24 of 28
Stiffener Net Area	
The net area of the stiffener, A _{sn} must not be less than the values from formulae (2.17) and (2. Web Tension	18).
basic requirement is: $A_{sn} \ge \frac{(F_{r1} + F_{r2})}{p_y} - (L_t \times t_c) \dots (2.17)$ wh er e:	
$F_{r1} = 297kN$	
$F_{r2} = 297kN$	
$p_{y} = 275N/mm^2$ (the lesser design strength of the stiffener and column)	
$L_t = available length of web$	
$= (1.73 \times \frac{g}{2}) + p_{1.2} + \frac{p_{2.3}}{2}$ $g = 100$	0
$= (1.73 \times \frac{100}{2}) + 100 + 45$	$1.73 \underbrace{0}_{1}^{\theta} = 60^{\circ}$
$= 86.5 + 100 + 45 \qquad \qquad L_t = 232 \qquad 100 \qquad \qquad$	⊐ Stiffener
= 232mm	-
Hence, $A_{sn} \ge \frac{\left[(297 + 297) \times 10^3\right]}{275} - (232 \times 8.6) = 165 \text{mm}^2$	
Flange Bending	
basic requirement is:	
$A_{sn} \geq \frac{m_1}{p_y} \left[\frac{F_{r1}}{(m_1 + m_{2l})} + \frac{F_{r2}}{(m_1 + m_{2l})} \right] \dots (2.18)$	
$m_1 = \frac{g}{2} - \frac{t_c}{2} - 0.8r_c = \frac{100}{2} - \frac{8.6}{2} - 0.8 \times 12.7 = 35.5mm$	
with the stiffeners placed centrally between bolts: $m = 38.6 mm$	
$m_{2U} = m_{2L} = \frac{p_{1-2}}{2} - \frac{t_s}{2} - 0.8s_s$ $m_{2U} = 38.6mm$ $m_{2U} = 38.6mm$	$s_s = 8mm$ $t_s = 10mm$
$= \frac{100}{2} - \frac{10}{2} - 0.8 \times 8 = 38.6 mm$	= 12.7mm 5.5mm
Hence, $A_{sn} \ge \frac{35.5}{275} \left[\frac{297 \times 10^3}{(35.5 + 38.6)} + \frac{297 \times 10^3}{(35.5 + 38.6)} \right] = 1035 mm^2$	
Therefore the net area of both stiffeners must be at least 1035mm ²	
and, $A_{sn} = 2(b_{sn} \times t_s)$	
giving, $t_s \ge \frac{1035}{2 \times b_{sn}} \ge \frac{1035}{2 \times 85} = 6.1 mm$	
Therefore use 2/100 x 10 stiffeners x 180mm	long.
Weld Design	
Use full strength fillet welds, i.e. $\frac{t_s}{2 \times 0.7} = \frac{10}{2 \times 0.7} = 7.1$ mm.	
Adopt 8mm fillet welds	

	Job Moment Connection	ns	Sheet 25 of 28				
	Title Worked example for	r a bolted end plate using the	e rigorous method				
CALCULATION SHEET	Client SCI/BCSA Connection						
BCSA	Calcs by <i>RS</i> Checked by <i>AM</i> Date						
			STEP 6D				
DESIGN OF COLUMN	SUPPLEMENTARY WEB PL	AIES					
Supplementary web plates p	provide:						
an increase in web tensio		% for a plate on one side of the 0% for a plate on both side of the					
an increase in web crushi resistance of :	• 50	% for a plate on one side of the 0% for a plate on both side of th					
an increase in web panel		proximately 75% increase for two plates)					
Worked Example		[]					
The example considered of 1 is to be used, assuming to the column on one sid web panel will be strengt web panel shear capacion ment resistance of the co	a beam connection 254 x 25 be only . The column Design g chened, to avoid the ty limiting the mo-	ar capacity					
Try one supplementary we	eb plate as follows.	3					
Design grade =	= 43 (as column)						
3	= depth between fillets (d)	say 200mm					
Thickness t _s =	= not less than column web the	ickness (13.0 mm) say 15mm					
Length required, L _s	$\geq g+L_c+\frac{D_c}{2}$						
where: g =	gauge of bolts =	= 100mm					
$L_c =$	length of end plate =	- 660mm					
D _c =	depth of column =	= 266.7mm					
	$\geq 100 + 660 + \frac{266.7}{2}$						
=	893mm say L _s =	900mm					

Title Work	ed exa	mple	for a bolted end plate usi	ng the rigorous	s method	Sheet	26 of 28
	· .						
Column pane	l shear						
	P _v	=	$0.6 \times p_{yc} \times A_v$				
where:	p _{yc}	=	design strength of the col	umn =	= 265N/mm ²		
	A _v	=	shear area of the column	web and SWP o	combined		
		=	$t_c \times (D_c + b_s) = 13.0 \times (260)$	5.7 + 200) =	6067 mm ²		
	P _v	=	0.6 x 265 x 6067 x 10 ⁻³		965 kN > 853	ок	
Velds		1.1.1.					
	ontal V						
Fille	t welds	of leg	g length equal to the plate t	hickness t _s =	15mm fillet weld		
Vertie	al We	ds					
Fille	et welds	s of le	g length equal to the plate	thickness t _s =	15mm fillet weld.		
•	••		ntary web plate was provide gure 2.34) would be require		veb tension resistan	ce,	
Plug	welds						
Re	37t _s	=	xceeds 37t _s (design grade 4 37 x 15 = 555 > 2 plug welds not required.	-	ign grade 50).		
			F				
				Adopt 15	5mm fillet welds all i	ound	
No			sion of a supplementary web p ling resistance of the column.		prove the web tension	, crushing	
						3	

132

Appendix I Worked example – bolted end plate connection

Title	Worked	examp	ole for a bolte	ed end plate u	sing the rigo	rous method	Shee	t 28 of 28
Veb Panel	Cham			 A state of the sta		C n n		
The gross	<i>a</i>		-	st be such that:				
A _{sg}	≥	$\frac{(F_v - p_v)}{p_v}$	$\frac{P_v}{\cos\theta} \dots (2.$	20)				
		• •						
W	here:							
	A _{sg}	=	$2 \times b_{sg} \times t_s$				· · · · · · · · · · · · · · · · · · · ·	сл.
	b _{sg}	=	net width o	f stiffener (see fi	gure 2.35)			
	t _s	=	thickness of	stiffener				
	Fv		the applied	shear force (see	STEP 3)			
	Pv		the resistan	ce of the unstiff	ened column v	veb panel (see S	TEP 3)	
	P _y	=	lower desig	n strength of sti	ffener or colum	าท)	-
	θ	· · _	anale of stil	fener from horiz	zontal			
	v	₹	ungic or still	~ .	oncar			
-	_			~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			· · ·	
$\frac{F_v - p_y c}{p_y c}$	$\frac{P_v}{\cos \theta}$	=	(1344 – 12 265 x co		č =	546 mm ²	je te se	
then:							. "	· · ·
			546	546			a a ser	
	ts	≥ '		=	=	3.0mm	$\mathbf{y}_{i} = \mathbf{y}_{i}^{T}$	e de la companya de l
			2 × b _{sg}	2 x 9	U (1)			
			· · · · · · · · · · · · · · · · · · ·		Adopt 10 t	hick x 90 Morris	s stiffeners.	
No	ta, tha d	acian o	fcompression	ctiffanars is illus	trated on calcu	lation sheets 14	1 to 16	
140	ie. ine u	esignio	Compression		indied on calci		10 10.	
Welds								
							-	
To colun	-			t,	10			-
Provid	le full str	ength f	fillet welds, i.e.	$\frac{t_s}{2 \times 0.7} =$	2 x 0.7	= 7.1m	nm.	
To colun								
								¢
Provid	le nomin	al fillet	welds			Adopt 8mm	fillet welds	
						to flanges		
							· · · · ·	
			•					1.00
						3		

APPENDIX II BOLTED END PLATE CONNECTIONS Background to the design method

Essentially the design method put forward in Section 2 is that of EC3 Annex J, which treats the beam-tocolumn connection in substantially more detail than previous codes. However, the method has been adapted for use with BS 5950 in recognition of the fact that it will be some years before designs are routinely based on EC3.

A hierarchy of authority

With the notable exception of its bolt tension values (see appendix IV), BS 5950 has been regarded as the "highest authority" for the purpose of detail design checks. Where BS 5950 does not lay down a design rule, EC3 is followed. New rules have been formulated where the aspect in question is not adequately covered by either of these standards.

This policy has been followed by the task group despite the knowledge that the published EC3 Annex J is deficient in a number of respects and a thoroughgoing revision is in train. Some inviting improvements to the design procedure have, for the time being, been foregone simply because it was judged desirable to respect "official" source material as closely as possible.

It is envisaged that once the revised Annex J is published this design guide will itself be revised; whether this revision retains allegiance to BS 5950 or represents a total conversion to EC3 will have to be decided at the time.

The choice of symbolism

In order to retain familiarity and compatibility (so far as possible) with BS 5950, the task group decided **not** to adopt the ISO symbols used in Eurocodes in this design guide. However, there are several situations in which new symbols or subscripts are required, and the preference has been to follow the EC3 pattern for these. Inevitably, the result is a hybrid system which may serve as a stopgap but should be replaced by EC3 symbols as soon as the industry is ready to accept the transition.

Exceptions to published standards

Exceptions to the policy of giving preference to published standards have only been made where it would have been absurd or dangerous to conform. However, if technical arguments alone had prevailed the task group might have been inclined to depart from the published standards more freely.

In the interest of those returning to the subject in the future, notes (1) to (15) on the following pages set out examples of the more questionable provisions which the present design method either incorporates (reluctantly) or departs from (giving reasons).

(1) EC3 - Rotational stiffness formula

The formula in the current Annex J of EC3 for the rotational stiffness of an end plate connection does not give accurate predictions, and designers are warned against reliance on it in critical cases. In practice this is mainly of consequence to semi-rigid elastic analysis, connections for which are outside the scope of this design guide.

(2) EC3 - The "Rigid" criterion

Connections are required to be "Rigid" if their frame is to be analysed in the conventional elastic way. EC3 specifies a rotational stiffness which must be achieved for a connection to qualify. Figure 6.9.8 of EC3 summarises the requirement, which is relative to the rotational stiffness of the beam and varies strikingly between braced and unbraced frames. In view of the difficulty of predicting rotational stiffness (see above) this numerical approach is somewhat academic, but it is worth remarking that EC3's numerical requirement is substantially more demanding than that of BS 5950.

(3) EC3 - Influence of high compressive stress in the column

EC3 prescribes reduction factors in two areas: the flange in the tension zone (clause J.3.4.1(3)) and the web (crushing only) in the compression zone (clause J.3.5.1(1)). In practical cases these provisions are marginal in their effect and at the same time tedious to apply. The task group has decided to omit them.

(4) EC3 - Yield patterns

There are several unsatisfactory aspects to the way the effective lengths of equivalent T-stubs are calculated in the current Annex J of EC3. Clearly, the circular yield pattern involves no prying and bears no comparison with the T-stub model from which the formulae for Modes 1 and 2 are derived. (Expressions (2.1) (2.2) and (2.3) on page 18 of this design guide.) In fact, an effective length of 2π m gives the correct answer with the Mode 1 formula but is meaningless with the Mode 2 formula. (It would have been simpler and less confusing to regard it as a separate Mode O.)

The second major difficulty is that the α -chart used for bolt rows adjacent to stiffeners or flanges is artificially limited to $\alpha = 2\pi$ because of the circular yield pattern. When another bolt row is present, a combined yield pattern will almost invariably govern. However no physically coherent yield pattern can be deduced from the given expressions. As a result the strength calculation will often be unnecessarily conservative.

There are also omissions of yield patterns which could govern in certain circumstances, which is of course unconservative. These have been remedied in the present design method, but otherwise effective lengths are calculated according to the published EC3. It is with some reluctance that the promising new approach of the current draft revision of Annex J, with its extended α -chart, has not been adopted in this manual.

(5) EC3 - Web tension

EC3 prescribes that the effective area for web tension checks should be based on the same "effective length of equivalent T-stub" as used for the bolt tension calculation. Since edge distance is an important influence on T-stub length, but can only be a minor one on the way the web responds to tension, this approach seems questionable. In the present design method it is replaced by a simple geometrical rule for the unstiffened web, and a somewhat intuitive apportionment where stiffeners are present.

There is also a procedural improvement; web tension (both on the column side and the beam side) is calculated row by row, alongside the flange and end plate bending (see worksheet on page 26) rather than separately later (as in step (6) of EC3's procedure J.3.1).

(6) EC3 - Limit to plastic distribution of bolt row forces - Procedure J.3.1

"Step (4)" in EC3 Procedure J.3.1 represents an impasse for many, if not most, practical connection designs. It has the effect of limiting end plate thickness in relation to bolt size and strength, to ensure that mode 3 is avoided, except where the connection is designed to be full strength. It was introduced to avoid the situation in which outer bolts fail before inner rows have developed their full contribution to the plastic bolt force distribution. Instead, the present design method, included under Step 1C, imposes the triangular limit to bolt force distribution.

(7) EC3 - Limit to plastic distribution of bolt row forces - Procedure J.3.2

This "alternative" to the plastic bolt force distribution is not to be confused with the triangular limit of the present design method. It has more in common with the traditional approach to multi-bolt row connections, and is open to the same objections.

(8) BS 5950 - Column web buckling

BS 5950: Part1, clause 4.5.2.1, provides, in column web buckling checks, for the effective area being based on the sum of stiff bearing length plus the column depth. It is included in STEP 2A of the procedures. EC3's expression (5.79), based on recent tests, is more conservative in prescribing the square root of the sum of the squares of these quantities.

(9) EC3 - Beam flange compression

The current EC3 Annex J omits explicit reference to beam flange compression resistance, giving the impression that no check need be made. Particularly when axial compression acts in the beam, this would be untenable. On the other hand, to limit the flange to yield stress is overcautious and prevents many full strength connections from being designed as such. The task group's rule (Step 2B, page 28) is a compromise.

(10) EC3 - Two sided connections

The current EC3 Annex J fails to confront the issue of the competing demands that two opposing beams make of the column web panel. It is an inescapable fact that the strength available to one side, and even the stiffness perceived by that side, will be influenced by the magnitude and direction of the moment applied on the other. It is anticipated that this problem will be addressed in the revised Annex J. Meanwhile, this design guide offers no magic solution. The problem is a real one for designers of unbraced frames, who must guard against counting the web panel twice and must avoid alternating plasticity in that zone.

(11) BS 5950 - Interaction of bolt tension and shear

STEP 5 of the procedures, dealing with bolts in both shear and tension, adopts BS 5950: Part1 clause 6.3.6.3. It allows bolts subject to full design load in tension to retain 40% of their regular shear capacity. EC3's corresponding interaction formula, in expression (6.6), only permits such bolts to contribute 28¹/₂% of design shear resistance. Both formulae represent straight-line simplifications of a moreor-less elliptical interaction plot based on tests. BS 5950's relative under-conservatism needs to be viewed alongside its generally more conservative bolt values. Any future revision of the present design method which increases design tension in bolts (see appendix IV) should prompt a re-examination of this question.

(12) BS 5950 - Compression stiffeners the "80%" rule

Compression stiffeners are designed to resist 80% of the force applied by the beam flange, following BS 5950: Part1, clause 4.5.4.2. While it must be expected that such a stiffener will tend to attract the greater part of the flange force (in preference to the column web) the "80%" rule appears unduly onerous. Nevertheless it has been incorporated into STEP 6A of the connection design procedures.

(13) EC3 - Stiffener design

EC3 is short of detail on the mechanics of stiffeners, whether for web reinforcement or to increase flange bending resistance. Clause J.2.3.3 suggests that it was envisaged that stiffeners would generally be sized to match the beam flanges, but this is often impractical and usually unnecessary.

The stiffener design rules presented under Step 6 (p32 et seq) are by and large of the task group's own devising. They respect statics and, where it makes a prescription, BS 5950. Rib (i.e. discontinuous) and Morris stiffeners, neither of which are covered in EC3, are included.

(14) EC3 - Supplementary web plates

Design rules for supplementary web plates in EC3 have been adopted in this design guide but the task group was unwilling to accept the degree of strain hardening that is implied in the "neck" between the flange and a pair of fillet-welded SWPs. Conversely, some of the other rules seem quite cautious, for example where a second plate adds no further resistance to shear.

To be safe, it is recommended under step 6D that the welds down the sides of the SWP should be of the "fillin" type (EC3 calls them "butt" welds) if the purpose of the SWP is to improve web tension resistance.

(15) EC3 - Flange to end plate weld

EC3 clause J.3.4.4(6) requires welds between flanges and end plates to be overdesigned by up to 70%. This is because weld failure is brittle and must be avoided, even when (as commonly occurs) the other components of the connection overperform by such a margin.

The task group has taken the view that in general the recommendations given under Step 7 (page 39) will suffice. It should be noted that full strength welds are prescribed for the ductile wind-moment connections of table 3.2.

APPENDIX III MATHEMATICAL DERIVATION OF ALPHA CHART

This section gives the information required for the mathematical derivation of the value of α which is used in the calculation of the effective lengths of equivalent T-stubs when the bolt row being considered is adjacent to a flange or stiffener. The formulae have been determined from a curve fitting exercise, and are an approximation for the curves shown on page 23.

The value of α depends on the magnitude of λ_1 and λ_2 which are calculated from the connection geometry as shown on pages 22 and 23. These values of λ_1 and λ_2 are substituted into the six formulae, F1 to F6 given below.

 α is found by satisfying one of the conditional statements opposite.

Conditional statements

- 1. If $\lambda_1 \leq F1$ then, $\alpha = 2\pi$
- 2. If $\lambda_1 \ge F2$ then, $\alpha = 4.45$
- 3. If F1 < λ_1 < F2 then,
- (a) If $\lambda_2 \ge 0.45$ then, $\alpha = F3$ but $\le 2\pi$
- (b) If $(0.2768 \lambda_1 + 0.14) \le \lambda_2 < 0.45$ then, $\alpha = F4$ but $\le 2\pi$
- (c) If $(1.2971\lambda_1 0.7782) \le \lambda_2 < (0.2768\lambda_1 + 0.14)$ then, $\alpha = F5$ but $\le 2\pi$
- (d) If $\lambda_2 < (1.2971 \ \lambda_1 0.7782)$ then, $\alpha = F6$ but $\leq 2\pi$

Formulae

F1 = 0.99477448 - 2.45848503 λ_2 + 3.15497168 λ_2^2 - 2.23017434 λ_2^3 + 0.52850212 λ_2^4 F2 = 1.04213142 - 0.85759182 λ_2 + 1.15828063 λ_2^2 - 0.79910192 λ_2^3 + 0.21398139 λ_2^4

Values of the coefficients for formulae F3 to F6 are given in tabular form below:

	F3	F4	F5	F6
constant	8.130283	1.245666	- 86.505200	- 226.979097
λ ₁	4.488295	39.333003	478.588870	1095.760732
λ2	- 3.441231	- 3.580332	79.430092	- 12.1186777
λ ₁ ²	-16.699661	- 55.940605	- 935.102794	- 1848.467314
λ2 ²	4.657641	40.544586	- 329.854733	717.104423
$\lambda_1 \lambda_2$	- 6.802532	- 55.343570	- 68.228567	- 264.307024
λ_1^3	8.747474	21.049463	809.056164	1369.007748
λ_2^3	- 1.197675	-33.001768	531.672952	- 2120.516058
$\lambda_1 \lambda_2^2$	- 1.227359	2.792410	252.193252	- 69.105002
$\lambda_1^2 \lambda_2$	8.318217	44.062493	- 44.242644	195.697905
λ ₁ 4			254.659837	- 381.685783
λ2 ⁴			- 605.622885	2562.146768

APPENDIX IV 8.8 BOLTS ENHANCED TENSILE STRENGTH

The recommended design tension values in this publication for 8.8 bolts are based on 560N/mm² over the tensile stress area, which is just under 25% greater than the 450N/mm² ("inclusive of prying") of BS 5950: Part 1, Table 32. While the figure of 560N/mm² is, in the final analysis, a committee decision, it may be rationalised as follows:

- The current 8.8 bolt supplied to BS 3692 has an ultimate tensile strength (U.T.S) of 785N/mm² 'guaranteed minimum'. U.T.S is a more appropriate basis than yield stress (which becomes unidentifiable at higher strength grades).
- It is considered that a 'material factor' of 1.25 should be applied to components such as bolts. This is not because individual bolts are especially variable in strength; rather it recognises the uneven distribution of force between bolts in common jointing situations and perhaps also an 'importance factor' in the sense that these small components exert a disproportionate influence on the overall safety of the structure they connect.
- A further reduction factor of 0.9 is applied to allow for the possibility that thread stripping at the nut will prevent the bolt and nut assembly from achieving the strength of the bolt.

Hence,

 $785 \times \left[\frac{0.9}{1.25}\right] = 565$, say 560N/mm²

It should, in due course, be possible to recommend a higher design strength when conversion to new bolt standards (ISO 4014, BS EN 24014 etc.) is complete. This is because the guaranteed minimum U.T.S is higher (828N/mm² instead of 785N/mm²) and nut geometry is modified to reduce the risk of premature thread stripping.

Bolts up to M24 specified as HSFG bolts to BS 4395 are available now with both these advantages, and could be used at higher design strengths (say 600N/mm²), without needing to be preloaded.

There is no technical reason why the higher performance of these bolts should not be taken advantage of, but it was felt that an already confused situation could be made more so if their (temporary) superiority were to be given prominence in this publication.

CAPACITY TABLES AND DIMENSIONS FOR DETAILING

Contents

Pages

Bolted End Plate Connection Capacity Tables

Notes on use			142 - 144
Example		Partial strength connections	145 - 146
Example	-	Full strength connection	147
Example		Connection with axial tension	148
Example	-	Connection with axial compression	149
Beam tables	-	Design grade 43 steel	150 - 165
Beam tables	-	Design grade 50 steel	166 - 181
Column tables	-	for M24 bolted connections	182 - 184
Column tables	-	for M20 bolted connections	185 - 187

Portal Frame Connection Capacity Tables

Notes on Use	188
Example	189
Eaves connection tables	190- 198
Apex connection tables	199 - 201

Wind-Moment Connection Capacity Tables

Notes on use	202
Example	203 - 204
Beam and column tables	205 - 218
Dimensions	219

