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serves as a lesson for engineering students and practicing engineers concerning the difficult technical, profes-
sional, procedural, and ethical issues that may arise during the design and construction of a complex, high-
occupancy structure. 

FIG. 1. Hartford Civic Center Coliseum Roof Collapse, 1978 
(Construction Failure
Permission of John Wiley & Sons, Inc.) 

INTRODUCTION 

No one was killed or injured when the huge space truss roof 
of the empty Hartford Civil Center Coliseum collapsed under 
a heavy snowfall at 4:19 a.m. on January 18, 1978 (Fig. 1). 
Had the failure occurred just a few hours before, however, the 
death toll might have been hundreds, or even thousands. The 
dramatic roof, designed with the aid of computers, had shown 
evidence of distress during construction, but the warnings had 
not been heeded. The building had been in service for five 
years when it collapsed (Levy and Salvadori 1992). 

For the engineer and engineering student, knowledge of en-
gineering’s failures is just as important as knowledge of its 
successes. A success illustrates what engineering can make 
possible, while a failure demonstrates its limits. It takes nu-
merous successful structures to ensure the quality of a design 
or a construction method. One failure, however, can discredit 
an entire design or building technique. Because of this, the 
information that each failure has to offer should be carefully 
studied and applied to all future designs. As a result, similar 
failures, as well as their tragic consequences, can be avoided. 

Because of their importance, failures should be incorporated 
into engineering education. Unfortunately, undergraduate en-
gineering students receive little exposure to engineering fail-
ures in college. This approach to engineering education not 
only leaves students less prepared for what they will face after 
college, but it also fails to show the importance of continuing 
education (Delatte 1997). This may be one of the reasons that 
a 1983 survey of ASCE section and branch presidents found 
that engineering failures are all too common (Bosela 1993). 

Since undergraduate engineering students already face an 
overcrowded curriculum, rather than requiring a new class 
covering failure case studies, these case studies can be incor-
porated into existing classes throughout a student’s college ca-
reer. Not only will this approach capture the students’ interest 
by showing how their classes relate to engineering, but it will 
also inspire them to learn more about the history of the pro-
fession. In addition, it teaches them the importance of contin-
ued learning throughout their professional career. Finally, fail-
ure case studies provide a perfect opportunity to discuss ethical 

concerns, another neglected topic in engineering education, in 
real-life situations, as well as serving as a constant reminder 
of the repercussions of careless engineering (Delatte 1997). 

According to a 1987 survey conducted by the Education 
Committee of the Technical Council on Forensic Engineering 
of the American Society of Civil Engineers, 63.2% of schools 
indicated that they would consider teaching a course on failure 
case studies if the appropriate materials were available. This 
clearly demonstrates the need for 
teaching aids to encourage the incorporation of failure case 
studies into 
1993). The objectives of this paper are to: 

1. Summarize what is known about the design, construc-
tion, and collapse of the Hartford Civil Center Coliseum. 

2. Examine the causes of the failure as well as the legal 
ramifications. 

3. Explore the technical, procedural, and ethical concerns 
present, focusing 
avoided and how to prevent similar failures in the future. 

This failure 
classes to introduce new topics or as the topic of a student 
research paper assignment. 

DESIGN AND CONSTRUCTION 

In 1970, Vincent Kling agreed to be the architect for the 
Hartford Civic 
Blum, and Yesselman, Engineers (FB&Y), to design the arena. 
In order to save money, FB&Y proposed an innovative design 
for the 91.4 X 
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m (83 ft) over the arena. The proposed roof consisted of two 
main layers arranged in 9.14 X 9.14 m (30 by 30 ft) grids 
composed of horizontal steel bars 6.4 m (21 ft) apart. Diagonal 
members 9.14 m (30 ft) long connected the nodes of the upper 
and lower layers and, in turn, were braced by an intermediate 
layer of horizontal members. The 9.14 m (30 ft) members in 
the top layer were also braced at their midpoint by interme-
diate diagonal members (Figs. 2 and 3). 

This design departed from standard space frame roof design 
procedures in five ways: 

1. The cross-section configuration of the four steel angles 
making up each truss member did not provide good re-
sistance to buckling. The cross-shaped built-up section 
had a much smaller radius of gyration than either an 
I-section or a tube section configuration of the same 
structural members (Fig. 4). As a result, the buckling 
load for the cross-shaped section was much lower than 
that of the other configurations. 

