# **APPENDIX B**

# SHORTCUT CALCULATIONS AND GRAPHICAL COMPRESSOR SELECTION PROCEDURES

# **B.1 SELECTION GUIDE FOR ELLIOTT MULTISTAGE CENTRIFUGAL COMPRESSORS\***

# Thermodynamics

Compressor performance cannot be accurately predicted without detailed knowledge of the behavior of the gas or gases involved.

Mollier diagrams, of course, are readily available for most pure gases at "conventional" pressures and temperatures. However, in cryogenic areas or at very high pressure, some gases behave most peculiarly. Gas properties in these areas heretofore have been estimates arrived at through rather empirical methods.

The same is true of mixtures of gases, yet the preponderance of gas compression problems involve gas mixtures.

Through the knowledge and skill of Elliott thermodynamicists, the behavior of a wide variety of gases in any conceivable mixture— can now be accurately computed, plotted and offered to the process engineer. This knowledge has been computerized, and in minutes, made available as an actual Mollier diagram.

The only input required to obtain a plot of gas behavior is the identity and proportion of the gases involved (if a gas mix), and the limiting pressure and temperature values.

\* Reprinted from a 1994 Elliott Company sales bulletin. The reference information contained herein is provided as an assist to developing your application. However, Elliott reserves the right to modify the design or construction of the equipment described and to furnish it, as altered, without further reference to the illustrations or information contained herein.

A Practical Guide to Compressor Technology, Second Edition, By Heinz P. Bloch Copyright © 2006 John Wiley & Sons, Inc.

# Performance calculations and selection of Elliott multistage compressors

## Introduction

These are basic procedures that will help you to calculate compressor performance and estimate the right unit in your installation. The data herein cover most applications; unusual or special problems can be referred to your Elliott Representative.

Our computer, too, is ready and willing to assist you. From worldwide sales offices, we can access the main computer at the factory and thus eliminate many routine and time-consuming calculations. A good example of this would be the selection of an optimum compressor/driver arrangement, which requires analysis of many alternatives and especially so when high power and multiplecasing train setups are involved.

Another time-saver worthy of mention is the high degree of standardization of Elliott compressor frames, impellers, seals, bearings and even mechanical-drive turbines. Many of these components are computerized to enable you to evaluate various alternatives in a minimum of time.

#### Calculation methods

The calculation procedures on the following pages apply to "straight" compression — the compression of a certain gas from a given suction pressure to a desired discharge pressure.

The methods outlined are:

 The "N" method (so named because of the extensive use of the polytropic exponent "n"). It is used a. when the fluid to be compressed closely approximates a "perfect" gas (air, nitrogen, oxygen, hydrogen).
 b. when a chart of the properties of the gas or gas mixture is not available.

2. The "Mollier" method which involves use of a Mollier diagram and is used whenever a plot of the properties of the fluid being compressed is available.

Note that the final computerized selections use computerized data bases of actual impeller performance characteristics as well as sophisticated real-gas equations of state.

# **Thermodynamic equations**

#### Fan Laws

Fan laws have been developed to estimate performance of centrifugal compressors for operating conditions other than design. These are approximate calculations and as such, can be used to estimate off-design parameters.

| The fan laws are:    |                                       |
|----------------------|---------------------------------------|
| 1.Q                  | αΝ                                    |
| 2. H                 | α N <sup>2</sup>                      |
| 3. In r <sub>e</sub> | α N <sup>2</sup>                      |
| <b>4</b> . ΔT        | α N <sup>2</sup>                      |
| 5. HP or kW          | α N <sup>3</sup>                      |
| where Q              | <ul> <li>inlet volume flow</li> </ul> |
| н                    | = head                                |
| N                    | = speed (r/min)                       |
| rp                   | - absolute pressure ratio (P2/P1)     |
| ΔT                   | = change in temperature               |
| HP or kW             | = power                               |

# **Flow Calculations**

Compressor flow conditions are often expressed in different forms, most common of which are:

# **Gas Mixtures**

Properties of a gas mixture necessary to select a compressor are:

1. Gas constant (dependent on molecular mass MW)

- 2. k (cp and cv) 3. P1, T1, V1 and P2
- 4. Compressibility, Z
- 5. Critical pressure, Pc

6. Critical temperature, Tc

Of the above properties of a gas mixture, MW, cp, cv, Pc, and Tc, are calculated by adding the products of the individual mol fractions of each constituent, times its specific property. The temperature of any

1. Weight flow—Ib/min, lb/h (kg/min, kg/h) 2. SCFM—60°F, 14.7 psia and dry

# 3. number of mols/h

None of these flows can be used directly in calculating compressor performance. All must be converted to ACFM-actual cubic feet per minute. This is also commonly referred to as ICFM-inlet cubic feet per minute.

These conversions are:

ACFM = w × v  
ACFM = SCFM × 
$$\frac{P_a}{P_1}$$
 ×  $\frac{T_1}{T_s}$  ×  $\frac{Z_1}{Z_s}$   
ACFM = no of mole/min × MW × v

= weight flow - lb/min (kg/min) w

- = inlet specific volume ft3/lb (m3/kg)
- standard pressure usually 14.7 psi (1.013 bar) absolute P<sub>s</sub>
- $\mathbf{P}_1$
- = inlet pressure psi (bar) absolute = standard temperature usually 520 °R = inlet temperature °R T<sub>s</sub>
- T, Z١
- = inlet compressibility = standard compressibility -- always 1.0
- Zs мw = molecular mass

constituent is obviously the temperature of the mixture. The v (specific volume) of the mixture is obtained from Pv = ZRT. The compressibility of a mixture is obtained from Chart 1, using the calculated values of  $P_{\rm c}$  and  $T_{\rm c}$ . The k of a mixture is determined from

$$k = \frac{\Sigma M cp}{\Sigma M cp - 1.985}$$

The SMcp is the summation of the mol fraction times the molal XMcp of each constituent. The table below can be used to calculate the properties of a gas mixture.

| Gas<br>Mixture | (1)<br>Mol%<br>each gas                                               | (2)<br>Mois/h<br>each gas | (3)<br>Mol Mass<br>(Table 1) | (4)<br>(1) × (3) | (5)<br>Mass % | (6)<br>T <sub>c</sub><br>(Table 1) | (7)<br>Pe<br>(Table 1) | (8)<br>(1)×(6) | (9)<br>(1) × (7) | (10)<br>Mcp<br>(Table 1) | (11)<br>(1)×(10) |
|----------------|-----------------------------------------------------------------------|---------------------------|------------------------------|------------------|---------------|------------------------------------|------------------------|----------------|------------------|--------------------------|------------------|
|                |                                                                       |                           |                              | a                | a/d × 100     |                                    | ·····                  |                |                  |                          |                  |
|                |                                                                       |                           |                              | b                | b/d × 100     |                                    |                        |                |                  | • • • • • • • • •        |                  |
|                |                                                                       | • • • • • • • • •         |                              | <u>c</u>         | c/d × 100     |                                    |                        | <u></u>        | <u></u>          |                          | <u></u>          |
| Calcula        | Calculate k musture: $\simeq \frac{\Sigma Mcp min}{\Sigma Mcp-1.985}$ |                           |                              |                  |               |                                    |                        | Tc musi        | Pc treat         |                          | ΣΜcp             |

Determine the compressibility of the mixture Zt by finding the reduced temperature Tes and the reduced pressure PR1 as follows:

 $T_{R1} = \frac{T_1}{T_{c (mix)}}$  $P_{R1} = \frac{1}{P_{c (mix)}}$ 

Then enter these values on Chart 1 to find Z.





Chart 2 Polytropic to adiabatic efficiency conversion.



# **ENGLISH SECTION**

English Units

# **Table 1 Gas Properties**

(Most values taken from Natural Gas Processors Suppliers Association Engineering Data Book-1972, Ninth Edition)

|                                                                                                        |                                       |                                                                                 |                                                      | Constitution Datio                                       | Critical                                 | Conditions                                     | *M¢                                              | -p                                                |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| Gas or Vapor                                                                                           | Hydrocarbon<br>Reference Symbols      | Chemical<br>Formula                                                             | Molecular<br>Mass                                    | specific near hand<br>k=cp/cy<br>at 60°F                 | Absolute<br>Pressure<br>pc (psia)        | Absolute<br>Temperature<br>T <sub>c</sub> (*R) | at 50°F                                          | at 300°F                                          |
| Acetylene<br>Air<br>Ammonia<br>Argon<br>Benzene<br>Iso-Butane                                          | C₂=<br>iC₄                            | C2H2<br>N2+02<br>NH3<br>A<br>C2H4<br>A<br>C4H10<br>C4H10                        | 26.04<br>28.97<br>17.03<br>39.94<br>78.11<br>58.12   | 1.24<br>1.40<br>1.31<br>1.66<br>1.12<br>1.10             | 905<br>547<br>1636<br>705<br>714<br>529  | 557<br>239<br>731<br>272<br>1013<br>735        | 10.22<br>6.95<br>8.36<br>4.97<br>18.43<br>22.10  | 12.21<br>7.04<br>9.45<br>4.97<br>28.17<br>31.11   |
| n-Butane<br>Iso-Butylene<br>Butylene<br>Carbon Dioxide<br>Carbon Monoxide<br>Carbuneted Water Gas (1)  | nC+<br>iC++<br>nC++                   | , 00000<br>2411<br>0000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000 | 58.12<br>56.10<br>56.10<br>44.01<br>28.01<br>19.48   | 1.09<br>1.10<br>1.11<br>1.30<br>1.40<br>1.35             | 551<br>580<br>583<br>1073<br>510<br>454  | 766<br>753<br>756<br>548<br>242<br>235         | 22.83<br>20.44<br>20.45<br>8.71<br>6.96<br>7.60  | 31.09<br>27.61<br>27.64<br>10.05<br>7.03<br>8.33  |
| Chlorine<br>Coke Oven Gas (1)<br>n-Decane<br>Ethane<br>Ethyl Alcohol<br>Ethyl Chloride                 | nCia<br>Ga                            | Clz<br>-<br>C10H22<br>C2H5<br>C2H5<br>C2H5OH<br>C2H5OH<br>C2H5CI                | 70.91<br>10.71<br>142.28<br>30.07<br>46.07<br>64.52  | 1.3 <del>6</del><br>1.35<br>1.03<br>1.19<br>1.19<br>1.19 | 1119<br>407<br>320<br>708<br>927<br>764  | 751<br>197<br>1115<br>550<br>930<br>829        | 8.44<br>7.69<br>53.67<br>12.13<br>17<br>14.5     | 8.52<br>8.44<br>74.27<br>16.33<br>21<br>18        |
| Ethylene<br>Flue Gas (1)<br>Heilum<br>n-Heptane<br>n-Hexane<br>Hydrogen                                | C =<br>nG 7<br>nC 6                   | C2H4<br>He<br>C7H16<br>C6H14<br>H2                                              | 28.05<br>30.00<br>4.00<br>100.20<br>86.17<br>2.02    | 1.24<br>1.38<br>1.66<br>1.05<br>1.08<br>1.41             | 742<br>563<br>33<br>397<br>440<br>188    | 510<br>264<br>9<br>973<br>915<br>60            | 10.02<br>7.23<br>4.97<br>39.52<br>33.87<br>6.86  | 13.41<br>7.50<br>4.97<br>53.31<br>45.88<br>6.98   |
| Hydrogen Sulphide<br>Methane<br>Methyl Alcohoł<br>Methyl Chloride<br>Natural Gas (1)<br>Nitrogen       | Gı                                    | H28<br>CH4<br>CH3OH<br>CH2C1<br>-<br>N2                                         | 34.08<br>16.04<br>32.04<br>50.49<br>18.82<br>28.02   | 1.32<br>1.31<br>1.20<br>1.20<br>1.27<br>1.40             | 1306<br>673<br>1157<br>966<br>675<br>492 | 673<br>344<br>924<br>750<br>379<br>228         | 8.09<br>8.38<br>10.5<br>11.0<br>8.40<br>6.96     | 8.54<br>10.25<br>14.7<br>12.4<br>10.02<br>7.03    |
| n-Nonane<br>Iso-Pentane<br>n-Pentane<br>Pentylene<br>n-Octane<br>Oxygen                                | 0000000000000000000000000000000000000 | CoH20<br>CoH12<br>CoH12<br>CoH10<br>CoH10<br>CoH10<br>CoH10<br>O2               | 128.25<br>72.15<br>72.15<br>70.13<br>114.22<br>32.00 | 1.04<br>1.08<br>1.07<br>1.08<br>1.05<br>1.40             | 345<br>483<br>489<br>586<br>362<br>730   | 1073<br>830<br>847<br>854<br>1025<br>278       | 48.44<br>27.59<br>28.27<br>25.08<br>43.3<br>6.99 | 67.04<br>38.70<br>38.47<br>34.46<br>59.90<br>7.24 |
| Propane<br>Propylene<br>Blast Furnace Gas (1)<br>Cat Cracker Gas (1)<br>Sulphur Dioxide<br>Water Vapor | C3<br>C3                              | C3Ha<br>C3H6<br>-<br>-<br>802<br>H2O                                            | 44.09<br>42.08<br>29.6<br>28.83<br>64.06<br>18.02    | 1.13<br>1.15<br>1.39<br>1.20<br>1.24<br>1.33             | 617<br>668<br>674<br>1142<br>3208        | 666<br>658<br>515<br>775<br>1166               | 16.82<br>14.75<br>7.18<br>11.3<br>9.14<br>7.98   | 23.57<br>19.91<br>7.40<br>15.00<br>9.79<br>8.23   |

(1) Approximate values based on average composition.

"Use straight line interpolation or extrapolation to approximate Mcp (in btu/mol-º R) at actual inlet T. For greater accuracy,

average T should be used.

# Table 2 M-Line & MB-Line Frame Date

| Frame | Nominal Flow<br>Range<br>(cfm) | Nominal<br>Max No. of<br>Casing Stages | Max Casing<br>Pressure<br>(psig) | Nominal<br>Speed<br>(r/min) | Nominal<br>Polytropic<br>Efficiency | Nominal<br>H/N <sup>2</sup><br>(per stage) | Maximum<br>G/N |
|-------|--------------------------------|----------------------------------------|----------------------------------|-----------------------------|-------------------------------------|--------------------------------------------|----------------|
| 29M   | 750 - 9,500                    | 10                                     | 750                              | 11,500                      | 0.78                                | 7.5 × 10 <sup>-5</sup>                     | 0.83           |
| 38M   | 6,000 - 22,000                 | 9                                      | 625                              | 7,725                       | 0.79                                | 1.52 × 10 <sup>-4</sup>                    | 2.85           |
| 46M   | 16,000 - 34,000                | 9                                      | 625                              | 6,300                       | 0.80                                | 2.28 × 10 <sup>-4</sup>                    | 5.40           |
| 60M   | 25,000 - 58,000                | 8                                      | 325                              | 4,700                       | 0.81                                | 3.85 × 10 <sup>-4</sup>                    | 12.34          |
| 70M   | 50,000 - 84,000                | 8                                      | 325                              | 4,200                       | 0.B1                                | 5.67 × 10 <sup>-4</sup>                    | 20.            |
| 88M   | 70,000 - 135,000               | 8                                      | 325                              | 3,160                       | 0.81                                | 9,1 × 10 <sup>-4</sup>                     | 42.7           |
| 103M  | 110,000 - 160,000              | 8                                      | 45                               | 2,800                       | 0.82                                | 11.6 × 10 <sup>-4</sup>                    | 57.1           |
| 110M  | 140,000 - 190,000              | 8                                      | 45                               | 2,600                       | 0.82                                | 13.4 × 10 <sup>-4</sup>                    | 73.1           |
| TOME  | 90 - 1,600                     | 12                                     | 10,000                           | 18,900                      | 0.77                                | 2.6 × 10 <sup>-6</sup>                     | 0.065          |
| 15MB  | 200 - 2,350                    | 12                                     | 10,000                           | 15,300                      | 0.77                                | 3.6 × 10-5                                 | 0.153          |
| 20MB  | 325 - 3,600                    | 12                                     | 10,000                           | 12,400                      | 0.77                                | 6.2 × 10 <sup>-5</sup>                     | 0.29           |
| 25MB  | 500 - 5,500                    | 12                                     | 10,000                           | 10,000                      | 0.78                                | 9.5 × 10 <sup>-5</sup>                     | 0.55           |
| 32MB  | 2,000 - 8,000                  | 10                                     | 10,000                           | 8,300                       | Q.78                                | 1.39 × 10 <sup>-4</sup>                    | 0.96           |
| 38MB  | 6,000 - 22,000                 | 9                                      | 1,500                            | 7,725                       | 0.79                                | 1.52 × 10 <sup>-4</sup>                    | 2.85           |
| 46MB  | 16,000 - 34,000                | 9                                      | 1,200                            | 6,300                       | 0.79                                | 2.28 × 10 <sup>-4</sup>                    | 5.40           |
| 60MB  | 25,000 - 58,000                | 8                                      | 800                              | 4,700                       | 0.80                                | 3.85 × 10*                                 | 12.34          |
| 70MB  | 50,000 - 84,000                | 8                                      | 800                              | 4,200                       | 0.80                                | 5.67 × 10 <sup>-4</sup>                    | 20.            |

Number of casing stages is determined by ortical speed margins. These numbers are a general guideline only.
 These values are typical. Flexibility in types of available staging can allow final computer selections to have significant variations in head and efficiency.