Material strengths & Fastener Capacity Tables

	Steel strengths, bolt	220		
	Ordinary bolts	-	capacities	221
	'HSFG' bolts	-	capacities	222
	Countersunk bolts	-	capacities	223
	Weld	-	capacities	224
Dimensio	ns for Detailing			
	Ordinary bolt assemb	olies		225

	~~~
High strength friction grip assemblies	226
Bolt access dimensions	227
Holding down bolts	228
Dimensions for :	
Universal beams	229 - 231
Universal columns	232
Joists	233

### **BOLTED END PLATE CONNECTIONS**

Notes on use of the Beam-to-Column Capacity Tables.

### **BEAM TABLES**

Bolt row forces F _{r1} , F _{r2} etc	The bolt row forces shown are the maximum available on the beam side of the connection, calculated using the procedures in Section 2.8. The standard end plate thicknesses adopted in the tables exceed the limit for full plastic force distribution quoted in Table 2.7, and therefore the triangular limit has been imposed in all cases. The sum of the bolt row forces, $\Sigma F_{r}$ , is limited to the compression flange resistance. If the compression flange resistance governs, the bolt row forces have been reduced, starting at the lowest row; the maximum values are shown in brackets below the reduced values.					
ΣF _r	$\Sigma F_r$ is the sum of the maximum available bolt row forces, in tension, on the beam side when no axial forces are present.					
Beam P _c	Beam P _c is the capacity of the beam compression flange. This is based on the smaller of the beam width or end plate width.					
Moment capacity	The moment capacity is that of the beam side of the connection, calculated from the quoted bolt row forces.					
Beam M _{cx}	M _{cx} is the moment capacity of the beam section.					
Bolt shear capacity	The bolt shear capacities shown are the vertical shear capacity of each bolt row in the tension zone, and of each row in the shear zone. Bolt rows in the tension zone are shown in black. Bolt rows in the shear zone are shown in grey.					
Mini	The bolt row forces are based on the lightest section in the serial size(s) covered.					
haunches	The haunch flange and web are taken as being the same steel grade as that of the beam section					
	The minimum haunch depth used in the tables is one third of the section depth. Moment capacities are quoted for increasing depths of haunch, until $M_{cx}$ of the beam is exceeded, or the maximum haunch depth is reached.					
	The maximum haunch depth is taken as D _b – T _b – r _b – 10.					
	It is recommended that the mini haunch is made with the flange sloping at an angle of 30° to the beam flange. The capacity of the beam web in compression should be checked in accordance with Section 2, STEP 8.					
	If the haunch is built up from plates, the web plate should be of similar thickness to the beam web.					
Min. thickness of haunch flange	The minimum thickness shown for the haunch flange is that required for the flange to develop $\Sigma F_{r'}$ based on the width of the flange being equal to the beam width, or the end plate width if this is narrower. It is calculated using an angle of 30° between beam and haunch flange. The haunch flange width should be at least as wide as the end plate or beam flange (whichever is narrower).					
	If, after matching with the column resistance, $\Sigma F_r$ is reduced from the quoted value, the minimum thickness of the haunch flange may be reduced in proportion to the reduction in $\Sigma F_r$ .					
Welds	Forces and capacities quoted in the tables are based on welds to design grade 43 beams being made with E43 electrodes to BS 639, and welds to design grade 50 beams being made with E51 electrodes to BS 639; all in accordance with Table 36 of BS 5950 Part 1.					
	It should be noted that the calculation of forces and capacities take account of the weld sizes shown. Weld sizes should not be changed without re-checking the connection.					

#### Tension flange weld

The weld size is designated as a fillet weld (e.g. 8FW), a partial penetration butt weld with a superimposed 10mm fillet (e.g. 10FW+6pp), or a full penetration butt weld (FPB). The fillet welds and partial penetration welds are required around the whole flange to the junction with the root and beam web. The size is calculated to provide a capacity which is not less than the maximum force from the top three bolt rows in an extended end plate, and the maximum force from the top take, or equal to the full strength of the flange.

The sizes indicated for partial penetration butt welds with superimposed fillets take account of a 3mm loss of penetration at the root of the weld. The detail is shown in Figure C1. The shear and tension stresses on the fusion faces have been checked in accordance with STEP 7 of the procedures in Section 2.

In many cases, a manual check using the actual bolt row forces may obviate the requirement for the partial penetration weld, but the fillet size quoted should not be reduced without re-checking the connection.

- Web weld A continuous fillet weld each side of the web of the leg length shown provides a capacity not less than that of the beam web.
- **Compression flange weld** In the extended and flush end plate cases bearing contact between the compression flange and end plate is assumed, and nominal fillet welds are therefore prescribed. These weld sizes will also be satisfactory if bearing is provided in the haunched case. If a bearing fit is not specified, the welds between flange and end plate should be calculated manually.

The end plate should extend a minimum of the plate thickness plus weld leg length below the flange as shown in Figure C2. (The column tables are not valid if this recommendation is infringed)

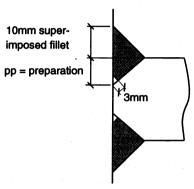



Figure C1 Partial penetration welds with superimposed fillets

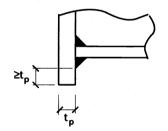



Figure C2 End plate extension below compression flange

Axial forces in the beam The tables assume axial force in the beam is zero. If present, the axial force should be considered to act at the centre of compression and the applied moment modified accordingly (Section2, STEP 4). Worked examples on pages 148 and 149 show how the tables may be used to design the connection when axial force is present in the beam. Increased capacity with axial loads may be obtained when the rigorous method is applied to both the beam and the column.

Axial compression reduces the applied moment, and increases the force in the compression flange. This may require the bolt row forces to be reduced, starting with the lowest row if the beam compression flange capacity was (or becomes) limiting.

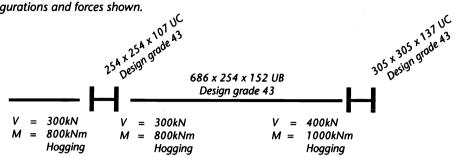
Axial tension increases the applied moment, and reduces the force in the compression flange. If, with no axial load, the compression flange is limiting, then the reduction in force will allow an increase in bolt row forces, up to the maximum values available (shown in brackets in the tables).

The minimum flange thickness to the mini haunch is based on  $\Sigma F_r$  as explained on page 142. However, in the presence of axial compression, the minimum thickness should be increased in proportion to the actual flange force, compared to  $\Sigma F_r$  quoted.

### **COLUMN TABLES**

Bolt row forces F _{r1} , F _{r2}	The bolt row forces are the maximum acceptable on the column side of the connection calculated using the procedures in Section 2.8 for up to six rows of bolts.							
etc	The bolt row forces are calculated assuming 90mm vertical pitch. They are slightly conservative in an extended end plate detail where the second row is 100mm below the first row.							
Compression capacity P _c	P _c is the maximum acceptable compression force on the column flange. Crushing resistance and buckling resistance are calculated using the stiff bearing lengths shown in Figure C3, and the lesser resistance is quoted. Where the compressive force exceeds the resistance quoted, a pair of compression stiffeners may be provided, designed in accordance with Section 2, STEP 6A.	25mm end plate	20mm end plate					
Web panel shear capacity, P _v	$P_v$ is the shear capacity of the column web and supplementary web plate when shown. Web panel shear must take account of beams connecting onto both column flanges and the direction of their respective moments. See Section 2, STEP 3.	connections with M24 bolts Figure Stiff bearin used in capacit	g lengths					
Tension stiffeners	A pair of rib stiffeners can be used to increase the resistension or flange bending is limiting. The quoted be tables take this into account.							

Stiffeners may be sized in accordance with Table T1, or designed in accordance with STEP 6C


Table T1         Dimensions for tension stiffeners							
trimming corner snipe optional 15 x 15mm			M24		M20		
	Serial Size	Width	Length	Thickness	Width	Length	Thickness
		b _{sg}	Ls	t _s	b _{sg}	Ls	t _s
bsg	356 x 368	100	180	10	75	150	10
<u>↓ Ls</u>	305 x 305	100	180	10	75	150	10
Stiffeners Weld	254 x 254	100	180	10	75	150	10
10mm 8FW 12mm 10FW	203 x 203	80	150	12	75	150	10

Supplementary web plate A supplementary web plate can be used to increase web tension, shear and compression resistance. The Web Stiffened column tables take account of the increased web panel shear capacity and compression capacity available when a supplementary web plate, of the same grade steel as the column, is provided on one side only of the sections listed. The supplementary web plate should be sized in accordance with Section 2, STEP 6D. In the standard details shown, the web plate is not required to increase web tension resistance, and "fill in" welds are not required.

### Worked Examples Using the Capacity Tables

#### **DESIGN EXAMPLE 1**

Design connections for the configurations and forces shown.



#### Left hand connection.

Select 686 UB series beam table (Page 151) and try the unstiffened column (Page 182)

From the beam table, choose the connection type which will develop a moment of at least 800kNm.

An extended end plate connection for a 686 x 254 x 152 has a capacity of 925kNm.

Tabulate the potential bolt row forces from the beam side of the connection alongside the potential bolt row forces from the column side of the connection, then choose the minimum force for each row and calculate the moment capacity by multiplying the bolt row forces by the respective lever arms.

Tension							
Row No	Beam side	Column side	Minimu	ım	Lever		Moment
	(page 151)	(page 182)			arm		capacity
1	364kN	375kN	364kl	V x	0.72m	=	262kNm
2	396kN	304kN	304kl	V x	0.62m	=	189kNm
3	338kN	287kN	287kl	V x	0.53m	=	152kNm
4	280kN	287kN	280kl	V x.	0.44m	=	123kNm
5	223kN	287kN	223kl	V x	0.35m	=	78kNm
6	165kN	287kN	165kl	V x	0.26m	=	43kNm
		TOTALS	1623k	N			847kNm
		. Provide a s	tandard exte	nded end	plate cor	nection	to the beam
Compression	Compressive for but the unstiffer		-	acity is on	ly 845kN	(page 1	82).
			oair of compre on 2 STEP 6A	ession stif	feners des	signed i	n accordance
Vertical Shear	Applied shear is	300 kN.					
	End plate thickr	iess = 25mm	Column fl	lange thic	kness = 2	0.5mm	
	By inspection of	page 221 for M	24 8.8 bolts, b	olt shear	governs ra	ther tha	n bearing.
	Bottom row ded Each tension ro		•	ovides ovides	264kN. 106kN.		
	Connection resis	stance = 264	+ (6 x 106)	=	900kN	> 300k	N, OK
Web Panel Shear	Equal moments (Note the unstif		•	•	b panel sh	ear.	
Welds	Welds to End Ple	ate as shown in	table on pag	e 151			
	P	rovide:	Tension Flar	nge	-	10FW+	9рр
			Web		-	10FW	
			Compression	n Flange	-	8FW	

(bearing fit specified)

#### **DESIGN EXAMPLE 1 (Continued)**

#### Right hand connection.

The 686 UB series beam table on page 151 shows that a mini haunch 230mm deep will develop a moment of 1130kNm, but it must be checked against the column side.

The potential bolt row forces are tabulated in a similar manner as shown for the left hand connection, and the accumulated moment capacity is also noted in order to check the number of tension rows needed, thus:

#### Tension

Row N	o. Beam side	Column side	Minimum		Lever		Moment	t capacity
	(page 151)	(page 182)			arm		per row	cumulative
1	396kN	394kN	394kN	x	0.85m	=	337kNm	337kNm
2	353kN	354kN	353kN	x	0.76m	=	269kNm	606kNm
3	311kN	301kN	301kN	x	0.67m	=	202kNm	808kNm
4	268kN	301kN	268kN	x	0.58m	=	156kNm	964kNm
5	226kN	301kN	226kN	x	0.49m	=	111kNm	1075kNm
6	183kN	301kN	183kN	x	0.4m	=	74kNm	1149kNm
	-	TOTALS 5 Rows	1542kN					1075kNm
		TOTALS 6 Rows	1725kN					1149kNm

The moment capacity for 5 rows will suffice.

... Provide a standard 230 deep mini haunch connection to the beam with 5 rows of tension bolts.