2. The top horizontal members intersected at	 a different 
point than the diagonal members rather than at the same 
point, making the roof especially susceptible to buckling 
because the diagonal members did not brace the top 
members against buckling. 

3. The top layer of this roof did not support the roofing 
panels; short posts on the nodes of the top layer did. Not 
only were these posts meant to eliminate bending stresses 
on the top layer bars, but their varied heights also al-
lowed water to be carried away to drains. 

4. Four pylon legs positioned 13.7 m (45 ft) inside the 

FIG. 2. Elevation of Space Frame Roof (Circled Section Is 
Shown Enlarged in Fig. 3) 

FIG. 3. Section of Space Frame Roof (Figure Courtesy of LZA 
Technology, from Lev Zetlin Associates, 1978, Reprinted by Per-
mission) 

edges of the roof supported it instead of boundary col-
umns or walls (Levy and Salvadori 1992). 

5. The space frame was not cambered. Computer analysis 
predicted a downward deflection of 330 mm (13 in.) at 
the midpoint of the roof and an upward deflection of 150 
mm (6 in.) at the corners (‘‘Space’’ 1978). 

Because of these money-saving innovations, the engineers em-
ployed state-of-the-art computer analysis to verify the safety 
of the building. 

A year later construction began. To save time and money, 
the roof frame was completely assembled on the ground. 
While it was still on the ground the inspection agency notified 
the engineers that it had found excessive deflections at some 
of the nodes. Nothing was done. 

After the frame was completed, hydraulic jacks located on 
top of the four pylons slowly lifted it into position. Once the 
frame was in its final position but before the roof deck was 
installed, its deflection was measured and found to be twice 
that predicted by computer analysis, and the engineers were 
notified. They, however, expressed no concern and responded 
that such discrepancies between the actual and the theoretical 
should be expected (Levy and Salvadori 1992). 

When the subcontractor began fitting the steel frame sup-
ports for fascia panels on the outside of the truss, he ran into 
great difficulties due to the excessive deflections of the frame. 
Upon notification of this problem, the project manager ‘‘di-
rected the subcontractor to deal with the problem or be re-
sponsible for delays.’’ As a result, the subcontractor coped 
some of the supports and refabricated others in order to make 
the panels fit, and construction continued (‘‘Design’’ 1978). 

The roof was completed on January 16, 1973 (Feld and 
Carper 1997). The next year, a citizen expressed concern to 
the engineers regarding the large downward deflection he no-
ticed in the arena roof, which he believed to be unsafe. The 
engineers and the contractor once again assured the city that 
everything was fine (Levy and Salvadori 1992). 

COLLAPSE 
On January 18, 1978, the Hartford Arena experienced the 

largest snowstorm of its five-year life. At 4:19 a.m., the center 
of the arena’s roof plummeted 25.3 m (83 ft) to the floor of 
the arena, throwing the corners into the air. Just hours earlier 
the arena had been packed. Luckily, it was empty by the time 
of the collapse (Ross 1984). 

CAUSES OF FAILURE 
Hartford appointed a three-member panel to manage the in-

vestigation of the collaspe. This panel in turn hired Lev Zetlin 
Associates, Inc. (LZA), to ascertain the cause of the collapse 
and to propose a demolition procedure (Ross 1984). LZA is-
sued its report later that year (Lev Zetlin Associates 1978). 
LZA discovered that the roof began failing as soon as it was 
completed due to design deficiencies. A photograph taken dur-
ing construction showed obvious bowing in two of the mem-
bers in the top layer. 

Three major design errors, coupled with underestimation of 
the dead load by 20% [estimated frame weight = 0.862 Pa (18 
psf); actual frame weight = 1.10 Pa (23 psf)], allowed the 
weight of the accumulated snow to collapse the roof (‘‘De-
sign’’ 1978). The load on the day of collapse was 3.16–3.50 
Pa (66–73 psf), while the arena should have had a design 
capacity of at least 6.70 Pa (140 psf) (‘‘Collapsed’’ 1978b). 
The three design errors responsible for the collapse are listed 
below: 

• The top layer’s exterior compression members on the east 
FIG. 4. Compression Member Configurations and the west faces were overloaded by 852%. 
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• The top layer’s	 exterior compression members on the 
north and the south faces were overloaded by 213%. 