# Selection Procedure

# Step 1:

If MW, k, and Z are not given, determine gas mixture properties. By using the procedure and data on Pages 3 and 5, most gas compositions can be analyzed. For single gases or an analysis that has one gas consisting of up to 95% by volume, check to see if a Mollier Diagram is included, and use the Mollier method.

# Step 2:

Calculate inlet volume flow (ACFM). Using the gas composition data from Step 1 and the relationships below or the Motilier charts, find the inlet volume entering the compressor. Note that for very large volumes and lower head requirements, compressors can have the flow divided in half having two inlets (double flow), one at each end of the machine. This gives the flexibility of having a smaller frame size handling larger volumes of flow. This can be important in a multi-body string such as a feed gas string in an ehtylene plant, or whenever a match in speed with other compressors or a particular driver Is desired.

#### Step 3:

Select the compressor frame size. Using the inlet volume calculated in Step 2, enter Table 2 and select the proper frame size. Table 2 also contains other pertinent frame data to be used in the selection procedure.

#### Step 4:

Calculate the total head requirement. In order to determine the number of compression stages, it is necessary to know the total required head. It is important to remember that in a machine with more than one section, it is more accurate to total the heads from the various sections than to make an overall estimate.

# Step 5:

Calculate the total number of casing stages. Reference the average H/N<sup>2</sup> values in Table 2. Multiply this by the speed squared (begin with nominal speed unless speed is fixed) to find an average amount of head developed by the impellers. Divide the total head requirement by this to determine the approximate number of casing stages.

### Step 6:

Adjust the speed by using fan law relationships to agree with required discharge conditions.

# Step 7:

The gas power (GHP) should be adjusted for balance piston or equalizing line leakage. For estimating purposes, we assume this to be a 2% increase. Mechanical losses can then be added to obtain shaft power (SHP).

# Rough Out Example (N-method)

1) Given the following customer conditions

$$P_2 = 225 \text{ psia}$$
  
2) Calculate inlet volu

 $v_1 = \frac{ZRT_1}{144 P_1} = \frac{1.0 (1545) (550)}{144 (29) (80)} = 2.544 \text{ ft}^3/\text{lb}$ 

$$Q = w_1 \times v_1 = 1769 \times 2.544 = 4500$$
 ICFM

### 3) Select compressor frame size

Based on an inlet volume of 4500 ICFM and knowing the required discharge pressure is 225 psia select a 29M frame size from Table 2.

## 4) Calculate the required head

Assume an efficiency of 0.78 from Table 2 and calculate the polytropic exponent.

$$\frac{n}{n-1} = \left(\frac{k}{k-1}\right)\eta_p = \left(\frac{1.4}{0.4}\right) 0.78 = 2.73$$
Calculate the overall head
$$H = ZRT - \frac{n}{n-1} \left[\frac{P_2}{P_1} - \frac{n-1}{n} - 1\right]$$

$$= 1.0 \quad \frac{(1545)}{29} \quad (550) \quad (2.73) \left[\frac{225}{80} - 1\right]$$

$$H = 36837 - \frac{ft-lb_1}{lb_m}$$

Check the discharge temperature for a need to intercool (Cool if  $T_2 > 400^\circ$  F)

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} = \left(\frac{225}{80}\right)^{\frac{0.3663}{n}} = 1.461$$
$$T_2 = 550 (1.461) = 803^{\circ}R = 343^{\circ}F$$

No iso-cooling is therefore required.

5) Determine the number of casing stages. From Table 2 the nominal speed for a 29M is 11500 r/min. Calculate the  ${\rm Q}_{/N}$ 

$$Q_{/N} = \frac{4500}{11500} = 0.391$$

H/stage would then be

$$H_{/N^2} \times N^2 = (7.5 \times 10^{-5}) (11500)^2 = 9919 \frac{ff - Ib_f}{Ib_m}$$

Determine approximate number of casing stages.

8) Adjust Speed

A

Nur

Adjust the nominal speed according to the casing stages.

or an average of 
$$\frac{36837}{4} = 9209$$
 ft-lbr per stage

Using Fan Law relationships adjust the speed.

$$\begin{array}{l} H \alpha N^{2} \\ N = N_{NOM} \left[ \frac{H_{REQ'D}}{H} \right]^{1/2} = 11500 \left[ \frac{9209}{9919} \right]^{1/2} \\ N = 11,081 \, r/min \end{array}$$

7) Calculate the approximate power

 $GHP = \frac{w_1 \times H}{33000 \times \eta_p} = \frac{1769 \times 36837}{33000 \times 0.78} = 2532HP$ 

Adjust for balance piston leakage 2532 × 1.02 = 2583 HP

Add losses from Chart 4 SHP = 2583 + 78 = 2661HP (Assume Iso-Carbon Seal)

### English Units

### English Units

Rough Out Example (Moliler) 1) Given the following customer conditions w1 = 1769 lb/min P1 = 80 psia  $T_1 = 90^\circ F (550^\circ R)$  $P_2 = 225 psia$ Gas: ethylene 2) Calculate iniet volume v1 = 2.6 (from Mollier chart)  $Q = w_1 \times v_1 = 1769 \times 2.6 = 4600 \text{ ICFM}$ 3) Select compressor frame size Based on an inlet volume of 4600 ICFM and knowing the required discharge pressure is 225 psia select a 29M frame size from Table 2. 4) Calculate the required head At given inlet conditions, determine inlet entropy (s) and enthalpy (h) from Mollier chart: P<sub>1</sub> = 80 T<sub>1</sub> = 90 s<sub>1</sub> = 1.75 h<sub>1</sub> = 163 At required discharge pressure and constant entropy ( $s_1 = s_2$ ), determine  $h_2$  from chart  $P_2 = 225$   $T_{2_i} = N/A$   $s_2 = 1.75$   $h_{2_i} = 205$ Head required = 778  $(h_{2_i} - h_1)$ Head required = 778 ( $n_{2_1}$ - $n_{11}$ ) H = 778 (205-163) = 32676  $\frac{\text{ft-lb}_1}{\text{lb}_m}$  (adiabatic) Check the discharge temperature for a need to intercool. (Cool if  $T_2 > 400^{\circ}$  F) Step 1 Determine adiabatic efficiency  $r_p = \frac{225}{2} = 2.81$  k = 1.24  $\eta_p = 0.78$ 80  $\eta_{AD} = 0.76$  from Chart 2 Step 2 determine actual (not isentropic) Δh.  $\Delta h = \frac{h_{2i} - h_1}{2} = 205 - 163 = 55.3$ 0.76 ηAD Step 3 Determine h2 and read T2 from Mollier Chart.  $h_2 = h_1 + \Delta h = 163 + 55.3 = 218.3$ T<sub>2</sub> = 232° F (from Mollier chart) No iso-cooling is therefore required. 5) Determine the number of casing stages. From Table 2 the nominal speed for a 29M is 11500 RPM. Convert adiabatic head to polytropic head by the ratio of efficiencies. H = 32676 (0.78/0.76) = 33536 From Table 2  $H_{/N^2} = 7.5 \times 10^{-6}$ H/<sub>stage</sub> would then be  $H_{/N^2} \times N^2 = (7.5 \times 10^{-5}) (11500)^2 = 9919 - \frac{ft - fbr}{...}$ lb<sub>m</sub>

Number of stages =  $\frac{33536}{9919}$  = 3.38  $\simeq$  4 stages

Adjust Speed
 Adjust the nominal speed according to the casing stages.

or an average of 
$$\frac{33536}{4}$$
 = 8384  $\frac{\text{ff-lbr}}{\text{lbm}}$  perstage.

Using Fan Law relationships adjust the speed.  
H 
$$\alpha$$
 N<sup>2</sup>  
N = N<sub>NOM</sub>  $\left[\frac{H_{REO'D}}{H}\right]^{V_2} = 11500 \left[\frac{8384}{9919}\right]^{V_2} = 10573$   
7) Calculate the approximate power  
GHP =  $\frac{w_1 \times H}{33000 \times \eta_p} = \frac{1769 \times 33536}{33000 \times 0.78} = 2305HP$   
Adjust for balance piston teakage  
2305 × 1.02 - 2351HP

Add losses from Chart 4. SHP = 2351 + 70 = 2421 HP (Assume Iso-Carbon Seal)

English Units



# Mechanical Losses

# **METRIC SECTION**

# **Metric Units**

# Table 3 Gas Properties

(Most values taken from Natural Gas Processors Suppliers Association Engineering Data Book-1972, Ninth Edition)

|                                                                                                       |                                       |                                                                                                   |                                                      |                                              | Critical C                                    | onditions                                          | 'M                                                      | ср                                                      |
|-------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Gas or Vapor                                                                                          | Hydrocarbon<br>Reference Symbols      | Chemical<br>Formula                                                                               | Molecular<br>Mass                                    | k=cp/cv<br>at 15.5°C                         | Absolute<br>Pressure<br>Pc (bar)              | Absolute<br>Temperature<br>T <sub>c</sub> (K)      | at 0°C                                                  | at 100°C                                                |
| Acatylene<br>Air<br>Ammonia<br>Argon<br>Benzene<br>Iso-Butane                                         | Cz=                                   | CaH2<br>N2 + O2<br>NH3<br>A<br>C6H6<br>C4H10                                                      | 26.04<br>28.97<br>17.03<br>39.94<br>78.11<br>68.12   | 1.24<br>1.40<br>1.31<br>1.86<br>1.12<br>1.10 | 62.4<br>37.7<br>112.8<br>48.6<br>49.2<br>36.5 | 309.4<br>132.8<br>406.1<br>151.1<br>562.8<br>408.3 | 42.16<br>29.05<br>34.65<br>20.79<br>74.18<br>89.75      | 48.16<br>29.32<br>37.93<br>20.79<br>103.52<br>116.89    |
| n-Butane<br>tao-Butylene<br>Butylene<br>Carbon Dioxide<br>Carbon Monoxide<br>Carbureted Water Gas (1) | nC+<br>iC+<br>nC+                     | C4H12<br>C4H2<br>C4H2<br>C02<br>C02<br>C0                                                         | 58.12<br>56.10<br>56.10<br>44.01<br>28.01<br>19.48   | 1.09<br>1.10<br>1.11<br>1.30<br>1.40<br>1.35 | 38.0<br>40.0<br>40.2<br>74.0<br>35.2<br>31.3  | 425.6<br>418.3<br>420.0<br>304.4<br>134.4<br>130.6 | 93.03<br>63.36<br>83.40<br>36.04<br>29.10<br>31.58      | 117.92<br>104.96<br>105.06<br>40.08<br>29.31<br>33.78   |
| Chiorine<br>Goke Oven Gas (1)<br>n-Decane<br>Ethane<br>Ethyl Alcohol<br>Ethyl Chioride                | nC:s<br>C2                            | G1z<br>, C10H22<br>C2H8<br>C2H8OH<br>C2H8OH<br>C2H4CI                                             | 70.91<br>10.71<br>142.28<br>30.07<br>46.07<br>64.52  | 1.36<br>1.35<br>1.03<br>1.19<br>1.13<br>1.19 | 77.2<br>28.1<br>22.1<br>48.8<br>63.9<br>52.7  | 417.2<br>109.4<br>619.4<br>305.6<br>516.7<br>460.6 | 35.29<br>31.95<br>218.35<br>49.49<br>69.92<br>59.61     | 35.53<br>34.21<br>260.41<br>62.14<br>81.97<br>70.16     |
| Ethylene<br>Flue Gas (1)<br>Hellum<br>n-Heptane<br>n-Hexane<br>Hydrogen                               | C2—<br>nC7<br>nC6                     | C2H4<br>He<br>C7H16<br>C6H14<br>H2                                                                | 28.05<br>30.00<br>4.00<br>100.20<br>86.17<br>2.02    | 1.24<br>1.38<br>1.66<br>1.05<br>1.06<br>1.41 | 51.2<br>38.8<br>2.3<br>27.4<br>30.3<br>13.0   | 283.3<br>146.7<br>5.0<br>540.6<br>508.3<br>33.3    | 40.90<br>30.17<br>20.79<br>161.20<br>138.09<br>28.67    | 51.11<br>30.98<br>20.79<br>202.74<br>174.27<br>29.03    |
| Hydrogen Sulphide<br>Methane<br>Methyl Alcohol<br>Methyl Chloride<br>Natural Gas (1)<br>Nitrogen      | Cı                                    | H <sub>2</sub> S<br>CH <sub>4</sub><br>CH <sub>2</sub> OH<br>CH <sub>2</sub> Cl<br>N <sub>2</sub> | 34.08<br>16.04<br>32.04<br>50.49<br>18.82<br>28.02   | 1.32<br>1.31<br>1.20<br>1.27<br>1.40         | 90.0<br>46.4<br>79.8<br>66.7<br>46.5<br>33.9  | 373.9<br>191.1<br>513.3<br>416.7<br>210.6<br>126.7 | 33.71<br>34.50<br>42.67<br>45.60<br>34.66<br>29.10      | 35.07<br>40.13<br>55.32<br>49.82<br>39.54<br>29.31      |
| n-Nonane<br>Iso-Pentane<br>n-Pentane<br>Pentylene<br>n-Octane<br>Oxygen                               | nCo<br>ICo<br>ICo<br>Co<br>ICo<br>ICo | C9H26<br>C9H12<br>C9H12<br>C9H13<br>C9H10<br>C8H10<br>C8H10<br>C8H10<br>C8H10                     | 128.25<br>72.15<br>72.15<br>70.13<br>114.22<br>32.00 | 1.04<br>1.08<br>1.07<br>1.09<br>1.05<br>1.40 | 23.8<br>33.3<br>33.7<br>40.4<br>25.0<br>50.3  | 596.1<br>461.1<br>470.6<br>474.4<br>569.4<br>154.4 | 197.07<br>112.09<br>115.21<br>102.11<br>176.17<br>29.17 | 253.10<br>145.58<br>145.94<br>130.37<br>226.17<br>29.92 |
| Propane<br>Propylene<br>Blast Fumace Gas (1)<br>Cat Cracker Gas (1)<br>Sulphur Dioxide<br>Water Vapor | Ca<br>Ca                              | C3H8<br>C3H6<br>-<br>SOz<br>H2O                                                                   | 44.09<br>42.08<br>29.5<br>28.83<br>64.06<br>18.02    | 1.13<br>1.15<br>1.39<br>1.20<br>1.24<br>1.33 | 42.5<br>46.1<br>46.5<br>78.7<br>221.2         | 370.0<br>365.6<br>286.1<br>430.6<br>647.8          | 88.34<br>80.16<br>29.97<br>46.16<br>38.05<br>33.31      | 88.68<br>75.70<br>30.64<br>57.31<br>40.00<br>34.07      |

(1) Approximate values based on average composition.

'Use straight line interpolation or extrapolation to approximate Mcp (in kJ/(kmol-K)) at actual inlet T. For greater accuracy,

average T should be used.