```
Compression Compressive force on column is 1542 kN,
```

but the unstiffened column resistance is 964kN (page 182).

... Provide a pair of compression stiffeners designed in accordance with Section 2 STEP 6A

Vertical Shear Applied shear is 400 kN.

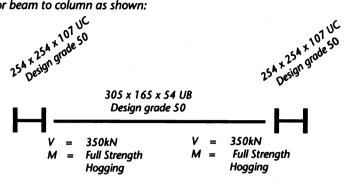
End plate thickness = 25mm	Column flang	e thickness = 21.7mm
By inspection of page 221 for M24	8.8 bolts, bol	t shear governs rather than bearing.
Bottom row dedicated to shear	provides	264kN
Each tension row	provides	106kN
Connection resistance = 264 +	(5 x 106) =	794kN > 400kN OK

Web Panel Shear

• The unstiffened web panel shear resistance is 703kN.

A supplementary web plate will only increase web panel shear resistance to 1244kN, whereas the applied web panel shear is 1542kN. A possible solution is to increase haunch depth with fewer bolt rows to reduce applied panel shear. A 400 deep haunch, 4 rows of tension bolts and supplementary web plate will be satisfactory.

... Provide a 400 deep haunch to the beam, and a supplementary web plate to the column


Welds

Welds to End Plate as shown in table on page 151

Provide	Tension Flange	-	10FW+9pp
	Web	-	10FW
	Compression Flange	-	8FW
•	(bearing fit specified)		

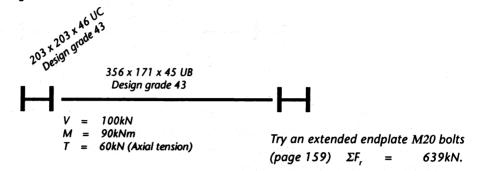
#### **DESIGN EXAMPLE 2**

Provide a full strength connection for beam to column as shown:



Page 177 (305 UB series in design grade 50, M20 8.8 bolts) shows  $M_{cx}$  for a 305 x 165 x 54 UB = 299kNm. By inspection of the tables a 280mm deep mini haunch is required.

The potential bolt forces an unstiffened column are obtained from page 185. Comparing beam and column bolt forces:


Tension

rension					
	Row No.	Beam side	Column side		
		(page 177)	(page 185)		
	1	274kN	274kN Insp	pection shows that the column sid	le
	2	226kN		es are all equal or greater than th	
	3	179kN		m side: Beam side governs.	
	ΣF,	679kN			
	As the bea	m side governs for ea	ch bolt row, the conn	ection moment capacity may b	e taken
	directly fro	m the table, ie 300kN	lm.		
				tandard 280 deep mini hauncl to the beam (design grade 5	
Compression	The minim	um haunch flange thi	ickness is 10mm.		
				aunch cutting from the 305 x 1 n (T _b = 13.7mm).	165 x 54
	Compressi	ve force on the colum	$n \Sigma F_r = 679$	) kN < 1008kN OK (p	age 185)
Vertical Shear	Applied sh	ear is 350 kN.			
	• .	hickness = 25mm	Column flange thi		
	By inspecti	on of page 221 for M	20 8.8 bolts, bolt she	ear governs rather than bearing	
		v dedicated to shear	provides 184	kN	
	Each tensio		provides 74k		
	Connection	n resistance = 184 +	$(3 \times 74) = 406$	kN > 350kN OK	
Panel Shear	680kN app	plied			
	The unstiff	ened column resistand	ce (page 185) = 717	kN > 679kN OK	
Welds	Welds as s	hown in table on page	e 177 (to be made wi	ith E51 electodes to BS 639).	
			.:. Provide:	Tension Flange -	10FW
				Web -	6FW
				Compression Flange - (bearing fit specified)	8FW

#### **DESIGN EXAMPLE 3**

In this example the bolt row forces on the beam side are adjusted to take account of the axial tension present in the beam. This approach will produce conservative results. Increased capacity may be obtained by following the rigorous approach.

Design a connection for the configuration and forces shown which include axial tension:



Tension

Due to the axial tension, the sum of the bolt row forces  $\Sigma F_r$  will no longer be limited to the beam flange compression capacity. The bolt row forces may be increased, up to the maximum values shown (in brackets).

 $\Sigma F$ , may be increased to 639 + 60 = 699kN

By inspection of the table,

 $F_{r_3}$  can be increased by 46kN from 142kN to 188kN (maximum).  $F_{r_4}$  can provide the remaining 14kN.

Comparing beam and column bolt row forces :

Row No.	Beam (page 159)	Column (page 185)	Minimum		Lever Arm	1	Moment capacity
1	226kN	198kN	198kN	<b>x</b> .	0.39m	=	77kNm
2	274kN	97kN	97kN	x	0.29m	=	28kNm
3	188kN	90kN	90kN	x	0.20m	=	18kNm
4	14kN	90kN	14kN	x	0.11m	=	2kNm
		TOTALS	399kN			Σ=	125kNm

 $M_m = 90 + (60 \times D_b/2) = 90 + (60 \times 0.176) = 101 \text{kNm} < 125 \text{kNm} \text{ OK}$ In practice, row 4 makes a very small contribution to the moment capacity, and could be omitted. Omitting row 4,  $\Sigma F_r = 198 + 97 + 90 = 385 \text{kN}$ 

Compression	Resolving, the compression force, F _c	= 385 - 60 =	325kN	
	From page 185, P _c	=	331kN > 325kN	satisfactory
Panel Shear				

From page 185, P_v = 245kN < 325kN unsatisfactory

Two solutions are possible without increasing the column weight or grade:

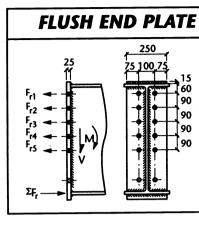
(a) provide shear stiffening.

or (b) reduce  $\Sigma F_r$  and  $F_c$  by providing a haunch.

Vertical Shear and welds are considered in similar manner to examples 1 and 2

#### **DESIGN EXAMPLE 4**

In this example the bolt row forces on the beam side are adjusted to take account of the axial compression present in the beam. This approach will produce conservative results. Increased capacity may be obtained by following the rigorous approach.


Design a connection for the configuration and forces shown which include axial compression:

	203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 + 203 +	
	20312 (ale 4)	
*	203 E391 3	
	350 X 171 X 57 6B	
	Design grade 43	
	V = 100kN M = 150kNm	In particular interaction of the second sec second second sec
	C = 100kN (Axial compression)	Try an extended endplate M20 bolts
		$(page 159) \Sigma F_r = 795 kN$
Compression	Axial compression contributes to the force in the compression	on flange,
(beam side)	P _{c(beam)} (page 159)	= 861kN
	resolving, maximum total tension = 861 – 100	= 761kN
Tension	$\Sigma F_r$ , is limited to 761kN	
	Thus the bolt row forces must be reduced by 795 – 76	1 = 34kN
	This can all be deducted from row 4, ie $F_{r4} = 105 - 34$	= 71kN
	Comparing beam and column bolt row forces :	
	Row No. Beam Column Minimum Lever	Arm Moment capacity
	(page 159) (page 185)	per row cumulative
	1 226kN 211kN 211kN x 0.39	
	2 274kN 172kN 172kN x 0.29	
	3 190kN 118kN 118kN x 0.20	
	4 71kN 118kN 71kN x 0.11	m = 8kNm 164kNm
	TOTALS 3 Rows 501kN	156kNm
	TOTALS 4 Rows 572kN	164kNm
	The modified moment (STEP 4)	
	$M_m = 150 - (100 \times D_b/2) = 150 - (100 \times 0.179)$	= 132kNm < 156kNm
	The momen	t capacity for 3 rows will suffice
Compression	Resolving, the compression force, $F_c = 501 + 100$	= 601kN
(column side)	From page 185, $P_c = 379kN$	< 601kN unsatisfactory
Panel Shear	From page 185, $P_v = 272kN$	< 601kN unsatisfactory
	Two solutions are possible without increasing the column v	veight or grade:
		e diagonal and compression stiffeners.
	or (b) reduce	$\Sigma F_{c}$ and $F_{c}$ by providing a haunch.

Vertical Shear and welds are considered in similar manner to examples 1 and 2

### **762 x 267 UB** DESIGN GRADE 43 M24 8.8 BOLTS

250 x 25 END PLATE - DESIGN GRADE 43



Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
762 x 267 x 197	396	345	294	243	191	1469	2356	805	1900	= 106 = 264
173	396	344	293	241	190	1464	2003	795	1640	ion zone I to shear
147	396	344	292	240	188	1460	1623	784	1370	In tension zone Dedicated to shear

EXTENDED END PLATE													
25 11 F _{r1} ←	250 75 100 75 50 40	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	F _{rő} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	M _{cx}	Bolt Shear Capacity kN per row
$F_{r2} \leftarrow F_{r3} \leftarrow F$	60 90 90	762 x 267 x 197	364	396	345	294	243	191	1832	2356	1095	1900	= 106 = 264
$\begin{array}{c} \mathbf{F}_{r4} \leftarrow \mathbf{F}_{r5} \leftarrow \mathbf{F}_{r6} \leftarrow \mathbf{F}_{r4} \\ \mathbf{F}_{r6} \leftarrow \mathbf{F}_{r6} \\$	90 90 90	173	364	396	344	293	241	190	1828	2003	1083	1640	sion zone d to shear
ΣF _r		147	364	396	344		227 (240)	0 (188)	1623	1623	1004	1370	In tension Dedicated to

MINI HAUNCH - FOR ALL 762 x 267 UBs												
25 11	250 75 100 75	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{r5} kN	F _{ró} kN		Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shea Capacity kN per rov
F _{r1}	60	260 *	396	358	320	283	245	207	1809	1357	23	
$F_{r2} \leftarrow +$ $F_{r3} \leftarrow +$	90	300	396	360	323	287	251	215	1832	1444	23	106 264
Fr4 - [M]	90	350	396	361	327	292	258	223	1858	1553	24	""
$F_{rs} \leftarrow V$ $F_{r6} \leftarrow V$	90	400	396	363	330	297	264	231	1882	1664	24	In tension zone licated to shear
		450	396	365	330	302	270	239	1900	1773	24	tensi ated
		500	396	366	329	306	276	246	1917	1882	24	In tension Dedicated to
ΣF _r		550	396	367	328	309	280	251	1931	1989	25	

WELDS				
Serial Size	Tension	Flange	Web	Compression Flange in
5126	Extended mm	Flush	mm	direct bearing mm
762 x 267 x 197	10FW+9pp	10FW	12FW	8FW
173	10FW+9pp	10FW	12FW	8FW
147	10FW+9pp	10FW	10FW	8FW

* minimum recommended haunch depth.

See: Notes	- pages 142 - 143	
Examples	- pages 145 - 149	
Column tables	- pages 182 - 184	

250 x 25 END PLATE - DESIGN GRADE 43

### 686 x 254UB **DESIGN GRADE 43 M24 8.8 BOLTS**

FLUSH END PLATE 25 11 ΣF.

	<u></u>
250 75 100 75	Serial Size
60 90 90 90	686 x 254 x 17
90	15
	14
	12

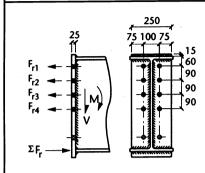
0 10 75 1115	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Bearn M _{cx} kNm	Bolt Shear Capacity kN per row
60 90 90	686 x 254 x 170	396	339	281	224	166	1406	2198	672	1490	106 264
90 90	152	396	338	280	223	165	1402	1948	665	1330	zone = shear =
•-	140	396	338	280	222	164	1400	1762	659	1210	In tension zone edicated to shear
	125	396	338	279	221	162	1395	1503	652	1060	Dedi-

EXTENDED	END PLATE							-					
25 Fr1	250 75,100,75	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	F _{rð} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	M _{cx}	Bolt Shear Capacity kN per row
F ₁₂	40 60 90	686 x 254 x 170	364	396	339	281	224	166	1770	2198	934	1490	106 264
$F_{r4}$ $F_{r5}$ $F_{r5}$ $F_{r5}$ $F_{r5}$ $F_{r5}$	90	152	364	396	338	280	223	165	1766	1948	925	1330	= = = =
$F_{r6} \rightarrow H_{r}$	90	140	364	396	338	280	222	164	1763	1762	919	1210	tension zone ated to shear
 ΣF _r ►	-+	125	371	396	338		119 (221)	0 (162)	1503	1503	838	1060	In tensi Dedicated

### MINI HAUNCH - FOR ALL 686 x 254 UBs

25 11	250 75 100 75 25 100 75 15	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	F _{rő} kN	ΣF _r kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
F ₋₁ -		230 *	396	353	311	268	226	183	1737	1130	22	
$F_{r3}$	90	250	396	354	313	271	230	188	1752	1172	22	264 264
$F_{rs} \leftarrow H_{rs}$	90	300	396	357	317	278	239	199	1786	1279	23	11 12 13
F _{r6} - V	90	350	396	359	321	284	247	210	1817	1387	23	nsion zone ed to shear
		400	396	361	325	290	254	219	1845	1497	23	In tens Dedicated
ΣF	- <b>+</b>	450	396	362	329	295	261	228	1871	1611	24	Dedi =
		1		1		1						

WELDS											
Tension	Flange	Web	Compression Flange in								
Extended	Flush		direct bearing								
mm	mm	mm	mm								
10FW+9pp	10FW	12FW	8FW								
10FW+9pp	10FW	10FW	8FW								
10FW+9pp	10FW	10FW	8FW								
12FW	10FW	10FW	8FW								
	Tension Extended mm 10FW+9pp 10FW+9pp 10FW+9pp	TensionFlangeExtendedFlush mm10FW+9pp10FW10FW+9pp10FW10FW+9pp10FW10FW+9pp10FW	TensionFlangeWebExtendedFlush mmmm10FW+9pp10FW12FW10FW+9pp10FW10FW10FW+9pp10FW10FW								


* minimum recommended haunch depth.

See: Notes	- pages 142 - 143
Examples	- pages 145 - 149
Column tables	- pages 182 - 184

250 x 25 END PLATE - DESIGN GRADE 43

### 610 x 305 UB DESIGN GRADE 43 M24 8.8 BOLTS

FLUSH END PLATE



 Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
610 x 305 x 238	396	332	268	204	1200	2912	536	1980	= 106 = 264
179	396	331	265	200	1192	2189	519	1460	
149	396	330	264	198	1188	1827	510	1210	In tension zone Dedicated to shear

EXTENDED END PLATE												
25 1	250 75 100 75	Serial Size	F _{ri} kN	F _{r2} kN	۶. KN	F _™ kN	F _{rs} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Bearn M _{cx} kNm	Bolt Shear Capacity kNper row
$F_{r1}$	40 60 90	610 x 305 x 238	364	396	33,2	268	204	1564	2912	775	1980	106 264
$F_{r4} \rightarrow F_{r5} \rightarrow F_{V}$	90	179	364	396	331	265	200	1556	2189	754	1460	on zone = to shear =
ΣϜ _Γ		149	364	396	330	264	198	1552	1827	743	1210	In tension zone Dedicated to shear

MINI HAUNCH - FOR ALL 610 x 305 UBs												
25 11	250 75 100 75	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	۴ĩS	F _{rs} kN	ΣF, kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row	
	60	200 *	396	348	300	251	203	1498	882	19		
	90	250	396	351	306	261	215	1529	972	19	106 264	
r3 🖛 🙀		300	396	354	311	269	226	1556	1064	20		
4 🖛 📲 [M] /		350	396	356	316	276	236	1579	1157	20	In tension zone dicated to shear	
s 🖛 🕂 🚺		400	396	358	320	282	244	1601	1250	20	In tension Dedicated to	
		450	396	360	324	288	252	1620	1344	21	dicat	
		500	396	362	327	293	259	1637	1438	21	ے ا	
F,		560 ^s	396	364	327	299	266	1651	1548	21		

WELDS				
Serial Size	Tension Extended	Flange Flush	Web	Compression Flange in
	mm	mm	mm	direct bearing mm
610 x 305 x 238	10FW+9pp	10FW	10FW+8pp	8FW
179	10FW+9pp	10FW	10FW	8FW
149	10FW+9pp	10FW	10FW	8FW

* minimum recommended haunch depth.

[§] maximum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 182 - 184

250 x 25 END PLATE - DESIGN GRADE 43

### 610 x 229 UB DESIGN GRADE 43 M24 8.8 BOLTS

FLUSH END PLATE  $F_{r1}$   $\downarrow$   $f_{r2}$   $\downarrow$   $f_{r3}$   $\downarrow$   $f_{r4}$   $f_{r4}$   $\downarrow$   $f_{r4}$   $f_{r4}$ 

250 5 100 75 15 60 90 90 90 90	610 x 2

<u> </u>	-			<b>—</b>			<b></b>		
Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
610 x 229 x 140	396	331	265	200	1192	1887	519	1100	106 264
125	396	330	264	199	1189	1665	514	973	zone = shear =
113	396	330	264	197	1187	1465	509	871	In tension zone : Dedicated to shear :
101	396	329	263	196	1184	1297	503	794	Dedi

EXTEND	EXTENDED END PLATE											
25 1 F _{r1}	250 75 100 75 50	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kNper row
Fr2	60	610 x 229 x 140	364	396	331	265	200	1556	1887	754	1100	
$\mathbf{F}_{r4}^{r3} \leftarrow \mathbf{F}_{r4} \left[ \mathbf{M} \right]$	90	125	335	396	330	264	199	1524	1665	729	973	= 106 = 264
^r r5 - V'		113	335	396	330	264	140	1465	1465	707	871	zone shear
ΣF							(197)					In tension zone Dedicated to shear
^{∠r} ,►		101	371	396	329	200	0	1297	1297	665	794	In te edica
						(263)	(196)					

### MINI HAUNCH - FOR ALL 610 x 229 UBs

25 [1]	250 75 100 75	Haunch Depth mm	F _{r1} kN	F _{,2} kN	F _{r3} kN	F _{rt} kN	F _{rs} kN	ΣF, kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row	
$F_{r1} \leftarrow F_{r2} \leftarrow F_{r2} \leftarrow F_{r3} \leftarrow F_{r2} \leftarrow F_{r3} \leftarrow F$		200 *	396	347	298	250	201	1492	868	21	- 106 - 264	
$F_{r4} - H M$	90	250	396	350	305	259	214	1524	959	21	1 zone = o shear =	
v V		300	396	353	310	268	225	1552	1051	22	In tension zone Dedicated to shear	
ΣF	-+][+	350	396	356	315	275	234	1577	1147	22	_ A	

WELDS		- - -		
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm
610 x 229 x 140	10FW+10pp	12FW	10FW	8FW
125	FPB	1.2FW	10FW	8FW
113	FPB	12FW	8FW	8FW
101	12FW	12FW	8FW	8FW

* minimum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 182 - 184

250 x 25 END PLATE - DESIGN GRADE 43

### 533 x 210 UB DESIGN GRADE 43 M24 8.8 BOLTS

FLUSH END PLATE 250 Serial Beam Moment Beam Bolt Shear 25 75 100 75 F_{r2} kN F_{r1} kN F_{r3} kN F_{r4} kN ΣF_r kN P_c kN M_{cx} kNm Size Capacity Capacity 11 kNm kN per row 15 60 F_{r1} 533 x 210 x 122 396 321 246 170 1133 1674 418 849 90 8 2  $F_{r2}$ 109 396 320 244 169 1129 749 1470 412 90 F_{r3} In tension zone = Dedicated to shear= M 90 101 396 320 244 168 1128 1356 410 694 92 396 319 243 166 1124 1257 406 651 82 396 319 242 104 1061 1061 389 566 (164) ΣF

EXTENDED	END PLATE											
25 11 E	<u>, 250</u> 75 100,75	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	M _{cx}	Bolt Shear Capacity kN per row
F.2	40	533 x 210 x 122	335	396	321	246	170	1468	1674	610	849	X0 44
$F_{r3}$	90	109	335	396	320	244	169	1464	1470	603	749	= 264
$F_{r4} - M$	<b>1 1 1 90 90 90 90 90 90 90 90</b>	101	335	396	320		62 (168)	1356	1356	579	694	i zone = to shear=
		92	371	396		171 (243)	0 (166)	1258	1257	563	651	In tension Dedicated t
ΣFr	-•1[+-	82	364	396	301	0	0 (164)	1061	1061	499	566	In t Dedi

