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In order to analyze unbalanced conditions on transmission lines, we need to apply the 
method of symmetrical components, as described by Charles Fortescue in his 
monumental 1918 AIEE paper1.  To do so, we first need to express the impedance of a 
transmission line as positive-, negative-, and zero-sequence components.  The 
determination of sequence impedances for transmission lines is perhaps best explained 
by Edith Clarke in her classic 1950 text2 .  A brief summary follows. 
 
 
Positive and Negative Sequence Impedances.  A transmission line is a passive and 
bilateral device.  By passive, we mean there are no voltage or current sources present 
in the equivalent model of a transmission line.  Bilateral means the line behaves the 
same way regardless of the direction of the current.  Note that although a single 
transmission line is bilateral, an interconnected transmission network is NOT bilateral, 
due to the dispersion of active components (generators) throughout the network.  
Because of a transmission line’s passive and bilateral properties, the phase sequence 
of the applied voltage makes no difference, as a-b-c (positive-sequence) voltages 
produce the same voltage drops as a-c-b (negative-sequence) voltages.  This means 
that the positive- and negative-sequence impedances of a transmission line are 
identical, provided that the line is transposed.  Transposition means physically 
exchanging the position of each phase conductor along the length of the line such that 
conductor #1 occupies: position #1 for 1/3 of the line length, position #2 for 1/3 of the 
line length, and position #3 for 1/3 of the line length.  Conductors #2 and #3 are rotated 
similarly.  The figure below is a plan view (view from above) of a completely transposed 
transmission line with its phases oriented horizontally (such as with an H-frame 
structure). 
 

 
 
It should be noted that because of the design and construction complications introduced 
by transposing (usually three special – as well as large and unsightly – structures and 
additional right-of-way width are needed at each transposition point), most transmission 
lines built today are NOT transposed.  The effects of not transposing a transmission line  
will be discussed later. 
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For a completely transposed transmission line, 
 

Z1 = Z2 = R1 + j X1  (Ω/phase) 
 

where 
 

R1 = line resistance to positive sequence currents 
X1 = line inductive reactance to positive sequence currents. 

 
R is a function of both conductor temperature and frequency.  X depends on the 
inductance of the line, and can be expressed as 
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where 
 

f = frequency in hertz 
Dm = mutual geometric mean distance (GMD) 
Ds = self geometric mean distance, or geometric mean radius (GMR) 
 
 

Skin effect.  The derivation of R and X above assume uniform current density through 
the cross section of the conductor.  Uniform current density occurs only when the 
frequency is zero (direct current).  As the frequency increases from zero, the current 
density increases near the conductor surface and decreases as the center of the 
conductor is approached.  This phenomena, known as skin effect, reduces the internal 
flux linkages, and lowers the internal inductance compared to the DC state.  It also 
increases the resistance. 
 
A factor α can be derived for both resistance and inductance, expressing the ratio of R 
or L at a given frequency to that at DC conditions.  This ratio is actually the solution to a 
differential equation whose closed-form solution is expressed as Bessel functions.  The 
expressions for αR and αL are shown below: 
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where 

 
 



σµω=m  
r = conductor radius 

 
Since µ = µ r µ0, we can write 
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The Bessel functions and their first derivatives can be approximated by using series 
expansions: 
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Mutual coupling.  When any wire making up a transmission line carries a non-zero 
current, the magnetic flux produced by that current will link with the other wires making 
up the line, inducing a voltage in the other wires.  The flux produced by a current in wire 
1 that links wire 2 can be calculated as follows: 
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where 

 
λ21 = magnetic flux linkage of wire 2 due to current in wire 1 

A = magnetic vector potential = ∫π
µ
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Magnetic flux linkages produce a mutual inductance between the conductors of the 
transmission line.  Under balanced conditions, no mutual inductance exists, since the 
sum of the line currents equals zero.  But with zero-sequence current, a strong coupling 



effect exists since the zero-sequence current in each phase is additive.  The coupling 
effect can be represented by the mutual inductance M (in henrys), where 
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Effects of transposition.  After the self- and mutual-impedances of a transmission line 
have been determined, the voltage drop along the line can be expressed by writing 
Ohm’s Law in matrix form.  Referring to the figure on the first page showing a fully 
transposed line, the matrix equation for the first section of line (when Phase A occupies 
Position 1, Phase B occupies Position 2, and Phase C occupies Position 3), is 
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For the middle section of line (when Phase A occupies Position 2, Phase B occupies 
Position 3, and Phase C occupies Position 1), the matrix equation becomes 
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This change represents a linear transformation of the impedance matrix.  Applying the 
same transformation for the third section of line (when Phase A occupies Position 3, 
Phase B occupies Position 1, and Phase C occupies Position 2), the equation becomes 
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The impedance of the total line is the sum of the impedance matrices for each of the 
three sections.  When the line is completely transposed, the off-diagonal elements of 
the impedance matrix are very nearly balanced.  With non-transposed lines, the 
imaginary portion (reactance) of the off-diagonal terms vary greatly, leading to 
unbalanced voltages between the three phases. 
 
 
Carson’s Equations.  Three-phase transmission lines have only three current-carrying 
conductors.  The earth, or a parallel combination of the earth and overhead ground 
wires (static wires), can carry zero-sequence current, thus changing the zero-sequence 
impedance of the line.  A landmark paper was published by John Carson in 19233 

describing the impedance of an overhead conductor with earth return. 



The earth is considered to have a uniform resistivity and to be of infinite extent.  Carson 
considered the fictitious return conductor to be below the surface of the earth.  The 
return current spreads out over a very large area, seeking the lowest resistance path 
back to the source.  But the return “conductor” can be thought of as being a single 
conductor with a GMR of 1 foot (or meter) located at a distance Dad (feet or meters) 
below the overhead conductor.  Dad depends on the resistivity (ρ) of the earth, and can 
be adjusted such that the calculated inductance matches the measured inductance.  
Empirical values of ρ and Dad are tabulated below: 
 

Return Earth Condition Resistivity (ρ) in Ω-m Dad in meters 
Sea water 0.01 – 1.0 1.6 – 5.1 
Swampy ground 10 – 100 9.1 – 16.1 
“Average” damp earth 100 16.1 
Dry earth 1000 28.6 
Pure slate 107 285 
Sandstone 109 905 

 

A single-phase representation of Carson’s line can be shown as follows: 
 
We can write the following equation for Carson’s line: 
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The self impedances zaa and zdd and the mutual impedance zad can be expressed as 
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where 

 
Dad = distance between conductor and return “conductor” in meters 
Dsd ≡ 1 meter (unit length to correct units) 
Dsa = GMR of conductor in meters 
Dsd = GMR of return “conductor” in meters 
s = length of conductor in meters 

 
The following approximation for the equivalent depth of return can be helpful: 
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