## Table 4 M-Line & MB-Line Frame Data

| Frame | Nominal Flow<br>Range<br>(m³/h) | Nominal<br>Max No. of<br>Casing Stages | Max Casing<br>Pressure<br>(bar) | Nominal<br>Speed<br>(r/min) | Nominal<br>Polytropic<br>Efficiency | Nominal<br>H/N <sup>2</sup><br>(per stage) | Maximum<br>Q/N |
|-------|---------------------------------|----------------------------------------|---------------------------------|-----------------------------|-------------------------------------|--------------------------------------------|----------------|
| 29M   | 1275-16140                      | 10                                     | 52                              | 11 500                      | 0.78                                | 2.25 × 10 <sup>-4</sup>                    | 1.403          |
| 38M   | 10 200 - 37 380                 | 9                                      | 43                              | 7725                        | 0.79                                | 4.56 × 10 <sup>-4</sup>                    | 4.84           |
| 46M   | 27 200 - 57 750                 | 9                                      | 43                              | 6300                        | 0.80                                | 6.84 × 10 <sup>-4</sup>                    | 9.17           |
| 60M   | 42 500 - 98 550                 | 8                                      | 23                              | 4700                        | 0.81                                | 11.55 × 10 <sup>-1</sup>                   | 20.97          |
| 70M   | 85 000 - 142 700                | 8                                      | 23                              | 4200                        | 0.81                                | 17.01 × 10 <sup>-1</sup>                   | 33.98          |
| 88M   | 119 000 - 229 400               | 8                                      | 23                              | 3160                        | 0.81                                | 27.3 × 10-4                                | 72.6           |
| 103M  | 186 900 - 272 000               | 6                                      | 3                               | 2800                        | 0.82                                | 34.8 × 10 <sup>-4</sup>                    | 97.            |
| 110M  | 237 900 - 323 000               | 8                                      | 3                               | 2600                        | 0.82                                | 40.2 × 10 <sup>-4</sup>                    | 124.           |
| 10MB  | 150 - 2700                      | 12                                     | 690                             | 18 900                      | 0.77                                | 8.0 × 10 <sup>-5</sup>                     | 0.14           |
| 15MB  | 340 - 4000                      | 12                                     | 690                             | 15 300                      | 0.77                                | 10.8 × 10 <sup>-6</sup>                    | 0.26           |
| 20MB  | 550 - 6 120                     | 12                                     | 690                             | 12 400                      | 0.77                                | 18.6 × 10 <sup>-5</sup>                    | 0.49           |
| 25MB  | 850 - 9345                      | 12                                     | 690                             | 10 000                      | 0.78                                | 28.5 × 10 <sup>-4</sup>                    | 0.94           |
| 32MB  | 3400 - 13600                    | 10                                     | 690                             | 8300                        | 0.78                                | 4.2 × 10 <sup>-4</sup>                     | 1.64           |
| 38MB  | 10 200 - 37 380                 | 9                                      | 103                             | 7725                        | 0.79                                | 4.56 × 10*                                 | 4.84           |
| 46MB  | 27 200 - 57 750                 | 9                                      | 83                              | 6300                        | 0.79                                | 6.84 × 10 <sup>-4</sup>                    | 9.17           |
| 60MB  | 42 500 - 98 550                 | 8                                      | 55                              | 4700                        | 0.80                                | 11.55 × 10 <sup>-4</sup>                   | 20.97          |
| 70MB  | 85 000 - 142 700                | 8                                      | 55                              | 4200                        | D.80                                | 17.01 × 10 <sup>-4</sup>                   | 33.98          |

(1) Number of casing stages is determined by critical speed margins. These numbers are a general guideline only.

(2) These values are typical. Flexibility in types of available staging can allow tinal computer selections to have significant variations in head and efficiency

# Selection Procedure

### Step 1:

If MW, k, and Z are not given, determine gas mixture properties. By using the procedure and data on Pages 3 and 9, most gas compositions can be analyzed. For single gases or an analysis that has one gas consisting of up to 95% by volume, check to see if a Mollier Diagram is available, and use the Mollier method.

# Step 2:

Calculate inlet volume flow (m3). Using the gas composition data from Step 1 and the relationships below or the Mollier charts, find the inlet volume entering the compressor. Note that for very large volumes and lower head requirements, compressors can have the flow divided in half having two inlets (double flow), one at each end of the machine. This gives the flexibility of having a smaller frame size handling larger volumes of flow. This can be important in a multi-body string such as a feed gas string in an ethylene plant, or whenever a match in speed with other compressors or a particular driver is desired.

#### Step 3

Select the compressor frame size. Using the inlet volume calculated in Step 2, enter Table 4 and select the proper frame size. Table 4 also contains other pertinent frame data to be used in the selection procedure

# Step 4:

Calculate the total head requirement. In order to determine the number of compression stages, it is necessary to know the total required head. It is important to remember that in a machine with more than one section, it is more accurate to total the heads from the various sections than to make an overall estimate

#### Step 5:

Calculate the total number of casing stages. Reference the average H/N<sup>2</sup> values in Table 4. Multiply this by the speed squared (begin with nominal speed unless speed is fixed) to find an average amount of head developed by the impellers. Divide the total head requirement by this to determine the approximate number of casing stages.

### Step 6:

Adjust the speed by using fan law relationships to agree with required discharge conditions.

# Step 7:

The gas power (GkW) should be adjusted for balance piston or equalizing line leakage. For estimating pur-poses, we assume this to be a 2% increase. Mechanical losses can then be added to obtain shaft power (SkW).

.....

#### Rough Out Example (N-method) 1) G

) Given the following customer conditions 
$$w_1 = 802.4 \text{ kg/min}$$
 MW = 29

$$P_2 = 15.52 \text{ bar}$$
  
2) Calculate injet volume

$$v_1 = \frac{ZRT_1}{10^3 P_1} = \frac{1.0 (8314) (305)}{10^5 (29) (5.5)} = 0.159 \text{ m}^3/\text{kg}$$

$$Q = w_1 \times v_1 = 802.4 \times 0.159 = 127.6 \text{ m}^3/\text{min}$$
  
127.6 × 60 = 7656 m<sup>3</sup>/h

#### 3) Select compressor frame size

Based on an inlet volume of 7656 m<sup>3</sup>/h, and knowing the required discharge pressure is 15.52 bar, select a 29M frame size from Table 4.

# 4) Calculate the required head

Assume an efficiency of 0.78 from Table 4 and calculate the polytropic exponent.

$$\frac{n}{n-1} = \left(\frac{k}{k-1}\right) \eta_{p} = \left(\frac{1.4}{0.4}\right) 0.78 - 2.73$$
Calculate the overall head
$$H = ZRT - \frac{n}{n-1} \left[\frac{P_{2}}{P_{1}} - 1\right]$$

$$= 1.0 \quad \frac{(8314)}{29} \quad (305) \quad (2.73) \left[\frac{15.52}{5.5} - 1\right]$$

Check the discharge temperature for a need to intercool (Cool if T<sub>2</sub> > 205°C)

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} = \left(\frac{15.52}{5.5}\right)^{\frac{0.3663}{6}} = 1.462$$

5) Determine the number of casing stages. From Table 4 the nominal speed for a 29M is 11 500 RPM. Calculate the Q/N

 $Q_{/N} = \frac{7656}{11500} = 0.666$ 

From Table 4 
$$H_{/N^2} = 2.25 \times 10^{-4}$$

$$H_{/N^2} \times N^2 = (2.25 \times 10^{-4}) (11500)^2 = 29756 \text{ Nm}$$

Determine approximate number of casing stages.

kα

Number of stages 
$$=\frac{110\ 350}{29756}=3.71\cong4$$
 stages

### 6) Adjust Speed

Adjust the nominal speed according to the casing stages.

4 stages must develop110 350 Nm

or an average of 
$$\frac{110350}{4} = 27588 \frac{\text{Nm}}{\text{kg}}$$
 per stage

Using Fan Law relationships adjust the speed.

$$H \alpha N^{-} N \approx N_{NOM} \left[ \frac{H_{REO'D}}{H} \right]^{\frac{1}{2}} = 11500 \left[ \frac{27588}{29756} \right]^{\frac{1}{2}}$$

N = 11073r/min 7) Calculate the approximate now

$$GkW = \frac{w_1 \times H}{60\,000 \times \eta p} = \frac{(802.4)(110\,350)}{(60\,000)\,(0.78)} = 1892 kW$$

Adjust for balance piston leakage 1892 × 1.02 = 1930 kW

Add losses from Chart 6

SkW = 1930 + 58 = 1988kW (Assume Iso-Carbon Seal)

```
Metric Units
```

Rough Out Example (Mollier) 1) Given the following customer conditions  $w_1 = 802.4 \text{ kg/min}$  $P_1 = 5.5 \text{ bar}$  $T_1 = 32^{\circ} \text{C} (305 \text{ K})$  $P_2 = 15.52 \text{ bar}$ Gas: ethylene 2) Calculate inlet volume  $v_1 = 0.163 \text{ m}^3/\text{kg}$  (from Mollier chart)  $Q = w_1 \times v_1 = 802.4 \times 0.163 = 130.79 \text{ m}^3/\text{min}$   $130.79 \times 60 = 7847 \text{ m}^3/\text{h}$ 3) Select compressor frame size Based on an inlet volume of 7847 m3/h and knowing the required discharge pressure is 15.52 bar select a 29M frame size from Table 4. 4) Calculate the required head At given inlet conditions, determine inlet entropy (s) and enthalpy (h) from Mollier chart:  $P_1 = 5.5$  bar  $T_1 = 32^\circ$ C  $s_1 = s_2$   $h_1 = 379 \frac{kJ}{kT}$ ka At required discharge pressure and constant entropy  $(s_1 = s_2)$ , determine  $h_2$  from chart  $P_2 = 15.52$   $T_{2_1} = N/A$   $s_2 = s_1$   $h_{2_1} = 477$   $k_3$ ka Head required =  $1000 (h_{2i} - h_1)$ H = 1000 (477 - 379) = 98000 (adiabatic)  $\frac{Nm}{4\pi}$ Check the discharge temperature for a need to kg intercool. (Cool if T2 > 205°C) Step 1 Determine adiabatic efficiency  $r_p = \frac{15.52}{2.82} = 2.82$  k = 1.24  $\eta_p = 0.78$ 5.5 7AD = 0.76 from Chart 2 Step 2 Determine actual (not isentropic) Ah  $\Delta h = \frac{h_{2i} - h_1}{2} = \frac{(477 - 379)}{2} = 128.9$ 0.76 ηad Step 3 Determine h2 and read T2 from Mollier Chart.  $h_2 = h_1 + \Delta h = 379 + 128.9 = 507.9$ T<sub>2</sub> = 109°C (from Mollier chart) No iso-cooling is therefore required. 5) Determine the number of casing stages. From Table 4 the nominal speed for a 29M is 11 500 r/min. Convert adiabatic head to polytropic head by the ratio of efficiencies. H = 98000 (0.78/0.76) = 100579 kg From Table 4  $H_{/N^2} = 2.25 \times 10^{-4}$ H/ would then be  $H_{/N^2} \times N^2 = (2.25 \times 10^{-4}) (11500)^2 = 29756 \frac{Nm}{N}$ 

29756 6) Adjust Speed Adjust the nominal speed according to the casing stages. 4 stages must develop 100579 kα or an average of 100579 per stage.= 25145 Using Fan Law relationships adjust the speed HαN² HREQ'D 1/2 = 11 500 25145 1/2 N = NNOM н 29756 N = 10571 r/min7) Calculate the approximate power  $GkW = \underline{w_1 \times H} = \underline{(802.4) (100579)} = 1724 kW$  $60\,000 imes \eta_{P}$ (60000) (0,78) Adjust for balance piston leakage 1724 × 1.02 = 1759 kW Add losses from Chart 6 SkW = 1759 + 54 = 1813kW (Assume Iso-Carbon Seal)

Determine approximate number of casing stages.

**Metric Units** 



# Mechanical Losses

ka

# Approximate dimensions and weights

# Vertically Split



# FF B

English units

Back-to-Back or iso-Cooled

# Technical Data

| Elliott             |            | (PSIG)              | * Tota<br>i                | l Weight<br>bs.         | Nozzie                               | Size                             | Rotation        |
|---------------------|------------|---------------------|----------------------------|-------------------------|--------------------------------------|----------------------------------|-----------------|
| Compressor<br>Frame | Material   | Pressure<br>Rating  | Three<br>Stages            | Each Add'i<br>Stage     | Inlet<br>inches                      | Discharge<br>inches              | Facing<br>inlet |
| 15MB                | Fgd. Steel | 2000                | 5,035                      | 350                     | 6, 8                                 | 4,6                              | CCW             |
| 15MBH               | Fgd. Steel | 4200                | 6,930                      | 460                     | 6, 8                                 | 4, 6                             | CCW             |
| 15MBHH              | Fgd. Steel | 7500                | 11,000                     | 550                     | 6, 8                                 | 4,6                              | CCW             |
| 20MB                | Plate      | 1500                | 9,560                      | 660                     | 8, 10                                | 6, 8                             | CCW             |
| 20MBH               | Fgd. Steel | 4200                | 13,150                     | 870                     | 8, 10                                | 6, 8                             | CCW             |
| 25MB                | Fgd. Steel | 1500<br>2000        | 18,140                     | 1,250                   | 14, 12, 10 or 8                      | 10, 8 or 6                       | CW<br>CCW       |
| 25MBH               | Fgd. Steel | 3150<br>4200        | 25,000                     | 1,655                   | 12, 10 or 8                          | 8 or 6                           | CW<br>CCW       |
| 25MBHH              | Fgd. Steel | 5150<br>10000       | 38,500<br>53,200           | 1,475<br>5,100          | 10,8 or 6<br>8 or 6                  | 6 or 4<br>6 or 4                 | CW<br>CCW       |
| 32MB                | Fgd. Steel | 1500<br>2000        | 23,800                     | 2,490                   | 16, 14 or 12                         | 12 or 10                         | CW              |
| 32MBH               | Fgd. Steel | 3150<br>4200        | 36,500                     | 3,650                   | 12, 10 or 8                          | 8 or 6                           | CW              |
| 32MBHH              | Fad. Steel | 10000               | 56,600                     | 7.250                   | 10 or 8                              | 8 or 6                           | CW              |
| 38MB                | Fgd. Steel | 700<br>1200<br>1500 | 30,045<br>36,300<br>51,300 | 3,440<br>4,130<br>5,250 | 24, 20 or 16<br>20 or 16<br>16 or 14 | 16 or 14<br>16 or 14<br>14 or 12 | CW              |
| 46M8                | Fab. Steel | 750<br>1200         | 40,700<br>50,700           | 4,000<br>4,800          | 30 or 24<br>24 or 20                 | 20 or 16<br>26 or 14             | ĊŴ              |
| 60MB                | Fab. Steel | 400<br>800          | 73,200<br>99,200           | 8,115<br>9,637          | 36 or 30<br>36 or 30                 | 24 or 20<br>20 or 16             | CW              |
| 70MB                | Fab. Steel | 800                 | 152,300                    | 18,800                  | 42 or 36                             | 30 or 24                         | CW              |
| 88MB                | Fab. Steel | 800                 | 198,000                    | 40,400                  | 54 to 48                             | 36 or 30                         | CW              |