### MINI HAUNCH - FOR ALL 533 x 210 UBs

25 11	250 75 100 75 15 60	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF _r kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	
$F_{r1} \leftarrow F_{r2} \leftarrow F_{r3} \leftarrow F$		180 *	396	341	285	229	173	1423	702	22	106 264
$F_{r4} \rightarrow H_{M}$	90	200	396	342	288	234	180	1440	737	22	n zone = to shear=
V		250	396	346	296	245	195	1478	826	22	In tension Dedicated to
ΣFr		300	396	350	303	256	208	1512	916	23	

WELDS											
Serial	Tension	Flange	Web	Compression							
Size	Extended	Flush	7	Flange in direct bearing							
	mm	mm	mm	mm							
533 x 210 x 122	FPB	12FW	10FW	8FW							
109	FPB	12FW	10FW	8FW							
101	FPB	12FW	8FW	8FW							
92	12FW	12FW	8FW	8FW							
82	10FW	12FW	8FW	8FW							

* minimum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 182 - 184

200 x 20 END PLATE - DESIGN GRADE 43

### **457 x 191 UB** DESIGN GRADE 43 M20 8.8 BOLTS

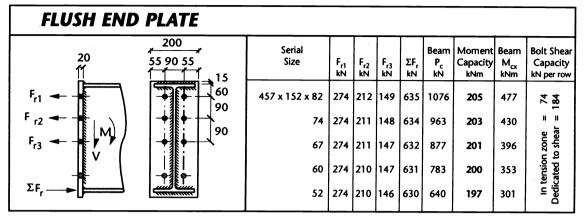
FLUSH END PLATE

20 20 11 11 20 55 90 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
	50 457 x 191 x 98	274	212	150	636	1402	207	592	74
	89	274	212	149	635	1261	205	535	
$F_{r3} \leftarrow + + + + + + + + + + + + + + + + + + $	82	274	211	148	633	1136	203	504	n zone to shear
	74	274	211	148	632	1063	201	456	
ΣF _r →	67	274	210	147	631	929	199	405	In tensic Dedicated

EXTENDED	EXTENDED END PLATE										
20 F _{r1}	200 55 90 55 50 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _r t kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Bearn M _{cx} kNm	Bolt Shear Capacity kN per row
		457 x 191 x 98	226	274	212	150	862	1402	319	592	74 184
$F_{r3} - H_{M}$	90	89	226	274	212	149	861	1261	316	535	ear =
		82	230	274	211	148	863	1136	316	504	on zone to shea
		74	230	274	211	148	862	1063	314	456	In tension Dedicated to
ΣFr		67	226	274	210	147	857	929	309	405	Dedi

## MINI HAUNCH - FOR ALL 457 x 191 UBs

20 11	200 55 90 55	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _r kN	ΣF _r kN		Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
F _{r1}		150 <b>*</b>	274	228	182	136	821	351	13	74 84
F _{r2}	90	200	274	232	190	148	844	401	14	""
$F_{r3}$ $F_{r4}$ $F_{r4}$	90	250	274	235	197	158	864	451	14	n zone to shear
V		300	274	237	202	166	879	501	14	In tension Dedicated to
		350	274	237	207	174	891	551	15	E De D
$\Sigma F_r$		400	274	237	211	180	902	602	15	


WELDS	5			
Serial	Tension	Flange	Web	Compression
Size	Extended Flush			Flange in direct bearing
	mm	mm	mm	mm
457 x 191 x 98	10FW+7pp	10FW	10FW	8FW
89	10FW+7pp	10FW	8FW	8FW
82	12FW	10FW	8FW	8FW
74	12FW	10FW	8FW	8FW
67	10FW	10FW	8FW	8FW

* minimum recommended haunch depth.

See:	Notes -	pages 142 - 143
	Examples -	pages 145 - 149
Colu	mn tables -	pages 185 - 187

### **457 x 152 UB** DESIGN GRADE 43 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43



EXTENDED	END PLATE										
20 F _{r1}	200 55 90 55 55 90 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
$F_{r2}$	40	457 x 152 x 82 74				149 148			310 307	477 430	= 74 = 184
$F_{r4}$ $F_{r4}$ $F_{r4}$	90	67	230	274	211	147	862	877	313	396	n zone to shear
ΣF		60 52		274		73 (147) 0		783 640	294 255	353 301	In tension Dedicated to
r - 0					(210)	(146)					ے

### MINI HAUNCH - FOR ALL 457 x 152 UBs

20 11	200 55 90 55	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF _r kN		Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
F _{r1}		150 *	274	228	181	135	818	345	17	
$F_{r2} \rightarrow F_{r2}$	90	200	274	232	189	147	841	394	17	= 74 = 184
$F_{r3} \leftarrow M$	90	250	274	232	196	157	859	443	17	n zone to shear
		300	274	232	202	165	873	493	18	
		350	274	232	206	173	885	542	18	In tensio Dedicated
ΣF _r		400	274	232	211	179	896	592	18	

WELDS				
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm		mm	mm
457 x 152 x 82	FPB	12FW	8FW	8FW
74	FPB	12FW	8FW	8FW
67	12FW	12FW	8FW	8FW
60	10FW	10FW	6FW	8FW
52	8FW	8FW	6FW	6FW
		l		

* minimum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 185 - 187

406 x 178 UB

**DESIGN GRADE 43** 

M20 8.8 BOLTS

# **MOMENT CAPACITIES**

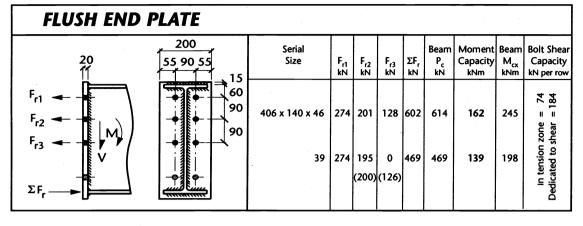
200 x 20 END PLATE - DESIGN GRADE 43

### FLUSH END PLATE

20 11	200 55 90 55	Serial Size	F _{rt} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
F _{r1}		406 x 178 x 74	274	203	131	608	1067	168	415	= 74 = 184
$F_{r2} \leftarrow M$ $F_{r3} \leftarrow M$	90	67	274	202	130	606	984	166	370	on zone to shear
	- <b>•</b>	60	274	201	129	604	876	164	329	In tension Dedicated to
		54	274	201	128	603	745	162	289	Dec

EXTENDED	END PLATE										
20 11 F-1 - 1	200 55 90 55 50 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
$F_{r2}$		406 x 178 x 74	230	274	203	131	837	1067	270	415	= 74 = 184
$ \begin{array}{c} F_{r3} \leftarrow F_{r4} \\ F_{r4} \leftarrow F_{r4} \end{array} $	90 90	67	230	274	202	130	836	984	267	370	on zone to shear
		60	226	274	201	129	830	876	264	329	In tension Dedicated to s
$\Sigma F_r \longrightarrow$		54	222	274	201	48 (128)	745	745	247	289	Dedi

MINI HAUN	ICH - FOR A	LL 40	<i>k</i> 6	(1)	78	UBs	5			
20	<u>200</u> 55 90 55	Haunch Depth	F _{r1}	F _{r2}	F _{r3}	F _{r4}	ΣF,		Min. thickness Haunch Flange	Bolt Shear Capacity
11	15	mm	kN	kN	kN	kN	kN	kNm	mm .	kN per row
$F_{r1}$		130 *	274	221	168	116	779	279	14	74 84
$F_{r3} \leftarrow F_{r3}$	<b>1 1 90</b>	150	274	223	173	122	792	298	14	9 2 1
F _{r4}	90	200	274	228	182	136	821	349	14	In tension zone licated to shear
		250	274	230	190	148	843	399	15	In tension Dedicated to
ΣF		300	274	232	196	158	860	448	15	Ğ


WELDS	5		-	-
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm
406 x 178 x 74	12FW	10FW	8FW	8FW
67	12FW	10FW	8FW	8FW
60	10FW	10FW	6FW	8FW
54	8FW	8FW	6FW	6FW

* minimum recommended haunch depth.

See:	Notes -	pages 142 - 143
	Examples -	pages 145 - 149
Colu	mn tables -	pages 185 - 187

#### **406 x 140 UB** DESIGN GRADE 43 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43

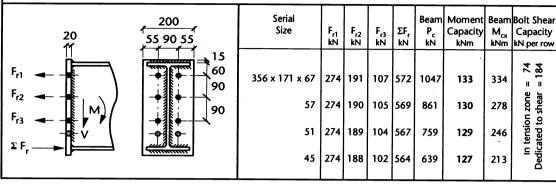


EXTENDED	END PLATE										
	200 55 90 55 50 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	M _{cx}	Bolt Shear Capacity kN per row
$ \begin{array}{c} F_{r2} \\ F_{r3} \\ F_{r3} \\ F_{r4} \\ F_{r$	40 60 90 90	406 x 140 x 46	222		118 (201)		614	614	218	245	1 zone = 74 shear = 184
$\Sigma$ F _r $\rightarrow$ $\Sigma$ F _r	+ + + + + + + + + + + + + + + + + + +	39	222		0 (200)	-	469	469	178	198	In tension Dedicated to

MINI HAUN	ICH - FOR A	LL 40	<i>б</i> х	( 14	10	UBs	5			
20	200 55 90 55	Haunch Depth	F _{r1}	F _{r2}	F _{r3}	F _{r4}	ΣF _r	1	Min. thickness Haunch Flange	Bolt Shear Capacity
11		mm	kN	kN	kN	kN	kN	kNm	mm	kN per row
$F_{r1} \leftarrow F_{r2} \leftarrow F$	60	130*	274	221	166	113	773	275	17	74 84
$F_{r3}$	90	150	274	222	171	119	787	293	18	ne = ar = 1
F _{r4}	90	200	274	227	181	134	8168	342	18	In tension zone licated to shear
		250	274	231	189	146	839	391	19	In tension Dedicated to
ΣF		300	274	231	195	156	856	439	19	Ď

<b>WELD</b>	5			
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm
406 x 140 x 46	8FW	8FW	6FW	6FW
39	8FW	8FW	6FW	6FW

* minimum recommended haunch depth.


See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 185 - 187

158

200 x 20 END PLATE - DESIGN GRADE 43

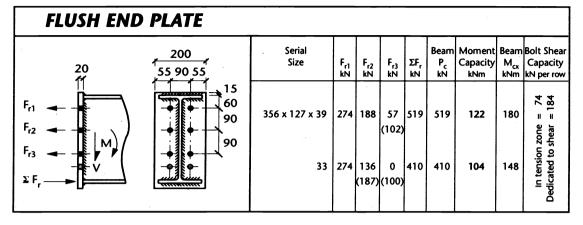
### **356 x 171 UB** DESIGN GRADE 43 M20 8.8 BOLTS

FLUSH END PLATE



EXTENDED END PLATE										
20 <u>200</u> 55 90 55 F ₋₁ 50	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
$F_{r2}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	356 x 171 x 67 57		1		107 105			224	334	le = 74 ar = 184
$F_{r4} \rightarrow F_{r4} \rightarrow F$	51			189		759		219 213	278 246	nsion zone ed to shear
	45	222		142	r 1	639	639	193	213	In tens Dedicated

MINI HAUN	ICH - FOR A	LL 35	<i>б</i> х	c 12	71	UBs	5		
20	200 55 90 55	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF, kN		Min. thickness Haunch Flange mm	
$F_{r1} \leftarrow F_{r1}$		120 *	274	213	153	640	213	12	74 84
Fr2 -	90	150	274	217	161	652	236	12	zone = shear = 1
$F_{r3} \rightarrow V$		200	274	223	172	670	274	12	요령
		250	274	228	182	684	313	12	In tens Dedicated
$\Sigma F_r \longrightarrow b$		300	274	231	190	695	352	13	_


Tension Extended mm	Flange Flush mm	Web mm	Compression Flange in direct bearing mm
		mm	direct bearing
mm	mm	mm	mm
12FW	10FW	8FW	8FW
10FW	10FW	6FW	8FW
10FW	10FW	6FW	6FW
8FW	8FW	6FW	6FW
	10FW 10FW	10FW 10FW 10FW 10FW	10FW         10FW         6FW           10FW         10FW         6FW

* minimum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 185 - 187

### **356 x 127 UB** DESIGN GRADE 43 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43



EXTENDED END PLATE										
20 <u>200</u> 55 90 55 F. 50	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	۳ ۲ ت	ΣF, kN		Moment Capacity _{kNm}		Bolt Shear Capacity kN per row
$F_{r2} \leftarrow F_{r3} \leftarrow F_{r4} + F$	356 x 127 x 39	222	274	23 (188)	0 (102)	519	519	169	180	zone = 74 shear = 184
$F_{r4} \leftarrow V$ $\Sigma F_{r} \rightarrow V$	33	222	188 (274)	0 (187)	0 (100)	411	411	139	148	In tension Dedicated to

MINI HAUN	ICH - FOR A	LL 35	<i>с</i> б х	(1)	27	UBs	5	-	
20	<u>, 200</u> 55 90 55	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF, kN		Min. thickness Haunch Flange mm	
$F_{r1} = H_{r2}$ $F_{r2} = H_{r3}$ $V$ $V$ $\Sigma F_{r}$		120*	274	212	151	637	209	16	In tension zone = 74 Dedicated to shear = 184

WELDS	5			
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm .
356 x 127 x 39	8FW	8FW	6FW	6FW
33	8FW	8FW	6FW	6FW

* minimum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 185 - 187

200 x 20 END PLATE - DESIGN GRADE 43

### **305 x 165 UB** DESIGN GRADE 43 M20 8.8 BOLTS

FLUSH END PLATE

		Serial				Beam	Moment	Beam	Bolt Shear
20	200	Size	F _{r1}	F _{r2}	ΣF,	Pc	Capacity	Μ _α	Capacity
20	55 90 55		kN	kN	kN	kN	kNm	kNm	kN per row
									74
$ \begin{array}{c} F_{r1} \leftarrow F_{r2} \\ F_{r2} \leftarrow F_{r2} \end{array} $	90	305 x 165 x 54	274	173	447	880	93	232	" "
ΣF,		46	274	172	446	753	92	198	5 9
2r, <b>→</b> ل		40	274	171	445	648	91	172	In tensi Dedicated

EXTENDED EN	D PLATE								
20	00 55 Size	F _{ri} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
Fr1	€	226	274	173	673	880	171	232	one = 74 ear = 184
Fr3 - M	<b>↓</b> 90 46 ↓ 40	226	274 274	172	672 648	753 648	169 163	198 172	In tension zone edicated to shear
Σ F				(171)					Dedic

MINI HAU	INCH - FOR A	LL 305	x 16	55 U	Bs				
20 行	<u>200</u> 55 90 55	Haunch Depth	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
$F_{r1} \leftarrow F_{r2} \leftarrow F$		100 *	274	201	128	604	165	12	e = 74 ar = 184
F _{r3} - V	90	130 160	274	207 212	140 150	621 636	187 209	12 12	In tension zone licated to shear
ΣFr		190 220	274 274	216 220	158 166	647 661	227 255	12 13	In tens Dedicated

WELD	S ·			
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm
305 x 165 x 54	10FW	10FW	6FW	8FW
46	10FW	10FW	6FW	6FW
40	8FW	8FW	6FW	6FW

* minimum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 185 - 187 

# **MOMENT CAPACITIES**

200 x 20 END PLATE - DESIGN GRADE 43

### **305 x 127 UB** DESIGN GRADE 43 M20 8.8 BOLTS

FLUSH END PLATE

, 200		1			веат	Moment	Beam	Bolt Shear
20 <u>* 200</u> * 55 90 55	Size	Fn	F,2	ΣF,	Pc	Capacity	M _{cx}	Capacity
		kN	kN	kN	kN	kNm	kNm	kN per row
$F_{r1} \longrightarrow F_{r2} \longrightarrow M$	305 x 127 x 48 42 37	274	173 171 171	447 445 445	675 579 509	93 92 91	194 168 149	In tension zone = 74 Dedicated to shear = 184

EXTENDED END PLATE									
20 <u>* 200</u> 55 90 55	Serial Size	F _{ri} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
Fr1 50 40	305 x 127 x 48	226	274	173	673	675	171	194	= 74 = 184
$F_{r3} \rightarrow M$	42	226	274	79 (171)	579	579	155	168	In tension zone Jicated to shear
	37	222	274	13 (171)	509	509	142	149	In tension Dedicated to

			T		1		I		
	200	Haunch		$= 3 \pi^{-1}$			Moment	Min. thickness	Bolt Shea
20	55 90 55	Depth	F _{r1}	F _{r2}	F _{r3}	ΣF	Capacity	Haunch Flange	Capacity
11		· · · · · · · · · · · · · · · · · · ·	kN	kN	kN	kN	kNm	mm	kN per ro
й <b>———</b> —					1.1				4 48
₁ ◀ ₩	♦ ↓ 60				1				18 1
2 - M	90	100 *	274	201	128	603	163	15	
									zone shear
r3 🖛 🛉 V 🤇		130	274	207	140	621	185	16	on z to sl
									s sig
		160	274	212	150	636	207	16	In tensi Dedicated
ΣF,		160	274	212	150	636	207	16	In tension

WELD	WELDS										
Serial Size	Tension Extended	Flange Flush	Web	Compression Flange in							
5120	mm	mm	mm	direct bearing mm							
305 x 127 x 48	10FW	10FW	8FW	8FW							
42	10FW	10FW	6FW	8FW							
37	8FW	8FW	6FW	6FW							

* minimum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149

Column tables - pages 185 - 187

200 x 20 END PLATE - DESIGN GRADE 43

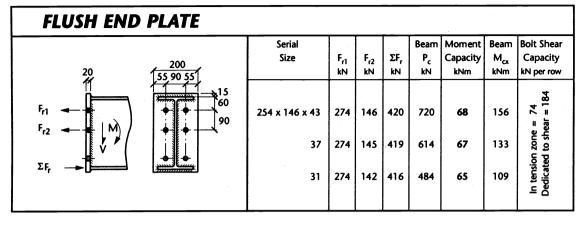
### **305 x 102 UB** DESIGN GRADE 43 M20 8.8 BOLTS

FLUSH END PLATE

	Serial Size	Fri	F,2	ΣF,	Beam P _c	Moment Capacity	Beam M _{cx}	Bolt Shear Capacity
20 <u>55</u> 90 55		kN	kN	kN	_kN	kNm	kNm	kN per row
Fn	305 x 102 x 33		152 (174)	426	426	92	132	: = 74 = 184
$F_{r2} \leftarrow H M / H H H$	28	274	75 (173)	349	349	<del>79</del>	112	tension zone Ited to shear
ΣF _r —	25	266 (274)	0 (172)	266	266	64	92.4	In tens Dedicated

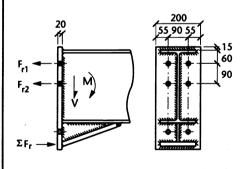
EXTENDED END PLATE						4 	÷.,		
20, 55,90,55 11, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Beam P, kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
$F_{r1}$ $F_{r2}$ $F$	305 x 102 x 33	222	204 (274)	0 (174)	426	426	128	132	ne = 74 ar = 184
	28	222	.127 (274)	0 (173)	349	349	107	112	In tension zone Dedicated to shear
	25	219	47 (274)	0 (172)	266	266	86	92.4	Dedici

MINI HAUNCH - FOR ALL 305 x 102 UBs									
20 55 90 55 11	Haunch Depth	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row	
$F_{r1} \longrightarrow F_{r2}$ $F_{r3} \longrightarrow V$ $\Sigma F_{r} \longrightarrow V$	100 *	274	200	127	601	161	19	In tension zone = $74$ Dedicated to shear = $184$	


WELDS										
Serial	Tension	Flange	Web	Compression						
Size	Extended	Flush		Flange in direct bearing						
	mm	mm	mm	mm						
305 x 102 x 33	8FW	8FW	6FW	6FW						
28	8FW	8FW	6FW	6FW						
25			6FW	6FW						
		·								

* minimum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 185 - 187


### 254 x 146 UB DESIGN GRADE 43 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43



EXTENDED	END PLATE	•								
20	200 [55,90,5 <b>\$</b>	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
		254 x 146 x 43	226	274	146	646	720	134	156	= 74 ır = 184
$\begin{array}{c} F_{r2} & \bullet & \bullet \\ F_{r3} & \bullet & \bullet & M \end{array}$		37	222	274	118 (145)	614	614	129	133	on zone = ed to shear
ΣF,		31	222	262 (274)	0 (142)	484	484	113	108	In tension Dedicated

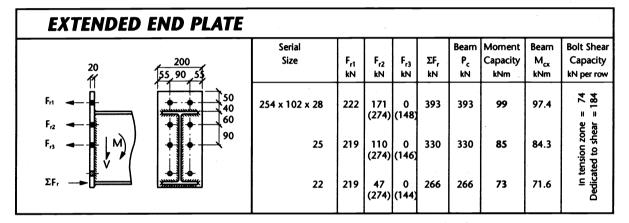
MINI	HAUN	ICH -	FOR	ALL	254 x	(14)	6 UE	ßs	



Haunch					Moment	Min. thickness	
Depth	Fn	F _{r2}	F _{r3}	ΣFr	Capacity	Haunch Flange	Capacity
	kN	kN	kN	kN	kNm	mm	kN per row
	1						
	1 274	100			114	1.2	2
85 *	274	183	93	550	116	12	2"
							ne = shear
100	274	188	102	564	127	12	zone to she
							d to Z
130	274	196	118	589	148	13	ate
							In tension Dedicated t
160	274	204	132	609	169	13	_ <b>≞</b> Ճ_
						-	

Т

WELDS	WELDS										
Serial	Tension	Flange	Web	Compression							
Size	Extended	Flush		Flange in direct bearing							
	mm	mm	mm	mm							
254 x 146 x 43	10FW -	10FW	6FW	8FW							
	-										
37	8FW	8FW	6FW	6FW							
31	8FW	8FW	6FW	6FW							
31	OFW	OFW		UPVV							


* minimum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 185 - 187

200 x 20 END PLATE - DESIGN GRADE 43

### **254 x 102 UB** DESIGN GRADE 43 M20 8.8 BOLTS

FLUSH END PLATE Moment Bolt Shear Beam Serial Beam P_c kN Capacity Size F_{r1} kN F_{r2} kN ΣF, Capacity M_{cx} 200 20 11 kΝ kNm kNm kN per row 55,90 55 15 60 = 74 = 184 254 x 102 x 28 274 119 393 393 66 ·97.4 Fr1 (148) . 90 In tension zone Dedicated to shear IM F_{r2} 25 274 56 330 330 59 84.3 (146) ΣF, 266 0 (274) (144) 22 266 266 51 71.6



MINI HAUNCH - FOR AL	L 254 x	102	2 UI	Bs				
20 $\frac{200}{55,90,55}$	Haunch Depth	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
$F_{r1} \longrightarrow M$	85	274	183	92	548	115	17	In tension zone = 74 Dedicated to shear = 184

WELDS	5			
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
