

COMBINED STRENGTH. UNSURPASSED INNOVATION

Tim Lattner, P.E.

- Florida Native Born in Fort Pierce, FL
- B.S. Civil Engineering, UCF
- Experience
 - 5 years in Design, Director, FDOT
 - 9 years in Maintenance, Director, FDOT
 - 11 years in Construction, FDOT and Private
 - Various roles from Inspector to Project Engineer
 - Widening and reconstruction, Bridge and resurfacing projects

Game Changing Infrastructure Challenges: New Solutions & Opportunities Tim Lattner, P.E. **Director, Office of Design** Florida Department of Transportation

September 21-24, 2020 / www.theCAMX.org

PREFACE

Game Changing Infrastructure Challenges: New Solutions & Opportunities

Expectations for infrastructure service-life and asset maintenance strategies have changed significantly since the Interstate Act was signed into law in 1956. The resulting expressways eliminated at grade crossings substantially increasing the nation's bridge inventory. Originally no target service-life expectations were specifically set, but by the 1970's observations from fatigue damage failures forced engineers to consider the number of heavy truck wheel load cycles – selecting 50 years as the design life. In the late 1990's with the recognition of a growing inventory maintenance challenge, AASHTO set the minimum design life to 75 years.

Most recently the AASHTO Committee on Bridges and Structures approved publication of a new Guide Specification for 2020 that assigns three target service-life limits (75-, 100-, and 150-years). In recent years, Florida DOT interest in innovation and application of materials like FRP composites has led to many successful installations with the objective of building better with better materials. This presentation will provide an overview of FDOT research and implementation using FRP composites and attendees will learn about FDOT's vision for the future for transportation infrastructure.

A NEW CAMX

LEARNING OBJECTIVES

- i. Describe the common infrastructure durability challenges typical faced by highway agency owners.
- ii. Identify emerging solutions for infrastructure applications and potential opportunity areas for the composites industry.
- iii. List recent successful Florida infrastructure applications with composites solutions.

OUTLINE

- Historic Overview
- Background on Florida's Bridges & Structures
- How is Florida leveraging composites for Infrastructure
- Lessons Learned
- What does the future hold for composites in Florida

In the Beginning....

• **Bold ideas**, such as the "transcontinental highway" had been around since the 1890's:

"The whole scheme would carry with it something that would inspire the entire Nation. It not any new scheme; it is not any new idea. It was the idea of Jefferson and Madison and Gallatin and many other great men who helped to start the national Road which led through Pennsylvania, Ohio and Indiana, and reached as far as the Mississippi River. (General Roy Stone)

- 1914 Old Trails Road Assoc. plan
- **1915** FL State Road Dept. born.
- 1917 Florida roadmap network.
- 1956 National Interstate and Defense Highways Act signed.
- **1993** Last time the federal gasoline tax was raised (18.4 cents/gal)

... thru the Interstate Era ...

- 1969 the State Road
 Dept. becomes the
 Florida Department of Transportation (FDOT)
- Interstate construction accelerates along with prestressed concrete and steel girder technologies

8

.. accidents & mistakes happen, lessons are learned...

- **1940** Tacoma Narrows (WA) high strength/low stiffness
- **1967** Silver Bridge (OH) high strength/fatigue/corrosion/low redundancy
- **1983** I-95/Mianus River (CT) *fatigue/corrosion/low redundancy*
- 2007 I35W Mississippi Rv (MN) buckling at high strength slender connection plate

Many of these issues are also applicable to FRP Composites design solutions

... into the 21st Century ?

 Bridging the gap between *innovation* and institutional adoption

Where do FRP Composites lay on this chart for infrastructure?

Historical Structural Technology Firsts in Florida Bridges...

- 1954 1st Sunshine Skyway Post-Tension Beams in Trestle Approach Spans
- 1955 Precast/Prestressed Concrete Institute begins in Florida
- **1965** Sebastian Inlet Drop-in Lightweight Concrete Prestressed Span
- 1978 Long Key & Seven Mile Bridge Segmental Box
- **1979** Chipola Nursery Rd/1-10 1st Splice I-Girder
- **1987** 2nd Sunshine Skyway Bridge 1200 ft. Segmental Cable-Stay
- **1989** Dames Point Bridge 1300 ft. Cable-Stay

Game Changing Infrastructure Challenges: New Solution

When did FRP Composites make this list?