Approximate Dimensions (inches)

| Elliott             |     |     | С                | CC            | Length              |      | (    | F                | FF            | Length              |       |
|---------------------|-----|-----|------------------|---------------|---------------------|------|------|------------------|---------------|---------------------|-------|
| Compressor<br>Frame | •   | B   | Min.<br>3 Stages | Six<br>Siages | Esch Add'i<br>Stage | D    | E    | Min.<br>3 Stages | Six<br>Stages | Each Add'i<br>Stage | G     |
| 15MB                | 38  | 36  | 38.5             | 50            | 2.6                 | 17   | 21   | 16               | 19            | 2.6                 | 11    |
| 15MBH               | 39  | 38  | 40               | 52            | 2.6                 | 17.5 | 21.5 | 16               | 21            | 2.6                 | 13.75 |
| 15MBHH              | 45  | 41  | 48               | 61            | 3.3                 | 22   | 23   | 17               | 23.5          | 3.3                 | 19    |
| 20MB                | 47  | 44  | 48               | 62            | 3.2                 | 21   | 26   | 19               | 23.5          | 3.2                 | 13.75 |
| 20MBH               | 49  | 47  | 51               | 68            | 3.2                 | 22   | 27   | 19               | 26            | 3.2                 | 17    |
| 25MB                | 58  | 55  | 59               | 77            | 4                   | 26   | 32   | 24               | 29            | 4                   | 17    |
| 25MBH               | 60  | 58  | 63               | 84            | 4                   | 27   | 33   | 24               | 32            | 4                   | 21    |
| 25MBHH              | 69  | 63  | 73               | 93            | 5                   | 34   | 35   | 26               | 36            | 5                   | 29    |
|                     | 83  | 70  | 76               | 98            | 6                   | 41   | 42   | 29               | 48            | 6                   | 31    |
| 32MB                | 72  | 71  | 68               | 83            | 5                   | 33   | 39   | 29               | 44            | 5                   | 18    |
| 32MBH               | 75  | 74  | 74               | 88            | 6                   | 34   | 41   | 31               | 46            | 6                   | 21    |
| 32MBHH              | 86  | 88  | 82               | 95            | 6                   | 39   | 47   | 34               | 50            | 6                   | 34    |
| 38MB                | 76  | 79  | 80               | 116           | 8                   | 36   | 40   | 33               | 63            | 8                   | 18    |
|                     | 78  | 82  | 83               | 119           | 6                   | 37   | 41   | 33               | 63            | 8                   | 20    |
|                     | 86  | 90  | 95               | 128           | 8                   | 41   | 45   | 37               | 71            | 8                   | 32    |
| 46MB                | 86  | 109 | 92               | 137           | 9                   | 38   | 48   | 43               | 88            | 9                   | 24    |
|                     | 92  | 118 | 98               | 142           | 9                   | 41   | 51   | 44               | 90            | 9                   | 27    |
| 60MB                | 113 | 122 | 105              | 165           | 12                  | 56   | 57   | 57               | 117           | 12                  | 26    |
|                     | 125 | 134 | 111              | 171           | 12                  | 62   | 63   | 59               | 119           | 12                  | 28    |
| 70MB                | 134 | 142 | 142              | 217           | 15                  | 66   | 68   | 70               | 147           | 15                  | 41    |
| 86MB                | 146 | 160 | 152              | 252           | 20                  | 69   | 77   | 89               | 192           | 20                  | 51    |

Metric units







Straight-Through

Back-to-Back or iso-Cooled

| Elliott    |            | (BAR)<br>Pressure | * Tota | l Weight<br>kg |               | Nominal Nozzl      | e Size   |               | Rotation |
|------------|------------|-------------------|--------|----------------|---------------|--------------------|----------|---------------|----------|
| Compressor | Material   | Rating            | Three  | Each Add'l     |               | Iniet              | Di       | Facing        |          |
| Frame      |            |                   | Stages | Stage          | inches        | millimetres        | inches   | millimetres   | Inlet    |
| 15MB       | Fgd. Steel | 138               | 2290   | 160            | 6, 8          | 152, 203           | 4,6      | 102, 152      | CCW      |
| 15MBH      | Fgd. Steel | 290               | 3150   | 210            |               | 152, 203           |          | 102, 152      | CCW      |
| 15MBHH     | Fgd. Steel | 520               | 5000   | 250            | 6, 8          | 152, 203           | 4,6      | 102, 152      | CCW      |
| 20MB       | Plate      | 103               | 4350   | 300            | 8, 10         | 203, 254           | 6, 8     | 152, 203      | CCW      |
| 20MBH      | Fgd. Steel | 290               | 6000   | 400            | 8,10          | 203, 254           | 6, 8     | 152, 203      | CCW      |
| 25MB       | Fgd. Steel | 103               |        |                |               |                    |          |               | CW       |
|            | -          | 138               | 8250   | 570            | 14, 12, 10, 8 | 356, 305, 254, 203 | 10, 8, 6 | 254, 203, 152 | CCW      |
| 25MBH      | Fgd. Steel | 217               |        |                |               |                    |          |               | CW       |
|            | -          | 290               | 11 315 | 750            | 12, 10, 8     | 305, 254, 203      | 8,6      | 203, 152      | CCW      |
| 25MBHH     | Fgd. Steel | 355               | 17 464 | 670            | 10, 8, 6      | 254, 203, 152      | 6,4      | 152, 102      | CW       |
|            |            | 690               | 24 131 | 2310           | 8,6           | 203, 152           | 6,4      | 152, 102      | CCW      |
| 32MB       | Fgd. Steel | 103               |        |                |               |                    |          |               | CW       |
| 1          |            | 138               | 10 796 | 1130           | 16, 14, 12    | 406, 356, 305      | 12, 10   | 305, 254      | 1        |
| 32MBH      | Fgd. Steel | 217               |        |                |               |                    |          |               | CW       |
|            |            | 290               | 16 556 | 1655           | 12, 10, 8     | 305, 254, 203      | 8,6      | 203, 152      |          |
| 32MBHH     | Fgd. Steel | 690               | 25 674 | 3285           | 10, 8         | 254, 203           | 8,6      | 203, 152      | CW       |
| 38MB       | Fgd. Steel | 48                | 13 628 | 1558           | 24, 20, 15    | 610, 508, 406      | 16, 14   | 406, 356      | CW       |
|            | -          | 83                | 16 467 | 1870           | 20, 16        | 610, 508, 406      | 16.14    | 406, 356      |          |
|            |            | 103               | 23 270 | 2378           | 16, 14        | 406, 356           | 14, 12   | 356, 305      | CW       |
| 46MB       | Fab. Steel | 52                | 18 458 | 1815           | 30, 24        | 762, 610           | 20, 16   | 508, 406      | CW       |
|            |            | 83                | 23 014 | 2175           | 24, 20        | 610, 508           | 26, 14   | 660, 356      |          |
| 60MB       | Fab. Steel | 27                | 33 180 | 3676           | 36, 30        | 914, 762           | 24, 20   | 610, 508      | CW       |
|            |            | 55                | 44 998 | 4365           | 36, 30        | 914, 762           | 20, 16   | 508, 406      |          |
| 70MB       | Fab. Steel |                   |        |                |               |                    |          |               | CW       |
|            |            | 55                | 69 083 | 8515           | 42, 36        | 1067, 914          | 30, 24   | 762, 610      |          |
| 88MB       | Fab. Steel |                   |        |                |               |                    |          |               | CW       |
|            |            | 55                | 89 813 | 18 300         | 54.48         | 1372, 1219         | 36.30    | 914, 762      | 1        |

NOTE: The drive end is normally the suction end.

'For back-to-back machines, add weight of two stages.

# Approximate Dimensions (millimetres)

| Elliott             |                      |                      | с                    | CC                   | Length              | T                  |                      | F                 | FF                   | Length              | ſ                 |
|---------------------|----------------------|----------------------|----------------------|----------------------|---------------------|--------------------|----------------------|-------------------|----------------------|---------------------|-------------------|
| Compressor<br>Frame | A                    | 8                    | Min.<br>3 Stages     | Six<br>Stages        | Each Add'l<br>Stage | D                  | Ε                    | Min.<br>3 Støges  | Six<br>Stages        | Each Add'l<br>Stage | G                 |
| 15MB                | 965                  | 914                  | 978                  | 1270                 | 66                  | 432                | 533                  | 406               | 483                  | 66                  | 279               |
| 15MBH               | 990                  | 965                  | 1016                 | 1320                 | 66                  | 445                | 546                  | 406               | 533                  | 66                  | 350               |
| 15MBHH              | 1143                 | 1041                 | 1219                 | 1550                 | 84                  | 559                | 584                  | 432               | 597                  | 84                  | 483               |
| 20MB                | 1194                 | 1118                 | 1219                 | 1575                 | 81                  | 533                | 660                  | 483               | 597                  | 81                  | 350               |
| 20MBH               | 1245                 | 1194                 | 1295                 | 1725                 | 81                  | 559                | 686                  | 483               | 660                  | 81                  | 432               |
| 25MB                | 1470                 | 1400                 | 1500                 | 1960                 | 100                 | 660                | 810                  | 610               | 740                  | 100                 | 430               |
| 25MBH               | 1520                 | 1470                 | 1600                 | 2130                 | 100                 | 690                | 840                  | 580               | 810                  | 100                 | 530               |
| 25MBHH              | 1750<br>2110         | 1600<br>1780         | 1850<br>1930         | 2360<br>2490         | 130<br>150          | 860<br>1040        | 890<br>1070          | 660<br>740        | 910<br>1220          | 130<br>150          | 740<br>790        |
| 32MB                | 1830                 | 1800                 | 1730                 | 2110                 | 130                 | 840                | 990                  | 740               | 1120                 | 130                 | 460               |
| 32MBH               | 1900                 | 1880                 | 1880                 | 2240                 | 150                 | 860                | 1040                 | 790               | 1170                 | 150                 | 530               |
| 32MBHH              | 2180                 | 2240                 | 2080                 | 2410                 | 150                 | 990                | 1190                 | 860               | 1270                 | 150                 | 860               |
| 38MB                | 1930<br>1980<br>2180 | 2010<br>2080<br>2290 | 2030<br>2110<br>2410 | 2950<br>3020<br>3250 | 200<br>200<br>200   | 910<br>940<br>1040 | 1020<br>1040<br>1140 | 840<br>840<br>940 | 1600<br>1600<br>1800 | 200<br>200<br>200   | 460<br>510<br>810 |
| 46MB                | 2180<br>2340         | 2770<br>3000         | 2340<br>2490         | 3480<br>3610         | 230<br>230          | 970<br>1040        | 1220<br>1300         | 1090<br>1120      | 2240<br>2290         | 230<br>230          | 610<br>690        |
| 60MB                | 2870<br>3180         | 3100<br>3400         | 2670<br>2820         | 4190<br>4340         | 300<br>300          | 1420<br>1570       | 1450<br>1600         | 1450<br>1500      | 2970<br>3020         | 300<br>300          | 660<br>710        |
| 70MB                | 3400                 | 3610                 | 3610                 | 5510                 | 380                 | 1680               | 1730                 | 1780              | 3730                 | 380                 | 1040              |
| B8MB                | 3710                 | 4060                 | 3860                 | 6400                 | 510                 | 1750               | 1960                 | 2260              | 4880                 | 510                 | 1300              |

All dimensions and weights are approximate and to be used only for preliminary planning. See your Elliott Representative for more accurate data.



# Technical Data

| Elliott<br>Compressor | Material                     | Min.<br>Casing     | Total V<br>Ib                    | Weight<br>s.                 | We<br>Heavies                    | eight<br>t Part, Ibs.    | Nozzle S                   | ize, inches                                 | Rotation*<br>Facing  |  |
|-----------------------|------------------------------|--------------------|----------------------------------|------------------------------|----------------------------------|--------------------------|----------------------------|---------------------------------------------|----------------------|--|
| Frame                 |                              | Length<br>(stages) | Min.                             | Add'l<br>Stage               | Min.                             | Add'i<br>Stage           | Inlet                      | Discharge                                   | Inlet                |  |
| 29M                   | C.I.<br>C.S.<br>C.S.<br>F.S. | 3<br>3<br>3<br>3   | 8,405<br>8,052<br>9,025<br>9,025 | 886<br>935<br>1,034<br>1,034 | 3,855<br>3,855<br>4,915<br>4,915 | 400<br>400<br>500<br>500 | 16<br>16<br>16<br>12,8     | 6, 8 or 10<br>6, 8 or 10<br>6, 8 or 10<br>8 | CW<br>CW<br>CW<br>CW |  |
| 38M                   | C.1.<br>F.S.<br>F.S.         | 3<br>3<br>3        | 15,124<br>15,597<br>18,905       | 2,462<br>2,276<br>2,400      | 8,624<br>7,953<br>9,965          | 950<br>850<br>1,000      | 20<br>20 or 24<br>20 or 24 | 1 <del>6</del><br>16<br>16                  | CW<br>CW<br>CW       |  |
| 46M                   | C.I.<br>F.S.<br>F.S.         | 2<br>3<br>3        | 23,534<br>25,888<br>29,954       | 2,992<br>3,950<br>4,189      | 10,350<br>12,359<br>15,072       | 1,800<br>2,000<br>2,300  | 24<br>30<br>30             | 20<br>20<br>20                              | CW<br>CW<br>CW       |  |
| 60M                   | C.I.<br>F.S.                 | 3<br>3             | 46,904<br>41,861                 | 6,688<br>6,688               | 22,373<br>20,409                 | 2,200<br>2,500           | 36<br>36                   | 24<br>24                                    | CW<br>CW             |  |
| 70M                   | C.I.<br>F.S.                 | 22                 | 54,412<br>59,616                 | 10,876<br>11,952             | 27,293<br>30,021                 | 3,100<br>3,400           | 42<br>42 or 48             | 30<br>30                                    | CW<br>CW             |  |
| 88M                   | C.I.<br>F.S.                 | 2                  | 98,716<br>105,305                | 21,860<br>24,290             | 48,904<br>52,531                 | 8,000<br>8,200           | 54 or 48<br>54 or 48       | 36 or 30<br>36 or 30                        | CW<br>CW             |  |
| 103M                  | C.1.<br>F.S.                 | 2                  | 88.000<br>95.000                 | 26.000<br>28,000             | 40.000<br>44.000                 | 13,000<br>13,800         | 66 or 60<br>66 or 60       | 42<br>42                                    | CCW<br>CCW           |  |
| 110M                  | C.I.<br>F.S.                 | 2 2                | 115,715<br>124,364               | 29,872<br>31,740             | 52,545<br>56,746                 | 15.000<br>16,000         | 72<br>72                   | 48<br>48                                    | CCW                  |  |

# Approximate Dimensions (inches)

|                                | [                    |                      |                            | Overali                    | Length                |                          |                      | Nozzle               | Distance              |                          |                          |                      |                      |                            |
|--------------------------------|----------------------|----------------------|----------------------------|----------------------------|-----------------------|--------------------------|----------------------|----------------------|-----------------------|--------------------------|--------------------------|----------------------|----------------------|----------------------------|
| Elliott<br>Compressor<br>Frame | A                    | B                    | C<br>Min.<br>Stages        | CC<br>Six<br>Stages        | CCC<br>Four<br>Stages | Each<br>Add'i<br>Stage   | F<br>Min.<br>Stages  | FF<br>Six<br>Stages  | FFF<br>Four<br>Stages | Each<br>Add'i<br>Stage   | G                        | E                    | EE                   | D                          |
| 29M                            | 61<br>61<br>61<br>61 | 58<br>58<br>58<br>58 | 52<br>52<br>52<br>52<br>52 | 74<br>74<br>74<br>74<br>74 |                       | 4.5<br>4.5<br>4.5<br>4.5 | 24<br>24<br>24<br>24 | 38<br>38<br>38<br>38 | 111                   | 4.5<br>4.5<br>4.5<br>4.5 | 17½<br>17½<br>18½<br>18½ | 32<br>32<br>32<br>29 | 32<br>32<br>32<br>29 | 27<br>27<br>27<br>27<br>27 |
| 38M                            | 68<br>68<br>68       | 83<br>83<br>83       | 65<br>65<br>65             | 86<br>85<br>86             | 87<br>87              | 7<br>7<br>7              | 31<br>31<br>31       | 52<br>52<br>52       | 57<br>57              | 7<br>7<br>7              | 20<br>20<br>21           | 35<br>35<br>35       | 35<br>39<br>39       | 27<br>27<br>27             |
| 46M                            | 84<br>71<br>71       | 97<br>79<br>79       | 73<br>87<br>87             | 100<br>114<br>114          | 119<br>119            | 9<br>9<br>9              | 39<br>39<br>39       | 66<br>66<br>66       | 69<br>69              | 9<br>9<br>9              | 21<br>22<br>23           | 42<br>44<br>44       | 42<br>52<br>52       | 28<br>22<br>22             |
| BOM                            | 124<br>92            | 119<br>103           | 105<br>105                 | 141<br>141                 | 148                   | 12<br>12                 | 51<br>51             | 86<br>86             | 93                    | 12<br>12                 | 22<br>25                 | 68<br>57             | 68<br>64             | 24<br>24                   |
| 70M                            | 146<br>120           | 131<br>128           | 103<br>103                 | 148<br>148                 | 157                   | 15<br>15                 | 50<br>53             | 95<br>98             | 106                   | 15<br>15                 | 30<br>23                 | 80<br>68             | 84<br>77             | 22<br>24                   |
| 88M                            | 125<br>142           | 131<br>131           | 115<br>115                 | 175<br>171                 | 161                   | 20<br>20                 | 65<br>65             | 123<br>123           | 127                   | 20<br>20                 | 24<br>24                 | 72<br>84             | 75<br>96             | 24<br>24                   |
| 103M                           | 141<br>156           | 144<br>148           | 131<br>133                 | 194<br>194                 | 198                   | 21<br>21                 | 71<br>71             | 132<br>132           | 139                   | 21<br>21                 | 23<br>27                 | 78<br>82             | 84<br>102            | 24<br>24                   |
| 110M                           | 158<br>177           | 176<br>176           | 128<br>130                 | 210<br>210                 | 222                   | 24<br>24                 | 63<br>83             | 155<br>155           | 162                   | 24<br>24                 | 25<br>29                 | 92<br>94             | 98<br>114            | 24<br>24                   |

\*The normal drive end is the discharge end. For units requiring opposite rotation, the drive end is the suction end.

