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In order to analyze unbalanced conditions on transmission lines, we need to apply the
method of symmetrical components, as described by Charles Fortescue in his
monumental 1918 AIEE paper’. To do so, we first need to express the impedance of a
transmission line as positive-, negative-, and zero-sequence components. The
determination of sequence impedances for transmission lines is perhaps best explained
by Edith Clarke in her classic 1950 text’ . A brief summary follows.

Positive and Negative Sequence Impedances. A transmission line is a passive and
bilateral device. By passive, we mean there are no voltage or current sources present
in the equivalent model of a transmission line. Bilateral means the line behaves the
same way regardless of the direction of the current. Note that although a single
transmission line is bilateral, an interconnected transmission network is NOT bilateral,
due to the dispersion of active components (generators) throughout the network.
Because of a transmission line’s passive and bilateral properties, the phase sequence
of the applied voltage makes no difference, as a-b-c (positive-sequence) voltages
produce the same voltage drops as a-c-b (negative-sequence) voltages. This means
that the positive- and negative-sequence impedances of a transmission line are
identical, provided that the line is transposed. Transposition means physically
exchanging the position of each phase conductor along the length of the line such that
conductor #1 occupies: position #1 for 1/3 of the line length, position #2 for 1/3 of the
line length, and position #3 for 1/3 of the line length. Conductors #2 and #3 are rotated
similarly. The figure below is a plan view (view from above) of a completely transposed
transmission line with its phases oriented horizontally (such as with an H-frame
structure).
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It should be noted that because of the design and construction complications introduced
by transposing (usually three special — as well as large and unsightly — structures and
additional right-of-way width are needed at each transposition point), most transmission
lines built today are NOT transposed. The effects of not transposing a transmission line
will be discussed later.



For a completely transposed transmission line,
Z1=2Z,=R; +]X; (Wphase)
where

R, = line resistance to positive sequence currents
X1 = line inductive reactance to positive sequence currents.

R is a function of both conductor temperature and frequency. X depends on the
inductance of the line, and can be expressed as
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where

f = frequency in hertz
D, = mutual geometric mean distance (GMD)
Ds = self geometric mean distance, or geometric mean radius (GMR)

Skin effect. The derivation of R and X above assume uniform current density through
the cross section of the conductor. Uniform current density occurs only when the
frequency is zero (direct current). As the frequency increases from zero, the current
density increases near the conductor surface and decreases as the center of the
conductor is approached. This phenomena, known as skin effect, reduces the internal
flux linkages, and lowers the internal inductance compared to the DC state. It also
increases the resistance.

A factor a can be derived for both resistance and inductance, expressing the ratio of R
or L at a given frequency to that at DC conditions. This ratio is actually the solution to a
differential equation whose closed-form solution is expressed as Bessel functions. The

expressions for ar and a, are shown below:
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m=, wms

r = conductor radius

Since m= m; ny, we can write
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DC

The Bessel functions and their first derivatives can be approximated by using series
expansions:
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Mutual coupling. When any wire making up a transmission line carries a non-zero
current, the magnetic flux produced by that current will link with the other wires making
up the line, inducing a voltage in the other wires. The flux produced by a current in wire
1 that links wire 2 can be calculated as follows:

l 5, = @Mdsz (Wb - turns)

where

| 21 = magnetic flux linkage of wire 2 due to current in wire 1

A = magnetic vector potential = mh QE ds, (Wb/m)
4p *r

Magnetic flux linkages produce a mutual inductance between the conductors of the
transmission line. Under balanced conditions, no mutual inductance exists, since the
sum of the line currents equals zero. But with zero-sequence current, a strong coupling



effect exists since the zero-sequence current in each phase is additive. The coupling
effect can be represented by the mutual inductance M (in henrys), where

M= 2 ()

Effects of transposition. After the self- and mutual-impedances of a transmission line
have been determined, the voltage drop along the line can be expressed by writing
Ohm’s Law in matrix form. Referring to the figure on the first page showing a fully
transposed line, the matrix equation for the first section of line (when Phase A occupies
Position 1, Phase B occupies Position 2, and Phase C occupies Position 3), is
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For the middle section of line (when Phase A occupies Position 2, Phase B occupies
Position 3, and Phase C occupies Position 1), the matrix equation becomes
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This change represents a linear transformation of the impedance matrix. Applying the
same transformation for the third section of line (when Phase A occupies Position 3,
Phase B occupies Position 1, and Phase C occupies Position 2), the equation becomes

Vou €, Z, Z,Uu 4l
a_ U U
eV ? Z32 233 u 2 u

@V1H @Zn Zp, 13H €3H

The impedance of the total line is the sum of the impedance matrices for each of the
three sections. When the line is completely transposed, the off-diagonal elements of
the impedance matrix are very nearly balanced. With non-transposed lines, the
imaginary portion (reactance) of the off-diagonal terms vary greatly, leading to
unbalanced voltages between the three phases.

Carson’s Equations. Three-phase transmission lines have only three current-carrying
conductors. The earth, or a parallel combination of the earth and overhead ground
wires (static wires), can carry zero-sequence current, thus changing the zero-sequence
impedance of the line. A landmark paper was published by John Carson in 19233
describing the impedance of an overhead conductor with earth return.



The earth is considered to have a uniform resistivity and to be of infinite extent. Carson
considered the fictitious return conductor to be below the surface of the earth. The
return current spreads out over a very large area, seeking the lowest resistance path
back to the source. But the return “conductor” can be thought of as being a single
conductor with a GMR of 1 foot (or meter) located at a distance D,y (feet or meters)
below the overhead conductor. D,q depends on the resistivity (r) of the earth, and can
be adjusted such that the calculated inductance matches the measured inductance.
Empirical values of r and D4 are tabulated below:

Return Earth Condition  Resistivity (r) in W-m  Dag in meters

Sea water 0.01-1.0 16-5.1
Swampy ground 10 -100 9.1-16.1
“Average” damp earth 100 16.1
Dry earth 1000 28.6
Pure slate 10’ 285
Sandstone 10° 905
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A single-phase representation of Carson’s line can be shown as follows:

We can write the following equation for Carson’s line:
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The self impedances z,, and zy4g and the mutual impedance z,4 can be expressed as
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where

Dag = distance between conductor and return “conductor” in meters
Dsq © 1 meter (unit length to correct units)
Dsa = GMR of conductor in meters
Dss = GMR of return “conductor” in meters
= length of conductor in meters

The following approximation for the equivalent depth of return can be helpful:

Cited sources:

D2, , D, » 2160 \/? (ft)

Bibliography

1. Fortescue, Charles L. Method of Symmetrical Coordinates Applied to the Solution
of Polyphase Networks. Trans. AIEE 37: 1027-1140, 1918.

2. Clarke, Edith.

Circuit Analysis of A-C Power Systems, 2 vols. General Electric

Co., Schenectady, NY, 1950.

3. Carson, John

R. Wave Propagation in Overhead Wires with Ground Return. Bell

System Technical Journal 5: 539-554, 1926.

Other sources:

Electrical Transmission and Distribution Reference Book. Westinghouse Electric
Corporation, East Pittsburgh, PA, 1964.

Anderson, Paul. Analysis of Faulted Power Systems. lowa State University
Press, 1973.

Stevenson Jr.,
1982.

William D. Elements of Power System Analysis. McGraw-Hill,