FRP Structural Technology Firsts for Florida Bridges and Structures...

- **1980's** 1st GFRP bridge beam strengthening
- **1990's** 1st CFRP bridge beam strengthening
- 2006 1st FRP fender system Specs & Standard Index issued.
- IROX I-75: 1st RC drainage structures using BFRP
- 2014 PortMiami: Tunnel approach retaining walls 5 & 6 use BFRP-RC (slide #46)
- 2015 University of Miami: CFRP-Prestress Double-T Innovation Bridge (slide #47)
- 2016-19 Halls River: FDOT 1st complete FRP-PC/RC/HCB bridge (slide #48+)
- 2018 Skyplex Blvd: 1st Concrete Filled FRP Tube Arch Bridge (slide #31)
- 2019 US41/North Creek & NE 23rd/Ibis Waterway: 1st 2-span & 3-span cast-inplace GFRP-RC Flat-Slab bridges, and soldier pile precast panels (*slide* #53-54)

Taking stock of our Infrastructure...

- FDOT's Structures Inventory
 - 12,529 bridges in the State of Florida
 - 7,044 bridges maintained by FDOT
 - 150,227,048 SF of deck area
 - 5,485 maintained by others (County, City, Federal)
 - 2,143,163 SY of noise barrier wall
 - 379.22 miles of retaining wall
 - 72.8 miles of seawall

Florida's Bridges

Source: 2020 FDOT Bridge Maintenance Annual Report

Game Changing Infrastructure Challenges: New Solutions & Opportunities

14

Florida's Bridges

Source: 2020 FDOT Bridge Maintenance Annual Report

Game Changing Infrastructure Challenges: New Solutions & Opportunities

15

Florida's Bridges

Age of Bridges

While the industry is now designing bridges to last for 75 years, most bridges built in the past were designed for a service life of 50 years. Looking at bridge age is the most common and simplest method of forecasting long-term budget requirements. This might lead one to conclude that bridges constructed before 1960 are at the end of the service life. Fortunately, advances in material science, design practices, and construction methods, along with a generally favorable climate, inspection and maintenance practices have contributed in many bridges functioning well past their original design life, despite the tremendous growth in traffic volume over the years. The strategy of bridge maintenance is to leverage these advances using an aggressive maintenance program to extend the useful life of the bridges, thereby minimizing the need to replace a large number of bridges within a short time period (see Table 1).

Source: 2020 FDOT Bridge Maintenance Annual Report

Florida's Bridge Program

- FDOT has a robust bridge maintenance program
 - \$13 Million spent annually on routine bridge maintenance
 - Programmed for bridge repair/replacement
 - FY 20/21 \$470.7M
 - FY 21/22 \$382.5M
 - FY 22/23 \$152.4M
 - FY 23/24 \$324.2M
 - FY 24/25 \$156.3M

Florida's Bridge Condition

Game Changing Infrastructure Challenges: New Solutions & Opportunities

18

Florida East Coast Railway, Key West Extension, Express Train at Sea, crossing Long Key Viaduct. Florida

... Then and Now ..

Henry Flagler's Overseas Railroad constructed 1905-1912.
Damage beyond repair by 1935 Hurricane.
Converted to Overseas Highway in 1938.
New adjacent highway constructed in 1970's – 1980's.
Many of these "Florida Keys" bridges are ready for major rehabilitation or replacement.

"New" Seven-Mile-Bridge, (Florida Keys)

19

Game Changing Infrastructure Challenges: New Solution

TALALAMASIA DAMAST

"Corrosion-Resistant High-Performance Materials" (CR-HPM)

Office of Design

Office of Design / Design Innovation **Design Innovation**

Florida's Transportation Engineers

Office of Design

Non-Corrosive

The Florida Department of Transportation (FDOT) continually strives to enhance all areas of its operations. In support of these efforts, the department recently moved into a bold new era for innovative ideas, research and accelerated implementation. Success will depend on our ability to carefully evaluate or implement the products and services provided to the users of Florida's transportation system. Our goal is to utilize newly developed technology or employ creative thinking to generate greater value for every transportation dollar invested.