• The top layer’s interior compression members in the east-
west direction were overloaded by 72%. 

In addition to these errors in the original design, LZA dis-
covered that no midpoint braces were provided for the mem-
bers in the top layer. The exterior members were only braced 
every 9.14 m (30 ft), rather than the 4.57 m (15 ft) intervals 
specified, and the interior members were only partially and 
insufficiently braced at their midpoints. The two members at-
tached to the midpoint of the top chord were both in the same 
plane as the long axis of the chord, so they only provided 
bracing in one direction. The perpendicular direction was ef-
fectively unbraced for the full 9.14 m (30 ft) length. This sig-
nificantly reduced the load that the roof could safely carry. In 
addition, certain perimeter top chord members with a post 
landing at midpoint were subjected to bending stress from the 
roof load applied through the post. Since the members were 
not designed for bending, this led to a considerable overstress 
(Lev Zetlin Associates 1978). 

Fig. 5 and Table 1 compare some of original details to actual 
designs used in the building, demonstrating the reduction in 
strength that these changes caused. Connection A was typically 
used on the east-west edges of the roof, while connection B 
was used on the north-south edges. Most of the interior mem-
bers used connection C, while a few used connection D. The 
key difference between the original and the as-built details 
may be seen in Fig. 5 and also by comparing the top and 
bottom rows of the table. The diagonal members were attached 
some distance below the horizontal members. Thus, the flex-
ibility of the connection reduced the effectiveness of the brac-
ing by introducing a ‘‘spring brace’’ instead of the hard brace 
that had been assumed. 

The most overstressed members in the top layer buckled 
under the added weight of the snow, causing the other mem-
bers to buckle. This changed the forces acting on the lower 
layer from tension to compression, causing them to buckle also 
in a progressive failure. Two major folds formed initiating the 
collapse (‘‘Design’’ 1978). These were not the only errors that 
LZA discovered. Listed below are the other factors that con-
tributed to, but probably were not solely responsible for, the 
collapse: 

• The slenderness ratio of the built-up members violated the 
American Institute of Steel Construction (AISC) code 
provisions. The spacer plates separating the individual an-
gles were placed too far apart in some of the four-angle 
members, allowing individual angles to buckle. 

• The members with bolt holes exceeding 85% of the total 
area violated the AISC code requirements for section re-
duction of tension members (‘‘Collapsed’’ 1978b). 

• There were misplaced diagonal members (Feld and Carper 
1997). 

Loomis and Loomis, Inc., also investigated the Hartford col-
lapse. They agreed with LZA that gross design errors were 
responsible for the progressive collapse of the roof, beginning 
the day that it was completed. They, however, believed that 
the torsional buckling of the compression members, rather than 
the lateral buckling of top chords, initiated the collapse. 

Using computer analysis, Loomis and Loomis found that 
the top truss members and the compression diagonal members 
near the four support pylons were approaching their torsional 
buckling capacity the day before the collapse. An estimated 
0.575–0.718 Pa (12–15 psf) of live load would cause the roof 
to fail. The snow from the night before the collapse comprised 
a live load of 0.670–0.910 Pa (14–19 psf). Because torsional 

FIG. 5. Comparison of Actual and Assumed Bracing (Figure 
Courtesy of LZA Technology, from Lev Zetlin Associates, 1978, 
Reprinted by Permission): (a) Original Design Assumption; (b) 
Actual Design Condition 

buckling is uncommon, it is often an overlooked mode of fail-
ure (‘‘New’’ 1979). 

Hannskarl Bandel, a structural consultant, completed an in-
dependent investigation of the collapse for the architect’s in-
surance company. He blamed the collapse on a faulty weld 
connecting the scoreboard to the roof. This opinion conflicts 
with the opinions of all the other investigators (‘‘Hartford’’ 
1979). The LZA report’s findings were also disputed by FB&Y 
(‘‘Collapsed’’ 1978a). 

LEGAL REPURCUSSIONS 

Six years after the collapse, all of the parties reached an 
out-of-court settlement. While this was beneficial to the parties 
involved, it did not provide the engineering profession with 
the precedents that such a case could set (Feld and Carper 
1997). 