# Metric units



# **Technical Data**

| Elilott                               |                      | Min.<br>Casing | Totel                      | Weight<br>cg         | Weight, Heaviest Part kg     |                          |                        |                                  | Rotation*                        |                                                                  |                |
|---------------------------------------|----------------------|----------------|----------------------------|----------------------|------------------------------|--------------------------|------------------------|----------------------------------|----------------------------------|------------------------------------------------------------------|----------------|
| Compressor                            | Material             | Length         |                            | Add'l                |                              | Add'l                    |                        | Inlet                            | Dis                              | charge                                                           | +acing         |
| · · · · · · · · · · · · · · · · · · · |                      | (stages)       | Min.                       | Stage                | Min.                         | Stage                    | inches                 | millimetres                      | inches                           | millimetres                                                      |                |
| 29M                                   | C.I.<br>C.S.<br>C.S. | 3333           | 3813<br>3652<br>4093       | 402<br>424<br>469    | 1749<br>1749<br>2229<br>2229 | 180<br>180<br>230<br>230 | 16<br>15<br>16         | 406<br>406<br>406<br>305 203     | 6, 8, 10<br>6, 8, 10<br>6, 6, 10 | 152, 203, 254<br>152, 203, 254<br>152, 203, 254<br>152, 203, 254 | CW<br>CW<br>CW |
| 38M                                   | C.I.<br>F.S.<br>F.S. | 3<br>3<br>3    | 6860<br>7075<br>8575       | 1117<br>1032<br>1089 | 3912<br>3607<br>4520         | 430<br>390<br>450        | 20<br>20, 24<br>20, 24 | 508, 200<br>508, 610<br>508, 610 | 16<br>16<br>16                   | 406<br>406<br>406                                                | CW<br>CW<br>CW |
| 46M                                   | C.I.<br>F.S.<br>F.S. | 2<br>3<br>3    | 10 675<br>11 743<br>13 587 | 1357<br>1792<br>1900 | 4695<br>5606<br>6837         | 820<br>910<br>1040       | 24<br>30<br>30         | 610<br>762<br>762                | 20<br>20<br>20                   | 508<br>508<br>508                                                | CW<br>CW<br>CW |
| 60M                                   | C.I.<br>F.S.         | 3<br>3         | 21 276<br>18 988           | 3034<br>3034         | 10 148<br>9258               | 1000<br>1130             | 36<br>36               | 914<br>914                       | 24<br>24                         | 610<br>610                                                       | CW<br>CW       |
| 70M                                   | C.I.<br>F.S.         | 2              | 24 681<br>27 042           | 4933<br>5421         | 12 380<br>13 618             | 1410<br>1540             | 42<br>42, 48           | 1067<br>1067, 1219               | 30<br>30                         | 762<br>762                                                       | CW<br>CW       |
| 88M                                   | C.I.<br>F.S.         | 22             | 44 778<br>47 766           | 9916<br>11 D18       | 22 183<br>23 828             | 3630<br>3720             | 54, 48<br>54, 48       | 1372, 1219<br>1372, 1219         | 36, 30<br>36, 30                 | 914, 762<br>914, 762                                             | CW<br>CW       |
| 103M                                  | C.I.<br>F.S.         | 2<br>2         | 39 917<br>43 092           | 11 794<br>12 701     | 18 144<br>19 956             | 5900<br>6260             | 66, 60<br>66, 60       | 1676, 1524<br>1676, 1524         | 42<br>42                         | 1067<br>1067                                                     | CCW            |
| 110M                                  | C.I.<br>F.S.         | 2              | 52 488<br>56 412           | 13 550<br>14 397     | 23 834<br>25 740             | 6800<br>7250             | 72<br>72               | 1829<br>1829                     | 48<br>48                         | 1219<br>1219                                                     | CCW<br>CCW     |

# **Approximate Dimensions (millimetres)**

|                                |                              |                              | Overall Length               |                              |                       |                          | i i                      |                          |                          |                          |                                 |                       |                          |                          |
|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|-----------------------|--------------------------|--------------------------|
| Elliott<br>Compressor<br>Frame | A                            | В                            | C<br>Min.<br>Stages          | CC<br>Six<br>Stages          | CCC<br>Four<br>Stages | Each<br>Add'i<br>Stage   | D                        | E                        | EE                       | F<br>Min.<br>Stages      | FF<br>Six<br>Stages             | FFF<br>Four<br>Stages | Each<br>Add'i<br>Stage   | G                        |
| 29M                            | 1550<br>1550<br>1550<br>1550 | 1470<br>1470<br>1470<br>1470 | 1320<br>1320<br>1320<br>1320 | 1880<br>1880<br>1880<br>1880 | 111                   | 110<br>110<br>110<br>110 | 690<br>690<br>690<br>690 | 810<br>810<br>810<br>810 | 810<br>810<br>810<br>810 | 610<br>610<br>610<br>610 | 970<br>970<br>970<br>970<br>970 |                       | 110<br>110<br>110<br>110 | 440<br>440<br>470<br>470 |
| 38M                            | 1730<br>1730<br>1730         | 2110<br>2110<br>2110         | 1650<br>1650<br>1650         | 2180<br>2180<br>2180         | 2210<br>2210          | 180<br>180<br>180        | 690<br>690<br>690        | 890<br>890<br>890        | 890<br>990<br>990        | 790<br>790<br>790        | 1320<br>1320<br>1320            | 1450<br>1450          | 180<br>180<br>180        | 510<br>510<br>530        |
| 46M                            | 2130<br>1800<br>1800         | 2460<br>2010<br>2010         | 1850<br>2210<br>2210         | 2540<br>2900<br>2900         | 3020<br>3020          | 230<br>230<br>230        | 710<br>560<br>560        | 1070<br>1120<br>1120     | 1070<br>1320<br>1320     | 990<br>990<br>990        | 1680<br>1680<br>1680            | 1750<br>1750          | 230<br>230<br>230        | 530<br>580<br>580        |
| 60M                            | 3150<br>2340                 | 3020<br>2620                 | 2670<br>2570                 | 3580<br>3580                 | 3760                  | 300<br>300               | 610<br>610               | 1730<br>1450             | 1730<br>1630             | 1300<br>1300             | 2180<br>2180                    | 2360                  | 300<br>300               | 560<br>640               |
| 70M                            | 3710<br>3050                 | 3330<br>3250                 | 2620<br>2620                 | 3760<br>3760                 | 3990                  | 380<br>380               | 560<br>610               | 2030<br>1730             | 2130<br>1960             | 1270<br>1350             | 2410<br>2490                    | 2690                  | 380<br>380               | 760<br>580               |
| 88M                            | 3175<br>3610                 | 3330<br>3330                 | 2920<br>2920                 | 4440<br>4340                 | 4090                  | 510<br>510               | 610<br>610               | 1830<br>2130             | 1900<br>2440             | 1650<br>1650             | 3120<br>3120                    | 3230                  | 510<br>510               | 610<br>610               |
| 103M                           | 3580<br>3960                 | 3660<br>3760                 | 3330<br>3380                 | 4930<br>4930                 | 5030                  | 530<br>530               | 610<br>610               | 1980<br>2080             | 2130<br>2590             | 1800<br>1800             | 3350<br>3350                    | 3530                  | 530<br>530               | 580<br>690               |
| 110M                           | 4010<br>4500                 | 4470<br>4470                 | 3250<br>3300                 | 5330<br>5330                 | 5640                  | 610<br>610               | 610<br>610               | 2340<br>2390             | 2490<br>2900             | 2110<br>2110             | 3940<br>3940                    | 4110                  | 610<br>610               | 640<br>740               |

\*The normal driving end is the discharge end. For units requiring opposite rotation, the drive end is the suction end.

# **B.2 QUICK SELECTION METHODS FOR MULTISTAGE COMPRESSORS\***

Among the many purely graphical methods of rapidly selecting multistage compressors is one developed around 1965 by Don Hallock of the Elliott Company, Jeannette, Pa. To use these charts, the following quantities must be known:

- 1. W—weight flow, in lb/min or scfm (standard  $ft^3/min$ ).
- 2.  $P_1$ —inlet pressure, in psia
- 3.  $R_p$ —pressure ratio (discharge psia/inlet psia)
- 4.  $t_1$ —inlet temp., in °F
- 5. M-mole weight
- 6. K—ratio of specific heats

**Determine the Inlet cfm, Q1.** If W is known, use Fig. B.1, proceeding through  $P_1$ ,  $t_1$ , and M to find  $Q_1$ .

If scfm is known, use Fig. B.2, proceeding through  $P_1$ ,  $t_1$ , and "temperature standard" to find  $Q_1$ .

**Determine the Head H.** On Fig. B.3, enter  $R_p$  and proceed through K,  $t_1$ , and M as shown. If head H exceeds 80,000 to 90,000, more than one compressor body will be required.

*Determine the Number of Stages Required.* On Fig. B.4, enter head *H* and proceed through *M* to read the number of stages required. Round this off to the next-higher even number.

**Determine the Speed and Size of the Machine.** On Fig. B.5, enter  $Q_1$  and read the maximum width in inches. Proceed to the stepped lines and read the rpm and flange sizes. Proceed through the number of stages and read the length of the machine in inches. In the example shown, the icfm is 45,000 and the gas is between propane and chlorine in mole weight. The speed is shown to be 4000 rpm and the flanges are 36 and 24 in. A slightly higher flow requires 3500 rpm and 42- and 30-in. flanges.

**Determine the Horsepower Requirement.** On Fig. B.6, enter W, proceed through  $Q_1$  and H, and read HP. If W is not known, work backward from  $Q_1$  on Fig. B.1 to find W before using Fig. B.6.

For uncooled, constant weight flow compression, such as alkylation, wet gas, recycle, or air under 50 psia, the foregoing is sufficient to determine price, size, and driver requirement. For cooled or variable weight flow compression, proceed as follows:

*Cooled Compression.* Assume one cooler and two compression sections, each section handling a pressure ratio equal to the square root of the overall pressure ratio.

- Determine discharge temperature  $t_2$  from Fig. B.7, proceeding through  $R_p$ ,  $Q_1$ , K, and  $t_1$ .
- Assuming that this  $t_2$  is satisfactory, proceed through all the figures for each of the separate sections. Speed and width of the compressor will be dictated by the first sections. The total horsepower is the sum of the sections.

\* Developed and contributed by Don Hallock, Elliott Company, Jeannette, Pa. Adapted by permission of *HP* and the Elliott Company. Originally published in the October 1965 issue of *Hydrocarbon Processing*.



**FIGURE B.1** If the weight flow of gas W is known, use this chart to find the inlet flow  $Q_1$  (icfm).

• If one cooler does not depress  $t_2$  sufficiently, or if still more horsepower saving is desired, try two coolers or more.  $R_p$  per section for a two-cooler three-section arrangement is the cube root of the overall  $R_p$ ; for a three-cooler four-section arrangement, it is the fourth root. Bear in mind that more than one set of cooler openings is seldom available on a single compressor body. When more than one cooler is chosen, therefore, more than one compressor body is likely to be required.

Considerable judgment is required in choosing the number of coolers to use. Once the temperature limits are satisfied, the use of additional coolers becomes a matter of economics between compressor and cooler cost, and horsepower evaluation.

*Variable Weight Flow.* For applications having side flows either in or out, it is necessary to consider each constant flow compression section separately. Mixture temperature to the second section after the first "inward" side flow must be calculated by finding the discharge



**FIGURE B.2** If the scfm value is known, use this chart to find the inlet flow  $Q_1$  (icfm).

temperature of the first section from Fig. B.7, multiplying by the first section weight flow, adding in the product of the sidestream temperature and weight flow, and dividing by the sum of the weight flows. With mixture  $t_1$ ,  $P_1$ , W, M, and K known, the figures can now be used for the second section, and so on through the machine.

M and K of the sidestream will generally be the same or quite close to those of the inlet, so mixture calculations for these quantities will normally be unnecessary. For extraction side flows, the second section inlet conditions are the same as the first section discharge conditions, except for W.

Normally, the first section will "see" the largest  $Q_1$ , in which case the first section  $Q_1$  will dictate the size and speed of the machine. An occasional refrigeration process, however, will show the second section  $Q_1$  to be the largest. In this case, *that*  $Q_1$  will dictate machine size and speed.

To determine the number of stages required, add the stages for each compression section and add in a blank stage for each large side load. It is impossible to give criteria for exactly what constitutes a "large" side load, but experience has shown that a typical propylene unit



**FIGURE B.3** Enter this chart at  $R_p$ , the pressure ratio (discharge/inlet, psia), to find the head H.



FIGURE B.4 Enter this chart with the *H* value on Fig. B.3 to find the number of stages required.



**FIGURE B.5** Enter this chart at the  $Q_1$  value from Fig. B.1 or B.2 and find the speed, width, length, and flange sizes.

will require a blank stage for the first sideload only, whereas a typical ethylene machine may require two blank stages. If the total number of stages, including blanks, exceeds nine, a second machine will probably be required.

# **B.3 DELAVAL ENGINEERING GUIDE TO COMPRESSOR SELECTION\***

<sup>\*</sup> Reprinted by permission of IMO Industries, Inc., DeLaval Turbine Division, Trenton, N.J.







FIGURE B.7 The discharge temperature can be found on this chart.

# **Delaval Engineering Guide to Compressor Selection**



# II. The Gas Compression Theory

The relationship between the volume, absolute pressure and absolute temperature of a perfect gas, based on Charles' and Boyle's Laws, is: PV = WRT; or, on a mass basis, Pv = RT.

An important characteristic of gases is specific heat.

Specific heat is defined as the amount of heat (BTU) (kJ) required to raise the temperature of one pound (kilogram) of gas one degree Fahrenheit (Kelvin). The amount varies depending on whether the gas volume or pressure is kept constant during the heating process. This is defined by:  $R \propto C_p$ -C<sub>V</sub>. The ratio (k) of specific heat of a gas at constant pressure to that at constant volume (C<sub>p</sub>/C<sub>V</sub>) is used in gas calculations.

If heat is neither added nor removed from the gas during compression, the process is defined as isentropic or adiabatic. The relationship of pressure and volume for a perfect gas undergoing isentropic compression is defined as PV<sup>K</sup>, a constant.

Because many gases do not perfectly obey the theoretical laws, the deviation must be accounted for. The deviation, termed compressibility (Z), is defined as the ratio of actual gas volume at a given temperature and pressure to the volume calculated by the theoretical law (Pv = RT).