After researching and evaluating many innovative ideas, the Central Office has developed a list of concepts, products and services that may be the best solution to the project's needs or design challenges. Some items on the list are completely developed, and only need tailoring to your project. We encourage you to propose one or more of these innovations for project specific solutions with confidence of approval by the Districts. Other items are not fully detailed and will require coordination with and approval by the District's Design Office. Many of these innovations have been successfully implemented in other states and countries. Not all projects benefit from these innovations and the Department is not advocating the general use of new products or designs where an economical well proven solution exists and is the most appropriate solution for the situation.

FDOT Transportation Innovation Challenge

The Department invites you to share your thoughts on ways we can challenge ourselves to be innovative, efficient and exceptional at our Invitation to Innovation website

Structures Design Office

Curved Precast Spliced U-Girder Bridges

Fiber Reinforced Polymer Reinforcing

FRP Members and Structures

Geosynthetic Reinforced Soil Integrated Bridge System

Geosynthetic Reinforced Soil Wall

Prefabricated Bridge Elements and Systems

Segmental Block Walls

Ultra-High Performance Concrete (UHPC)

+ Stainless-Steel Prestressing Strand & Rebar

Game Changing Infrastructure Challenges: New Solutions & Opportunities

Corrosion-Resistant

Florida's Bridge Condition

Structures Design Guidelines

1 - General Requirements

Topic No. 625-020-018 January 2020

Table 1.3.2-1 Criteria for Substructure Environmental Classifications

Classification	Environmental	Steel		Concrete		
Classification	Condition	Units	Water	Soil	Cond Water < 5 > 1500 < 5 < 1500 < 5 < 150 > 6 < 150 > 30 meeting requiressive environ	Soil
Extremely	pН		< 6.0		< 5.0	
Aggressive	CI	ppm	> 2000		> 2000	
(If any of these	SO ₄	ppm	N.A.		> 1500	> 2000
conditions exist)	Resistivity	Ohm-cm	< 1000		< 500	
Slightly	pН		> 7.0		> 6.0	
Aggressive	CI	ppm	<	< 500 < 500		500
(If all of these	SO ₄	ppm	N.	Α.	< 150	< 1000
conditions exist)	Resistivity	Ohm-cm	> 5	000	> 3	000
Moderately Aggressive	This classification for either slightly	n must be us aggressive	e used at all sites not meeting requirements ive or extremely aggressive environments.			
pH = acidity ($-\log_{10}H^+$; potential of Hydrogen), CI = chloride content, SO ₄ = Sulfate content.						

2. Superstructure: Any superstructure located within 2,500 feet of any coal burning industrial facility, pulpwood plant, fertilizer plant, or any other similar industry classify as Moderately Aggressive. All others classify as Slightly Aggressive.

Game Changing Infrastructure Challenges: New Solutions & Opportunities

21

 An aggressive environment would be the portion of a structure in or near salt or brackish water, and the portions of the structure in the "<u>splash zone</u>".

This would include the undersides of decks or slabs with low clearances over salt or brackish water. There may be special cases where additional areas of the bridge may be considered an **aggressive environment** with similar effects as marine environments.

- FDOT bridges classified in an aggressive environment:
 - 1,534 Bridges
 - 68,857,118 SF Deck or about 46%

Figure 131—University Boulevard Bridge

Source: AASHTO. 2020, Guide Specification for Service Life Design of Highway Bridges (1st Edition).

22

Figure 2.2.1.2-1—Micro Environment Exposure Zones

- Aggressive environments also include:
 - Areas where people fishing from a bridge may dump containers with salt or brackish water
 - Bridges near boat ramps where salt or brackish water draining from boats may fall on bridges after they have been removed from the water

Report: BDV31 977-01 (University Blvd Bridge, 2011)

Figure 136—High tide inundation of (a) spans

Figure 220—Corroded steel reinforcement in the north end of Girder 3-1

Game Changing Infrastructure Challenges: New Solutions & Opportunities

23

South Bridge, Fort Pierce

- Aggressive environments also include:
 - Areas subject to spray from jet skis.
 - In northern Florida there has been a move to place salt after winter storms. If this becomes a more common occurrence, consideration may be given to including these.