TECHNICAL ASPECTS 

The engineers for the Hartford Arena depended on computer 
analysis to assess the safety of their design. Computer pro-
grams, however, are only as good as their programmer and 
may tend to offer engineers a false sense of security (Shepherd 
and Frost 1995). The LZA report noted ‘‘the computer model 
used by the structural engineer only included the top and bot-
tom chords and the main diagonals. Roof loads were only 
applied at top chord main panel points. If the computer model 
had represented the intermediate diagonals and horizontals and 
had included the roof loads at the midpoint, subpanel points 
at the top chord, the instabilities and primary bending mo-
ments would have been detected by the designer’’ (Lev Zetlin 
Associates 1978). 

Instead of the cruciform shape of the rods, a tube or I-bar 
configuration would have been more stable and less suscepti-



TABLE 1. Comparison of Original Design and Actual As-Built Connections 

ble to bending and twisting. The cruciform shape has the ad-
vantage of making the members easier to connect. Also, if the 
horizontal and diagonal members intersected at the same place, 
the bracing would have increased the buckling capacity in 
these members. The LZA report noted that ‘‘apparently, the 
choice of the typical member as a cruciform, a section that is 
weak in bending and torsion, was based on the design as-
sumption that such bending and torsion would be negligible 
in the space truss’’ (Lev Zetlin Associates 1978). 

The LZA report further noted that ‘‘the investigation con-
firms that space trusses and/or space frames are valid and safe 
structural systems. Two-way space trusses have been em-
ployed successfully on many projects. In the case of the Hart-
ford Coliseum, unfortunately, certain aspects of the design and 
construction were not implemented correctly’’ (Lev Zetlin As-
sociates 1978). 

PROFESSIONAL AND PROCEDURAL ASPECTS 

The Hartford Arena contract was divided into five subcon-
tracts coordinated by a construction manager. Not only did this 
fragmentation allow mistakes to slip through the cracks, it also 
left confusion over who was responsible for the project as a 
whole. Even though the architect recommended that a qualified 
structural engineer be hired to oversee the construction, the 
construction manager refused, saying that it was a waste of 
money and that he would inspect the project himself. After the 
collapse he disclaimed all responsibility on the grounds that a 

only responsible for ensuring that the design was constructed 
correctly and not the performance of the project (p. 202, Feld 
and Carper 1997). 

It is important for responsibility for the integrity of the en-
tire project to rest with one person. Feld and Carper (pp. 202– 
204, 1997) offer an excellent discussion of the role that pro-
cedural deficiencies played in this collapse. 

As a result of the construction manager’s refusal to hire a 
structural engineer for the purpose of inspection, no one re-
alized the structural implications of the bowing members. This 
collapse illustrates the importance of having a structural en-
gineer, especially the designer, perform the field inspection. 
The designer understands the structure that is being built and 
would best be able to recognize the warning signs of poor 
structural performance and rectify them before they grow to 
catastrophic proportions. The LZA report noted ‘‘the inspec-
tion and/or quality control procedures utilized . . . were inad-
equate and poorly handled. The absence of a full-time regis-
tered structural engineer experienced with the design and 
construction of long-span special structures was a serious mis-
take. The visually apparent distortion or bowing of exterior 
top chord members should have been a red flag to one of the 
inspecting parties that there was something seriously wrong 
with the Hartford Coliseum space truss structure’’ (Lev Zetlin 
Associates, 1978). 

Finally, the Hartford department of licenses and inspection 
did not require the project peer review that it usually required 
for projects of this magnitude. If a second opinion had been 
obtained, the design deficiencies responsible for the arena’s design error had caused the collapse. He asserted that he was 



collapse probably would have been discovered (Lev Zetlin As-
sociates 1978). Peer reviews are an essential safety measure 
for high-occupancy buildings and structures experimenting 
with new design techniques (Feld and Carper 1997). Today, 
Connecticut is one of the few states that requires peer review 
of certain buildings. 

ETHICAL ASPECTS 

The excessive deflections apparent during construction were 
brought to the design engineer’s attention several times. The 
engineer, confident in his design and the computer analysis 
that confirmed it, ignored these warnings and did not take the 
time to recheck his work. The engineer should pay close at-
tention to unexpected deformations and investigate their 
causes. They often indicate structural deficiencies and should 
be investigated and corrected immediately. Unexpected defor-
mations provide a clear signal that the structural behavior is 
different from that anticipated by the designer. 