The general equation for adiabatic work is:

$$H = ZRT \left[ \frac{P_s}{\frac{P_s}{k-1}} - 1 \right] h tb(/lbm (Nm/kg))$$

The actual compression path seldom follows the adiabatic process but is generally in the form PV<sup>n</sup>, a constant. This is called a polytopic process and is defined as reversible with heat transfer.

n is the exponent of polytropic compression and is found from:

$$\frac{n-1}{n} = \frac{k-1}{k} \begin{bmatrix} 1 \\ \eta_p \end{bmatrix}$$

where  $v_p$  is the polytropic compression efficiency. Figure 1 shows the relationship between polytropic and adiabatic efficiency.



Figure 1

# III. Determining Z, k, and MW

Before a compressor cycle can be calculated, it is necessary to know the specific heat ratio, k; molecular weight, MW; and compressibility, Z, of the gas. For pure gases or air, these values can be taken from Figure 2. For a mixture of gases, the values must be calculated. Mixtures are generally specified in volumetric or mole percentages.

The properties of the mixture are determined by the composite properties of the constituent gases.

The values for the compressibility (Z) of gas mixtures can be calculated if the gas analysis is known.

Z can be derived from the rule of corresponding states using reduced temperature and pressure. To calculate reduced temperature (TR) and reduced pressure (PR), see the following information. The critical constants T<sub>C</sub> and P<sub>C</sub> for various gases are given in Table 1.







# Physical Constants of Gases

| Compound Formula |                                | Mol.    | Cp and Cp/C,<br>Mol. at 14.7 psia and<br>W1. 60°F |                    | C <sub>p</sub> /C ,<br>osia and<br>°F | Cp and<br>1.0132<br>and | skat<br>Sbar<br>04 C | Crit     | Critical Critical<br>constants | MCp MCp<br>at at |       | MC <sub>p</sub> MC <sub>p</sub> | MCp   | MCp    | MCp    |        |
|------------------|--------------------------------|---------|---------------------------------------------------|--------------------|---------------------------------------|-------------------------|----------------------|----------|--------------------------------|------------------|-------|---------------------------------|-------|--------|--------|--------|
| -                |                                | MW      | Cp                                                | С <sub>р</sub> /С, | Cp<br>kJ/(kg.k)                       | k                       | psia<br>Pc           | °R<br>Te | ber<br>Pc                      | к<br>Тс          | 60° F | 100*#                           | 200°F | 0"C    | 25°C   | 100°C  |
| Acetylene        | C <sub>2</sub> H <sub>2</sub>  | 26.036  | 0.3966                                            | 1.238              | 1,6345                                | 1,243                   | 905.0                | 557.4    | 61.4                           | 308.3            | 10.33 | 10.69                           | 11.53 | 42.56  | 43.72  | 47.62  |
| Air              | N+O <sub>2</sub>               | 28.966  | 0.2470                                            | 1.395              | 1.0048                                | 1,400                   | 547                  | 238.7    | 37.7                           | 132.4            | 6.96  | 5.96                            | 6.99  | 29,11  | 29.11  | 29,11  |
| Ammonia          | NH,                            | 17.032  | 0.5232                                            | 1.310              | 2,0323                                | 1.317                   | 1,657                | 731.4    | 112.8                          | 405.5            | 8.91  | 8,57                            | 9.02  | 34.81  | 35.08  | 37.25  |
| Benzene          | C <sub>e</sub> H <sub>e</sub>  | 78.108  | 0.2404                                            | 1,118              | 0,9429                                | 1,128                   | 714                  | 1.013.0  | 49.0                           | 562.2            | 18.78 | 20.47                           | 24.45 | 73.65  | 82.09  | 105.05 |
| 1,2-Butadiene    | C <sub>4</sub> H <sub>6</sub>  | 54.088  | 0.3458                                            | 1.12               | 1.3934                                | 1.124                   | 653                  | 799.0    | 45.0                           | 443.7            | 18.70 |                                 |       | 75.37  | 80,17  | 93,71  |
| 1,3-Buladiene    | C.H.                           | 54.085  | 0.3412                                            | 1.12               | 1.3615                                | 1,128                   | 628                  | 766.0    | 43.3                           | 425.4            | 18.45 |                                 |       | 73.65  | 79.72  | 95.75  |
| N-Bulane         | C <sub>4</sub> H <sub>10</sub> | 58.120  | 0.3970                                            | 1.094              | 1.5625                                | 1,101                   | \$50.7               | 765.6    | 38.0                           | 425.2            | 23.07 | 24.51                           | 26.16 | 90.84  | 97.83  | 117.83 |
| Isobulane        | C <sub>4</sub> H <sub>10</sub> | 58.120  | 0.3872                                            | 1,097              | 1.5433                                | 1,102                   | 529.1                | 734.9    | 36.5                           | 408.1            | 22.50 | 23.95                           | 27.62 | 89.70  | 97.10  | 118.08 |
| N-Bulene         | C.H.                           | 56.104  | 0.3703                                            | 1.105              | 1,4160                                | 1,117                   | 563                  | 755.8    | 40.2                           | 419.6            | 20.77 | 22.09                           | 25.18 | 79.45  | 85.74  | 103.31 |
| Isobutene        | G <sub>4</sub> H <sub>6</sub>  | 55.104  | 0.3701                                            | 1.106              | 1.4872                                | 1.111                   | 579.8                | 752.5    | 40.0                           | 417.9            | 20.76 |                                 |       | 83.44  | 89.03  | 105.66 |
| Bulylene         | C.N.                           | 36.104  | 0.3703                                            | 1.105              | 1.4087                                | 1.112                   | 083                  | 100.0    | 41.0                           | 428.6            | 20.76 | 21.94                           | 24.80 | 82.41  | 87.86  | 103.88 |
| Carbon dioxide   | CO2                            | 44,010  | 0.1991                                            | 1.300              | 0.0223                                | 1,299                   | 1,073                | 548.0    | 73.8                           | 304.2            | 8.76  | 9.00                            | 9.35  | 36.19  | 37.04  | 39.80  |
| Carbon monoxide  | co                             | 28.010  | 0.2484                                            | 1,403              | 1.0467                                | 1,397                   | 510                  | 242.0    | 35.0                           | 132.9            | 6.90  | 6.95                            | 6.98  | 29.32  | 28.97  | 28.85  |
| Chloring         | GI <sub>2</sub>                | 70.914  | 0.1149                                            | 1,355              | 0,4731                                | 1,330                   | 1,120                | 751      | 17.2                           | 417.2            | 8.15  |                                 |       | 33.55  | 33.85  | 35.03  |
| Elbane           | C <sub>2</sub> H <sub>1</sub>  | 30,068  | 0.4097                                            | 1,193              | 1.6462                                | 1,202                   | 708.3                | 550.1    | 48.8                           | 300.4            | 12.32 | 12.96                           | 14.68 | 49.50  | 52.88  | 62,72  |
| Ethyl alcohol    | C'H'OH                         | 45.069  | 0.3070                                            | 1,130              | 1.5240                                | 1,135                   | \$27.0               | 929.6    | 63.6                           | 516.3            | 14.14 |                                 |       | 70.21  | 73.49  | 84.10  |
| Ethylene         | G/H.                           | 28.052  | 0.3622                                            | 1.243              | 1,4562                                | 1.256                   | 742.1                | 509.8    | 50,3                           | 282.4            | 10.16 | 10.66                           | 12.08 | 40.85  | 43.58  | 51,42  |
| N-Hexane         | CeNte                          | 96.172  | 0.3984                                            | 1.062              | 1.5416                                | 1.067                   | 439.7                | 914.5    | 30.1                           | 507.4            | 34.33 | 36.23                           | 41.08 | 132.85 | 143.24 | 172.90 |
| Heaum            | He                             | 4.003   | 1.2480                                            | 1.6598             | 5,2000                                | 1.007                   | 480                  | 510      | 2.3                            | 5.2              | 5.00  |                                 |       | 20.82  | 20.82  | 20.82  |
| Hydrogen         | H,                             | 2.018   | 3,408                                             | 1,408              | 14.3849                               | 1,404                   | 188.0                | 80.2     | 13.0                           | 33.33            | 6.87  | 6.90                            | 6.95  | 28,96  | 28.66  | 28.41  |
| Hydrogen sumde   | H <sub>2</sub> S               | 34.078  | 0.254                                             | 1,323              | 0.9797                                | 1,333                   | 1,306                | 672.7    | 90,1                           | 373.5            | 8.66  | 8.18                            | 8.36  | 33.36  | 33.53  | 34,58  |
| Meenane          | CH4                            | 18.042  | 0.6271                                            | 1.311              | 2.163/                                | 1,316                   | 6ra.1                | 343.0    | 48.1                           | 190.8            | 8.46  | 8.05                            | 9.30  | 34.71  | 35.60  | 39.62  |
| Meenyl asconor   | GRIOH                          | 32.042  | 0.2700                                            | 1.203              | 1.3398                                | 1,241                   | 1,167.0              | 924.0    | 80.9                           | 512.6            | 8.55  |                                 |       | 42.93  | 40.08  | 01.11  |
| Ndrogen          | N <sub>2</sub>                 | 28.016  | 0.2462                                            | 1.402              | 1,0467                                | 1.387                   | 492.0                | 227.2    | 120.2                          | 126.2            | 0.90  | 0.90                            | 0.963 | 29.32  | 28.97  | 28.74  |
| N-Deane          | U.H.,                          | 114.224 | 0.3990                                            | 1.040              | 1.5349                                | 1.050                   | 302.1                | 1,085.8  | 24.9                           | 0,000            | 45.07 |                                 | 7     | 1/5.33 | 169.39 | 228.04 |
| Cxygen           | 0,                             | 32.00   | 0.2188                                            | 1.401              | 0.9169                                | 1,395                   | 730                  | 2/8.2    | 50.8                           | 154.8            | 7.00  | 7.03                            | 7.120 | 29.34  | 28.21  | 29.61  |
| N-Pentane        | G Hg                           | 72,190  | 0.3972                                            | 1.0/4              | 1.0041                                | 1.060                   | 489.5                | 845.9    | 33.7                           | 409.7            | 28.00 | 30.30                           | 34,41 | 112,12 | 120.83 | 145.36 |
| порелине         | C <sub>s</sub> n <sub>o</sub>  | 12,140  | 0.3880                                            | 1.075              | 1.5248                                | 1.082                   | 483.0                | 830.0    | 33.6                           | 460.4            | 27,89 | 29.90                           | 34.44 | 110.02 | 119.02 | 144.76 |
| Proparor         | 500                            | 40.004  | 0.3885                                            | 1.136              | 1,3018                                | 1.1.39                  | 017,4                | 066.2    | 6.50                           | 0.908.8          | 17.13 | 16.21                           | 20.90 | 08.42  | /3.85  | 88.58  |
| Propyrene        | en,                            | 42.0/8  | 0.3541                                            | 1.154              | 0.6000                                | 1.162                   | 06/                  | 05/.4    | 40.1                           | 304.8            | 14.90 | 15.77                           | 17.88 | 59.76  | 63,96  | 76.15  |
| Taluana          | C H                            | 00.000  | 0.1470                                            | 1.246              | 1.00029                               | 1.2/3                   | 0.142                | 175.0    | 18.9                           | 430.7            | 9,42  | 3                               |       | 38.62  | 39.43  | 42.11  |
| TOILMIN          | Con,                           | 86.134  | 0.5366                                            | 1,091              | 1.0224                                | 1,097                   | 011                  | 1,068.5  | 41.1                           | 391.8            | 23.90 |                                 |       | 94.21  | 104,16 | 131.24 |
| Water            | in/o                           | 16.016  | 0.4446                                            | 1.335              | 1.8715                                | 1,328                   | 3.836                | 1,165.4  | 221.2                          | 047.4            | 0.01  | 8.03                            | 8.12  | 33.72  | 33,42  | 33.49  |
| Haopiai gala     | 3                              | 19/27   | 0.488                                             | 1.269              | 1.799                                 | 1,316                   | 6/0                  | 360      | 46.2                           | 211.1            | 0.47  | 8.72                            | 9.37  | 34,66  | 35.90  | 37.60  |

Table 1

For example, for a gas mixture with a composition (by volume) of 14% ethane, 85% methane and 1% nitrogen,  $T_c$  and  $P_c$  would be calculated as follows:

| Gases | V (%/100) | Τc    | Tc                      | VTc       | ντ <sub>c</sub> | Pc    | Pc   | VPc         | VPc      |      |
|-------|-----------|-------|-------------------------|-----------|-----------------|-------|------|-------------|----------|------|
| C2H4  | 0.14      | 550.1 | 305.4                   | 77.01     | 42.76           | 708.3 | 48.6 | 99.16       | 6.83     |      |
| CH.   | 0.85      | 343.5 | 190.6                   | 292.00    | 162.01          | 673.1 | 46.1 | 572.19      | 39.14    |      |
| N₂    | 0.01      | 227.2 | 126.2                   | 2.27      | 1.26            | 492.0 | 33.9 | 4.92        | 0.34     |      |
|       |           | For m | ixture T <sub>C</sub> P | 371.28° A | (206.03°C       | ))    | Pc   | =676.27psia | (46.31 ) | oar) |

Using the above values, and assuming gas conditions of 90°F (30°C) and 124.5 psia (8.5 bar):

$$T_{R} = \frac{T}{T_{C}} = \frac{90 + 460}{371.3} \quad \frac{30 + 273.15}{206.03} = 1.48$$
$$P_{R} = \frac{P}{P_{C}} = \frac{124.5}{576.3} \quad \frac{8.5}{46.31} = 0.18$$

Using the calculated values of reduced temperature and pressure, the value of Z (.98) can be read from Figure 2, a generalized curve that can be used for any gas mixture. Figure 3 is a curve directly showing compressibility factors of natural gas at various pressures and temperatures.



Figure 3

The molecular weight of a gas mixture is equal to the sum of the products of the proportional volume of each constituent and its molecular weight.

 $MW = m_1 v_1 + m_2 v_2 \dots + m_n v_n$ 

A simplified method for finding the ratio of specific heats (k) makes use of the molal specific heat  $M_{CP}$  expressed as



Calculation of the properties of a gas mixture can best be done in tabular form. The following example determines the properties of a typical natural gas.

| Ğəs               | V<br>(%/100)         | ЯŴ                      | V(WW)                 | Mop at<br>100*F       | VMcp                    | М <sub>ср</sub><br>41.25°С | VMcp                  |
|-------------------|----------------------|-------------------------|-----------------------|-----------------------|-------------------------|----------------------------|-----------------------|
| С,Н,<br>СН,<br>N, | 0.14<br>0.65<br>0.01 | 30.07<br>16.04<br>28.02 | 4.21<br>13.63<br>0.28 | 12,96<br>8,65<br>6,96 | 3.514<br>7.353<br>0.059 | 52.88<br>35.60<br>28.97    | 7,40<br>30.43<br>0.29 |
| Total             | 1.00                 | MW                      | * 18.12               | Mcp                   | = 9.237                 | M <sub>CP</sub> 4          | 38.12                 |

$$k = \frac{9.237}{9.237 - 1.99} = 1.275$$
$$k = \frac{38.12}{38.12 - 8.33} = 1.280$$

# IV. Selection Procedure

# A. QUALIFYING THE SELECTION PROCEDURE

This procedure is intended to aid the user in making rapid preliminary compressor selections and estimating compressor performance. Only Delaval engineering will issue formal selections.

The method is to be used on a sectional basis. It examines a gas before it enters and after it leaves the compressor or compressor section (Figure 4). In the case of intercooled or side loaded compressors, the sections must be dealt with separately; the section with the largest inlet flow (Q) governs the frame size.



Figure 4

# B. INPUT DATA REQUIRED

Selection of a compressor frame size and calculation of performance requires the following data: k, Z, MW, P, P2, T1, Q1, (or m). If the gas analysis is provided, values for k, Z, and MW can be calculated.

# C. METHOD OF CALCULATION

The Delaval process compressor line was designed around the concept of component and performance similarity. throughout the various frame sizes. Using the non-dimensional impeller flow coefficient ( $\Phi$ ) as a basis for determining aerodynamic performance of an impeller of any size, a common link between frame sizes results. In this way, theoretical and test data have been combined to define compressor characteristics for any size unit. The following procedure utilizes this approach for compressor selection.