-	mm	mm	mm	mm
			,	
254 x 102 x 28	8FW	8FW	6FW	6FW
25	6FW	6FW	6FW	6FW
22	6FW	6FW	6FW	6FW
22	Orw	Orvv		0.44

See:	Notes	•	pages 142 - 143
	Examples		pages 145 - 149
Colu	mn tables	-	pages 185 - 187

250 x 25 END PLATE - DESIGN GRADE 43

### 762 x 267 UB **DESIGN GRADE 50 M24 8.8 BOLTS**

. .

FLUSH END PLATE 250 Serial Beam Moment Bolt Shear Beam Capacity kN per row 25 11 ΣF_r kN Capacity kNm Size F_{r1} kN F_{r2} kN P_c kN M_{cx} kNm F_{r3} F_{r4} kN kN F_{rs} kN <u>75 100 75</u> 15 60 90 106 264 762 x 267 x 197 396 345 294 243 191 1469 3067 805 2470 F, 2 90 90 In tension zone Dedicated to shear M 396 344 293 241 190 1464 90 173 2608 795 2140 396 344 292 240 188 2113 1780 147 1460 780 ΣF,

EXTENDED	END PLATE					· .							
25 Fr1 -	250 75 100 75 50	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	F _{r6} kN	ΣF _r kN		Moment Capacity kNm	M _{cx}	Bolt Shear Capacity kN per row
$F_{r2}$ $\leftarrow$ $F_{r3}$ $\leftarrow$ $F_{r4}$ $\leftarrow$ $F_{r4}$	60	762 x 267 x 197	364	396	345	294	243	191	1832	3067	1095	2470	= 106 = 264
$F_{r5} \leftarrow M$ $F_{r6} \leftarrow V$	90 90 90	173	364	396	344	293	241	190	1828	2608	1083	2140	sion zone d to shear
ΣF _r		147	364	396	344	292	240	188	1824	2113	1070	1780	In tension Dedicated to

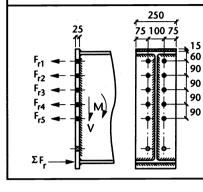
### MINI HAUNCH - FOR ALL 762 x 267 UBs

25	250 75 100 75	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	F _{ró} kN	ΣF _r kN		Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
$F_{r1} \leftarrow F_{r1}$	<b>60</b> 90	350	396	361	327	292	258	223	1858	1558	18	
$F_{r2} - F_{r3} - F_{r3}$	90	400	396	363	330	297	264	231	1882	1669	18	264
$F_{r4} \leftarrow H(M)$	90	450	396	365	330	302	270	239	1900	1777	19	
$F_{r5} - F_{r6} - V$	90	500	396	366	329	306	276	246	1917	1888	19	zone shear
		550	396	367	328	309	281	252	1932	1996	19	<u>5</u> 2
		600	396	368	327	313	285	257	1946	2104	19	In tens Dedicated
ΣF,		650	396	369	326	313	289	262	1956	2211	19	De
		700	396	370	325	313	293	267	1964	2317	19	

WELD	S					
Serial Size	Tension Fl	ange	Web	Compression		
Size	Extended mm	Flush mm	mm	Flange in direct bearing mm		
762 x 267 x 197	10FW+7pp	10FW	12FW	8FW		
173	10FW+7pp	10FW	12FW	8FW		
147	10FW+7pp	10FW	10FW	8FW		

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 182 - 184

686 x 254 UB


**DESIGN GRADE 50** 

M24 8.8 BOLTS

## **MOMENT CAPACITIES**

250 x 25 END PLATE - DESIGN GRADE 43

### FLUSH END PLATE



	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
, , , , , , , , , , , , , , , , , , ,	686 x 254 x 170	396	339	281	224	166	1406	2862	672	1940	106 264
	152	396	338	280	223	165	1402	2536	665	1730	ione = hear =
	140	396	338	280	222	164	1400	2294	659	1570	In tension zone Dedicated to shear
	125	396	338	279	221	162	1396	1956	652	1380	In ( Dedica

EXTENDED	END PLATE		-	-			.***	. *			-		
25 11 F _{r1} <b>→</b>	250 75 100 75 50 50	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F.t.Z	F _{rs} kN	F _{ró} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Max	Bolt Shear Capacity kN per row
$F_{r2}$		686 x 254 x 170	364	396	339	281	224	166	1770	2862	934	1940	106 264
$F_{r4} - F_{r5} - F_{r5}$	90	152	364	396	338	280	223	165	1766	2536	925	1730	zone = shear =
$F_{r6} \rightarrow F_{r6}$	90	140	364	396	338	280	222	164	1763	2294	919	1570	
ΣFr	_ <b>-j</b> ] <b>j</b> -	125	371	396	338	279	221	162	1767	1956	916	1380	In tension Dedicated to

### MINI HAUNCH - FOR ALL 686 x 254 UBs

		r		<b></b>								
25	250 75 100 75	Haunch Depth	F _{r1}	F,2	F _{r3}	F _{r4}	F _{rs}	F _{r6}	ΣF,	Moment Capacity	Min. thickness Haunch Flange	Bolt Shear Capacity
Ĩ	1111	mm	kN	kN	kN	kN	kN	kN	kN	kNm	mm	kN per row
F _{n1} -	60	250	396	354	313	271	230	188	1752	1172	17	
F _{r2} -	90	300	396	357	317	278	239	199	1786	1279	18	106 264
$F_{r3} \leftarrow -$		350	396	359	321	284	247	210	1817	1387	18	5-7
$ \begin{array}{c c} F_{r4} \leftarrow + F_{r4} \\ F_{r5} \leftarrow + F_{r5} \end{array} $	90	400	396	361	325	290	254	219	1845	1503	18	zone shear
$F_{r6}$	<b>1 1 90</b>	450	396	362	328	295	261	228	1870	1612	18	on zc to sh
		500	396	364	326	300	268	235	1888	1718	19	
	mit firm	550	396	365	325	304	273	242	1905	1826	19	In tens Dedicated
	- <b>•</b>	600	396	367	323	308	278	249	1919	1933	19	
ΣFr		640 ^ş	396	367	323	310	282	253	1932	2021	19	

WELD.	S			
Serial Size	Tension	Flange	Web	Compression Flange in
	Extended mm	Flush mm	mm	direct bearing mm
686 x 254 x 170	10FW+7pp	10FW	12FW	8FW
152	10FW+7pp	10FW	10FW	8FW
140	10FW+7pp	10FW	10FW	8FW
125	12FW	10FW	10FW	8FW

[§] maximum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 182 - 184

### SIGN GRADE 43 MA

### 610 x 305 UB DESIGN GRADE 50 M24 8.8 BOLTS

250 x 25 END PLATE - DESIGN GRADE 43



$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1
$F_{r1} \leftarrow F_{r2} \leftarrow F$	
$F_{r4} \rightarrow F_{r4} \rightarrow F$	
$\Sigma F_r \rightarrow F_r$ 149 396 330 264 198 1188 2379 510 1580 $\frac{1}{9}$	

EXTENDED END PLATE	· · · · · · · · · · · · · · · · · · ·							-	1		
25 <u>75 100 75</u> 50	Serial Size	F _{ri} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF, kN	Beam P kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
$F_{r1} \leftarrow F_{r2} \leftarrow F_{r3} \leftarrow F_{r3} \leftarrow F_{r4} \leftarrow F$	610 x 305 x 238	364	396	332	268	204	1564	3792	775	2570	= 106 = 264
$ \begin{array}{c} F_{r4} & \longleftarrow & M \\ F_{r5} & \longleftarrow & V \\ \end{array} $	179	364	396	331	265	200	1556	2850	754	1900	ion zone 1 to shear
	149	364	396	330	264	198	1552	2379	743	1580	In tension Dedicated to

### MINI HAUNCH - FOR ALL 610 x 305 UBs

25 11	250 75 100 75	Haunch Depth mm	F _{r1} kN	F ₁₂ kN	F _{r3} kN	F [≭] Z	F _{rs} kN	ΣF, kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
	60	200 *	396	348	300	252	204	1499	885	15	
F _{r2}		250	396	351	306	261	216	1530	976	15	
F _{r3}	90	300	396	354	311	269	227	1557	1068	15	106 264
[r4 ← H[ [M] /	90	350	396	356	316	276	236	1580	1160	16	ear =
Frs - V		400	396	358	320	282	245	1601	1253	16	on zone to shear
		450	396	360	324	288	252	1620	1347	16	
		500	396	362	328	293	259	1638	1441	16	In tensi Dedicated
ΣF		560 ^s	396	364	327	299	267	1654	1555	16	

WELDS	WELDS												
Serial Size				Compression Flange in direct bearing									
	mm	mm	mm	mm									
610 x 305 x 238	10FW+7pp	10FW	10FW+8pp	8FW									
179	10FW+7pp	10FW	10FW	8FW									
149	10FW+7pp	10FW	10FW	8FW									

* minimum recommended haunch depth.

[§] maximum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 182 - 184

### 610 x 229 UB **DESIGN GRADE 50 M24 8.8 BOLTS**

250 x 25 END PLATE - DESIGN GRADE 43

#### FLUSH END PLATE

25 75 100 75	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
$F_{1} \leftarrow F_{1} \leftarrow F_{1$	610 x 229 x 140				200	1192	2456	519	1430	kit per ton
$ \begin{array}{c} F_{r2} & \longleftarrow & F_{r3} \\ F_{r3} & \longleftarrow & H \\ F_{r4} & \longleftarrow & F_{r4} \end{array} $	125	396	330	264	199	1189	2168	514	1270	re = 106 2ar = 264
	113	396	330	264	197	1187	1907	509	1130	sion zone d to shear
	101	396	329	263	196	1184	1674	503	1020	In tension Dedicated to

EXTENDED EN	ID PLATE	u.								,	
	250 Serial 100,75	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
$F_{r1} \leftarrow F_{r2} \leftarrow F$	50 40 60 610 x 229 x 140	364	396	331	265	200	1556	2456	754	1430	106 264
$ \begin{array}{c} F_{r3} \leftarrow F_{r4} \\ F_{r4} \leftarrow F_{r4} \\ F_{r4} \end{array} $	90 90 90 90	364	396	330	264	199	1553	2168	747	1270	zone = shear =
Frs - V	113	364	396	330	264	197	1551	1907	741	1130	In tension dicated to
ΣF _r	101	371	396	329	263	196	1555	1674	739	1020	In t Dedic

#### A I I .... **MINI HAUNCH** 1

$F_{r1} \leftarrow F_{r2}$ $F_{r3} \leftarrow F_{r4}$ $F_{r5} \leftarrow F_{r5}$	
ΣF,	

CH - FOR AI	LL 61	0 >	<b>x 2</b> .	29	UB:	S	
250 5 100 75	Haunch Depth mm	F _{ri} kN	F _{r2} kN	F _{r3} kN	F.ª KN	F _{rs} kN	ΣF, kN
60 90	200 <b>*</b> 250	396 396	347 351	299 305	250 260	202 214	1495 1526
90	300	396	353	311	268	225	1553
<b>90</b>	350 400	396 396	356 358	315 316	275 281	235 243	1577 1595
	450	396	360	314	287	251	1608
- <b>\ </b>	500	396	362	313	293	258	1621
	560 <del>s</del>	396	363	310	298	266	1634

WELD:	s					
Serial			Web	Compression		
Size	Extended	Flush		Flange in direct bearing		
	mm	mm	mm	mm		
610 x 229 x 140	10FW+8pp	10FW	10FW	8FW		
125	10FW+8pp	10FW	10FW	8FW		
113	10FW+8pp	10FW	8FW	8FW		
101	12FW	10FW	8FW	8FW		

* minimum recommended haunch depth.

Moment

Capacity

kNm

872

963

1054

1147

1236

1325

1415

1522

Min. thickness

Haunch Flange

mm

16

16

16

17

17

17

17

17

Bolt Shear

Capacity

kN per row

In tension zone = 106 Dedicated to shear = 264

[§] maximum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 182 - 184

169

250 x 25 END PLATE - DESIGN GRADE 43

### 533 x 210 UB DESIGN GRADE 50 M24 8.8 BOLTS

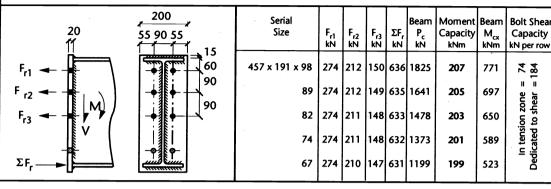
FLUSH END	PLATE										
25 11	250 75 100 75	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
Fr1 -		533 x 210 x 122	396	321	246	170	1133	2180	418	1100	106 264
$ \begin{array}{c c} F_{r2} & \longleftarrow & F_{r3} \\ F_{r3} & \longleftarrow & F_{r4} \\ \end{array} $	90	109	396	320	244	169	1129	1913	412	975	
$F_{r4} \rightarrow F_{r4}$	90	101	396	320	244	168	1128	1766	410	904	In tension zone Dedicated to shear
		92	396	319	243	166	1124	1623	406	840	tensi- ated 1
ΣFr		82	396	319	242	164	1121	1369	401	731	In Dedic

EXTENDED	END PLATE											
25 11	250 75 100,75 50	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
$F_{r2}$		533 x 210 x 122	364	396	321	246	170	1496	2180	626	1100	106 264
$F_{r3} - F_{r3}$	<b>90</b> <b>90</b>	109	364	396	320	244	169	1493	1913	620	975	5 <del>-</del> 7
$F_{r4} \leftarrow F_{r5} \leftarrow F_{r5}$	90	101	364	396	320	244	168	1491	1766	616	904	i zone shear
		92	371	396	319	243	166	1496	1623	616	840	In tension licated to
ΣFr		82	364	396	319	242	49 (164)	1369	1369	583	731	In tension Dedicated to

#### MINI HAUNCH - FOR ALL 533 x 210 UBs

									-		
25 11	250 75 100 75	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	F _{rs} kN	ΣF, kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
		180 *	396	340	285	229	173	1423	705	16	<b>v</b> 0 <b>4</b>
$F_{r2} \leftarrow F_{r3} \leftarrow F$	90	200	396	342	288	234	180	1440	740	16	= 106 = 264
$F_{r4} - H_{M}$	90	250	396	346	296	245	195	1478	828	17	zone shear
Frs - V		300	396	349	302	255	208	1511	918	17	
	and the second s	350	396	352	308	264	220	1540	1009	18	In tension Dedicated to
ΣΕ	- <b>\ </b>	400	396	355	313	272	230	1565	1101	18	
	-manual distance									1	

WELDS				
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm
533 x 210 x 122	10FW+9pp	10FW	10FW	8FW
109	10FW+9pp	10FW	10FW	8FW
101	10FW+7pp	10FW ·	8FW	8FW
92	12FW	10FW	8FW	8FW
82	10FW	10FW	8FW	8FW


* minimum recommended haunch depth

See:	Notes -	•	pages 142 - 143
	Examples -	•	pages 145 - 149
Colu	mn tables -		pages 182 - 184

200 x 20 END PLATE - DESIGN GRADE 43

### 457 x 191 UB DESIGN GRADE 50 M20 8.8 BOLTS

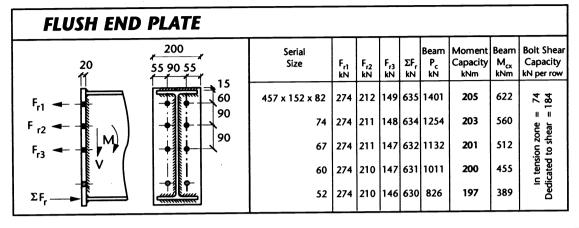
FLUSH END PLATE



EXTENDED	END PLATE										
20 11 F _{e1}	200 55 90 55 50 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN		Moment Capacity kNm		Bolt Shear Capacity kN per row
Fr2		457 x 191 x 98					866	1825	321	771	= 74 = 184
$F_{r3} - H_{r4}$	90	89 82		274 274	212 211	149 148	864 863		318 316	697 650	on zone to shear
		74	230	274	211	148	862	1373	314	589	In tension Dedicated to
		67	226	274	210	147	857	1199	309	523	Ded

### MINI HAUNCH - FOR ALL 457 x 191 UBs

20 11	200 55 90 55	Haunch Depth mm	F _{ri} kN	F _{r2} kN	F _{r3} kN	F _t kN			Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
		200	274	232	190	148	844	402	11	74 84
$F_{r2} \leftarrow F_{r3} \leftarrow F$	90	250	274	235	197	158	864	452	11	" "
$F_{r4}$	90	300	274	237	202	167	880	503	11	12 O
V		350	274	237	207	174	892	553	11	In tension Dedicated to
		400	274	237	211	180	902	603	11	Ded
$\Sigma F_r$		420 [§]	274	237	213	182	906	623	12	


WELD.	S			
Serial Size	Tension Extended	Flange Flush	Web	Compression Flange in direct bearing
	mm	mm	mm	mm
457 x 191 x 98	12FW	8FW	8FW	8FW
89	12FW	8FW	8FW	8FW
82	12FW	8FW	8FW	8FW
74	12FW	8FW	8FW	8FW
67	10FW	8FW	8FŴ	8FW

[§] maximum recommended haunch depth.

See:	Notes -	,	pages 142 - 143
	Examples -		pages 145 - 149
Colu	mn tables -		pages 185- 187

### **457 x 152 UB** DESIGN GRADE 50 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43

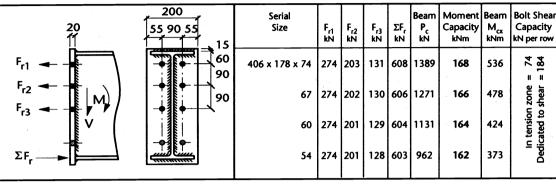


EXTENDED	END PLATE										
20 5	200 55 90 55 50 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm		Bolt Shear Capacity kN per row
$F_{r1} \leftarrow F_{r2} \leftarrow F$		457 x 152 x 82	226	274	212	149	861	1401	317	622	74
$F_{r3} \rightarrow F_{r3}$	90	74	226	274	211	148	859	1254	314	560	zone = shear =
Fr4	90	67	226	274	211	147	862	1132	313	512	on zone to shear
		60	226	274	210	147	857	1011	310	455	
ΣFr		52	222	274	210	120 (146)		826	299	389	In tens Dedicated

### MINI HAUNCH - FOR ALL 457 x 152 UBs

								í –		
20	<u>, 200</u> 55 90 55	Haunch Depth	Fn	F,2	F,,	F,,4	ΣFŗ	Capacity	Min. thickness Haunch Flange	
1	1 1 1 15	mm	kN	kN	kŇ	kN	kN	kNm		kN per row
Fr1 -		200	274	232	190	147	843	398	13	74 84
F _{r2}	90	250	274	232	196	157	860	447	14	zone = shear = 1
$\begin{bmatrix} F_{r3} & - & - & F_{r4} \\ F_{r4} & - & - & F_{r4} \end{bmatrix} $	90	300	274	232	202	166	874	496	14	in tension zone licated to shear
V		350	274	232	207	173	886	546	14	In tension Dedicated to
		400	274	232	211	180	897	596	14	De l
$\Sigma F_r \longrightarrow b$		420 ^s	274	232	210	182	898	613	14	

WELD.	S			
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm
457 x 152 x 82	10FW+7pp	10FW	8FW	8FW
74	10FW+7pp	10FW	8FW	8FW
67	12FW	10FW	8FW	8FW
60	10FW	10FW	6FW	8FW
52	52 8FW		6FW	6FW
				1


[§] maximum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 185- 187

200 x 20 END PLATE - DESIGN GRADE 43

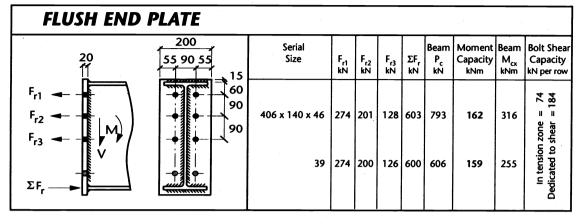
### **406 x 178 UB** DESIGN GRADE 50 M20 8.8 BOLTS

### FLUSH END PLATE



EXTENDED EN	D PLATE									
20 <u>55</u> 9		F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Bearn M _{cx} kNm	Bolt Shear Capacity kN per row
	60 406 x 1/8 x /4	230	274	203	131	837	1389	270	536	= 74 = 184
$ \begin{array}{c} F_{r3} \leftarrow F_{r4} \\ F_{r4} \leftarrow F_{r4} \end{array} $	90 90 67	230	274	202	130	836	1271	267	478	zone shear
	60	226	274	201	129	830	1131	264	424	In tension Dedicated to
Σ F _r	54	222	274	201	128	825	962	259	373	In Dedic

#### MINI HAUNCH - FOR ALL 406 x 178 UBs 200 Moment Min. thickness Bolt Shear Haunch 20 11 ΣF, kN 55 90 55 F_{r1} kN F_{r3} kN Capacity Haunch Flange Capacity Depth F_{r2} kN F_{r4} kN mm . kNm mm kN per row 15 60 181 135 200 274 228 818 346 12 F_{r1} 90 = 74 = 184 F_{r2} 250 274 231 189 147 841 396 12 90 F_{r3} In tension zone Dedicated to shear M 90 F_{r4} 300 231 196 157 858 444 12 274 350 274 231 202 166 872 493 12 370 ^s 274 231 204 169 877 514 12 ΣF


WELDS							
Serial	Tension	Flange	Web	Compression			
Size	Extended	Flush		Flange in direct bearing			
	mm 🦿	mm	mm	mm			
406 x 178 x 74	12FW	8FW	8FW	8FW			
67	12FW	8FW	8FW	8FW			
60	10FW	8FW	6FW	8FW			
54	8FW	8FW	6FW	6FW			

[§] maximum recommended haunch value.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 185- 187

#### **406 x 140 UB** DESIGN GRADE 50 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43

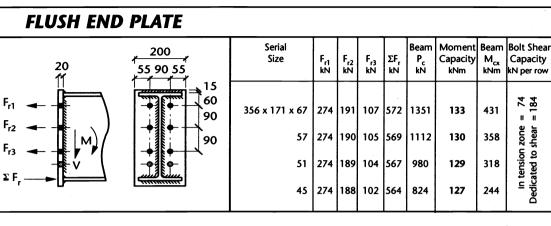


EXTENDED	END PLATE							· 			
20 F ₁	200 55 90 55 50 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
$F_{r2} \leftarrow F_{r3} \leftarrow F$		406 x 140 x 46	222	274		96 (128)	793	793	254	316	zone = 74 shear = 184
$\Sigma F_{r} \longrightarrow \Sigma$	-+ 	39	222		110 (200)	0 (126)	606	606	214	255	In tension edicated to
											0

MINI HAUI	NCH - FOR A	LL 40	б х	14	01	JBs				
20 11	200 55 90 55	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN		Min. thickness Haunch Flange mm	
$F_{r1} - F_{r2} - F_{r3} - F_{r4} - F$	60 90 90 90 90 90	200	274	228	181	135	818	346	14	In tension zone = $74$ Dedicated to shear = $184$

WELDS							
Serial	Tension	Flange	Web	Compression			
Size	Extended	Flush	1	Flange in direct bearing			
	mm	mm	mm	mm			
406 x 140 x 46	8FW	8FW	6FW	6FW			
39	8FW	8FW	6FW	6FW			