Kaminetzky (1991) quotes at length from a story in The 
Philadelphia Inquirer from May 28, 1978, about this incident, 
headlined ‘‘Why The Roof Came Tumbling Down.’’ The story 
suggests that the ironworkers knew from observing the defor-
mations during construction that the building was a death trap 
and had vowed never to enter it once it was completed. It also 
questions why the workers’ warnings were not listened to. 

Also, this collapse raises the important question of whether 
the factor of safety should be increased for buildings with a 
high occupancy. Should the impact of a possible failure be 
taken into account in determining the factor of safety (Kami-
netzky 1991)? 

EDUCATIONAL ASPECTS 

Petroski discusses this case in terms of the need for engi-
neers to be able to reason out whether or not computer results 
make sense, through hand calculations and knowledge of 
structural behavior and performance. ‘‘Because the computer 
can make so many calculations so quickly, there is a tendency 
now to use it to design structures in which every part is of 
minimum weight and strength, thereby producing the most ec-
onomical structure. This degree of optimization was not prac-
tical to expect when hand calculations were the norm, and 
designers generally settled for an admittedly overdesigned and 
thus a somewhat extravagant, if probably extra-safe, structure. 
However, by making every part as light and as highly stressed 
as possible, within applicable building code and factor of 
safety requirements, there is little room for error—in the com-
puter’s calculations, in the part manufacturers’ products, or in 
the construction workers’ execution of the design. Thus, com-
puter-optimized structures may be marginally or least-safe de-
signs, as the Hartford Civil Center roof proved to be’’ (p. 199, 
Petroski 1985). In the decade and a half since Petroski wrote 
these words, despite tremendous advances in computing power 
and software, there is no sign that computer programs will 
soon be able to envision failure modes that the designer has 
not foreseen, or check their own work. 

Failure plays an important role in engineering practice. 
Through failure analysis, engineers can learn to avoid similar 
technical errors, allowing them to build stronger, safer struc-
tures. Since failure analysis plays such an integral role in a 
good engineer’s professional career, it only makes sense that, 
in college, engineering students should be taught about fail-
ures, as well as their importance to any engineer’s professional 
life. In light of an already overcrowded undergraduate engi-
neering curriculum, integrating failure case studies into already 
existing engineering classes is the most logical solution. 

This approach gives students a better idea of the obstacles 
that will face them after college, in addition to demonstrating 

how the theoretical ideas taught in their classes are actually 
applied by engineers. The only real obstacle that lies in the 
way of increased failure awareness at the undergraduate level 
is the absence of adequate resources, such as well-developed 
failure case studies and appropriate illustrations. This paper 
provides professors and students with a failure case study that 
can be integrated into undergraduate classes. 

How can educators use these aspects of this case? In struc-
tural analysis courses, they can be used to address technical 
topics such as safety during construction, load paths, stability 
of incomplete structures during construction, and stability of 
structural members. Students may be assigned to research the 
literature in greater depth and support or criticize the available 
theories. For engineering students, the legal ramifications of 
the case may be of even greater interest. Three additional im-
portant points that may be made are the importance of fixing 
overall responsibility on a project before difficulties are en-
countered, the need for inspection during construction, and the 
need to read the literature of the profession to keep up with 
technical and procedural advances. 

As a class example or homework problem, students may 
compare the moment of inertia for the cruciform, I, and the 
tube configurations of four angles, as shown in Fig. 3. Angle 
legs ranged from 89 to 203 mm (3 1/2 to 8 in.) long and were 
8 to 22 mm (5/16 to 7/8 in.) thick depending on loads, and 
the angles were separated by spacers 19 to 22 mm (3/4 to 
7/8 inch) (Lev Zetlin Associates 1978). For numerical exam-
ples, 127 X 127 X 8 mm angles (L 5 X 5 X 5/16) may be 
used. The torsional stiffness of these configurations may also 
be calculated and compared. 

CONCLUSIONS 
A useful lesson from this case is that computer software is 

only an analytical tool and that computed results must be 
checked by the designer with a careful eye. Users must un-
derstand the theoretical foundations of the programs and the 
associated limitations. This case serves as a lesson for engi-
neering students and practicing engineers concerning the dif-
ficult technical, professional, procedural, and ethical issues that 
may arise during the design and construction of a complex, 
high-occupancy structure. There is no substitute for a thorough 
knowledge of structural behavior, coupled with a healthy skep-
ticism toward the completeness and accuracy of computer soft-
ware solutions to unusual problems. 
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