## D. FABRICATED MULTI-STAGE SELECTION PROCEDURE

Steps:

1. Calculate volmetric inlet flow (ACFM) from either of the following methods:

a. From mass flow rate (m),  
ACFM<sub>X</sub> = v<sub>X</sub> (m) where v<sub>X</sub> = 
$$\frac{Z_X RT_X}{144 P_X}$$

b. From moles/hour,  

$$ACFM_X = \frac{(Moles/hour) (MW) (v_X)}{60}$$

$$ACPM_{X} = SCPM \quad \frac{1}{(P_{X}) (T_{S}) (Z_{S})}$$

1. Calculate volumetric inlet capacity from either of the following methods:

a. From mass flow rate

$$Q_X = \hat{m}(v_X)$$
 where  $v_X = \frac{Z_X(R) T_Y}{P_Y}$ 

b. From moles/hour

$$O_X = \frac{(Moles/hour) (MW) v_X}{3600}$$

c. From standard volumetric inlet flow,

$$\mathbf{Q}_{\mathbf{X}} = \frac{\mathbf{Q}_{\mathbf{S}} \left(\mathbf{R}_{\mathbf{S}}\right) \left(\mathbf{T}_{\mathbf{X}}\right) \left(\mathbf{Z}_{\mathbf{X}}\right)}{\left(\mathbf{F}_{\mathbf{X}}\right) \left(\mathbf{T}_{\mathbf{S}}\right) \left(\mathbf{Z}_{\mathbf{S}}\right)}$$

2. Calculate adiabatic head based on inlet conditions to section,

$$H_{ad} = Z, RT, \underbrace{\begin{bmatrix} \frac{k-1}{k} \\ -1 \end{bmatrix}}_{k}$$

 Estimate discharge temperature (T<sub>2</sub>) due to compression cycle<sup>1</sup>

$$\Delta T = T_{i} \left[ r \frac{\frac{k-1}{k}}{\eta_{ad}} \right] \text{ (assume } \eta_{ad} = .75)$$
$$T_{a} = T_{i} + \Delta T$$

4. Determine minimum frame size from Figure 5.



Footnote: Nominal temperature limitations are 450°F (250°C) for labyrith seals and 375°F (190°C) for oil face or bushing seals.

| Frame | D       | Frame | D (mm) |
|-------|---------|-------|--------|
| 22    | 13.65*  | 22    | 347    |
| 26    | 16.25~  | 26    | 413    |
| 31    | 19.25"  | 31    | 469    |
| 37    | 22.875" | 37    | 581    |
| 44    | 27.25"  | 44    | 692    |
| 52    | 32.5"   | 52    | 826    |
| 62    | 38.5"   | 62    | 978    |
| 74    | 45.6"   | 74    | 1158   |
| 88    | 54.25*  | 88    | 1378   |

5. Find impeller wheel diameters from following table

6. Determine maximum impeller head per stage from Figure 6. Minimum number of compression stages required from:

No. of stages = Head per stage

Round off quantity to the next higher integer.

7. Calculate tip speed<sup>1</sup>



8. Calculate inlet and discharge flow coefficients<sup>2</sup>





Footnoles: 'For initial sizing, limit tip speed to 900 ft/sec (275 m/sec); or 800 ft/sec (245 m/sec) if low-yield material is required. "Discharge flow coefficient is calculated from discharge conditions in this procedure. It is normally determined from conditions prior to the last stage of compression.

9. Use Figure 7 to determine first and last stage efficiency and average to get overall efficiency., If & falls to the right of the efficiency curve, select a larger frame size. If  $\Phi$  falls to the far left, select a smaller frame size.



Figure 7



10. Correct efficiency for wheel size using Figure 8.

11. Calculate compressor running speed



12. Calculate horsepower



- b. Determine mechanical losses from Figure 9. (Divide total by 2 if labyrinth end seals are used.)
- c. Calculate balance drum leakage (2% of GHP or Pi)'



Figure 9

d. BHP = GHP + Mech. losses + balance drum leakage

| ₽ <sub>e</sub> ≖ | P | 4 | Mech. | losses | + | balance | drum |
|------------------|---|---|-------|--------|---|---------|------|
| leakag           | e |   |       |        |   |         |      |

13. Determine casing split

The density of the gas and the maximum working pressure of the compressor will determine the casing split. The following chart is provided as a general guide:

| Frame<br>Size                                         | 22  | 26  | 31  | 37  | 44  | 52  | 62  | 74  | 88  |
|-------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| MWP for<br>horizon-<br>tatly split<br>casing<br>(nel) | 800 | 600 | 600 | 600 | 450 | 300 | ana | 300 | 300 |
| (bar)                                                 | 56  | 42  | 42  | 42  | 32  | 22  | 22  | 22  | 22  |

MWP × 1.10 (max, discharge pressure)

If the gas contains over 70% hydrogen, the casing will be vertically split between 200 to 285 psi (14 to 20 bar) MWP and above.

## E. CAST CASING COMPRESSOR SELECTION

Although the calculation method presented in this section is based on the Delaval fabricated line, some performance data for cast case units can be calculated from the previous procedure. Once head and inlet flow are determined, the figures presented on pages 11 and 13 should be used to select the proper frame size and number of stages. Impeller diameter and efficiency corresponding to case size is presented below.

MULTISTAGE

| MULTISTAGE |       |       |       |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Case       | 12/12 | 16/16 | 18/18 | 20/20 | 24/24 | 30/30 | 35/36 |
| Nominal    |       |       |       |       |       |       |       |

| Impeller Dia.<br>(Inches)    | 14  | 14  | 23  | 23  | 30   | 38  | 45   |
|------------------------------|-----|-----|-----|-----|------|-----|------|
| (mm                          | 355 | 355 | 584 | 584 | 762  | 965 | 1143 |
| Avg. Adiabatic<br>Efficiency | .78 | .78 | .80 | .80 | :.81 | .82 | .82  |

 SINGLESTAGE (opposed nozzles):

 Case
 20/20
 24/24
 30/30
 36/36

 Nominał
 Impeller Dia.
 Inches)
 16
 32
 32
 36

 (inches)
 16
 32
 32
 36
 36
 36
 36

 Avg. Adiabatic
 Efficiency
 .80
 .81
 .82
 .84

Note: All single-stage units are available in either axial inlet or opposed nozzle configurations. Refer to factory for axial inlet efficiencies.

Substituting this information for steps 8 through 10 allows a quick estimation of pipeline compressor performance.



FRAME SIZE SELECTION FOR SINGLE-STAGE, OVERHUNG COMPRESSORS

Determine actual inlet flow into the compressor as well as the total head requirement to find frame size





FRAME SIZE SELECTION FOR MULTI-STAGE CAST CASING COMPRESSORS

Calculate the actual inlet flow into the compressor as well as the total head requirements using the driver speed to determine the correct sizing graph. Assume a maximum of 10,000-11,000 ft. (30,000-33,000 Nm/kg) of head per stage to pinpoint the number of compression stages required.

# F. DESIGN CONSIDERATIONS

In many cases, a centrifugal compressor must be designed to match special process or driver requirements. By physical arrangement of inner components or the casing structure, specific requirements can be met while still delivering maximum performance. Variations include:

Double-flow arrangement which permits the unit to be smaller in frame size and higher in rotational speed. The inlet flow is split in half and undergoes parallel compression (see Figure 10).



Figure 11

Back-to-back arrangement of two sections in an Intercooled machine, which keeps hot discharge temperatures away from end seals and reduces or eliminates aerodynamic thrust forces (see Figure 11).

Overframing the casing and diaphragms, which is sometimes used to increase compressor efficiency. The diffuser plate diameter is increased while impeller diameter is held constant.

Uprating flow capacity of the compressor, which may only require an increase in speed for small changes in flow or an inner bundle change-out for large variations. Nozzle sizes and Internal dimensions of the casing will determine the maximum flow capability of the compressor. Consult factory for specific information.

Rotational speed, which can be varied by two methods while the section still produces constant head.

(a) Addition of one impeller permits speed reduction as shown in the equation

Revised RPM =  $\sqrt{\frac{N}{N+1}}$  RPM

(b) Wheel triming by reducing the outside diameter of the impeller can allow for up to a 10% increase in rotational speed.

### G. COMPRESSOR MODEL NUMBERS

Every Delaval centrifugal compressor is designated by a model number that describes that particular unit. Typical model numbers (and their meanings) for process and pipeline units are shown below.



# V. Sample Calculations (English)

2. 
$$H_{ad} = .98 \begin{bmatrix} 1544\\ 18.12 \end{bmatrix} (550) \begin{bmatrix} 500\\ 124.5\\ -1 \end{bmatrix} = 74,460 \text{ ft.}$$
  
3.  $\Delta T = 550 \begin{bmatrix} \frac{500}{124.5} & -1\\ \frac{500}{124.5} & -1\\ -75 \end{bmatrix} = \frac{256^{\circ}}{\frac{+90^{\circ}}{346^{\circ}}}$ 

T<sub>2</sub> = 346° F (no intercooling required)

 From Figure 5, inlet flow is close to maximum of 31 frame and well within the range of 37 frame.

 From Figure 6, maximum head per stage = 11,000 ft. Minimum number of stages = 74,460/11,000 = 6.77 or 7 stages.

7. U = 
$$\sqrt{\frac{74,450 (32.2)}{(7) (.46)}}$$
 = 863 ft/sec

# Conversion Table

| TO OBTAIN | MULTIPLY | BY     |
|-----------|----------|--------|
| Inches    | mm       | 0.0394 |
| ť*        | etta .   | 35.31  |
| ft/sec    | m/sec    | 3.281  |
| cím       | m³/h     | 0.5863 |
| head (ft) | Nm/kg    | 0.335  |
| ibm/min   | kg/sec   | 132    |
| psi       | bar      | 14.22  |
| hp        | kW       | 1.341  |

8. 
$$\Phi$$
, for 31 frame =  $\frac{3.056 (14000)}{863 (19.25)^2} = .134$ 

According to Figure 7, a 31 frame is marginal.

$$\Phi$$
, for 37 frame =  $\frac{3.056 (14000)}{863 (22.875)^2} = .095$ 

 $\Phi_{\mathfrak{p}}$  is calculated from  $O_2$ 

 $Q_2 = \dot{m}v_2$ 

- 9. From Figure 7:  ${}^{\eta} \Phi_1 = .775; {}^{\eta} \Phi_2 = .775; {}^{\eta} avg. = .775$
- 10. Determine impeller efficiency correction from Figure 8:

11. RPM = 
$$\frac{229 (863)}{22.875}$$
 = 8640 RPM

Mechanical losses = 81 hp. BHP = 1.02 (15,803) + 81 = 16,200 hp

 A discharge pressure of 500 psia corresponds to a 550 psi MWP casing. Therefore, casing is horizontally split. Model selected is a seven-stage, 37-frame horizontally split: 7C37.

| V. Sample Ca                                                                                                                                                                                                                                                                                                       | Iculations (Me                                                                                                                                                                                                                                           | tric)                                                                                     | 8. $\Phi$ , 31-frame = $\frac{4 (6.732)}{263 (\pi) (0.489^{2})} = 0.136$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P, = 8.5 bar, 1<br>m = 42 kg/se                                                                                                                                                                                                                                                                                    | $P_2 = 34.5 \text{ bar}$<br>ec, $T_1 = 30^{\circ}\text{C} = 303.1$                                                                                                                                                                                       | 15 K                                                                                      | According to Figure 7, a 31-frame is marginal.<br>$\Phi$ , 37-frame = $\frac{4 (6.732)}{262 (\pi) (0.581^2)} = 0.097$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Steps.<br>1. $Q_1 = \dot{m} (v_1) = \dot{m} (\frac{Z_1}{Z_1})$<br>$= 42 \frac{(0.98) (8314.34}{(18.129) (8.5)}$<br>$= 6.732 \text{ m}^3/\text{sec} = 242$<br>2. Had =<br>$= .98 \left[ \frac{8314.34}{18.129} \right] (302)$<br>3. $\Delta T = \frac{303.15}{0.75} \left[ \left( \frac{34.5}{8.5} \right) \right]$ | $\frac{(R) (T_{1})}{P_{1}}$ $\frac{(303.15)}{(303.15)}$ $\frac{(303.15)}{(35.5)}$ $\frac{(34.5)}{8.5} - 1$ $\frac{1280 - 1}{1276} - 1$ $= 223350$ $\frac{1280 - 1}{1276} = 145 \text{ K}$ $448.15 \text{ K} = 175^{\circ} \text{ C}$ $\frac{1127}{1276}$ | I Nm/kg                                                                                   | $ \Phi_2 \text{ is calculated from Q}^2. \\  Q_2 = \dot{m}v_2 = \dot{m} \frac{(Z_2)(R)}{P_2} \frac{T_2}{P_2} \begin{cases} \text{Find Z_2 from reduced} \\ \text{temperature and pressure} \\ \text{from example shown on} \\ \text{page 27} \end{cases} \\ T_R = \frac{T_2}{T_C} = \frac{448.15}{206.3} = 2.18 \\ P_R = \frac{P_2}{P_C} = \frac{34.5}{46.31} = 0.74 \\ \text{From Figure 2: } Z_2 = 0.99 \\ \text{Therefore } Q_2 = \\ = 42 \frac{(0.99)(8314.34)(448.15)}{(18.129)(34.5 \times 10^6)} = 2.477 \text{ m}^3/\text{sec} \\ \Phi_2 = \frac{(4) 2.477}{(263)(\pi)(0.581^2)} = 0.036 \\ 9. \text{ From Figure 7: } ^{\eta} \Phi_1 = 0.775 \end{cases} $ |
| (no intercooling req<br>4. $Q_1 = 24235 \text{ m}^3/\text{hr. Fr}$<br>to maximum of 31 fr<br>of 37 frame.<br>5. Wheel diameters<br>6. From Figure 6, max<br>= 33000 Nm/kg.<br>Therefore N = $\frac{2233}{3300}$<br>7. U = $\sqrt{\frac{223350}{7 0.46}}$                                                           | uired)<br>om Figure 5, inlet flow i<br>ame and well within thi<br>31 — frame — 48<br>37 — frame — 58<br>imum head per stage<br>$\frac{150}{00}$ = 6.77 or 7 stages<br>— = 263 m/sec.                                                                     | is close 11<br>e range 11<br>39 mm<br>31 mm 1<br>1:<br>1:                                 | average = 0.775<br>${}^{7}\Phi_{z} = 0.775$<br>0. Determine impeller efficiency correction from<br>Figure 8.<br>(1.0075) (0.775) = 0.781<br>1. N = $\frac{60 (263)}{\pi (0.581)}$ = 8645 RPM<br>2. P <sub>1</sub> = $\frac{(42) 223350}{0.781 (1000)}$ = 12011 kW<br>Mechanical losses = 63 kW (from Figure 9)<br>P <sub>6</sub> = (1.02) (12011) + 63 = 12314 kW<br>3. A discharge pressure of 34.5 bar corresponds to a<br>(2) bar MMP nacional Thermform exciton in                                                                                                                                                                                              |
| Con<br>TO OBTAIN                                                                                                                                                                                                                                                                                                   | version Table                                                                                                                                                                                                                                            | BY                                                                                        | 42 bar MWP casing . Therefore, casing is<br>horizontally split. Model selected is a seven-stage,<br>37-frame horizontally split : 7C37.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mm<br>m³<br>m/sec<br>m³/n<br>Nm/kg<br>kg/sec<br>bar<br>kW                                                                                                                                                                                                                                                          | inches<br>ft <sup>s</sup><br>ft/seo<br>cfm<br>ft (head)<br>lbm/min<br>psi<br>hp                                                                                                                                                                          | 25.40<br>0.0283<br>0.305<br>1.6992<br>2.969<br>7.58 × 10 <sup>-3</sup><br>0.0703<br>0.746 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Model B 12/12 Model B 16/16