See: Notes	-	pages 142 - 143
Examples	-	pages 145 - 149
Column tables	-	pages 185 - 187


356 x 171 UB

**DESIGN GRADE 50** 

**M20 8.8 BOLTS** 

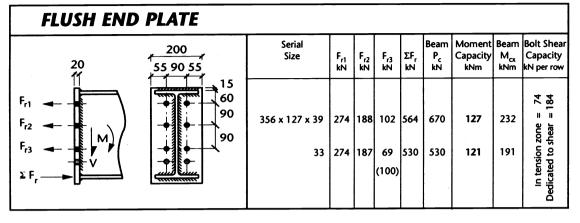
# **MOMENT CAPACITIES**

#### 200 x 20 END PLATE - DESIGN GRADE 43



EXTENDEL	D END PLATE										
20	200 55 90 55 55 90 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF, kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
$F_{r1}$		356 x 171 x 67	230	274	191	107	802	1351	224	431	e = 74 r = 184
$F_{r3} \leftarrow H_{M}$	90	57	226	274	190	105	795	1112	219	358	on zone to shear
		51	226	274	189	104	793	980	217	318	
ΣF _r →		45	222	274	188	102	787	824	213	244	In tens Dedicated

MINI HAUNCH - FOR ALL 356 x 171 UBs									
20 11	200 55 90 55	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF, kN		Min. thickness Haunch Flange mm	
$F_{r1} \leftarrow F_{r2} \leftarrow F$		120 *	274	213	153	640	214	9	= 74 = 184
F _{r3}	90	150	274	218	161	653	237	. 9	zone shear
V		200	274	223	173	670	275	10	In tension zone Dedicated to shear
	-0100-	250	274	228	182	684	314	10	Dedic
ΣF,		300	274	231	190	695	353	10	
			_						


WELDS							
Serial	Tension	Flange	Web	Compression			
Size	Extended	Extended Flush		Flange in direct bearing			
	mm	mm	mm	mm			
356 x 171 x 67	12FW	10FW	8FW	8FW			
57	10FW	10FW	6FW	8FW			
51	10FW	10FW	6FW	6FW			
45	8FW	8FW	6FW	6FW			

* minimum recommended haunch depth.

See:	Notes	-	pages	142 -	143
	Examples	-	pages	145 -	149
Colu	mn tables	-	pages	185 -	187

#### **356 x 127 UB** DESIGN GRADE 50 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43



EXTENDED	END PLATE										
20 11	200 55 90 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	F _{r4} kN	ΣF _r kN		Moment Capacity kNm	Max	Bolt Shear Capacity kN per row
$ \begin{array}{c} F_{r1} \leftarrow F_{r2} \leftarrow F_{r3} \leftarrow F_{r4} + F_{r$	50 40 60 90	356 x 127 x 39	222		174 (188)	0 (102)	670	670	199	232	zone = 74 shear = 184
$F_{r4} \rightarrow F_{r} \rightarrow F_{r}$	90 	33	222	274		0 (100)	530	530	170	191	In tension 2 Dedicated to s

MINI HAUNCH - FOR ALL 356 x 127 UBs									
20 11	200 55 90 55	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF, kN		Min. thickness Haunch Flange mm	
$F_{r1} \leftarrow F_{r2} \leftarrow F_{r3} \leftarrow F$	15 60 90 90 90 90 90	120 *	274	213	152	639	212	12	1 zone = 74 shear = 184
ΣFr		150	.274	217	160	652	235	13	In tension Dedicated to

WELDS								
Serial	Tension	Flange	Web	Compression				
Size	Extended	Flush	1	Flange in direct bearing				
	mm	mm	mm	mm				
356 x 127 x 39	8FW	8FW	6FW	6FW				
33	8FW	8FW	6FW	6FW				

* minimum recommended haunch depth.

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 185 - 187

**Beam Capacity Tables** 

305 x 165 UB

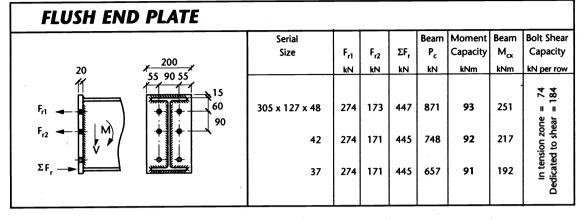
# **MOMENT CAPACITIES**

# 200 x 20 END PLATE - DESIGN GRADE 43DESIGN GRADE 50200 x 20 END PLATE - DESIGN GRADE 43M20 8.8 BOLTS

#### FLUSH END PLATE Bolt Shear Serial Beam Moment Beam P_c kN F_{r1} kN F_{r2} kN ΣFr Capacity Capacity Size M_{cx} 200 20 kN kNm kNm kN per row 55 90 55 11 = 74 = 184 15 60 $F_{r1}$ 305 x 165 x 54 274 173 447 1136 93 299 90 In tension zone Dedicated to shear F_{r2} M 172 972 256 46 274 446 92 ΣF 837 91 222 40 274 171 445

EXTENDED END PL	ATE								
20 <u>200</u> 55 90 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
Fr1 - Fr2 -	50 40 60 305 x 165 x 54 90	226	274	173	673	1136	171	299	zone = 74 shear = 184
$ \begin{bmatrix} F_{r3} & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$	46	226	274	172	672	972	169	256	2 0
	40	222	274	171	667	837	166	222	In tens Dedicated

MINI HAUNCH - FOR ALL 305 x 165 UBs									
20 行	<u>200</u> 55 90 55	Haunch Depth mm	F _{ri} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
		130	274 274	207 212	140 150	621 636	185 208	9 9	= 74 = 184
$ \begin{array}{c c} F_{r2} & \longrightarrow & M \\ F_{r3} & \longrightarrow & V \end{array} $	90		274 274	216 220	159 166	649 661	230 253	10 10	sion zone d to shear
ΣFr		250 280 ^ş	274 274	224 226	173 179	671 679	276 300	10 10	In tension Dedicated to


WELDS								
Serial	Tension	Flange	Web	Compression				
Size	Extended	Flush	1	Flange in direct bearing				
	mm	mm	mm	mm				
305 x 165 x 54	10FW	10FW	6FW	8FW				
46	10FW	10FW	6FW	6FW				
40	8FW	8FW	6FW	6FW				

[§] maximum recommended haunch depth.

See:	Notes -	pages 142 - 143
	Examples -	pages 145 - 149
Colu	mn tables -	pages 185- 187

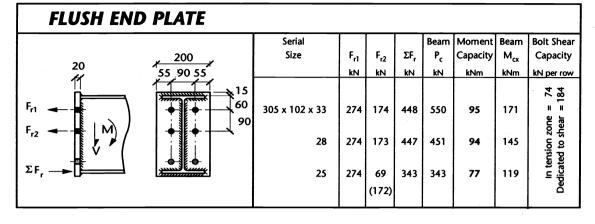
#### 200 x 20 END PLATE - DESIGN GRADE 43

### 305 x 127 UB **DESIGN GRADE 50 M20 8.8 BOLTS**



EXTENDED END PLATE									
20 55 90 55 11 55 90 55	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
$F_{r1}$	305 x 127 x 48	226	274	173	673	871	171	251	e = 74 r = 184
$F_{r3} = \left( M \right) $	42	226	274	171	671	748	169	217	sion zone I to shear
	. 37	222	274	161 (171)	657	657	164	192	In tension Dedicated to

MINI HAUNCH - FOR ALL 305 x 127 UBs								
20 55 90 52	r mm	F _{rt} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
	60 130	274	207	140	621	185	12	74 84
	90 160	274	212	150	636	207	12	" "
$ \begin{array}{c c} F_{r2} & \longrightarrow &   M \\ F_{r3} & \longrightarrow & V \end{array} \left( \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	90 190	274	216	159	649	230	13	zone shear
	220	274	220	166	661	253	13	to o
ΣFr	250	274	224	173	671	276	13	in tens licated
	280 ^ş	274	226	179	679	300	13	In Dedice


WELDS									
Serial	Tension	Flange	Web	Compression					
Size	Extended	Flush		Flange in direct bearing					
	mm	mm	mm	mm					
		÷.							
305 x 127 x 48	10FW	10FW	8FW	8FW					
				0514					
42	10FW	10FW	6FW	8FW					
37	8FW	8FW	6FW	6FW					
57	0.11								

[§] maximum recommended haunch depth.

See: Notes - pages 142 - 143 Examples - pages 145 - 149 Column tables - pages 185 - 187

### **305 x 102 UB** DESIGN GRADE 50 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43



	EXTENDED	END PLATE								÷ .	
	20 竹	200 55 90 55 1 1 1 1	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
Fr1 Fr2		50 40 60	305 x 102 x 33	222	274	54 (174)	550	550	153	171	e = 74 Ir = 184
Fr3		90	28	222	228 (274)	0 (173)	451	451	132	145	In tension zone licated to shear
ΣF			25	219	124 (274)	0 (172)	343	343	105	119	In tensi Dedicated

MINI HAUNCH - FOR AL	L 305	x 1	02	UBs	•	- 		
20 55 90 55	Haunch Depth mm	F _{ri} kN	F _{r2} kN	F _{r3} kN	ΣF, kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
$F_{r1} \longrightarrow F_{r2} \longrightarrow F_{r3} \longrightarrow F$	130	274	208	141	623	187	15	In tension zone = 74 Dedicated to shear = 184

WELD	S			
Serial	Tension	Flange	Web	Compression
Size	Extended	Flush		Flange in direct bearing
	mm	mm	mm	mm
	,			
305 x 102 x 33	8FW	8FW	6FW	6FW
	054	0514	(1)	(7)
28	8FW	8FW	6FW	6FW
25	6FW	6FW	6FW	6FW

See:	Notes	-	pages 142 - 143
	Examples	-	pages 145 - 149
Colu	mn tables	-	pages 185 - 187

200 x 20 END PLATE - DESIGN GRADE 43

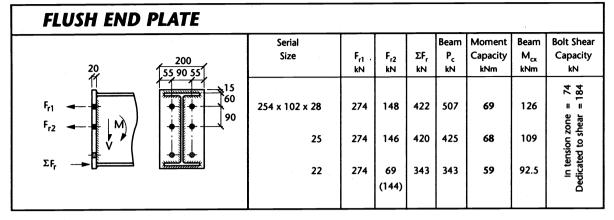
### **254 x 146 UB** DESIGN GRADE 50 M20 8.8 BOLTS

FLUSH END	PLATE								
		Serial				Beam	Moment	Beam	Bolt Shear
	, 200 ,	Size	F _{r1}	F _{r2}	ΣFr	P _c	Capacity	M _{cx}	Capacity
20	55 90 55		kN	kN	kN	kN	kNm	kNm	kN
$F_{r1} \leftarrow F_{r2} \leftarrow F$		254 x 146 x 43 37	274 274	146 145	420 419	930 793	68 67	202 172	In tension zone = 74 licated to shear = 184
, ,		31	274	142	416	624	65	125	In tensi Dedicated

EXTENDED END	PLATE						,		
20 <u>200</u>		F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
	50 40 60 254 x 146 x 43	226	274	146	646	930	134	202	1 zone = 74 shear = 184
$F_{r3}$ $\rightarrow$ $M_{r}$	90 37	222	274	145	641	793	131	172	5 G
ΣF, →	31	222	274	128 (142)	624	624	127	125	In tens Dedicated

20 竹	200 55 90 55 1	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
		85 *	274	183	93	550	116	10	74 84
	90	100	274	188	102	564	127	10	е ""
		130	274	196	118	589	148	10	n zone shear
		160	274	203	132	609	169	10	In tension licated to
Fr		190	274	209	143	626	191	10	In tens Dedicated
		230 \$	274	215	156	645	221	11	

WELDS				
Serial	Tension	Flange	Web	Compression
Size	Extd	Flush	]	Flange in direct bearing
	mm	mm	mm	mm
254 x 146 x 43	10FW	10FW	6FW	8FW
37	8FW	8FW	6FW	6FW
31	8FW	8FW	6FW	6FW


* minimum recommended haunch depth.

[§] maximum recommended haunch depth.

See:	Notes -	pages 142 - 143
	Examples -	pages 145 - 149
Colu	mn tables -	pages 185 - 187

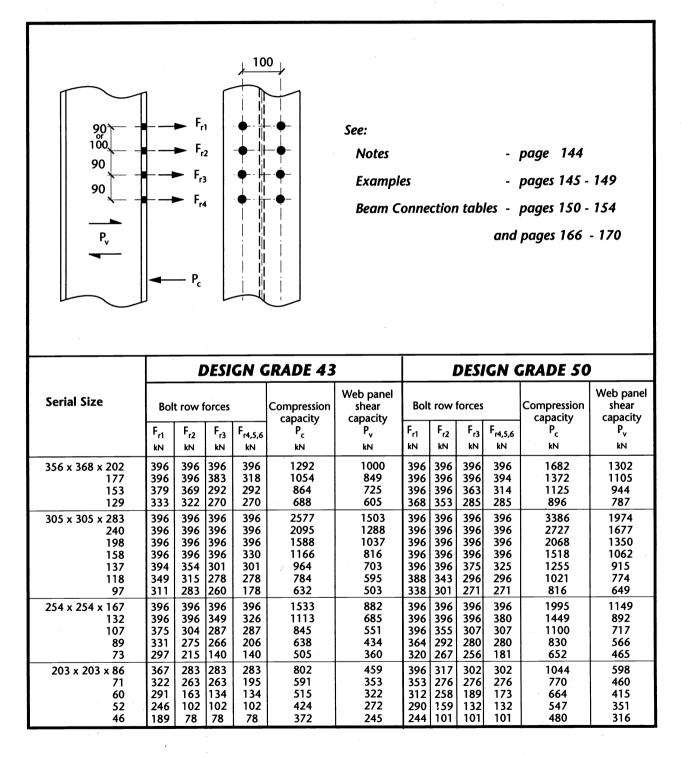
#### 254 x 102 UB DESIGN GRADE 50 M20 8.8 BOLTS

200 x 20 END PLATE - DESIGN GRADE 43



EXTENDED END PLATE			-						
20 <u>200</u> 55 90 53	Serial Size	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Beam P _c kN	Moment Capacity kNm	Beam M _{cx} kNm	Bolt Shear Capacity kN per row
$F_{r_2} \leftarrow +$	254 x 102 x 28	222	274	11 (148)	507	507	120	126	zone = 74 shear = 184
$F_{r3}$ $(M)$ $(M)$	25	219	206 (274)	0 (146)	425	425	104	109	In tension zone Dedicated to shear
ΣF, → [] <u>yuuu</u>	22	219	124 (274)	0 (144)	343	343	87	92.5	In Dedic

20 11	<u>200</u> 55 90 55 1	Haunch Depth mm	F _{r1} kN	F _{r2} kN	F _{r3} kN	ΣF _r kN	Moment Capacity kNm	Min. thickness Haunch Flange mm	Bolt Shear Capacity kN per row
$F_{r1}$ $M$		85 * 100	274 274	184 189	95 104	553 567	119 129	13 13	In tension zone = 74 Dedicated to shear = 184

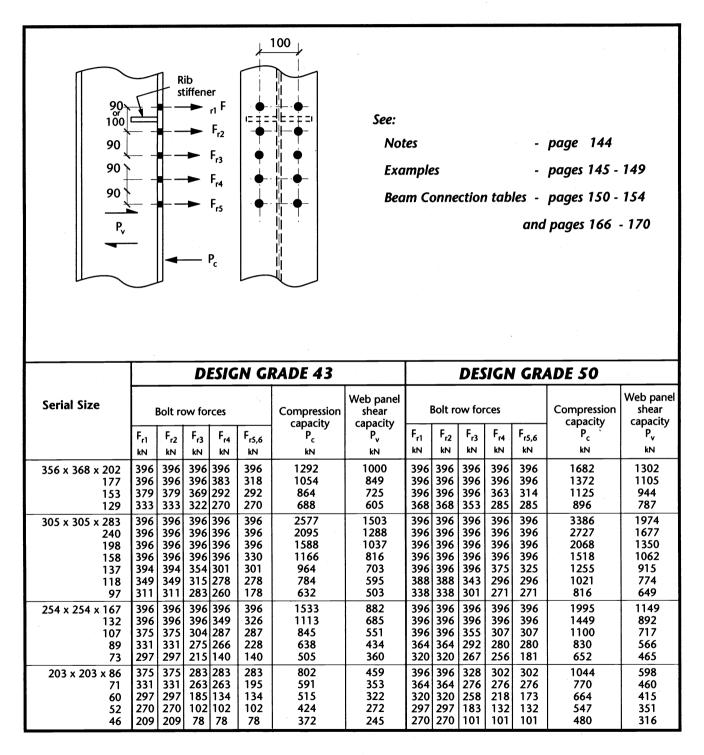

WELDS	•		-		
Serial	Tension	Flange	Web	Compression	
Size	Extd	Flush		Flange in direct bearing	
	mm	mm	mm	mm	
254 x 102 x 28	8FW	8FW	6FW	6FW	
25	6FW	6FW	6FW	6FW	
22	6FW	6FW	6FW	6FW	

See:	Notes	-	pages 142 - 143
	Examples	•, •	pages 145 - 149
Colu	mn tables	-	pages 185 - 187

# **MOMENT CAPACITIES** DESIGN GRADES 43 & 50

### UNSTIFFENED COLUMNS

for use with STANDARD END PLATES **M24 8.8 BOLTS** 




Mar. 97 Revision:

column for F_{r4,5,6} added

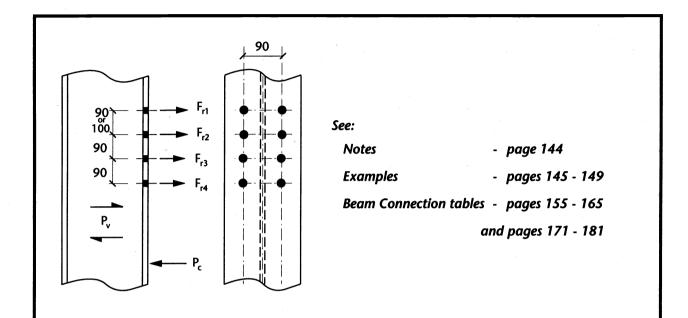
# **MOMENT CAPACITIES** *RIB STIFFENED COLUMNS*

### **DESIGN GRADES 43 & 50** for use with STANDARD END PLATES M24 8.8 BOLTS



Mar. 97 Revision: column for F_{r5,6} added

WEB STIFFENED COLUMN SUPPLEMENTARY WEB PLATE


### **DESIGN GRADES 43 & 50**

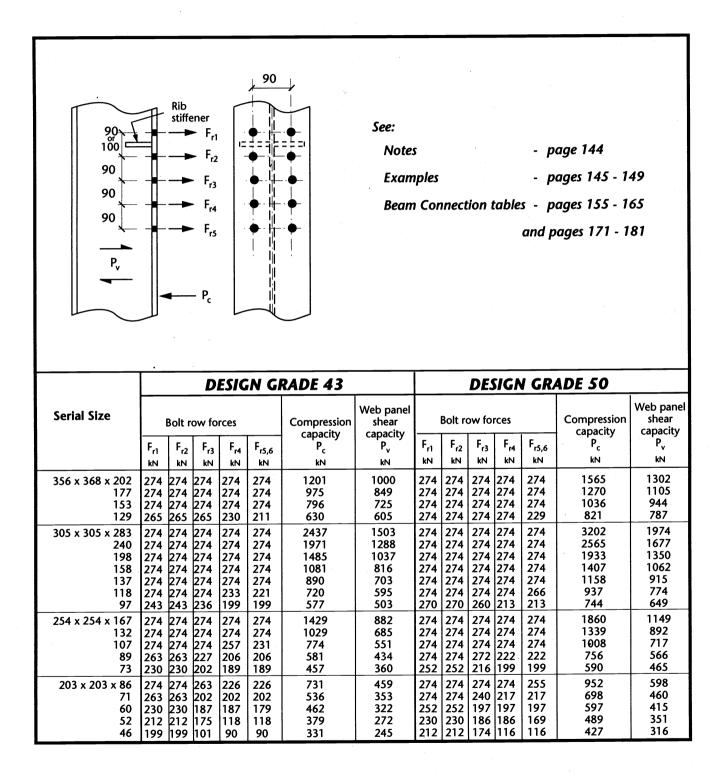
for use with STANDARD END PLATES M24 8.8 BOLTS

Mar. 97 Revision: column for F_{r4,5,6} added

# **MOMENT CAPACITIES UNSTIFFENED COLUMNS**

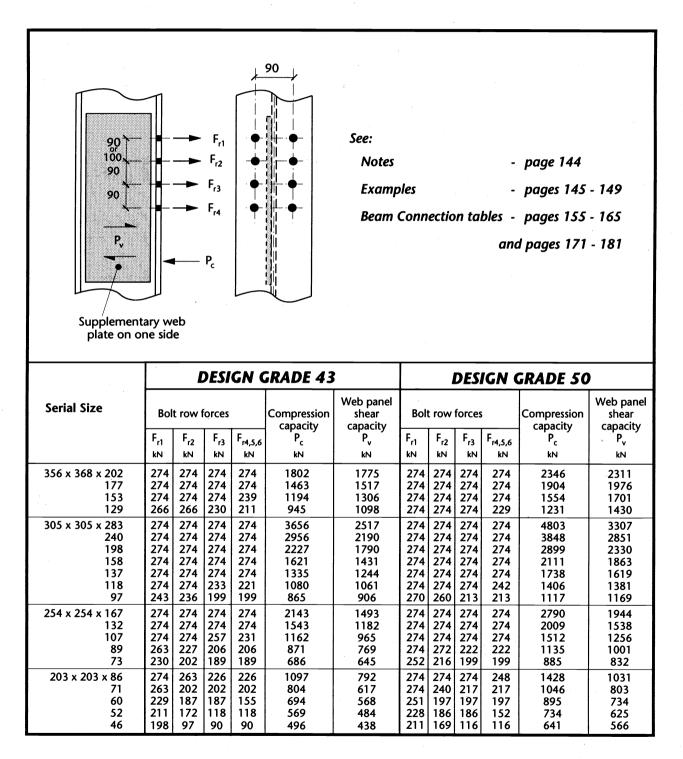
### **DESIGN GRADES 43 & 50** for use with STANDARD END PLATES **M20 8.8 BOLTS**




	DESIGN GRADE 43					DESIGN GRADE 50						
Serial Size	rial Size Bolt row forces		Compression Shear capacity capacity		Bol	t row	forces	· .	Compression capacity	Web panel shear capacity		
	F _{r1}	F _{r2}	F _{r3}	F _{r4,5,6}	P _c	P	F _{r1}	F _{r2}	F _{r3}	F _{r4,5,6}	P _c	P
	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
356 x 368 x 202	274	274	274	274	1201	1000	274	274	274	274	1565	1302
177	274	274	274	274	975	849	274	274	274	274	1270	1105
153	274	274	274	239	796	725	274	274	274	274	1036	944
129	266	266	230	211	630	605	274	274	274	229	821	787
305 x 305 x 283	274	274	274	274	2437	1503	274	274	274	274	3202	1974
240	274	274	274	274	1971	1288	274	274	274	274	2565	1677
198	274	274	274	274	1485	1037	274	274	274	274	1933	1350
158	274	274	274	274	1081	816	274	274	274	274	1407	1062
137	274	274	274	274	890	703	274	274	274	274	1158	915
118	274	274	233	221	720	595	274	274		242	937	774
97	243	236	199	199	577	503	270	260	213	213	744	649
254 x 254 x 167	274	274	274	274	1429	882	274	274	274	274	1860	1149
132	274	274	274	274	1029	685	274	274	274	274	1339	892
107	274	274	257	231	774	551	274	274	274	274	1008	717
89	263	227	206	206	581	434	274	272	222	222	756	566
73	230	202	189	189	457	360	252	216	199	199	590	465
203 x 203 x 86	274	263	226	226	731	459	274	274	274	248	952	598
71	263	202	202	202	536	353	274	240		217	698	460
60	229	187	187	155	462	322	251	197	197	197	597	415
52	211	172	118	118	379	272	228	186		152	489	351
46	198	97	90	90	331	245	211	169	116	116	427	316

Mar. 97 Revision: column for F_{r4,5,6} added

### **RIB STIFFENED COLUMN**


### DESIGN GRADES 43 & 50

for use with STANDARD END PLATES M20 8.8 BOLTS



Mar. 97 Revision: column for F_{r5,6} added

WEB STIFFENED COLUMN SUPPLEMENTARY WEB PLATE DESIGN GRADES 43 & 50 for use with STANDARD END PLATES M20 8.8 BOLTS



Mar. 97 Revision: column for

column for F_{r4,5,6} added

### **Portal Frame Eaves Haunch and Apex Connections** NOTES ON USE OF THE CAPACITY TABLES

#### EAVES CONNECTIONS

Connection Moment Capacity	Moment capacities of haunched connections shown are calculated using the method of Section 2.8. The web of the haunch has been utilised to carry compression (STEP 2B), where necessary. The moment capacities stated should be compared to the moment which results from the frame analysis.
	The sign convention is as illustrated on each diagram.
	The moment capacity shown in the reversed condition includes the effect of the truncated column top in the column web crushing and buckling checks, which are generally critical. A compression stiffener at the column top will produce a significant increase in reverse moment capacity.
Connection Shear Capacity	Connection shear capacity is the vertical shear available from the bolt rows shown. Increased shear capacity will generally be available in the reversal load case, since a greater number of bolts will be dedicated to the transfer of shear alone.
Maximum Axial Force in Rafter	If the axial force in the rafter exceeds the limit indicated (compression for positive moments and tension for negative moments), the moment capacities quoted are no longer valid and the connection capacity must be re-calculated.
Haunch Cutting	The haunch may be cut from the section size shown. If fabricated from plate, the flange should be at least equal in area to the haunch flange and the web plate should be at least as thick as the web of the haunch section size shown.
Material Grade	The haunch, end plate and stiffener material has been taken as design grade 43.
Weld Sizes	Weld sizes shown have been calculated in accordance with STEP 7. They should not be changed without re-calculating the connection moment capacity. The weld for the haunch flange to end plate has been sized as a tension weld, based on the reversal moment, <u>not</u> the positive (gravity) load case. For the positive (gravity) load case, it has been assumed that the haunch cutting is fitted to the end plate. If a bearing fit is not provided with either a haunch fabricated from plate or from a section cutting, full strength welds should be specified.
Overall Haunch Depth	The overall depth shown on each diagram is that measured from where the top of the rafter meets the end plate to where the underside of the haunch meets the end plate. Moment capacities have been calculated using this minimum dimension, and are conservative where greater overall depths are used.
Stiffeners	Rib, Morris and compression stiffeners have been designed in accordance with STEP 6.

#### **APEX CONNECTIONS**

Connection Moment Capacity	Connections are sized to ensure that the moment capacity in the +ve direction, calculated using the method of Section 2.8, is greater or equal to $M_{cx}$ . The web of the rafter has been utilised to carry compression (STEP 2B), where necessary.
Maximum Axial Force in Rafter	If the axial force in the rafter exceeds the limit indicated (compression for positive moments and tension for negative moments), the moment capacities quoted are no longer valid and the connection capacity must be re-calculated.
Material Grade	End plate and haunch material has been taken as design grade 43.
Weld Sizes	Weld sizes shown have been calculated in accordance with STEP 7. They should not be changed without re-calculating the connection moment capacity.
	The weld for the haunch flange to end plate has been sized to act as a tension weld for positive moments, and as a compression weld for negative moments.

### Worked Example Using the Capacity Tables

A portal frame analysis results in the following:

Rafter	533 x 210 x 82	
Column	686 x 254 x 125	
Connection forces:	Moment	1085kNm,
	Axial (Rafter)	132kN (compression),
	Vertical Shear	210kN

Provide a suitable eaves haunch connection

Page 191 shows that a flush end plate haunch connection when provided with compression stiffeners and a pair of rib stiffeners between the top bolt rows will be satisfactory.

