30 Cable-Suspended Roofs

permanent uniform load superimposed on the cable, _ﬁi,v
there is only one form a cable segment can take: g Catena Q
analysis it may be approximated to a parabola or a straight lin ‘

three cases are given below in detail. e

2-2.1 Catenary

Consider a cable segment as shown in Fig. 2-3, hanging

E . % : under its
weight, or a superimposed load ¢, distributed uniformiy alon ,
length of the arc. The governing equation of the arc is gt
2 ;
H 4—% +q Ll 0 .5
dx ax (23)
Integrating the equation twice and substituting the boundary
tions, z=0atx=0and z = Z at x = X, we get Cong;,
2
= cosha—cosh(ﬁ—a |
9 X (24)
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where a = sinh [“sinhﬁ ]+,B
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rom Eq. 2-4 it can be seen that the com
1s established if the value of H or the ordin

cable (for example, the cable sag at th

plete geometry of the Cable
ate of any one point op the
€ center) is known, The
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A Freely Suspended Cable 31

‘ ’ ' : “and. §%; the
ssions for the end tensions 77 and T, reactions S’ a
e

i i the arc /, and the projections’ X and Z in terms of these
0 s

‘;.?fgellim parameters are as follows: ;
| T'= H cosh a (2-5)
1" =4 (1 coth a - 2) (2-6)
S’ = H sinh « (2-7)
s =2 (Zcoth g 1) (2-8)
I= 2H sinh B8 cosh (a — B8) (2-9)
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| ) 251
S ( T+7" ) (2-11)

2

b ( %) S (2-12)

where (Al), =elastic stretch of the cable due to increased tension
EA =extensional rigidity of the cable

For the standard case of a cable, as shown in Fig. 2-4, with the

supports A and B at the same level (Z = 0) and central sag f, the
values of « and 8 reduce to

qL
I s (2-13)
and the expression for z (Eq. 2-4) becomes
SaH i T
z ; [cosh a — cosh ( i a\)] (2-14)
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FIGURE 2-4 Simply suspended
cable.
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: Xpressions for X an
8iven here y; d

Z in terms of other properties of the cable segment as
Il be clear when studying Sec. 2-4.
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32 Cable-Suspended Roofs

Using the condition z = f at x = L/2, Eq. 2-14 reduces to

H
= 22 [cosha = 1]
/ q[

The value of H can now be computed from Eq. 2-15 ang

geometry of the cable can be computed frorp Eq. 2-14. Th.e Parap,
ters in Egs. 2-5 to 2-12 can be derived for this case by substltuting th'

values of a and B from Eq. 2-13.

2-2.2 Parabola
A cable segment whose weight g 1s assumed to be distributeq uni

formly along the horizontal length of span 1s shown in Eig, 251
weight of a freely hanging cable of constant cross section is jy fag i

distributed uniformly along its leng.th, as agsumed ip the analysis ¢
the catenary. However, the approximation in assuming the weight {,

be distributed along the cable span can be justified in the fOHOWing

cases:
1. When the sag/span ratio of the cable i.s small, the difference
between the arc length and the span is very small, and the
approximation makes almost negligible difference in the
geometry obtained from the two analyses (see Fig. 2-7).

2. If the cable has a permanent superimposed load which s

uniformly distributed along its span and is much heavier thap
the cable itself (as in the case of .a suspension bridge), the

approximation also has justification.

It will be seen from the analysis to follow that the equations for the

resulting curve, which is parabolic, are very much simpler to use than ‘
the equations for the catenary. A method for approximate analyss

of pretensioned cable trusses and networks is developed in Sec. 3-5 by

treating these structures as comprising parabolic cable elements. The
procedure is equally applicable to the analysis of simply suspended

cables under applied loading, as illustrated in Sec. 3-5. The cond:
tion of equilibrium for the curve is
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