- But there are several other reasons FRP repairs and strengthening are necessary:
 - Over-height truck impacts.
 - In sufficient detailing past practice for shear strength.

BDV31 977-01: Figure 227—Girder damage from vehicle impact in July of 2001 Game Changing Infrastructure Challenges: New Solutions & Opportunities

- Repair & strengthening.
- New construction as internal reinforcement for concrete.
- New construction structural FRP members.
- New construction with fully FRP structural system.

FRP Reported Firsts

- I 1st FRP rebar early 1970's USA
 - 2nd company, more R&D early 1980's
- Bridges 1980's Japan
- 1st FRP dowel bar in concrete pavements USA 1977 (dug-up in 1985)
- 1st FRP Vehicular Bridge China 1982
- I 1st FRP Pedestrian Bridge China 1986
- □ 1st FRP tendon, prestressing 1986
 - Germany
- 1st FRP Glulam beams USA early 1990's
- 1st FRP Strengthening System
 - Experimental work, 1978, Germany
 - 1st application, RC columns, 1980's, Japan
 - 1st application, flexural strengthening of RC bridges, 1987

26

- 1st Bridge "Wind Fairing" USA 2003 –
- ...and more to come

• Repair & strengthening.

NCHRP 20-07/Task 428 [Active]

Update of the 2012 AASHTO Guide Specification for Design of Bonded FRP Systems for Repair [NCHRP 20-07 (Research for AASHTO Standing Committee on Highways)]

Project Data	
Funds:	\$130,000
Staff Responsibility:	Amir N. Hanna
Research Agency:	University of Kentucky Research Foundation
Principal Investigator:	Issam Harik
Effective Date:	9/3/2019
Completion Date:	12/2/2020

AASH

Guide Specifications for

Design of Bonded FRP Systems for Repair

> and Strengthening of Concrete Bridge Elements

> > First Edition 2012

Externally applied FRP reinforcement for concrete structures

Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures

440.2R-1

 $\overline{\bigcirc}$

Table 7-Summary of survey responses

• Repair & strengthening.

Project Number BDV31-977-01

Project Manager David P. Wagner FDOT Structures Office

Principal Investigator H. R. Hamilton *University of Florida*

Florida Department of Transportation Research

Durability Evaluation of Florida's Fiber-Reinforced Polymer (FRP) Composite Reinforcement for Concrete Structures

March 2017

es, the tides.

rof

Current Situation

Fiber-reinforced polymer (FRP) composites, when applied to concrete bridge structures, are proven to increase strength and stiffness. They may also mitigate corrosion of the steel reinforcement in concrete members by reducing diffusion of chlorides into concrete. However, in the past, these repairs have been viewed as a very temporary bandage, and their durability has generally been evaluated using accelerated or theoretical methods. Long-term field exposure data which would help to determine the validity of

accelerated testing are not readily available.

Research Objectives

University of Florida researchers evaluated the long-term effectiveness of FRP repairs on a number of Florida bridges.

Project Activities The replacement of three Florida bridges

Source: Hamilton, et al. 2017, <u>Durability Evaluation of</u> <u>Florida's Fiber-Reinforced Polymer (FRP) Composite</u> <u>Reinforcement for Concrete Structures</u>, UF & FDOT.

times by overneight trucks and subsequently repaired with FKP composites.

