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permanent uniform load superimposed on the cable.
there is only one form a cable segment can take: a catenary. 

Rigorousl'

Fanalysis it may be approximated to a parabola or a straight line.2 01

three cases are given below in detail.

2-2.1 Catenary

Consider a cable segment as shown in Fig. 2-3, hanging under itsweight, or a superimposed load q, distributed uniformly along th
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(2-3)
Integrating the equation twice and substituting the boundary 

Condi.tions, z = 0 at x = 0 and z = Z at x = X, we get

H
cosh a — cosh

(2-4)

ß(Z/X)
where a = Sinh -l

Sinh ß
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From Eq. 2-4 it can be seen that the complete geometry of the cableis established if the value of H or the ordinate of any one point on thecable (for example, the cable sag at the center) is known. The
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FIGURE 2-3 Segment of a catenary.
2 Some other forms, which are perhaps only of academic interest, such as a heterogeneous

cable or a catenary of uniform strength, have been treated in Ref. 80, chap. l.
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expressions for the end tensions T' and T", reactions S' and S", the

length of the arc l, and the projections3 X and Z in terms of these

different parameters are as follows:

H cosh a

q

S' = H Sinh a

(Z coth ß - 1)

Sinh ß cosh (a —ß)
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(Al)e -
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where (Al)e = elastic stretch of the cable due to increased tension
EA = extensional rigidity of the cable

For the standard case of a cable, as shown in Fig. 2-4, with the
supports A and B at the same level (Z = 0) and central sag f, the
values of a and ß reduce to

(2-13)

and the expression for z (Eq. 2-4) becomes

cosh a — cosh (2-14)

FIGURE 2-4 Simply suspended
cable.

3
The use of expressions for X and Z in terms of other properties of the cable segment as

given here will be clear when studying Sec. 2-4.
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Using the condition z = f at x = L/ 2, Eq. 2-14 reduces to

U 
[ cosha—I]

The value of H can now be computed from Eq. 2-15, and th
geometry of the cable can be computed from Eq. 2-14. The parame.
ters in Eqs. 2-5 to 2-12 can be derived for this case by substituting the
values of a and ß from Eq. 2-13.

2-2.2 Parabola

A cable segment whose weight q is assumed to be distributed uni.
formly along the horizontal length of span is shown in Fig. 2-5. Th
weight of a freely hanging cable of constant cross section is in fact
distributed uniformly along its length, as assumed in the analysis of
the catenary. However, the approximation in assuming the weight to
be distributed along the cable span can be justified in the following

cases:

l. When the sag/ span ratio of the cable is small, the difference
between the arc length and the span is very small, and the
approximation makes almost negligible difference in the
geometry obtained from the two analyses (see Fig. 2-7).

2. If the cable has a permanent superimposed load which is
uniformly distributed along its span and is much heavier than
the cable itself (as in the case of .a suspension bridge), the
approximation also has justification.

It will be seen from the analysis to follow that the equations for the
resulting curve, which is parabolic, are very much simpler to use than
the equations for the catenary. A method for approximate analysis

of pretensioned cable trusses and networks is developed in Sec. 3-5 by
treating these structures as comprising parabolic cable elements. The
procedure is equally applicable to the analysis of simply suspended

cables under applied loading, as illustrated in Sec. 3-5. The condi-
tion of equilibrium for the curve is

(2-16)