Axial (Rafter)	132kN	<	799kN	.:	moment capacity is valid
Moment	1085kNm	<	1094kNm	.:	satisfactory
Vertical Shear	210kN	<	1320kN	.:	satisfactory

(Alternatively, an extended end plate haunch connection provided with compression stiffeners only is also satisfactory.)

*******

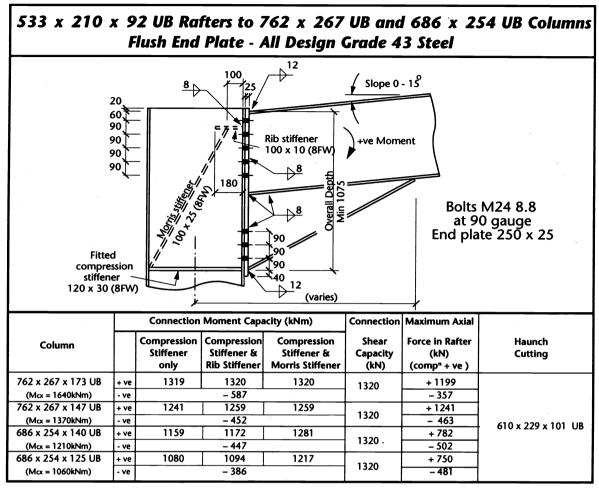
#### **Axial Forces**

The following demonstrates the effect of the axial force in the above example; axial compression reduces an applied positive moment (STEP 4):

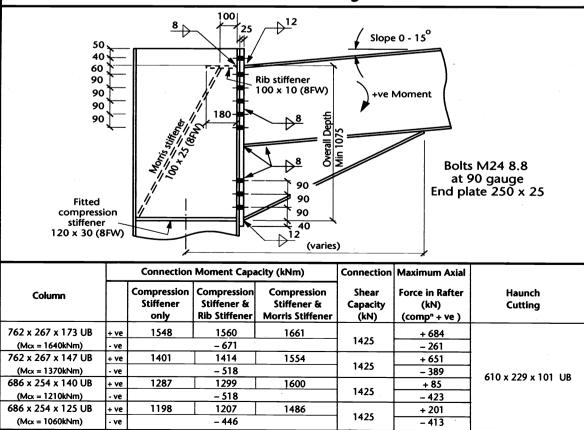
$$M_m = 1085 - 132 \times (1.075 - \frac{0.528}{2} - \frac{0.015}{2}) = 979 \text{kNm}$$

Connection design software shows the bolt forces are reduced as follows:

Row No.	Original bolt row forces	Reduced bolt row forces	Lever arm	Moment
	(kN)	(kN)	( <i>m</i> )	(kNm)
1	317	317	1.008	320
2	317	317	0.918	291
3	295	295	0.828	244
4	275	199	0.738	147
5	56	0	0.648	0
Totals	1260kN	1128kN		1002kNm

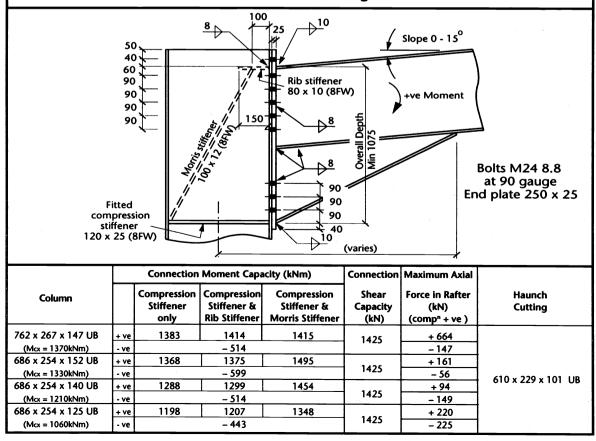

1002kNm > 979kNm ∴ satisfactory

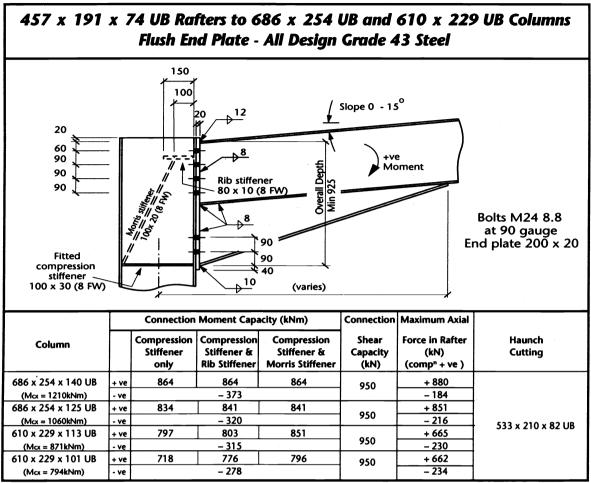
 $P_c = 1128kN + 132kN = 1260kN$ 

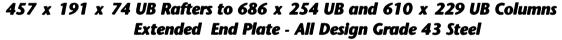

= value of  $P_c$  for this configuration

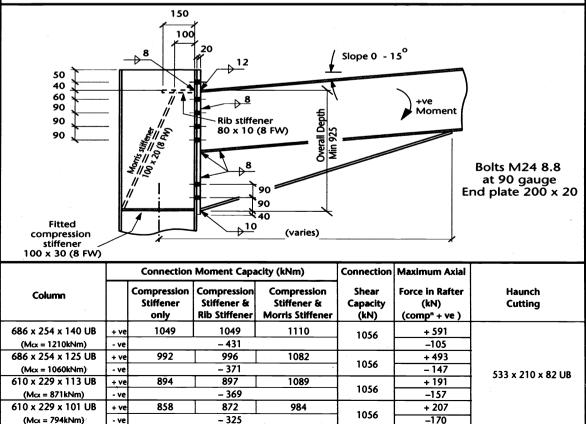
**Note:** In this example the column web panel shear resistance (1260kN) limits the development of the bolt row forces. Axial compression further reduces the sum of the bolt row forces (1260 – 132 = 1128kN). Bolt row forces are therefore reduced in accordance with STEP 4, hence the connection moment capacity is reduced. However, the axial compression reduces the applied moment ( $M_m = 979$  kNm) and at this level of axial load, the reduced connection capacity exceeds the modified moment.

Inspection of the above table indicates that at an axial load of 800kN, the modified moment exceeds the reduced connection capacity.

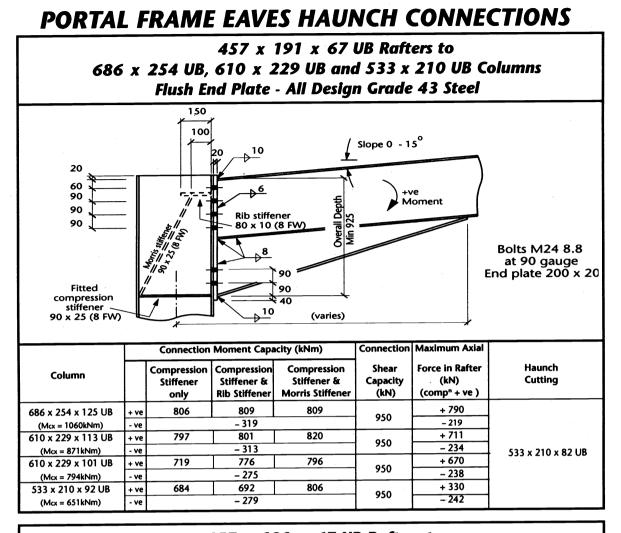


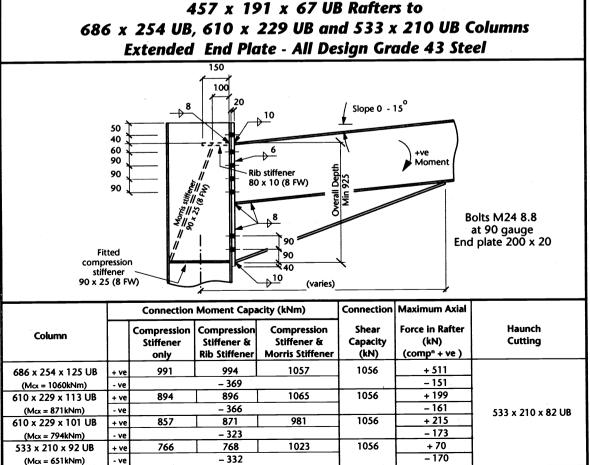


#### 533 x 210 x 92 UB Rafters to 762 x 267 UB and 686 x 254 UB Columns Extended End Plate - All Design Grade 43 Steel

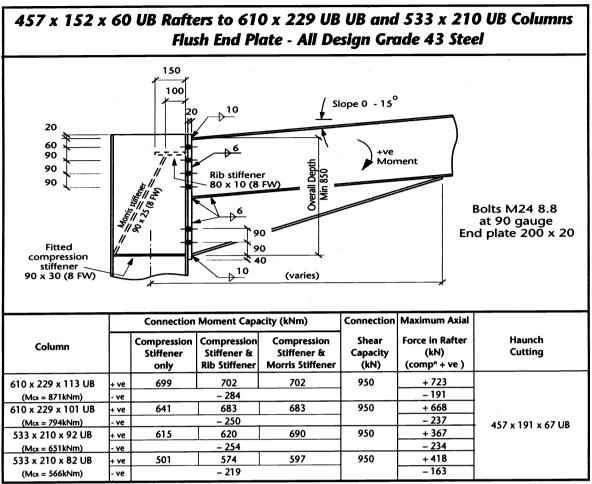




#### **PORTAL FRAME EAVES HAUNCH CONNECTIONS** 533 x 210 x 82 UB Rafters to 762 x 267 UB and 686 x 254 UB Columns Flush End Plate - All Design Grade 43 Steel 10 100 Slope 0 - 15⁰ <u>8</u>₽ 20 60 90 **Rib** stiffener 90 e Moment 80 x 10 (8FW) 90 ٥n <del>⊳8</del> 150 Dep 6 Overall Bolts M24 8.8 8 Ē at 90 gauge End plate 250 x 25 '90 90 Fitted compression **`9**0 stiffener 40 120 x 25 (8FW) 10 ₽ (varies) Connection Moment Capacity (kNm) Connection Maximum Axial Compression Compression Compression Shear Force in Rafter Haunch Column Stiffener Stiffener & Stiffener & Capacity (kN) Cutting only **Rib Stiffener Morris Stiffener** . (kN) (compⁿ + ve ) 762 x 267 x 147 UB 1216 1211 1216 + 1160 + ve 1320 (Mcx = 1370kNm) ve - 449 - 221 686 x 254 x 152 UB 1226 1229 1265 +988+ ve 1320 (Mcx = 1330kNm) - 518 - 148 ve 610 x 229 x 101 UB 686 x 254 x 140 UB 1157 1164 1236 + 865 + ve 1320 (Mcx = 1210kNm) - 444 - 228 - ve 686 x 254 x 125 UB 1080 1094 1196 + 799 + ve 1320 (Mcx = 1060kNm) - ve - 382 - 294

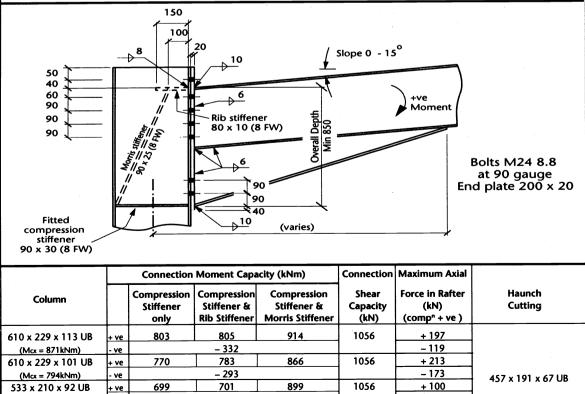
#### 533 x 210 x 82 UB Rafters to 762 x 267 UB and 686 x 254 UB Columns Extended End Plate - All Design Grade 43 Steel







--







### 457 x 152 x 60 UB Rafters to 610 x 229 UB UB and 533 x 210 UB Columns Extended End Plate - All Design Grade 43 Steel



744

1056

- 163

+ 112

- 101

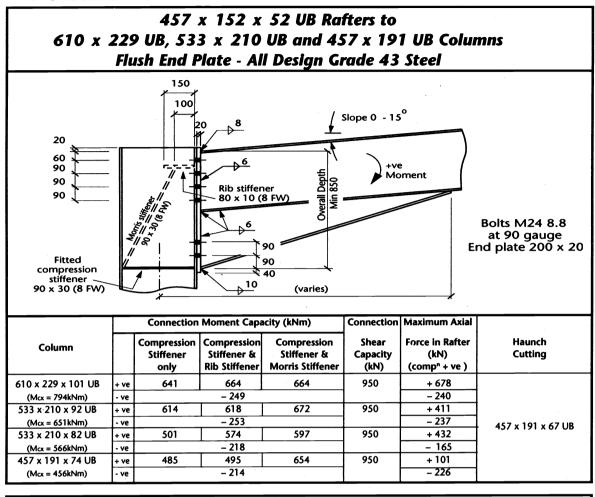
<u>- 301</u>

652

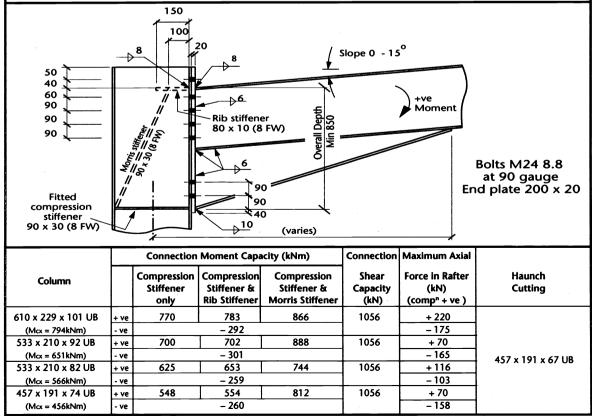
- 260

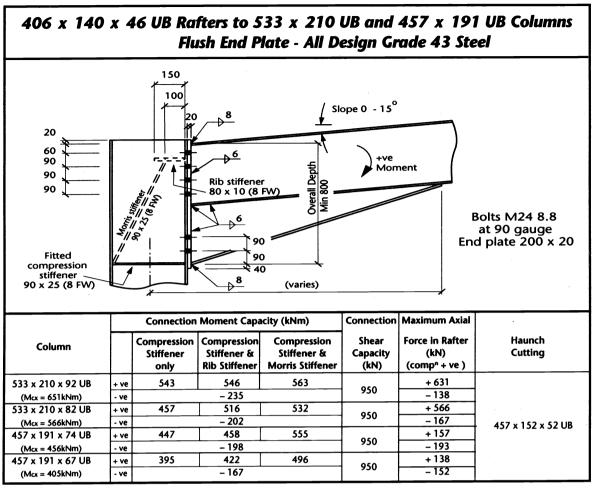
(Mcx = 651kNm)

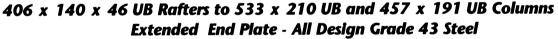
533 x 210 x 82 UB

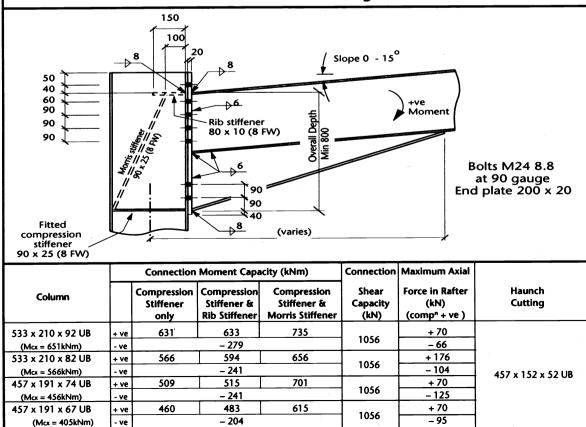

(Mcx = 566kNm)

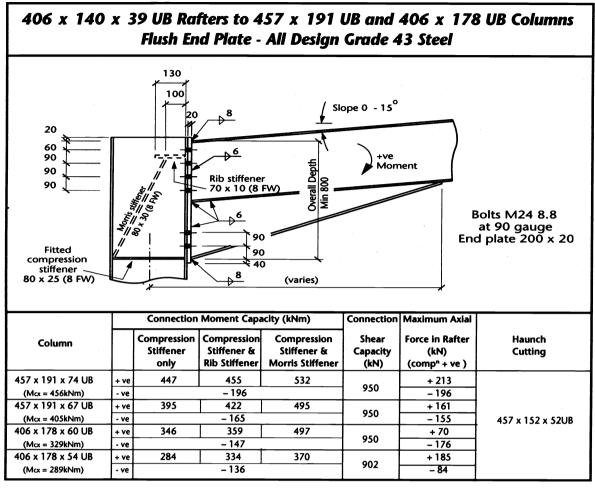
ve


· ve

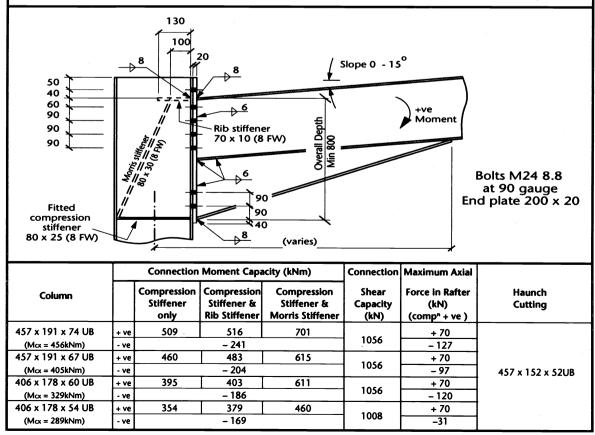

ve

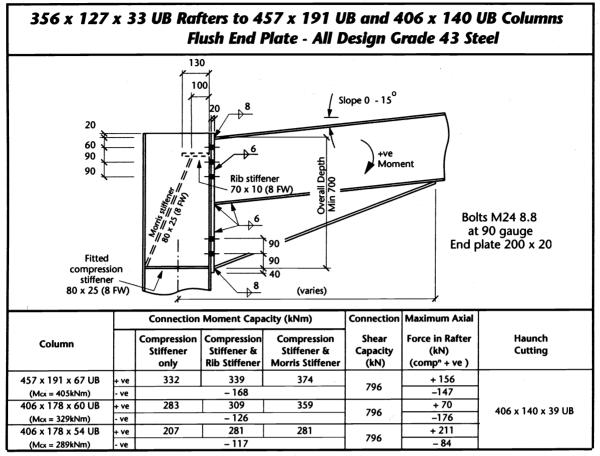


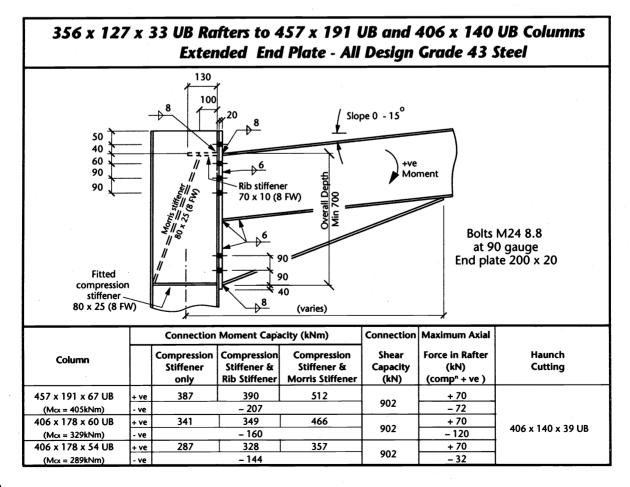



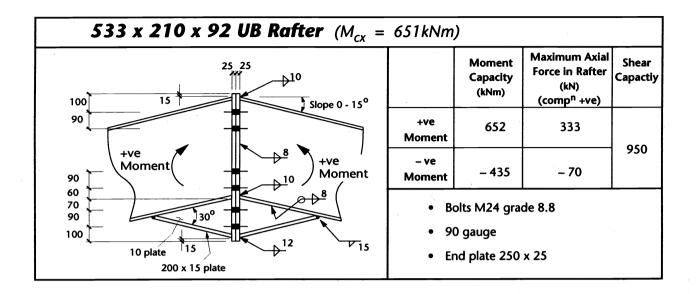


#### 457 x 152 x 52 UB Rafters to 610 x 229 UB, 533 x 210 UB and 457 x 191 UB Columns Extended End Plate - All Design Grade 43 Steel



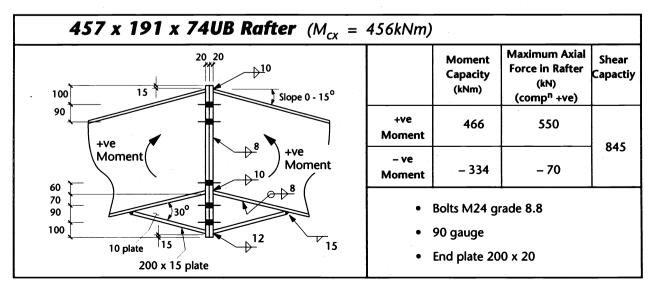


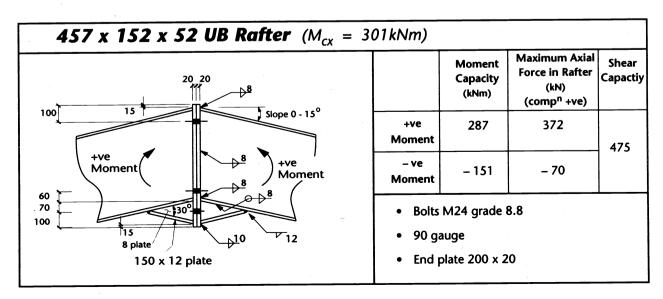



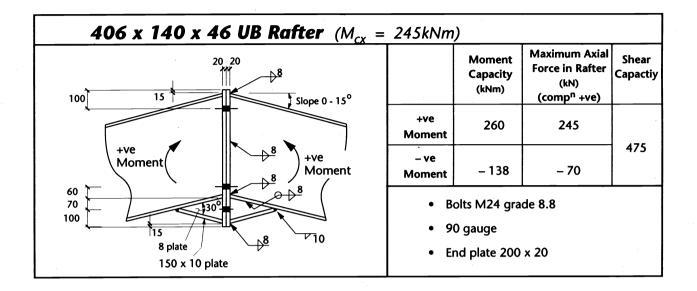

#### 406 x 140 x 39 UB Rafters to 457 x 191 UB and 406 x 178 UB Columns Extended End Plate - All Design Grade 43 Steel



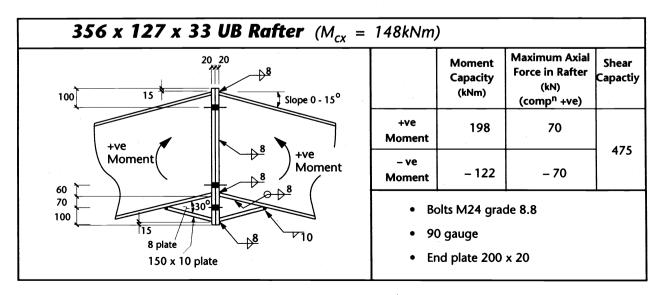






25, 25 100 15 Slope 0 - 15°		Moment Capacity (kNm)	Maximum Axial Force in Rafter (kN) (comp ⁿ +ve)	Shear Capactiy
90 <b>+ve</b>	+ve Moment	567	398	845
$\frac{10}{10} + \frac{10}{10} + 10$	– ve Moment	- 431	- 70	645
10 plate 15 200 x 15 plate	• 90	olts M24 gra D gauge nd plate 250		•




<b>457 x 191 x 67UB Rafter</b> $(M_{cx} = 40)$	5kNm)				
20, 20 100 15 Slope 0 - 15°		Moment Capacity (kNm)	Maximum Axial Force in Rafter (kN) (comp ⁿ +ve)	Shear Capactiy	
90 +ve	+ve Moment	462	395	845	
60 +ve Moment Moment	– ve Moment	- 332	- 70	640	
00 90 100 10 plate 15 200 x 15 plate 10 10 10 10 10 10 10 10 10 10	<ul> <li>Bolts M24 grade 8.8</li> <li>90 gauge</li> <li>End plate 200 x 20</li> </ul>				

<b>457 x 152 x 60 UB Rafter</b> (M _{cx} = 353kNm)					
20, 20 100 15 Slope 0 - 15°		Moment Capacity (kNm)	Maximum Axial Force in Rafter (kN) (comp ⁿ +ve)	Shear Capactiy	
+ve	+ve Moment	458	237	580	
$\begin{array}{c} \text{Moment} \\ \text{60} \\ \end{array}$	– ve Moment	- 179	- 70	380	
70 90 100 8 plate 15 10 12	<ul><li>Bolts M24 grade 8.8</li><li>90 gauge</li></ul>				
8 plate 115 \0	-	olate 200 x 2	0		





20, 20 20, 20 15 Slope 0 - 15°		Moment Capacity (kNm)	Maximum Axial Force in Rafter (kN) (comp ⁿ +ve)	Shear Capactiy
tve	+ve Moment	254	84	
ment $($ $\rightarrow$ 8 $)$ +ve Moment	– ve Moment	- 136	- 70	475
15 8 plate 150 x 10 plate	<ul> <li>Bolts M24 grade 8.8</li> <li>90 gauge</li> <li>End plate 200 x 20</li> </ul>			



#### NOTES ON USE OF THE CAPACITY TABLES

Tables are presented for connections suitable for use in wind-moment frames as described in Section 3. Connections using M20 8.8 bolts, with flush and extended end plate details are shown, followed by similar connections with M24 8.8 bolts. The details are made symmetrical to suit the reversible moments expected in wind-moment frames.

The moment capacities of the connection shown may be used for all weights of beams, in design grades 43 or 50, within the serial sizes indicated. All end plates are design grade 43. Column side capacities for design grades 43 and 50 must be checked as described below.

For the connection to work in the intended manner it is important that plate size and steel grade, bolt sizes, weld sizes and dimensions are rigidly adhered to. Deviating from them may either reduce the resistance of the connection, compromise its ductility or invalidate the column check. A table of dimensions for detailing to suit individual beams is provided on page 219.

Axial forces in the beams within wind-moment frames are generally ignored in design (reference 11), and therefore the standard connections are calculated without considering them.

#### **BEAM SIDE**

Moment Capacity

The moment capacity for the beam side of the connections shown is calculated using the method of Section 2.8. Bolt row forces are shown in the diagram.

An asterisk * indicates that, with the detail illustrated, the beam sections noted can only be used in design grade 50 steel because, in design grade 43 steel, they have a beam flange compression flange capacity which is less than  $\Sigma F_r$  and the connection is not sufficiently ductile.

If reduced bolt row forces on the column side limit development of the beam side forces shown, a reduced moment capacity must be calculated.

#### **Dimension A** Is the lever arm from the centre of compression to the lowest row of tension bolts.

Weld Sizes All flange welds to be full strength with a minimum visible fillet of 10mm (Section 2, STEP 7). All web welds to be continuous 8FW.

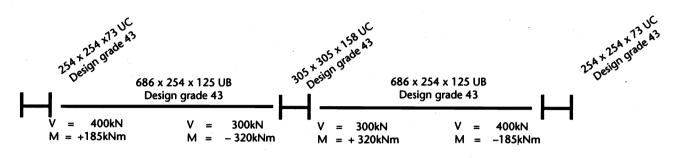
#### COLUMN SIDE

Tension Zone A tick ✓ in the table indicates that the column flange and web in tension have a greater capacity than the beam force(s) indicated in the beam table. Where the column has a smaller capacity, reduced bolt row forces are shown. A reduced moment resistance may be determined from these lower forces, or the column flange may be stiffened in the tension zone (Section 2, STEP 6D).

The capacities have been calculated assuming that the column top is at least 100mm above the beam flange or top row of bolts.

Where stiffening is employed the bolt row forces must be re-calculated (Section 2, STEP 1A) and the compression zone checked (Section 2, STEP 2A).

**Compression Zone** A tick  $\checkmark$  in the table indicates that the column web has a greater compression capacity than the sum of the bolt row forces ( $\Sigma F_r$ ). The check was made using a stiff bearing length from the beam side of the connection of 50mm.


An **S** in the table shows that column web compression capacity is lower than the sum of the bolt row forces ( $\Sigma F_r$ ); the figure in brackets shows the column web compression capacity. The web must be stiffened to resist  $\Sigma F_r$ .

Panel Shear<br/>CapacityThe panel shear capacity is that of the column web. The applied web panel shear must take<br/>account of beams connecting onto both flanges and the direction of the applied moments.<br/>(See Section 2, STEP 3.)

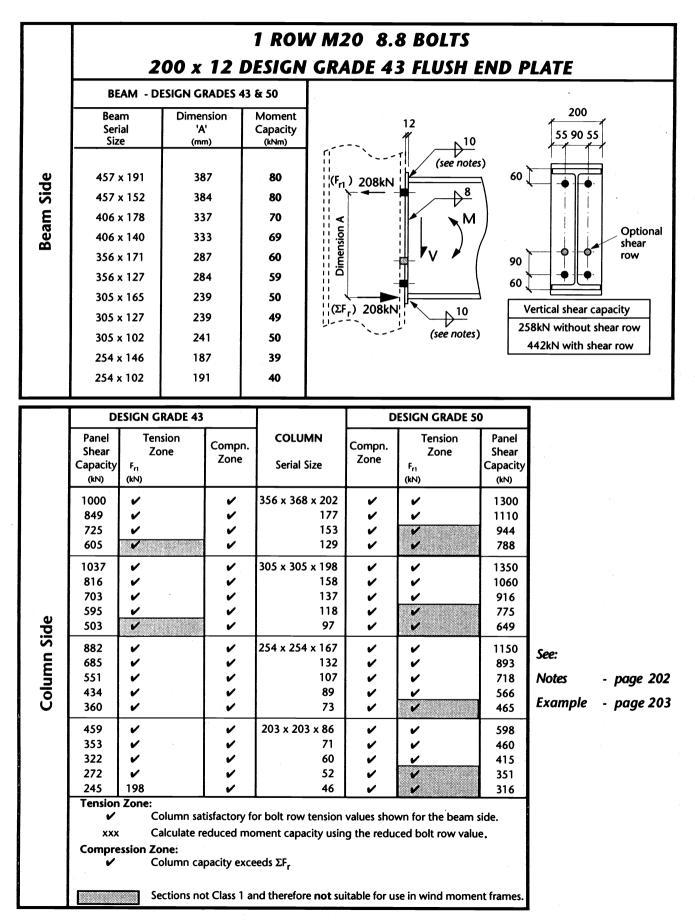
# Worked Example Using the Capacity Tables

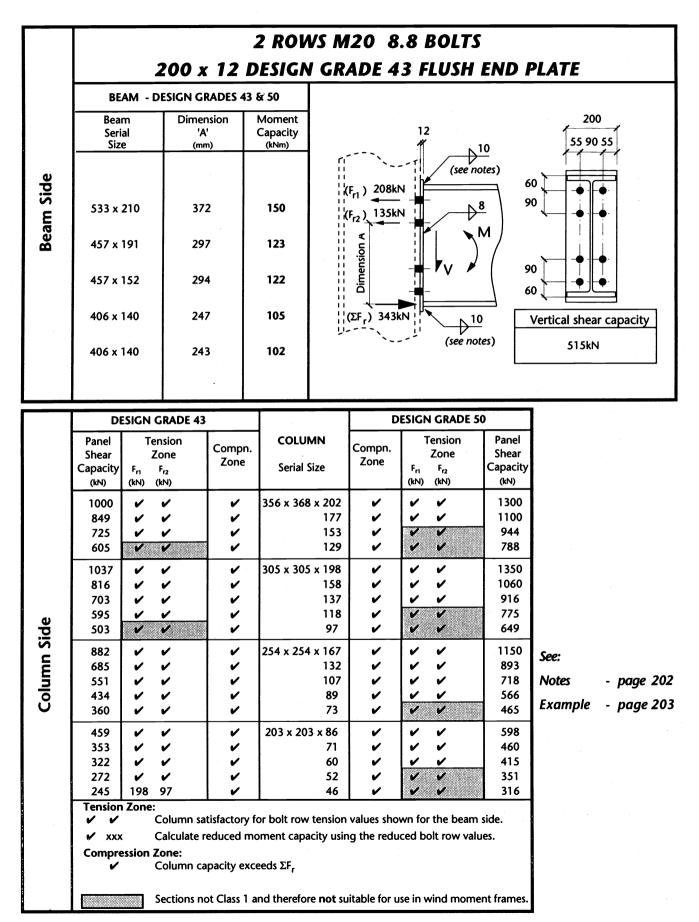
#### **DESIGN EXAMPLE 1**

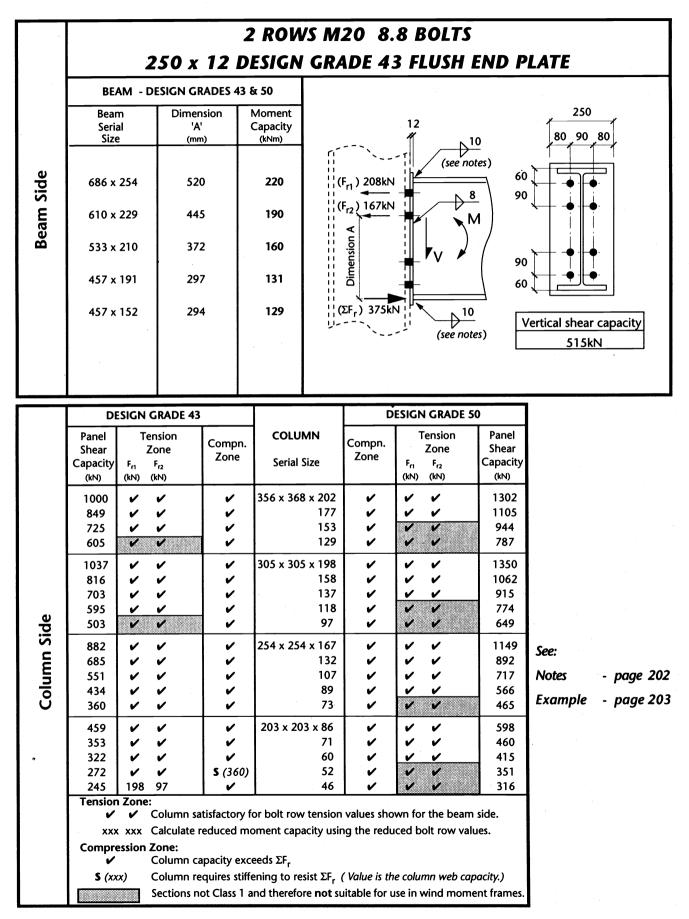
Design connections for the configurations and forces shown, the moments are from wind forces and are reversable:

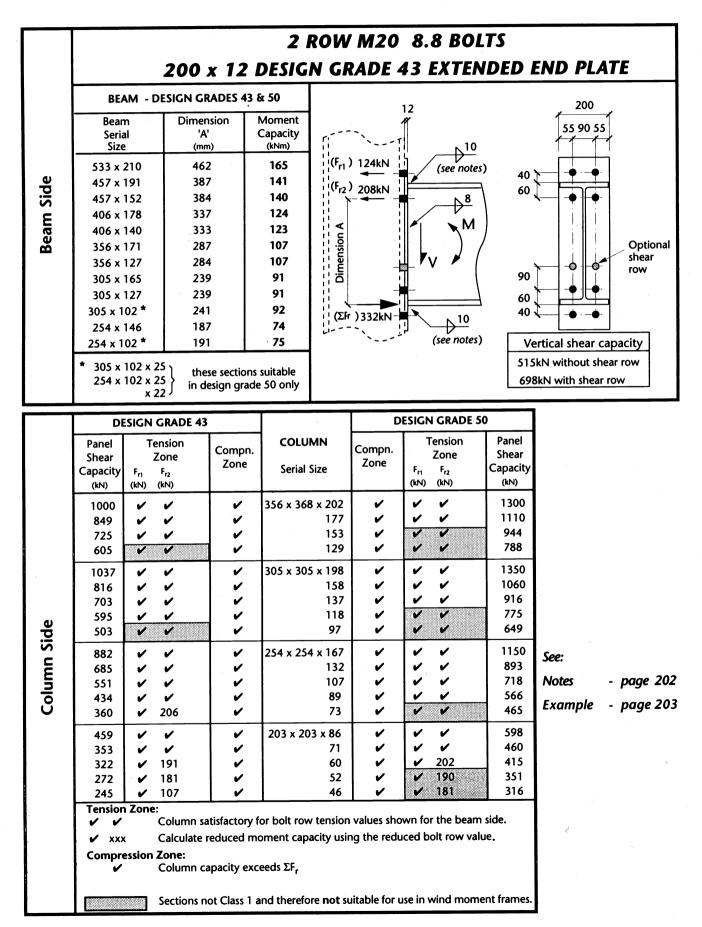


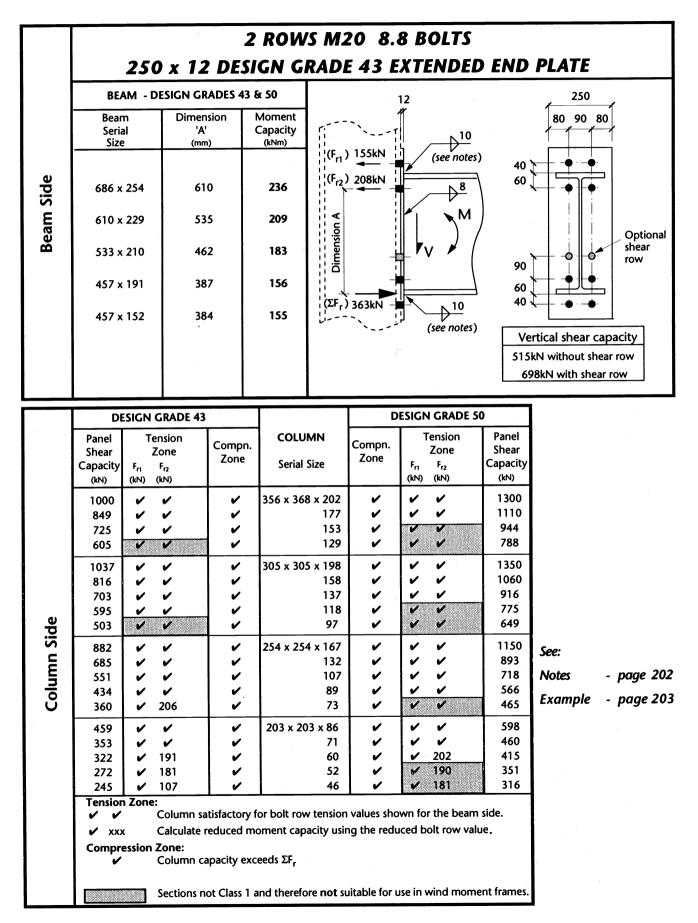
#### Connection to the inner column

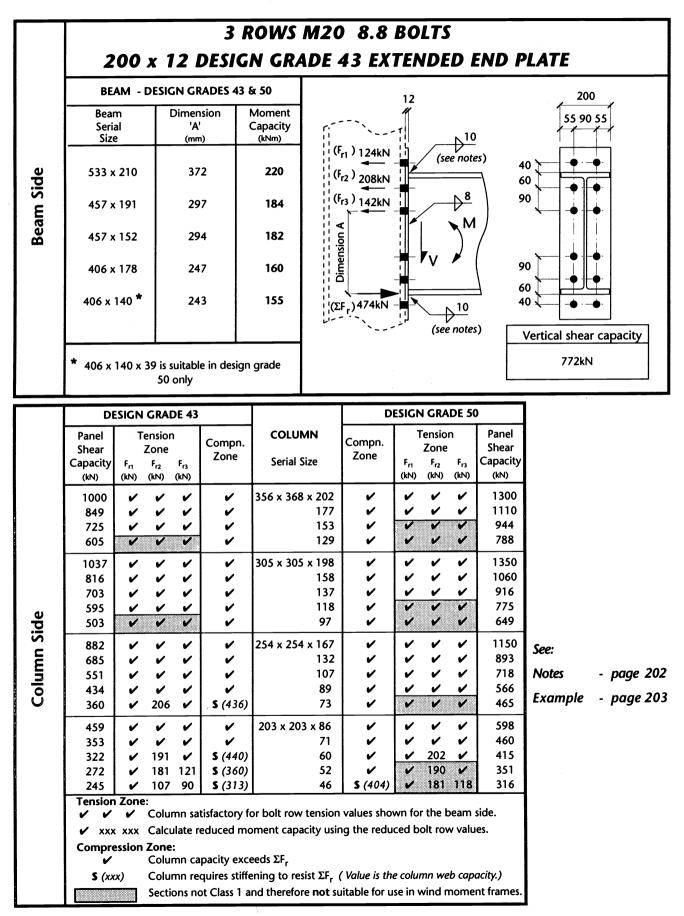

Try an extended end plate connection with two rows M24 8.8 Bolts - 250 x 15 End Plate (page 216)

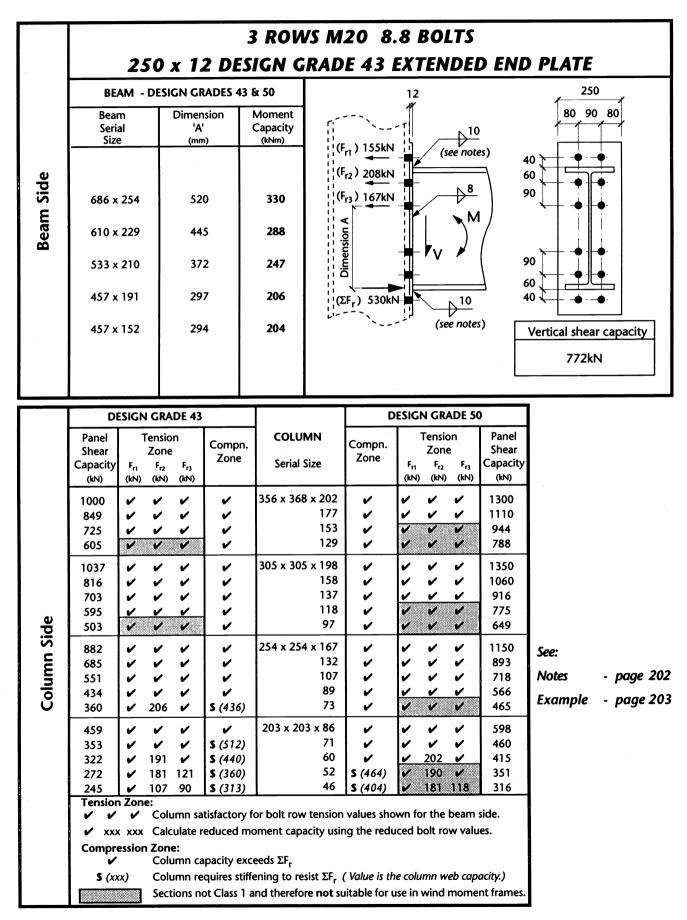

	Beam side		Column side
Moment capacity	358kNm > 320kNm	ок	Tension zone 🖌 OK
			<b>Compression zone</b> ✔ OK (no stiffening required)
Vertical shear	739kN > 300kN	ОК	Note: If the column side flange is thinner than the end plate bolt bearing on the flange should be checked.
Column web panel shea	<b>7</b>		816kN < 2 × 548 kN (two beams)
E É			< 1096kN unsatisfactory
$\Sigma F_r = 548kN$			Web strengthening is required
358kNm ( 548kN -	► 548kN → 358kNm = 548kN		Supplementary web plate or diagonal stiffeners to be provided (See STEP 6D and example pages 131-133)
			Note: The above calculation is conservative since the applied moments are 320kNm and $\Sigma F_r$ can be reduced by the difference in the table value and the applied value divided by the lowest lever arm (dimension A).
			$\Sigma F_r$ reduction = $\frac{(358 - 320) \times 10^3}{610} = 62kN$
• • • •			∴ applied panel shear = (548 – 62) x 2 = 972kN > 816KN unsatisfactory
			Web strengthening is still required

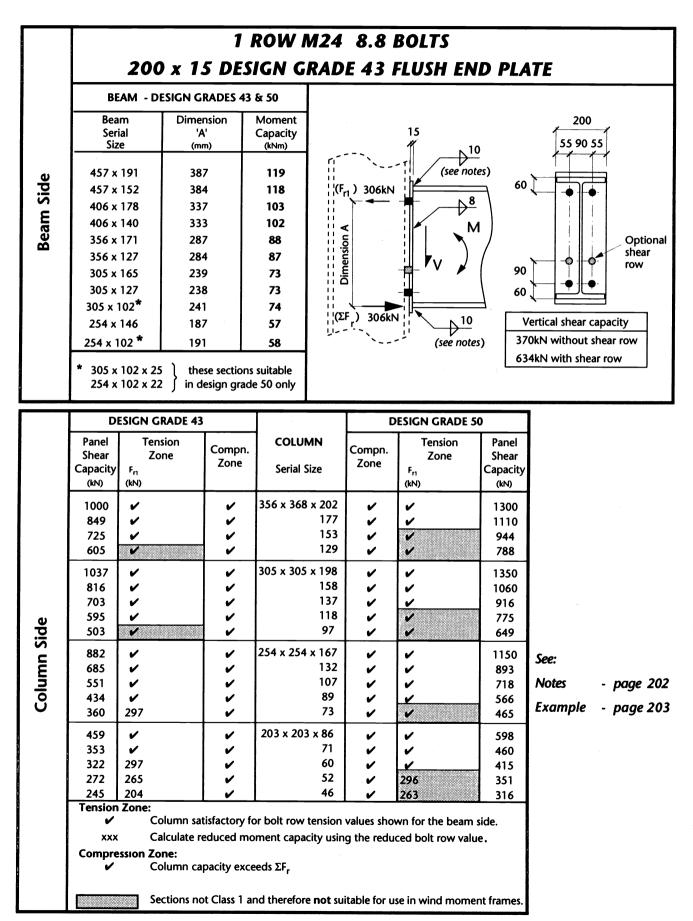

#### Connection to outer columns

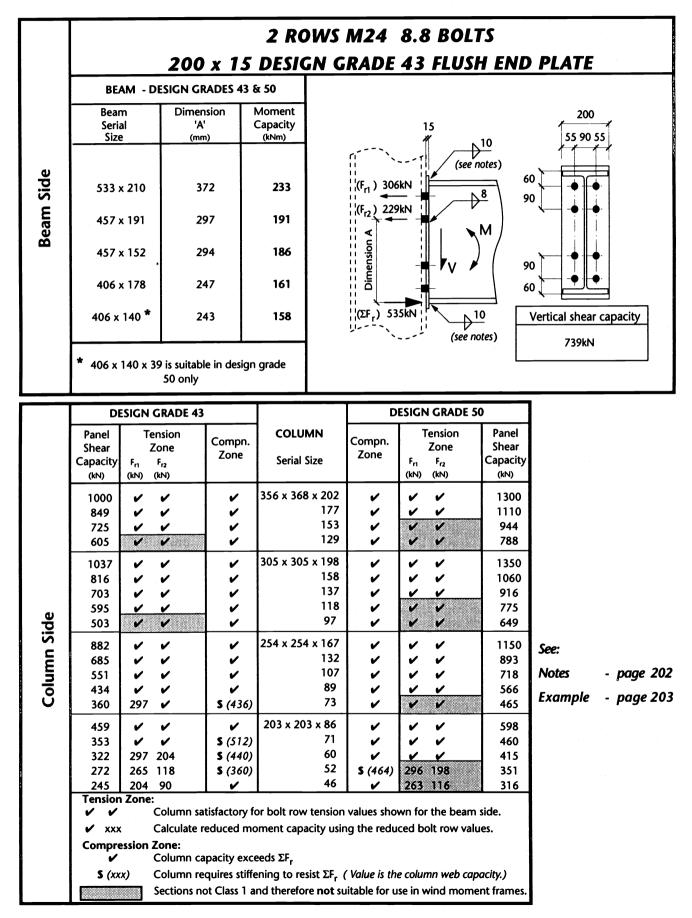

Try a connection identical to inner column:

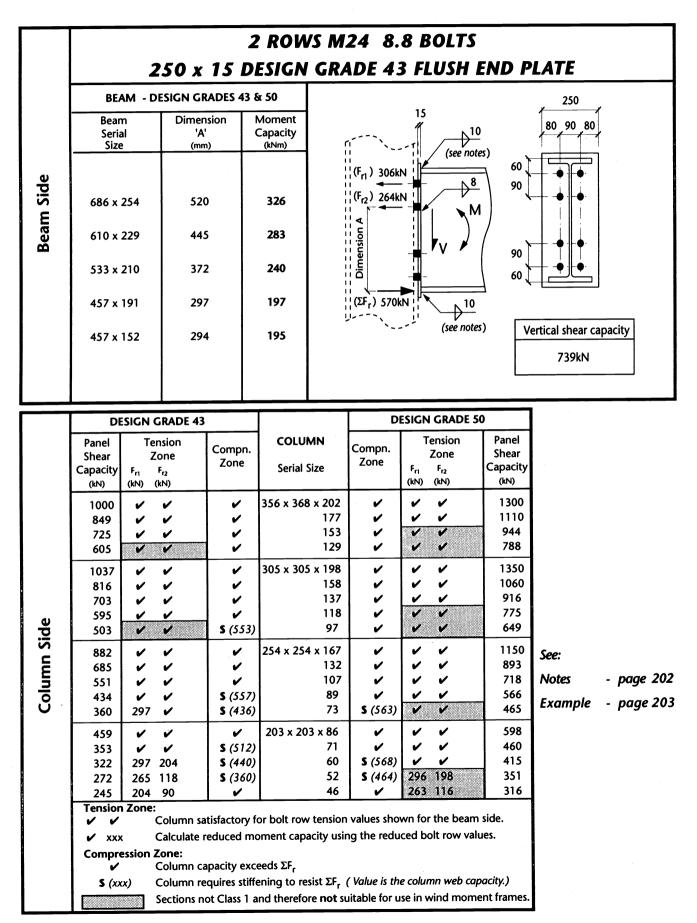

	Beam side	Column side
Moment capacity	358kNm > 185kNm OK	<b>Tension zone:</b> 2nd. bolt row = 274kN
		Reduced moment capacity = (242 × (0.610 +0.10)) + (274 × 0.610) = 339kNm > 185 kNm OK
Vertical Shear	793kN > 400kN OK	
Column Web Panel shear		$\Sigma F_r = 242 + 274 = 516 kN > 360 KN$ unsatisfactory
		The web may be reinforced by a supplementary web plate or by diagonal stiffeners. Alternatively a reduced moment capacity may be calculated:
		$F_{r2} = 360 - 242 = 118kN$
		Reduced moment capacity
		$= (242 \times (0.610 + 0.10)) + (118 \times 0.610)$
		= 244 kNm > 185 kNm OK
		Compression Zone
		$\Sigma F_r = 360  kN < 436 kN O K$
		no stiffening required

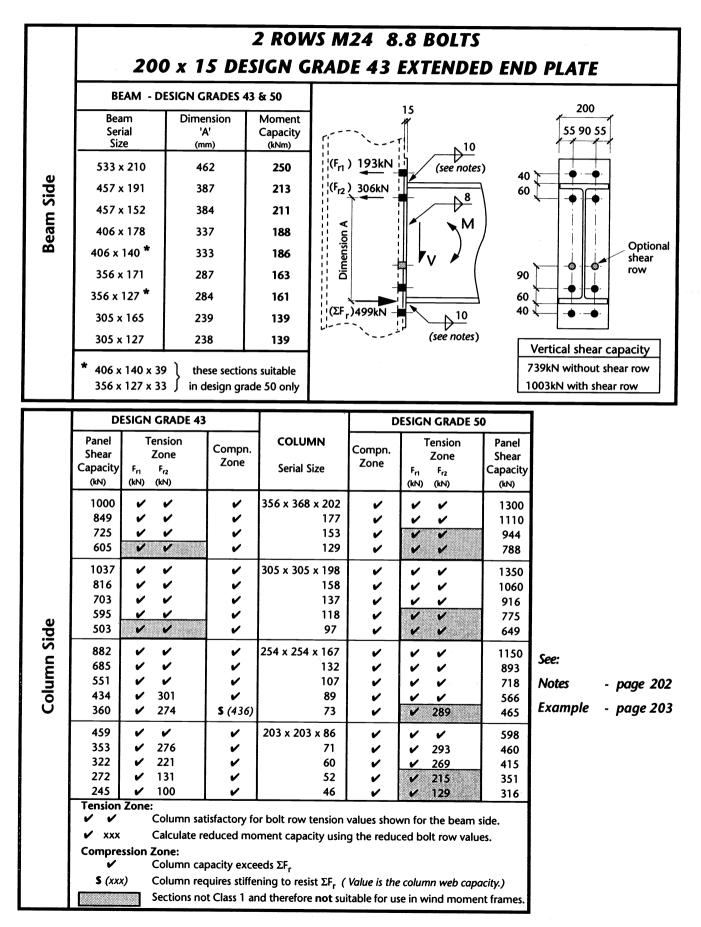


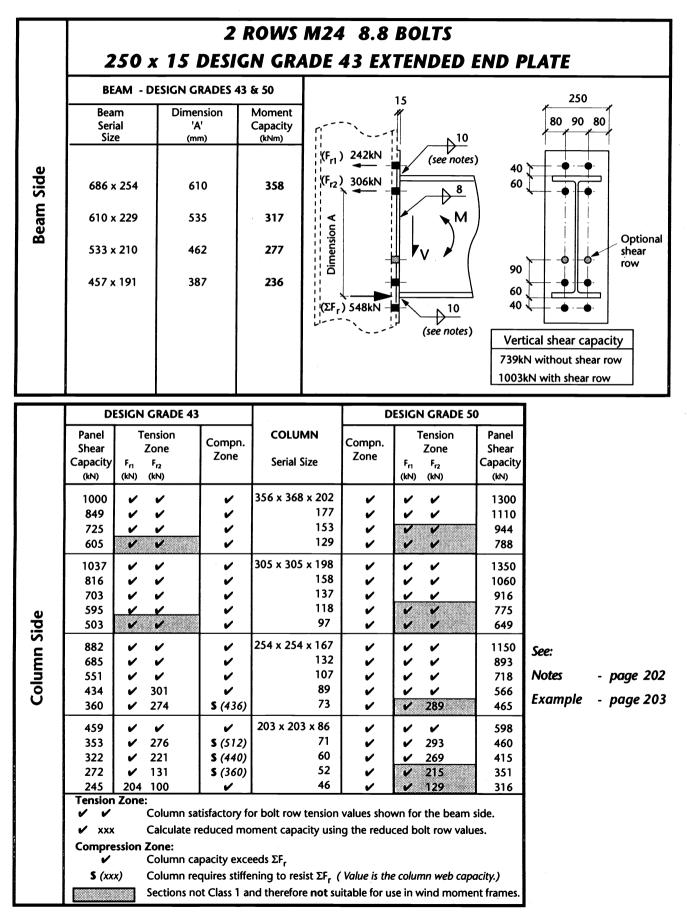



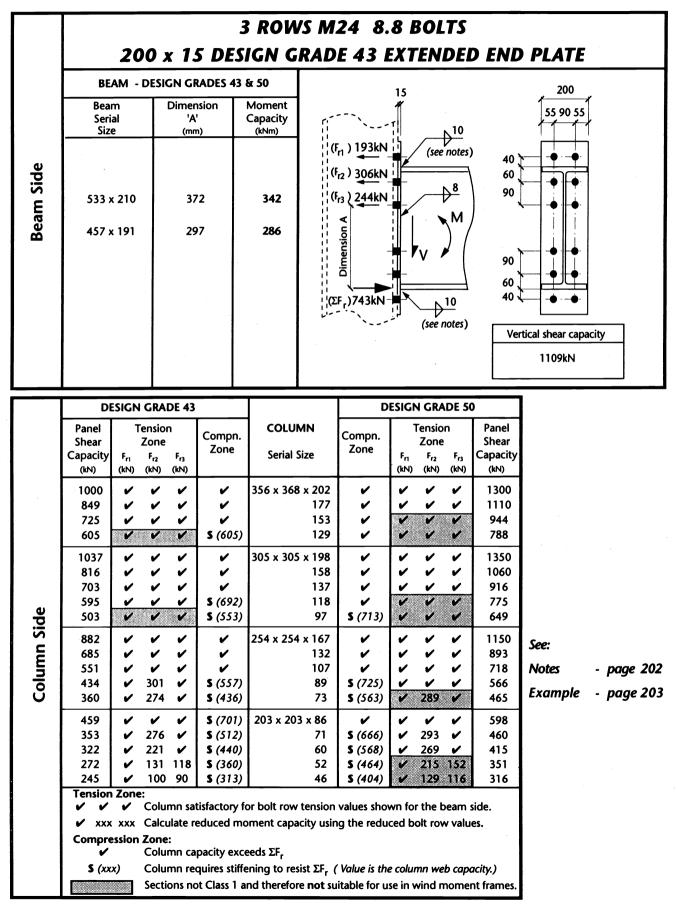



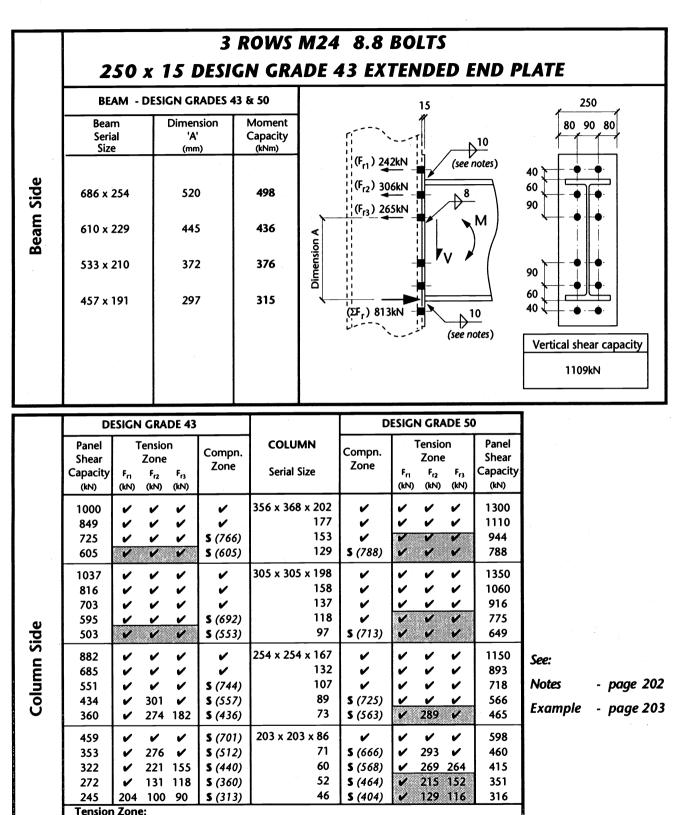














Column satisfactory for bolt row tension values shown for the beam side.

✓ xxx xxx Calculate reduced moment capacity using the reduced bolt row values.

**Compression Zone:** 

Column capacity exceeds ΣF_r

**S** (xxx) Column requires stiffening to resist  $\Sigma F_r$  (*Value is the column web capacity.*) Sections not Class 1 and therefore **not** suitable for use in wind moment frames.

### WIND-MOMENT CONNECTIONS DIMENSIONS FOR DETAILING

	dimension	dimension	Flush End plate	Extended End plate	
			overall depth	overall depth	
	<i>a</i> ,	a ₂	D _F	D _E	
	mm	mm	mm	mm	60 + + + + + + + + + + + + + + + + + + +
686 x 254 x 170	575	395			
152	570	390	750	880	$a_1$
140	565	385			$a_1$ $D_F$
. 125	560	380			
610 x 229 x 140	500	320			
125	490	310	670	800	
113	490	310	0,0	000	
101	480	300			
533 x 210 x 122	425	245			
109	420	240			
101	415	235	600	730	
92	415	235			. 60 <b></b>
82	410	230			90 j j j
457 x 191 x 98	350	170			
89	345	165	4		$a_2$ $D_F$
82	340	160	520	650	
74	340	160			90
67	335	155			
457 x 152 x 82	345	165			
74	340	160			
67	340	160	520	650	
60	335	155			
52	330	150			<u> </u>
406 x 178 x 74	295	115			
67	290	110	470	600	
60	285	105	4/0	600	
54	285	105			
406 x 140 x 46	280	100			
39	275	95	450	580	a ₁ D _E
356 x 171 x 67	245				
57	243				
51	235		420	550	· · · · · · · · · · · · · · · · · · ·
45	230			e e e e e e e e e e e e e e e e e e e	
256 x 12 x 20					<b>└───</b>
356 x 12 x 39 33	235 230		410	540	¥
305 x 165 x 54	190				
46	185 185		360	490	50
40					
305 x 127 x 48	190				
42	185		360	490	90
37	185				· · · · · · · · · · · · · · · · · · ·
305 x 102 x 33	195				
28	190		370	500	$a_2$ $ $ $ $ $ $ $ $ $ $ $D_E$
25	185				╶╴╴、╅╌┼╴╼┪╢╼╸╎
254 x 146 x 43	140				90 T T
37	135		310	440	
31	135				
254 x 102 x 28	140				
25 25	135		310	440	
22	135				
[aa aa		ram for al-t	hieleness and st		
see capa	ску саріе аїад	rum for plate l	nickness and othe	r aimensions appro	opriate to the moment capacities

pacity table diagram for plate thickness and other dimensions appropriate to the moment capacities All plates to be design grade 43

### **MATERIAL STRENGTHS AND FASTENER CAPACITIES**

Extracts of tables from BS 5950:Part 1 and BS EN 10025

Steel strengths						
	imate Strengths, p _y a lates and Hollow Sec		ons,			
Design Grade	Thickness less than or equal to (mm)	P _y * (N/mm²)	U _s * (N/mm²)			
43	16 40 63 80 100	275 265 255 245 235	410			
50	16 40 63 80 100	355 345 335 325 315	} 490			

* In BS EN 10025 the yield and ultimate strengths are designated  $R_{eff}$  and  $R_m$  (Table 6)

Electrode strength					
Design strength, p _w (N/mm ² ) of electrodes to BS 639					
E43	E51				
215	215				
215	255				
	egth, p _w (N/m odes to BS 639 E43 215				

(Table 36)

Bearing strength: connected parts / 8.8 bolts					
Bearing strength of connected parts for ordinary bolts in clearance holes, p _{bs} (N/mm ² )					
Design grade of steel					
43 50					
460 550					
(Table 33)					

Bolt strengths					
Strength of 8.8 bolts in clearance holes (N/mm ² )					
Shear strength, p _s	375				
Bearing strength, p _{bb} (But see bearing strength of connected parts)	1035				
Tension strength, p _t	See APPENDIX IV				

(Table 32)

Bearing strength: connected parts / "High strength friction grip" bolts					
Bearing strength of connected parts for parallel shank friction grip fasteners, p _{bg} (N/mm ² )					
Design grade of steel					
43 50					
825	1065				
(Table 34)					

220

### CAPACITIES FOR ORDINARY BOLTS TO BS 3692 and BS 4190*

Capacities in kN for bolts in 2mm clearance holes  $\leq$  24mm Dia. 3mm clearance holes > 24mm Dia.

### 8.8 bolts - Design grade 43 material

L																	
Bolt Size	Tensile stress area	Tensile BS 5950 Part 1 at 450 N/mm ²	Capacity Enhanced Value at 560 N/mm ²	at 375 Threac	Capacity N/mm² Is in the plane						_			or e ≥ throug			
	mm²	kN	kN	Single	Double	5	6	: 7	8	9	10	12	15	18	20	22	25
М16	157	70.7	87.9	58.9	118	36.8	44.2	51.5	58.9	66.2	73.6	88.3	110	132		-	