Bridge	Location	Repair	FRP	FRP	Inspection	Load
No.		Date		source	reports?	test?
790035	Volusia	2007	Wet layup	Unknown	Y	Y
	County		CFRP			
570017	District 3	2015	Wet layup	Unknown	Y	N
570019	District 2	2015	Wetlerne	Linkaara	V	N
570018	District 5	2015	CEPP	Unknown	r	IN
110070	SD 01 ND	2000	Wetleren	TDEV Wree	v	N
110070	SK 91 NB	2009	CEDD	TREA Wrap	Ŷ	IN
110074	over CK 561	2005	CFKP	1EC3-100	37	
110074	Bridges Road	2005	Wet layup	MAS-2000	Y	N
	over SR 91		CFRP			
920027	CR 530 WB	2010	Wet layup	TREX Wrap	Y	N
	over SR 91		CFRP	TEC3-10U		
920075	Ramp A over	2005	Wet layup	MAS-2000	Y	N
	SR 91		CFRP			
930144	45 th Street	2007	Wet layup	TREX Wrap	Y	N
	over SR 91		CFRP	TEC3-20C		
930144	45th Street	2004	Wet layup	BASF	Y	Y
	over SR 91		CFRP	MBrace		
				CF160		
930148	PGA Blvd	2004	Wet lavup	BASF	YQ	Y
	Ramp over		CFRP	MBrace		
	SR 91			CF169	00:15	6
104320	Phillips Lane,	2001	Wet lavup	Upknow	10	YY/
	Hillsborough		CFRP	010	at of	
	County		Contraction (1998)	1 00	P De	
104323	Dickman	2014	Wet lavup	Mapei	C Y	N
	Road.		CFRP		ev/	
	Hillsborough		0110			
	County					
104422	Durant Road	2013	Wet lavup	Minei	v	N
104422	Hillsborough	2015	CERP	ManeWran	1	
	County		CIN	C Bi-Av 220		
	County			C DI-AX 250		

28

- Repair & strengthening.
- New construction as internal reinforcement for concrete:
 - Glass FRP rebar & Carbon FRP strands with improving mechanical properties
 - Basalt FRP rebar & possible prestressing applications

- New construction structural FRP members.
 - Composite Bridge Beams

(Pultruded, VARTM, Molded & Built-up composite members)

- Hybrid systems (HCB, Concrete-

Filled FRP Tubes...)

Pultruded Structural FRP Section Boardwalk (Ocala) **Composite Bridge Deck proposed for Morgantown, TN.** FRP Stayin-place forms Hybrid Composite Beams (Halls River)

30

- New construction with fully FRP structural system.
 - Hybrid systems (Concrete-Filled FRP Tubular Arch Bridge)
 - Full FRP Systems (Fenders, Ped. Trusses)

Not Florida

3

Concrete Filled FRP Tubular Arch (Skyplex, Ft Myers)

1992	Feasibility of Fiberglass Pretensioned Piles in a Marine Environment	Sen, R.	USF
1995	Active Deformation Control of Bridges with AFRP Cables	Arockiasamy, M.	FAU
1995	Durability of CFRP Pretensioned Piles in a Marine Environment – Phase II	Sen, R.	USF
1997	Mechanical and Microscopy Analysis of CFRP Matrix Composite Materials	Garmestani, H.	FAMU/ FSU
1997	FRP Composite Column and Pile Jacket Splicing	Mirmiran, A.	UCF
1997	An Analytical and Experimental Investigation of Concrete Filled FRP Tubes	Mirmiran, A.	UCF
1997	Flexural Reliability of RC Bridge Girders Strengthened with CFRP Laminates	Okeil, A.	UCF
1998	Studies of CFRP Prestressed Concrete Bridge Columns and Piles in Marine Environment	Arockiasamy, M.	FAU
1998	Analysis and Modeling of Fiber-Wrapped Columns and Concrete-Filled Tubes	Shahawy, M.	FDOT
1999	LRFD Flexural Provisions for PSC Bridge Girders Strengthened with CFRP Laminates	El-Tawil, S.	UCF

32

-	1999	Behavior of Reinforced Concrete Beam-Column Retrofitted with Composite Wrapping Systems	Chaallal, O.	FDOT
	2000	Effect of Concrete Strength on the Performance of FRP Wrapped RC Column Under Combined Axial- Flexure Loading	Chaallal, O.	FDOT
	2000	Behavior of Axially Loaded Short Rectangular Columns Strengthened with CFRP Composite Wrapping	Chaallal, O.	FDOT
	2000	Investigation of Fender Systems for Vessel Impact	Yazdani, N.	FAMU/ FSU
	2000	Short-Term Tensile Strength of CFRP Laminates for Flexural Strengthening of Concrete Girders	Okeil, A.	UCF
	2001	Design of Concrete Bridge Girders Strengthened with CFRP Laminates	El-Tawil, S.	UCF
	2003	Hybrid FRP-Concrete Column	Mirmiran, A.	NC State
	2004	CFRP Repair of Impact Damaged Bridge Girders	Hamilton, T	UF
	2007	Testing Bridge Decks with Near-Surface mounted FRP Bars Embedded in Cement Based Grout	Hamilton, T	UF
	2009	Thermo-Mechanical Durability of CFRP Strengthened RC Beams	Mackie, K	UCF
re	Chal	lenges: New Solutions & Opportunities	33	