# Weights and dimensions Cast Casing Compressors

|               |            |     |      | ~~~~~      |      |              | ~           |     |      | RUG        | NCZZ       | LE SIZ | ADDE | TC      | TAL   | MAX.   |      |
|---------------|------------|-----|------|------------|------|--------------|-------------|-----|------|------------|------------|--------|------|---------|-------|--------|------|
| FRAME<br>SIZE | NO. STAGES | iŋ, | mm   | in,        | mm   | in.          | mm          | ln. | mm   | auu<br>ໂກ. | mm         | ) in   | mm   | IB.     | kg    | 10.    | kg.  |
| B 12/12       | 5          | 53  | 1346 | 48         | 1219 | 38           | <b>98</b> 5 | 27  | 588  | 12         | 305        | 12     | 305  | 13,000  | 5900  | 3,050  | 850  |
| B 18/18       | 5          | 57  | 1448 | <b>4</b> B | 1269 | 49           | 1295        | 59  | 737  | 18         | 406        | 16     | 405  | 16,200  | 7300  | 3,100  | 1400 |
| B 18/19       | 5          | 103 | 2616 | 96         | 2348 | 69           | 1753        | 36  | 916  | 18         | 457        | 18     | 457  | 34,300  | 19600 | 10,300 | 5200 |
| B 20/20       | 5          | 105 | 2657 | 96         | 2438 | 72           | 1829        | 30  | 760  | 293        | 508        | 20     | 508  | 45.000  | 20900 | 11,500 | 5300 |
| H 24/24       | 3          | 103 | 2616 | 102        | 2691 | 84           | 2134        | 45  | 1143 | 24         | 610        | 24     | 610  | 48,000  | 21800 | 12,900 | 5900 |
| B 30/30       | 3          | 125 | 3175 | 144        | 3858 | BO           | 2288        | 54  | 1372 | 30         | 762        | 30     | 762  | 85,000  | 38500 | 15,500 | 7000 |
| 8 96/96       | 3          | 126 | 3200 | 180        | 4064 | 117          | 2972        | 87  | 1702 | 36         | <b>914</b> | 348    | 914  | 120,000 | 54500 | 18,600 | 8500 |
| PV 20/20      | 1          | 87  | 2210 | 81         | 2057 | 64           | 1826        | 33  | \$38 | 30         | 508        | 20     | 508  | 30.000  | 13600 | 3,400  | 1550 |
| PV 24/24      | 1          | 96  | 2438 | 120        | 3048 | π            | 1956        | 49  | 1092 | 24         | 610        | 24     | 610  | 40,500  | 18300 | 4,980  | 2300 |
| PV 30/30      | 1          | 102 | 2591 | 134        | 3404 | 61           | 2057        | 45  | 1143 | 30         | 762        | 30     | 782  | 51,000  | 23100 | 6,250  | 2850 |
| PV 36/56      | 1          | 104 | 2642 | 144        | 3658 | 1 <b>D</b> 4 | 2842        | 53  | 1346 | 38         | 914        | 36     | 914  | 66,000  | 29000 | 8,900  | 3800 |





Model B 18/18 Model B 20/20







Model B 24/24 Model B 30/30 Model B 36/36



Model "PV" Series Note: Axial inlet (PVA type compressor) 11 is located in end cover at & of shaft.

| 8 211 3380 3510 156 3955 71 1810 1 351000 89000 40400 326000 148000 23200 81500 24200 11000 |
|---------------------------------------------------------------------------------------------|
|                                                                                             |

# **B.4** SHORTCUT (GRAPHICAL) METHOD OF DETERMINING APPROXIMATE PERFORMANCE OF SULZER CENTRIFUGAL COMPRESSORS\*

The calculation procedures given in the following pages permit

| To determine:     | Compressor size and type                 |                           |
|-------------------|------------------------------------------|---------------------------|
|                   | Nominal diameter                         | <i>D</i> (m)              |
|                   | • Number of stages                       | z                         |
|                   | Power input                              | <i>P</i> (kW)             |
|                   | Speed                                    | n (r/min)                 |
|                   | Absolute discharge temperature           | $T_2(\mathbf{K})$         |
| Using:            | Mass flow                                | <i>m</i> (kg/s)           |
|                   | Suction pressure                         | $p_1$ (bar abs)           |
|                   | Absolute suction temperature             | $T_1$ (K)                 |
|                   | Relative humidity                        | $\phi_1(\%)$              |
|                   | Discharge pressure                       | $p_2$ (bar abs)           |
|                   | Molecular mass                           | M (kg/kmol)               |
|                   | Isentropic exponent                      | k                         |
|                   | Compressibility factor                   | Z                         |
| The following fac | tors, symbols and indices are also used: |                           |
|                   | Actual suction volume flow               | $V_1 ({\rm m}^3/{\rm s})$ |
|                   | Absolute humidity                        | X                         |
|                   | Peripheral speed                         | <i>u</i> (m/s)            |
|                   | Head (polytropic)                        | $h_p (\mathrm{kJ/kg})$    |
|                   | Temperature difference                   | 1                         |
|                   | $(\Delta T = T_c - T_1)$                 | $\Delta T (\mathrm{K})$   |
|                   | Intercooling power factor                | f                         |
| Indices           | Suction conditions                       | 1                         |
|                   | Discharge conditions                     | 2                         |
|                   | Dry                                      | t                         |
|                   | Wet                                      | f                         |
|                   | Polytropic                               | p                         |
|                   | per casing                               | G                         |
|                   | per group of stages                      |                           |
|                   | (between two coolings)                   | S                         |
|                   | Uncooled                                 | *                         |
|                   | After cooling                            | с                         |
|                   | Total                                    | Т                         |
|                   | Number of casings                        | i                         |
|                   | Number of intercoolings                  | j                         |

*How to Use the Diagrams* A guide to the selection diagrams and two examples are given in Table B.1, one with air in one casing, the other with gas in two casings.

\* These graphical methods are intended for screening studies only. Contact the manufacturer for more definitive layout and performance prediction.



Determination of the absolute humidity x  $(T_j \Rightarrow p_j \Rightarrow \phi_j \Rightarrow M_j \Rightarrow x)$ 

Diagram 2

Determination of the molecular mass  $M_f$  of the wet gas  $(x \leftrightarrow M_f \sim M_j)$ 



Determination of the max, permissible perturbated speed  $u_{max} (\mathbb{Z} \rightarrow k \simeq T_1 \simeq M_f \simeq u_{max})$ 



### Diagram 4

Determination of the polytropic head  $h_p$  $(k + p_2/p_1 - Z - M_f + T_f + h_p)$ 



# Diagram S

Determination of the obtainable polybopic head per casing  $b_{pC max}(u_{tex} \sim h_{pC max})$ 

**Diagram 6** Determination of the influence of inter-cooling on the required shaft power

 $(p_{\theta}/p_{1G} \to K \to \Delta T \to T_1 \to \text{estimated number}$  of intercoolings per casing  $i \to i)$ 



Determination of the pressure ratio per casing  $p_2/p_{12}^{\rm c}$ 



# Diagram 8

Determination of the number of stages Z of the compressor  $(b_p \rightarrow z \ast \ast u)$ 

From u<sub>mps</sub> determined with Diagram 3, tound off Z to the whole number and

correct peripheral speed accordingly



Determination of the actual suction volume  $V_1$  ( $\dot{m}_1 \rightarrow p_1 \rightarrow T_1 \rightarrow M_1 \rightarrow Z \rightarrow \dot{V}_1$ )



Selection of the compressor size; nominal diameter D (cm) as a function of  $\frac{\dot{V}_1}{\alpha}$ ,

where  $\hat{V}_i \sim$  suction volume (m3/s) and u  $\sim$  peripheral speed (m/s)



# Diagram 11

Determination of the power copet P  $(h_{PO} \simeq \hat{m}_{V} \simeq P)$ 



Determination of the discharge temperature  $T_2$  ( $p_2/p_1 \rightarrow K \rightarrow T_1 \rightarrow T_2$ )

ic = isentropic exponent (-)

| TABLE B.1         Selection and Performance Calculation of a                                                                         | Centrifugal Compressor Train                                                      |                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                                                                                      | Calculation Example 1:<br>Air Compressor, One Casing                              | Calculation Example 2:<br>Gas Compressor, Two Casings                             |
| Given:                                                                                                                               |                                                                                   |                                                                                   |
| Capacity                                                                                                                             | $\dot{m}_{t} = 10  \text{kg/s}$                                                   | $\dot{m}_t = 23.66  \text{kg/s}$                                                  |
| Suction pressure                                                                                                                     | $p_1 = 1$ bar abs                                                                 | $p_1 = 0.92$ bar abs                                                              |
| Suction temperature                                                                                                                  | $T_1 = 293  K$                                                                    | $T_1 = 333  K$                                                                    |
| Relative humidity                                                                                                                    | $\varphi_1 = 90\%$                                                                | $\varphi_1 = 0\%$                                                                 |
| Discharge pressure                                                                                                                   | $p_2 = 5$ bar abs                                                                 | $p_2 = 16.1$ bar abs                                                              |
| Dry molecular mass                                                                                                                   | $M_t = 28.95  kg/kmol$                                                            | $M_t = 17.03 \text{ kg/kmol}$                                                     |
| Isentropic exponent $c_p/c_v$                                                                                                        | k = 1.4                                                                           | k = 1.29                                                                          |
| Compressibility factor                                                                                                               | $\mathbf{Z} = 1$                                                                  | $\mathbf{Z} = \mathbf{I}$                                                         |
| <i>Calculation instructions</i><br>1. Determination of the absolute humidity x                                                       | x = 0.016                                                                         | x = 0                                                                             |
| (from T <sub>1</sub> , p <sub>1</sub> , q <sub>1</sub> ), with Diagram 1<br>2. Determination of the wet molecular mass               | $M_s = 28.7  k_B/kmol$                                                            | $M_{c} = M_{c} = 17.03 \text{ kg/kmol}$                                           |
| M <sub>f</sub> (from x, M <sub>t</sub> ) with Diagram 2                                                                              |                                                                                   |                                                                                   |
| 3. Calculation of the wet mass flow $\dot{m_f} = \dot{m_t} (1 + x)$                                                                  | $\dot{m}_f = 10(1+0.016)_f = 10.16kg/s$                                           | $\dot{m_f} = \dot{m_t} = 23.66  kg/s$                                             |
| 4. Determination of the max. permissible peripheral speed $u_{max}$ (from Z, k, T <sub>1</sub> , M <sub>f</sub> ) with Diagram 3     | Electric motor $u_{max} = 320 \text{ m/s}$<br>Turbine $u_{max} = 290 \text{ m/s}$ | Electric motor $u_{max} = 320 \text{ m/s}$<br>Turbine $u_{max} = 290 \text{ m/s}$ |
| For further calculation, motor drive has been selected.                                                                              |                                                                                   |                                                                                   |
| 5. Determination of the total polytropic head $h_{pT}^*$                                                                             | $h^*_{pT} = 186  kJ/kg$                                                           | $h^*_{pT} = 722.8 kJ/kg$                                                          |
| $(11011 \text{ s}_{1}, P_{2}, P_{1}, z_{2}, M_{1}, 1_{1})$ with Diagram 7<br>6. Determination of the max. polytropic head obtainable | $h_{pG max} = 300 kJ/kg$                                                          | $h_{pG max} = 300  kJ/kg$                                                         |
| per casing $h_{pG max}$ (from $u_{max}$ ) with Diagram 5<br>7 Calculation of number of casinos i $i = h_{-x}/h_{-c}$ with $h_{-x} =$ |                                                                                   | $i = 2$ with $f_{rr} = 0.73$                                                      |
| $h_{pT}^*$ , $f_T$ , whereby $f_T$ has to be estimated with Diagram 6                                                                | 4                                                                                 |                                                                                   |
| 8. Determination of the pressure ratio per casing p <sub>2</sub> /p <sub>1G</sub> with                                               | $p_2/p_{1T} = p_2/p_{1G} = 5$                                                     | $p_2/p_{1G} = 4.27$                                                               |
| 9. Determination of the polytropic head per casing $h^*_{pG}$ (from $h \cdot h_{p-2} = Z M \cdot T$ .) with Diagram 4                | $h^*{}_{pG} = h^*{}_{pT} = 186  kJ/kg$                                            | $h^*_{pG} = 293  kJ/kg$                                                           |
| $(10011 \text{ K}, P_2/P]_G \leftarrow 111_{11} \pm 1$                                                                               |                                                                                   |                                                                                   |

| ain            |
|----------------|
| Ė              |
| pressor        |
| Con            |
| Ξ              |
| Centrifuga     |
| 2              |
| Ĕ              |
| Calculation of |
| Performance (  |
| n and          |
| Selection      |
| TABLE B.1      |

| rom now on if two or more casings are necessary, the calculatic                                                                                                                 | on has to be made for each casing sepa                   | rately (one after the other).<br>First casing          | Second casing                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 0. Determination of the influence of intercooling                                                                                                                               | $f = 0.9$ with $\Delta T = 20$                           | $f = 0.91$ with $\Delta T = 0$                         | $f = 0.91$ with $\Delta T = 0$                         |
| on the required shaft power (from $p_2/p_{1G}$ , K, $\Delta T$ , $T_1$ and estimated number of intercoolings per casing j) with Diagram 6                                       | and $j = 1$                                              | and $j = 1$                                            | and $j = 1$                                            |
| 1. Calculation of the fictive polytropic head $h_{pG} = h^*_{pG} \cdot f$                                                                                                       | $h_{pG} = 186 \cdot 0.9$<br>= 167.4 kJ/kg                | $h_{pG} = 293 \cdot 0.91$<br>= 266.6 \approx 267 kJ/kg | $H_{pG} = 293 \cdot 0.91$<br>= 266.6 $\cong 267$       |
| 2. Determination of the number of stages z per casing                                                                                                                           | z = 4                                                    | z = 6                                                  | z = 6                                                  |
| and the definite peripheral speed u (from $h_{pG}$ , $z \rightarrow u$ )<br>with Diagram 8 (round off z to whole number and<br>correct peripheral speed correspondingly)        | u = 295  m/s                                             | u = 304  m/s                                           | u = 304  m/s                                           |
| <ol> <li>Determination of the actual suction volume V<sub>1</sub><br/>(from in<sub>6</sub> p<sub>1</sub>, T<sub>1</sub>, M<sub>6</sub>, Z) with Diagram 9</li> </ol>            | $\dot{V}_1 = 8.59  m^3/s$                                | $\dot{V}_{l}=41.8m^{3}/s$                              | $\dot{V}_{l}=10.2m^{3}/s$                              |
| 4. Selection of the compressor size (nominal diameter D) as a function of $\dot{V}_1$ with Diagram 10                                                                           | $D = 56 \mathrm{cm}$                                     | D = 112  cm                                            | $D = 56 \mathrm{cm}$                                   |
| 5. Type designation (from steps 10, 12, 14)                                                                                                                                     | RZ 56-4                                                  | RZ 112-6                                               | RZ 56-6                                                |
| 6. Calculation of the speed $n = \frac{60 \cdot u}{\pi \cdot D} = (D \text{ in meters})$                                                                                        | $n = \frac{60 \cdot 295}{\pi \cdot 0.56} = 10060  r/min$ | n = $\frac{60 \cdot 304}{\pi \cdot 1.12}$ = 5184 r/min | n = $\frac{60 \cdot 304}{\pi \cdot 0.56}$ = 10368r/min |
| 7. Determination of the power input P (from $h_{pG}$ , $\dot{m}_{r}$ ) with Diagram 11                                                                                          | P = 2173  kW                                             | P = 8100  kW                                           | P = 8100  kW                                           |
|                                                                                                                                                                                 |                                                          |                                                        | 10tal Itain 16200 KW                                   |
| 8. Determination of the discharge temperature $T_2$ (from $p_2/p_1$ between intercooling, k, $T_1$ ) with                                                                       | $T_2 = 424 K$<br>with $T_1 = 333 K$                      | $T_2 = 413 K$<br>with $T_1 = 333 K$                    | $T_2 = 413 K$<br>with $T_1 = 333 K$                    |
| Diagram 12 whereby $T_1$ is the suction temperature<br>after preceding intercooling and pressure ratio $p_2/p_1$<br>between intercooling has to be determined with<br>Diagram 7 | and $p_2 p_1 = 2.3$                                      | and $p_2/p_1 = 2.1$                                    | and $p_2/p_1 = 2.1$                                    |