M20	245	110	137	91.9	184	46.0	55.2	64.4	73.6	82.8	92.0	110	138	166	184		
M24	353	159	198	132	265	55.2	66.2	77.3	88.3	99.4	110	132	166	199	221	243	276
M30	561	252	314	210	421	69.0	82.8	96.6	110	124	138	165	207	248	276	303	345

M20 and M24 are recommended sizes

### 8.8 bolts - Design grade 50 material

Bolt Size	Tensile stress area	Tensile BS 5950 Part 1 at 450 N/mm ²	Capacity Enhanced Value at 560 N/mm ²	at 375 Threac	Capacity N/mm² Is in the [•] plane						· · · ·			or e ≥ throug			
	mm²	kN	kN	Single	Double	5	6	7	8	9	10	12	15	18	20	22	25
M16	157	70.7	87.9	58.9	118	44.0	52.8	61.6	70.4	79.2	88.0	106	132				
M20	245	110	137	91.9	184	55.0	66.0	77.0	88.0	99.0	110	132	165	198			
M24	353	159	198	132	265	66.0	79.2	92.4	106	119	132	158	198	238	264	290	
M30	561	252	314	210	421	82.5	99.0	116	132	148	165	198	248	297	330	363	412

M20 and M24 are recommended sizes

These standards will be replaced by:

Bolts

: BS EN 24014 and 24016

Nuts : BS EN 24032, 24033 and 24034

Screws : BS EN 24017 and 24018

#### CAPACITIES FOR "HIGH STRENGTH FRICTION GRIP" BOLTS TO BS 4604 : Part 1 and BS 4395 : Part 1

Capacities in kN for bolts in 2mm clearance holes  $\leq$  24mm Dia. 3mm clearance holes > 24mm Dia.

	Prelo	aded ("HSFC	Non-preloaded ⁽⁴⁾							
Bolt Tensile Size Area mm ²	Proof Load	Tensile	⁽¹⁾ Slip Re	sistant	⁽²⁾ Tensile	⁽³⁾ Single	Double			
	of Bolt P _o	Capacity 0.9 P _o	Single Shear	Double Shear	Capacity	Shear Capacity	Shear Capacity			
157	92.1	82.9	45.6	91.2	75	62	124			
245	144	130	71.3	143	117	97	194			
353	207	186	102	205	169	140	280			
561	286	257	142	283	236	222	445			
	Stress Area mm ² 157 245 353	Tensile Stress Area mm²Proof Load of Bolt Po15792.1245144353207	Tensile Stress Area mm²Proof Load of Bolt PoTensile Capacity 0.9 Po15792.182.9245144130353207186	Stress Area mm²Load of Bolt PoTensile Capacity 0.9 PoSingle Single Shear15792.182.945.624514413071.3353207186102	Tensile Stress Area mm²Proof Load of Bolt PoTensile Capacity 0.9 Po(1)Slip Resistant15792.182.945.691.224514413071.3143353207186102205	Tensile Stress Area mm²Proof Load of Bolt PoTensile Capacity 0.9 Po(1)Slip Resistant Single Shear(2) Tensile Capacity15792.182.945.691.27524514413071.3143117353207186102205169	Tensile Stress Area mm²Proof Load of Bolt PoTensile Capacity(1)Slip Resistant Single Shear(2) Tensile Capacity(3)Single Shear Capacity15792.182.945.691.2756224514413071.314311797353207186102205169140			

#### Shear and tensile values in design grade 43 material

Bearing	values fo	or preload	ded ("HSI	FG") bolt	s in desig	gn grade	43 mater	ial ⁽⁵⁾
Bolt		Bearing	value of pla Thickness	te at 825 N in mm of	N/mm² and plate passe	end distan d through	ce e ≥ 3d	
Size	5	6	7	8	9	10	12	15
M16	66.0	79.2	92.4					
M20	82.5	99.0	116	132	148	165		
M24	99.0	119	139	158	178	198	237	
M30	124	148	173	198	223	248	297	371

Bolt	Be	aring value of Thickr	plate at 1065 l ness in mm of	N/mm ² and ei plate passed t	nd distance e hrough	≥ 3d
Size	5	6	7	8	9	10
M16	85.2	102		*		
M20	106	128	149	170		
M24	128	153	179	204	230	256
M30	160	192	224	256	288	320

M20 and M24 are recommended sizes

Notes:	1	$1.1K_{S}\mu P_{o}$ where $K_{S}$ = 1.0 (Parallel shank fasteners - some slip at ultimate loads)
		Slip Capacity based on a slip factor $\mu$ of 0.45

2  $0.58 U_f = 480 N/mm^2 \le M24, 420 N/mm^2 > M24$ 

3 0.48  $U_f = 400N/mm^2 \le M24$ , 350N/mm² >M24

4 Permitted under BS 4604 Part 1; clause 1.3

5 Values from BS 5950 : Part 1; Table 34. For non-preloaded bolts use table on page 221

6 Values from BS 5950 : Part 1; Table 34. For non-preloaded bolts use table on page 221

#### **CAPACITIES FOR COUNTERSUNK BOLTS**

Capacities in kN for bolts in 2mm clearance holes ≤ 24mm Dia. 3mm clearance holes > 24mm Dia.

## 8.8 bolts - Design grade 43 material

Bolt Size	Tensile Capacity at 450 N/mm ²	at 375 Threa	Capacity N/mm ² ads in Plane	Bearing capacity at 460 N/mm ² for $e \ge 2d$ Thickness in mm of plate passed through						-					
	kN	Single	Double	5	6	7	8	9	10	12	15	18	20	22	25
M16	70.7	58.9	118	7.4	14.7	22.1	29.5	36.8	44.2	58.9	96.8	118			
M20	110	91.9	184		9.2	18.4	27.6	36.8	46.0	64.2	92.0	120	138	156	184
M24	159	132	265			11.0.	22.1	33.1	44.0	66.0	99.6	133	155	177	210
М30	252	210	421				6.9	20.7	34.5	61.9	104	145	172	199	241

M20 and M24 are recommended sizes

### 8.8 bolts - Design grade 50 material

Bolt Size	Tensile Capacity at 450 N/mm ²				Bearing capacity at 550 N/mm ² for $e \ge 2d$ Thickness in mm of plate passed through										
	kN	Single	Double	5	6	7	8	9	10	12	15	18	20	22	25
M16	70.7	58.9	118	8.8	17.6	26.4	35.2	44.0	52.8	70.4	96.8				
M20	110	91.9	184		11.0	22.0	33.0	44.0	55.0	77.0	110	143	165		
M24	159	132	265			13.2	26.4	39.6	52.8	79.2	118	158	184	211	250
M30	252	210	421				8.3	24.8	41.3	74.3	123	173	206	239	288

M20 and M24 are recommended sizes

Notes:

- Countersunk bolts specified to BS 4933
- The bearing capacity has been calculated assuming that the head of the bolt lies flush with the connected ply.
- The shaded areas within the tables indicate ply thicknesses less than half of the depth of countersinking for a bolt of that diameter.
- For other connected ply thicknesses refer to BS5950 Clause 6.3.3.

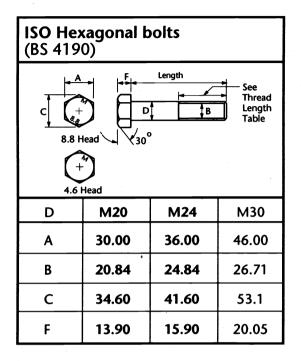
#### **Fillet welds Design Grade 50 Steel** Throat **Design Grade 43 Steel** Leg Grade E51 Electrodes to BS 639 Grade E43 Electrodes to BS 639 Thickness Length Capacity at 215 N/mm² Capacity at 255 N/mm² kN/mm kN/mm mm mm 1.07 4.2 0.903 6 1.43 8 5.6 1.2 1.79 7.0 1.51 10 2.14 1.81 8.4 12 2.68 2.26 15 10.5 3.21 12.6 2.71 18 3.57 3.01 14.0 20 3.93 3.31 15.4 22

### **CAPACITIES FOR WELDS**

Symmetrically disposed fillet welds may be sized using the table for butt welds below Note: subject to the conditions in BS 5950: Part 1 (6.6.5.1):

(a) the weld is made with a suitable electrode (or other welding consumable) which will produce all weld tensile specimens as specified in BS 709 having both a minimum yield strength and a minimum tensile strength not less than those specified for the parent metal;

(b) the sum of the throat sizes is not less than the connected plate thickness;

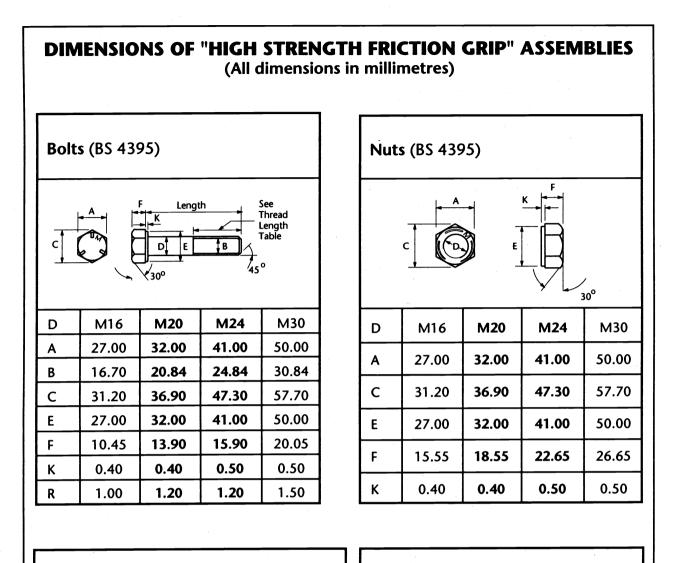

	· · · · · · · · · · · · · · · · · · ·
(c)	the weld is principally subject to direct tension or compression.

Throat		n Grade 43 Steel B Electrodes to BS 639	Design Grade 50 Steel Grade E51 Electrodes to BS 639			
Thickness mm	Shear (0.6p _y ) kN/mm	Tension or Compression kN/mm	Shear (0.6p _y ) kN/mm	Tension or Compression kN/mm		
6	0.99	1.65	1.28	2.13		
8	1.32	2.2	1.7	2.84		
10	1.65	2.75	2.13	3.55		
12	1.98	3.3	2.56	4.26		
15	2.48	4.13	3.2	5.33		
18	2.86	4.77	3.73	6.21		
20	3.18	5.30	4.14	6.90		
22	3.5	5.83	4.55	7.59		
22	3.5		4.55	7.59		

A partial penetration butt weld with a superimposed fillet should be sized using the design strength given for fillet welds (215 N/mm² for design grade 43 and 255 N/mm² for design grade 50)

#### **DIMENSIONS OF ORDINARY BOLT ASSEMBLIES**

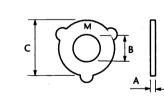
(All dimensions in millimetres)




ISO Metric hexagonal nuts (BS 4190)								
- c			30°					
D	M20	M24	M30					
A	30.00	36.00	46.00					
С	34.60	41.60	53.10					
F	16.00	19.00	29.00					

Thread lengths	
Nominal Bolt Length	Thread
Up to/including 125mm (short thread length bolts1.5D)	2 <i>D</i> + 6mm
Over 125mm up to/including 200	2 <i>D</i> + 12mm
Over 200mm	2 <i>D</i> + 25mm
Bolts are available fully thr and are recommended	

Washers	
(BS 4320)	


(03)	520)			
		M20	M24	M30
nal E)	Outside dia Thickness	37 3	44 4	56 4
Normal (Form E)	Mass of 1000 washers (kg)	17	32	50
ge n F)	Outside dia Thickness	39 3	50 4	60 4
Large (Form F)	Mass of 1000 washers (kg)	20	45	60
Large n G)	Outside dia Thickness	60 5	72 6	90 8
Extra Large (Form G)	Mass of 1000 washers (kg)	100	170	343
NO the	TE: Tolerance on no refore on mass) may	minal th be as m	ickness uch as 3	(and 80%.



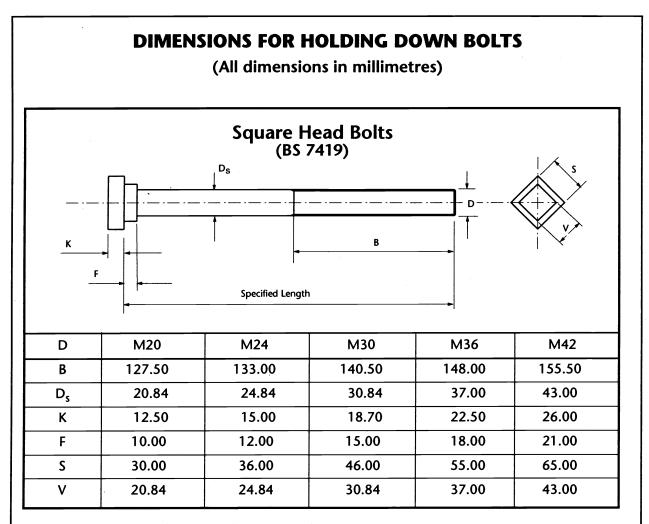

## **Thread lengths**

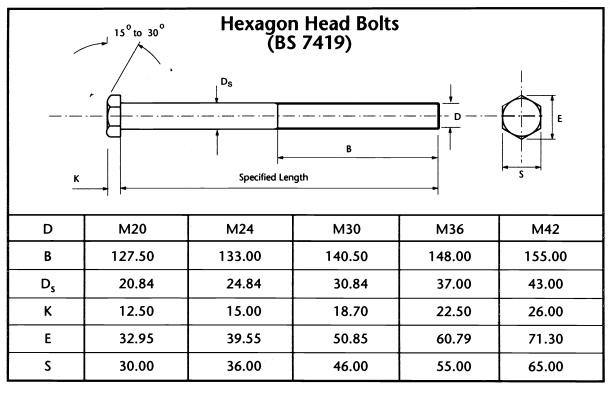
Nominal Bolt Length	Thread Length
Up to/including 125mm	2D + 6mm
Over 125mm up to/including 200	2 <i>D</i> + 12mm
Over 200mm	2D + 25mm

### Flat round washers

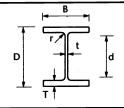


M16	M20	M24	M30
3.40	3.70	4.20	4.20
17.80	21.50	26.40	32.80
37.00	44.00	56.00	66.00
22.0	32.8	60.0	76.6
	3.40 17.80 37.00	3.40     3.70       17.80     21.50       37.00     44.00	3.40     3.70     4.20       17.80     21.50     26.40       37.00     44.00     56.00





160*

100


M30

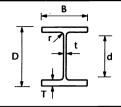
730





*228* 




# **Universal Beams**

## Dimensions

Designation	Depth of	Width of	Thick	nesses	Root Radius	Depth between	Perimeter	Area
Serial Size Mass	Section	Section	Flange	Web		fillets		_
	D	В	Т	t	r	d	Р	A
mm mm kg/m	mm		mm	mm	mm	mm	m	cm ²
914 x 419 x 388	920.4	420.5	36.6	21.5	24.1	799.0	3.44	495
x 343	911.2	418.5	32.0	19.4	24.1	799.0	3.42	437
914 x 305 x 289	926.6	307.8	32.0	19.6	19.1	824.5	3.01	369
x 253	918.4	305.5	27.9	17.3	19.1	824.5	2.99	323
x 224	910.4	304.1	23.9	15.9	19.1	824.5	2.97	286
x 201	903.0	303.4	20.2	15.2	19.1	824.5	2.96	257
838 x 292 x 226	850.9	293.8	26.8	16.1	17.8	761.7	2.81	289
x 194	840.7	292.4	21.7	14.7	17.8	761.7	2.79	247
x 176	834.9	291.6	18.8	14.0	17.8	761.7	2.78	224
762 x 267 x 197	769.6	268.0	25.4	15.6	16.5	685.8	2.55	251
x 173	762.0	266.7	21.6	14.3	16.5	685.8	2.53	220
x 147	753.8	265.3	17.5	12.9	16.5	685.8	2.51	188
686 x 254 x 170	692.8	255.8	23.7	14.5	15.2	615.0	2.35	217
x 152	687.4	254.5	21.0	13.2	15.2	615.0	2.34	194
x 140	683.4	253.7	19.0	12.4	15.2	615.0	2.33	178
x 125	677.8	253.0	16.2	11.7	15.2	615.0	2.32	159
610 x 305 x 238	633.0	311.5	31.4	18.6	16.5	537.2	2.45	304
x 179	617.4	307.0	23.6	14.1	16.5	537.2	2.41	228
x 149	609.6	304.8	19.7	11.9	16.5	537.2	2.39	190
610 x 229 x 140	616.8	230.1	22.1	13.1	12.7	547.3	2.11	178
x 125	611.8	229.0	19.6	11.9	12.7	547.3	2.09	159
x 113	607.2	228.2	17.3	11.2	12.7	547.3	2.08	144
x 101	602.2	227.6	14.8	10.6	12.7	547.3	2.07	129
533 x 210 x 122	544.5	211.9	21.3	12.8	12.7	476.5	1.89	156
x 109	539.5	210.7	18.8	11.6	12.7	476.5	1.88	139
x 101	536.7	210.1	17.4	10.9	12.7	476.5	1.87	129
x 92	533.1	209.3	15.6	10.2	12.7	476.5	1.86	118
x 82	528.3	208.7	13.2	9.6	12.7	476.5	1.85	105

#### **Moment Connections**

Universal Beams Dimensions											
	Depth	Width	Thicknesses		Root	Depth					
Serial Size Mass	of Section	of Section	Flange	Web	Radius	between fillets	Perimeter	Area			
	D	В	т	t	r	d	Р	A			
mm mm kg/m	mm	mm	mm	mm	mm	mm	m	cm ²			
457 x 191 x 98	467.5	192.8	19.6	11.4	10.2	407.9	1.67	125			
x 89	463.7	192.0	17.7	10.6	10.2	407.9	1.66	114			
x 82	460.3	191.3	16.0	9.9	10.2	407.9	1.65	105			
x 74	457.3	190.5	14.5	9.1	10.2	407.9	1.64	95.1			
x 67	453.7	189.9	12.7	8.5	10.2	407.9	1.63	85.5			
457 x 152 x 82	465.1	153.5	18.9	10.7	10.2	406.9	1.51	105			
437 x 132 x 82 x 74	461.3	155.5	17.0	9.9	10.2	406.9	1.50	95.1			
x 67	457.3	151.9	17.0	9.1	10.2	406.9	1.49	85.3			
x 60	454.7	152.9	13.3	8.0	10.2	407.7	1.49	75.8			
x 52	449.9	152.4	10.9	7.6	10.2	407.7	1.48	66.7			
406 x 178 x 74	412.9	179.7	16.0	9.7	10.2	360.5	1.51	95.3			
x 67	409.5	178.8	14.3	8.8	10.2	360.5	1.50	85.5			
x 60	406.5	177.8	12.8	7.8	10.2	360.5	1.49	76.1			
x 54	402.7	177.6	10.9	7.6	10.2	360.5	1.48	68.6			
406 x 140 x 46	402.4	142.4	11.2	6.9	10.2	359.7	1.34	59.0			
x 39	397.2	141.8	8.6	6.3	10.2	359.7	1.33	49.2			
256 171 67	364.0	172.0	16.7	9.1	10.2	312.3	1.39	85.5			
356 x 171 x 67 x 57	364.0 358.6	173.2 172.1	15.7 13.0	9.1 8.0	10.2	312.3	1.39	72.2			
x 57 x 51	355.6	172.1	11.5	7.3	10.2	312.3	1.37	64.6			
x 45	352.0	171.0	9.7	6.9	10.2	312.3	1.36	57.0			
356 x 127 x 39	352.9	126.0	10.7	6.5	10.2	311.2	1.18	49.4			
x 33	348.5	125.4	8.5	5.9	10.2	311.2	1.17	41.8			
305 x 165 x 54	310.8	166.8	13.7	7.7	8.9	265.7	1.26	68.2			
x 46	307.0	165.7	11.8	6.7	8.9	265.7	1.25	58.8			
x 40	303.8	165.1	10.2	6.1	8.9	265.7	1.24	51.6			



# **Universal Beams**

## Dimensions

Designation		Depth of	Width of	Thicknesses		Root Radius	Depth between	Perimeter	Area	
Serial S	Size	Mass	Section	Section	Flange	Web		fillets		
			D	В	Т	t	r	d	Р	A
mm n	nm	kg/m	mm	mm	mm	mm	mm	mm	m	cm ²
305 x 1	127.	x 48	310.4	125.2	14.0	8.9	8.9	264.6	1.09	60.9
505 X I			310.4 306.6	123.2	14.0		8.9 8.9	264.6		
		x 42 x 37	308.8	124.3	12.1	8.0 7.2	8.9 8.9	264.4 264.6	1.08	53.4
	,	× 37	303.8	123.5	10.7	7.2	0.9	204.0	1.07	47.4
305 x 1	02 >	× 33	312.7	102.4	10.8	6.6	7.6	275.9	1.01	41.8
	,	< 28	308.9	101.9	8.9	6.1	7.6	275.9	1.00	36.4
	,	< 25	304.8	101.6	6.8	5.8	7.6	275.9	0.991	31.2
254 x 1	46 >	<b>4</b> 3	259.6	147.3	12.7	7.3	7.6	218.9	1.08	55.0
	,	< 37	256.0	146.4	10.9	6.4	7.6	218.9	1.07	47.4
	>	31 ،	251.5	146.1	8.6	6.1	7.6	218.9	1.06	39.9
254 x 1	02 ×	× 28	260.4	102.1	10.0	6.4	7.6	225.1	0.903	36.3
	×	¢ 25	257.0	101.9	8.4	6.1	7.6	225.1	0.896	32.3
	×	× 22	253.8	101.6	6.8	5.8	7.6	225.1	0.889	28.2
203 x 1			206.7	133.8	9.6	6.3	7.6	172.3	0.923	38.0
	×	25	203.1	133.4	7.8	5.8	7.6	172.3	0.915	32.2
203 x 1	02.		203.2	101.6	9.3	6.2	. 7.4	1/0.4	0.700	20.0
205 X I	02 X	. 23	203.2	101.6	9.5	5.2	7.6	169.4	0.789	29.0
178 x 1	02 v	19	177.8	101.6	7.9	4.7	7.6	146.8	0.740	24.2
1/0 × 1	02 7		177.0	101.0	7.5	/	7.0	140.0	0.740	27.2
152 x	89 x	16	152.4	88.9	7.7	4.6	7.6	121.8	0.638	20.5
127 x	76 x	: 13	127.0	76.2	7.6	4.2	7.6	96.6	0.537	16.8

#### **Moment Connections**

	d	Univ	versal	Colu	mns					
Dimensions										
Designation	Depth of	Width of	Thicknesses		Root Radius	Depth between	Perimeter	Area		
Serial Size Mass	Section	Section	Flange	Web		fillets				
mm mm kg/m	D mm	B mm	T mm	t mm	r mm	d mm	P m	A cm ²		
356 x 406 x 634	474.5	424.1	77.0	47.6	15.2	290.2	2.52	808		
x 551	455.5	418.5	67.5	42.0	15.2	290.2	2.47	702		
x 467	436.5	412.4	58.0	35.9	15.2	290.2	2.42	595		
x 393	418.9	407.0	49.2	30.6	15.2	290.2	2.38	501		
x 340	406.3	403.0	42.9	26.5	15.2	290.2	2.35	433		
x 287	393.5	399.0	36.5	22.6	15.2	290.2	2.31	366		
x 235	380.9	395.0	30.2	18.5	15.2	290.2	2.28	300		
356 x 368 x 202	374.5	374.4	27.0	16.8	15.2	290.2	2.19	258		
x 177	368.1	372.1	23.8	14.5	15.2	290.2	2.17	226		
x 153	361.9	370.2	20.7	12.6	15.2	290.2	2.15	196		
x 129	355.5	368.3	17.5	10.7	15.2	290.2	2.14	165		
305x 305 x 283	365.1	321.8	44.1	26.9	15.2	246.6	1.94	360		
x 240	352.3	317.9	37.7	23.0	15.2	246.6	1.90	305		
x 198	339.7	314.1	31.4	19.2	15.2	246.6	1.87	252		
x 158	326.9	310.6	25.0	15.7	15.2	246.6	1.84	201		
x 137	320.3	308.7	21.7	13.8	15.2	246.6	1.82	174		
x 118	314.3	306.8	18.7	11.9	15.2	246.6	1.81	150		
x 97	307.7	304.8	15.4	9.9	15.2	246.6	1.79	123		
254x 254 x 167	289.0	264.5	31.7	19.2	12.7	200.3	1.58	212		
x 132	276.2	261.0	25.3	15.6	12.7	200.3	1.54	169		
x 107	266.6	258.3	20.5	13.0	12.7	200.3	1.52	137		
x 89	260.2	255.9	17.3	10.5	12.7	200.3	1.50	114		
x 73	254.0	254.0	14.2	8.6	12.7	200.3	1.48	92.9		
203x 203 x 86	222.2	208.8	20.5	13.0	10.2	160.9	1.24	110		
x 71	215.8	206.2	17.3	10.3	10.2	160.9	1.22	90.9		
x 60	209.6	205.2	14.2	9.3	10.2	160.9	1.20	76.0		
x 52	206.2	203.9	12.5	8.0	10.2	160.9	1.19	66.4		
x 46	203.2	203.2	11.0	7.3	10.2	160.9	1.19	58.8		
152x 152 x 37	161.6	154.4	11.5	8.1	7.6	123.5	0.912	47.2		
x 30	157.4	152.9	9.4	6.6	7.6	123.5	0.900	38.4		
x 23	152.2	152.4	6.8	6.1	7.6	123.5	0.889	29.7		

	30		Joi	sts				
	•		Dimer	nsions				
Designation	Depth of Section	Width of Section	Thicknesses		Root Radius	Depth between	Perimeter	Area
Size Mass			Flange (Average)	Web	Radius	fillets		
mm mm kg/m	D mm	B mm	T mm	t mm	r mm	d mm	. P m	A cm ²
254 x 203 x 82	254.0	203.2	19.9	10.2	19.6	167.0	1.21	105
🖝 254 x 114 x 37	254.0	114.3	12.8	7.6	12.4	199.0	0.90	47.3
203 x 152 x 52	203.2	152.4	16.5	8.9	15.5	133.0	0.93	66.6
152 x 127 x 37	152.4	127.0	13.2	10.4	13.5	94.3	0.74	47.5
127 x 114 x 29	127.0	114.3	11.5	10.2	12.4	71.9	0.65	37.4
127 x 114 x 26	127.0	114.3	11.4	7.4	9.9	79.5	0.65	34.2
🖝 127 x 76 x 16	127.0	76.2	9.6	5.6	9.4	86.5	0.51	21.1
114 x 114 x 27	114.3	114.3	10.7	9.5	14.2	60.8	0.62	34.5
102 x 102 x 23	101.6	101.6	10.3	9.5	11.1	55.2	0.55	29.3
☞ 102 x 44 x 7	101.6	44.5	6.1	4.3	6.9	74.6	0.35	9.5
89 x 89 x 19	88.9	88.9	9.9	9.5	11.1	44.2	0.48	24.9
🖝 76 x 76 x 15	76.2	76.2	8.4	5.1	9.4	38.1	0.42	19.1
76 x 76 x 12	76.2	76.2	8.4	5.1	9.4	38.1	0.41	16.2
		l						

Check availability of section