Game Changing Infrastructure Challenges: New Solutions & Opportunities

34

	2018	Bridge Girder Alternatives for Extremely Aggressive Environments	Brown, J.	ERAU
	2018	Performance Evaluation of GFRP Reinforcing Bars Embedded in Concrete Under Aggressive Environments	Kampmann, R.	FAMU/ FSU
	2019	Performance Evaluation, Material and Specifications for Basalt FRP Reinforcing Bars Embedded in Concrete	Kampmann, R. Roddenberry, M.	FAMU/ FSU
	2020	Basalt FRP-FRC Link-Slab Demonstration Project Monitoring (STIC-Phase 1)	El-Safty, A.	UNF
	2020	Inspection and Monitoring of Fabrication and Construction for the Halls River Bridge Replacement	Roddenberry, M.	FAMU/ FSU
	2020	HSSS Strands and Lightweight Concrete for Pretensioned Concrete Girders (w/ Shear & Confinement Rebar)	Roddenberry, M.	FAMU/ FSU
	2021	Testing Protocol and Material Specifications for Basalt Fiber Reinforced Polymer Bars (Long-term Durability Modelling)	Kampmann, R. Tang, Y	FAMU/ FSU
	2021	Evaluation of GFRP Spirals in Corrosion Resistant Concrete Piles	Jung, S.	FAMU/ FSU
-	2021	Development of GFRP Reinforced Single-Slope Railing	Consolazio, G.	UF
	2021	Epoxy Dowelled Pile Splice Evaluation & Testing	Mehrabi, A.	FIU
re	Cha	llenges: New Solutions & Opportunities	35	

Durable Solutions and Life Cycle Cost Evaluation

- Service Life Expectations for Structures
 - 50 years (AASHTO LFD < 1993)</p>
 - 75 years (AASHTO LRFD > 2007)
 - 100 or 150 years? (HBSLD-1, 2020)

GUIDE SPECIFICATION FOR SERVICE LIFE DESIGN OF HIGHWAY BRIDGES, 1st EDITION

Item Code: HBSLD-1

This guide specification is intended to offer design recommendations for agencies wishing to implement service life design principles and detailing recommendations. It was developed to incorporate quantitative approaches, along with proven deemed-to-satisfy provisions, into a single comprehensive design document for implementation on a national level. It also establishes a framework for service life design, while providing opportunities for refinement and expansion, especially as new models capable of simulating deterioration mechanisms become available.

Ale and

2020

36

 Life Cycle Cost policies & comparisons

Cost Justification (Service Life, LCC, etc.)

 LCC & LCA also can show the sustainable (economic and environmental) advantage of composite structures in the coastal environment:

37

CS-RC/PC alternative

Source: Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., and A. Nanni. (2019). Cost and Environmental Analyses of Reinforcement Alternatives for a Concrete Bridge. Structure and Infrastructure Engineering.

Halls River Bridge

Traffic Railing Retrofit

1700 +

Dowel

Holes

38

- Connections (post-installed anchors & coupling)
- Creep rupture & Fatigue limits
- Importance of Elastic Modulus
- Bent Bars
- Scalability of production ?

 Connections (post-installed anchors – ACI 318 Chapter 17 & ACI 355.4)

Game Changing Infrastructure Challenges: New Solution

[Lat. 26.8080459, Long.-80.055929]

AL PAL VA LINA V LAVER

40

 Connections (lap splicing for phased construction)

How critical is temporary UV exposure protection?

- Connections (coupling, post-installed)
- **Creep rupture & Fatigue limits refinement**
- **Importance of Elastic Modulus**
- **Bent Bars**

 $\times CE = 0.21 f_{fu}$ recommended creep-rupture stress limit $(0.30 f_{fu})$ can also be applied for limiting the fatigue stresses in GFRP-reinforced elements subjected to fatigue cyclic loads owing to the similarity between the $0.40 f_{fu}$ fatigue and creep-rupture strengths of FRP bars (GangaRao et al. 2006; Rostasy et al. 1993). Additional studies on the fatigue behavior of GFRP bars, however, are essential to support future adjustments of the stress limit.

Source: "Creep-Rupture Limit for GFRP Bars Subjected to Sustained Loads", (2019) B.Benmokrane, V.L.Brown, K.Mohamed, A.Nanni, M.Rossini, Carol Shield (ASCE-JCC)

- Connections (coupling, post-installed)
- Creep rupture & Fatigue limits
- Importance of Elastic Modulus
- Bent Bars (thermo<u>set</u> vs. thermo-<u>plastic</u>, & quality)

Chart: Parametric analysis of flexural design requirements per AASHTO GFRP-RC 2nd edition for HRB Pile Bent Cap

Source: M.Rossini, F.Matta, S.Nolan and A.Nanni, extended abstract "Overview of Proposed AASHTO Design Specifications for GFRP-RC Bridges 2nd Edition using Case-Specific Parametric Analysis" (2017)

Current & Completed Projects in Florida

(new construction excluding fender systems) 40th Ave NE over Placido Bayou ++Arthur Drive over Lynn Haven Bayou ** Bakers Haulover Cut Bulkhead Replacement ** Cedar Key Bulkhead Rehab ** GFRP (Glass) Projects Halls River Bridge ** CFRP Prestressed Piles (Index NE 23rd Ave over Ibis Waterway + D22600/22600) Projects PortMiami Tunnel Retaining Walls ** CFRP (Carbon) Projects South Maydell Dr over Palm River + BFRP (Basalt) Projects SR-A1A Flagler Beach Seawall (Segment 3) ** CFRP/GFRP Concrete Sheet Piles SR-5 (US-17) over Trout River ** (Index D22440/22600) Projects SR-5 (US 41) over Morning Star and Sunset Other (only includes HCB, Waterways ** CFFT. FRP boardwalk) SR-5 (US 41) over North Creek + SR-30 over St Joe Inlet + SR-312 over Matanzas River ** SR-520 over Indian River Bulkhead Rehab ** ++ under bid Sunshine Skyway Seawall Rehabilitation ** under construction UM Innovation Bridge ** completed UM Fate Bridge ** UM i-Dock ** US-1 over Cow Key Channel +

Tallahassee Jacksonville More projects added Orlando Gulf of Mexico Miami Straits of

44

Project Examples – Fast Facts Sheets

45

Project Examples - Port Miami Tunnel Entrance

Tallahassee

Jacksonville

46

Watson Island, Miami – 2014

• Retaining Walls 5 & 6

Wall 6 under construction & Typical Cross-section using **Basalt** FRP rebar

Project Examples - Innovation Pedestrian Bridge

University of Miami – 2016

• Single-span pedestrian bridge

Innovation Bridge with **Basalt, Glass & Carbon** FRP reinforcement in the auger-cast-piles, bentcaps, double-tee stems and flanges, deck overlay and curbs.

Project Examples - Halls River Bridge Entire Bridge and Seawalls - 2017 to 2019 Tallahassee Jacksonville Five-span vehicular bridge Initial Demo FRP Tampa Project BOT Transportation Innovation Initiativ FRP – Design Innovation Miami acts FDOT HRB - Phase III construction, July 2019

48

Project Examples - Halls River Bridge

Homosassa, FL 2017-2019 (GFRP-RC & CFRP-PC)

- Five-span vehicular bridge entirely constructed using corrosion-resistant solutions that were mostly FRP reinforcement including:
- 1) CFRP-PC bearing piles
- 2) CFRP-PC/GFRP-RC sheet piles
- Hybrid Steel-PC/GFRP-RC sheet piles;
- 4) GFRP-RC bulkhead caps
- 5) GFRP-RC pile bent caps
- 6) GFRP-RC bridge deck
- 7) GFRP-RC traffic railings
- 8) GFRP-RC approach slabs
- 9) GFRP-RC gravity wall.

Game Changing Infrastructure Challenges: New Solution

49

Project Examples - Halls River Bridge

Demonstrating Durability & Resiliency thru FRP materials..

HRB completed Nov. 2019

50

Unpredictable future storm surge & sea-levels

Project Examples - Halls River Bridge

• Resiliency thru providing the potential for Adaption! Not established

Effect & adaption for 6-ft SLR or frequent stormsurge inundation ->

 with possible Adaption Strategy using 1.5 m raised bulkhead (right-side).

Game Changing Infrastructure Challenges: New Solution

2019

California Sea Levels Are Projected to Rise Significantly

for Florida yet!

te: Range of projected sea-level rise scenarios for San Diego from the State of California Sea

52

Project Examples - NE 23rd Ave/Ibis Waterway

Tallahassee

Jacksonville

53

CIP continuous flat-slab bridge – 2020

Glass FRP reinforcement & Carbon FRP strands,

Resiliency thru robust Design

prestressed piles, bent-caps, walls and deck flat-slab. Florida o Orlando BEGIN BRIDGE END BRIDGE END BENT 1 END BENT 4 ampa 30'-0" 68'-0" (OVERALL BRIDGE LENGTH) 30'-0" APPROACH SLAB APPROACH SLAB (CONTINUOUS SLAB) 21'-0" 26'-0" 21'-0" SPAN 3 SPAN 1 SPAN 2 LOW MEMBER DHW EL. 8.10 EL. 7.311 - MHW EL. 0.31 FDOT Transportation Innovation Initiativ Miami FRP – Design Innovation RUBBLE Ē5 RIPRAP (TYP.) -0 Charles PANE ast -10 -16'-0' 22'-6" 16'-0'City of Lighthouse Point, Florid Facts: мнс мнс мнс **FRP-RC/PCLEGEND** 18" SQ. CFRP & SS PRESTRESSED 7.21" New Aces, Die Waterber APPROXIMATE EXISTING CIP Flat-Slab, 5.5 ksi (1.5" cover) Index No. 667212 (FID: 424355-1-521) CONCRETE PILE (TYP. GROUND LINE ALONG RIGHT Reinforce (INDEX 455-118) EDGE OF COPING CIP Caps, 5.5 ksi (3" cover) EAST ELEVATION Precast Panels, 5.5 ksi (2" cover) arriver feedba can't hat bland can min GERF-INC & initian and unmand doubling or PS Piles, 6 ksi (3" cover) FDO

Other Projects Under Construction

 Bridge Superstructures (US-1/Cow Key Channel, US41/North Creek, Link-Slabs, 40th Ave NE/Placido Bayou)

- Bridge Foundations (South Maydell Dr.)
- Seawalls (SR30/St Joe Bay Inlet, Pinellas Bayway E)

54

Example New Projects in Design

- Low-level Pedestrian Piers -SR-A1A North Bridge/Indian River Lagoon, US-1/Jupiter Inlet;
- Prestressed Bridges SR82/Earman Canal, Barracuda Ave/North Indian Lagoon, CR30A/Western Lake, Kings St/San Sebastian River;
- CIP Bridges –

West Wilson St/Turkey Creek;

Bridge Foundations –

St. Petersburg, 4th St over Big Island Gap

55

Lessons Learned from the Real World

- Designer Issues
 - Lack of designer training, software tools, and national consensus design codes.
- Material & Testing Issues
 - Costs for FRP rebar supply to public agencies are typically higher since no centralized certification standards for manufacturers, so additional testing and approvals are invoked by individual agencies.
- Constructability Issue
 - Unit \$\$ for FRP rebar can be very high for small quantities due to the one-size project testing requirements.
 - Many construction contractors do not understand the lead times involved for FRP products.
 - Higher modulus of elasticity can improve competitiveness of GFRP vs. other corrosion-resistant solutions.
 - Stirrup bends and closed shapes or multiple bends still not standardized.
 - Tie-wire (plastic ties are slower, more expensive, and less secure)
 - Coupling of bars for phased construction is essential for broader deployment or will rely on SS solutions.
 - Adhesive anchors are often needed, but not codified for FRP rebar. Field proof testing/gripping is a challenge, especially for bent bars.
 - Shear reinforcing requires much closer spacings and often multiple legs overlapping causing rebar congestion.
 - Non-metallic (corrosion-resistant) lifting devices for heavy civil components are not readily available.
 - Replacement of easily damaged bars/parts in the field is a common need.
 - Change is hard... but inevitable !

THANK YOU FOR WATCHING

