The Voice of the Networks

Energy Networks Association

Loss of Mains Protection Settings for all Small Generators

Stakeholder Webinar

1:30pm-3:30pm 5 July 2018

Webinar rules DC0079 LoMs for small generators

- Presentation will be made with inputs muted
- Please ask questions via the chat facility
- Questions will be answered either at the time, or at the question/answer session at the end
- Slides from today will be published, along with a fuller set from the 15 June presentation in London

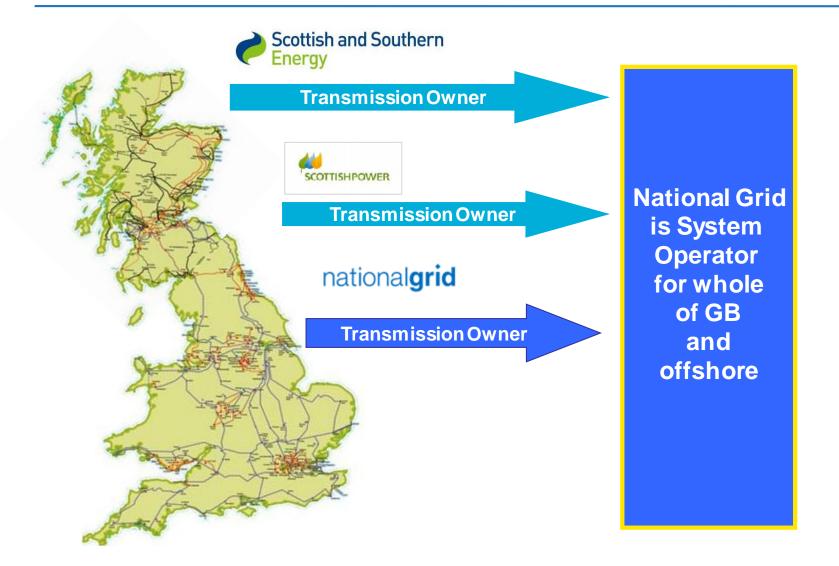
Agenda

Welcome and Introductions	Mike Kay 5mins
Background and Work so far	Graham Stein 15mins
Loss of Mains setting change	Mike Kay 20 mins
Q&A	10mins
Retrospective setting change cost & benefit	Graham Stein 15 mins
Implementation and next steps	Mike Kay Graham Stein 15mins
Q&A	

The Voice of the Networks

Purpose of webinar

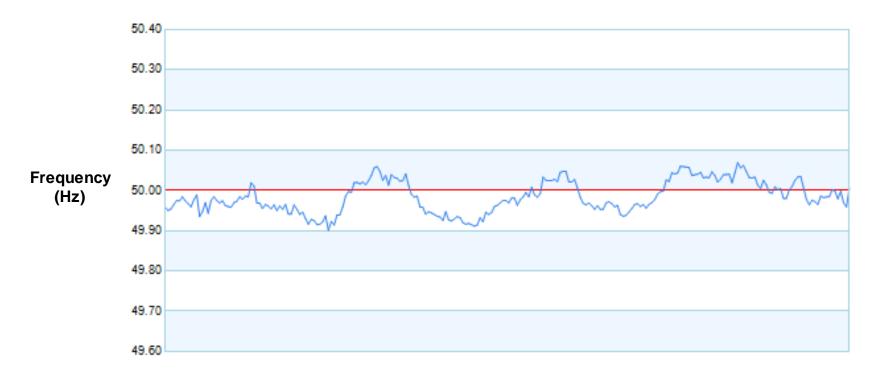
- Provide an update on Loss of Mains protection setting changes
- Provide an update on potential further changes to the Distribution Code, ER G59 and ER G83
 Loss of Mains protection settings
- Explain why changes are being considered and how they might be implemented
- Inform affected parties how they can contribute to the implementation plan


Background

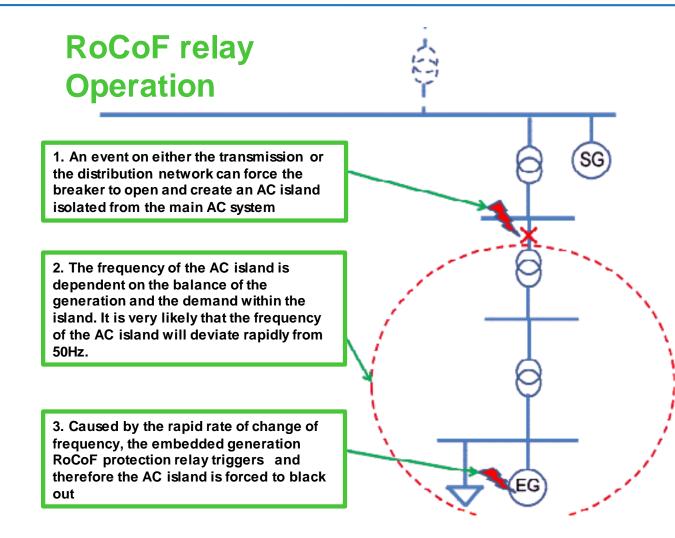
Graham Stein

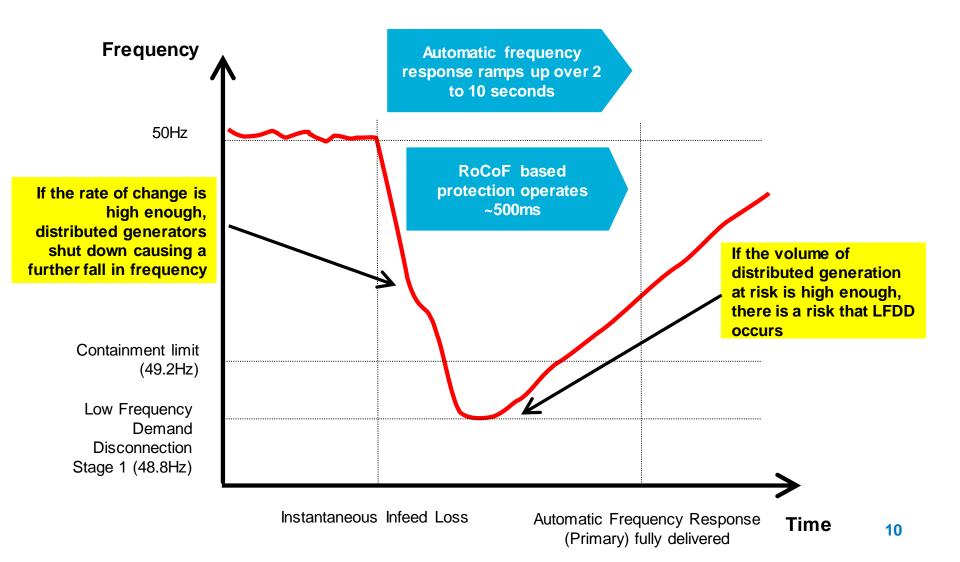
Network Operability Manager Electricity System Operator National Grid

graham.stein@nationalgrid.com

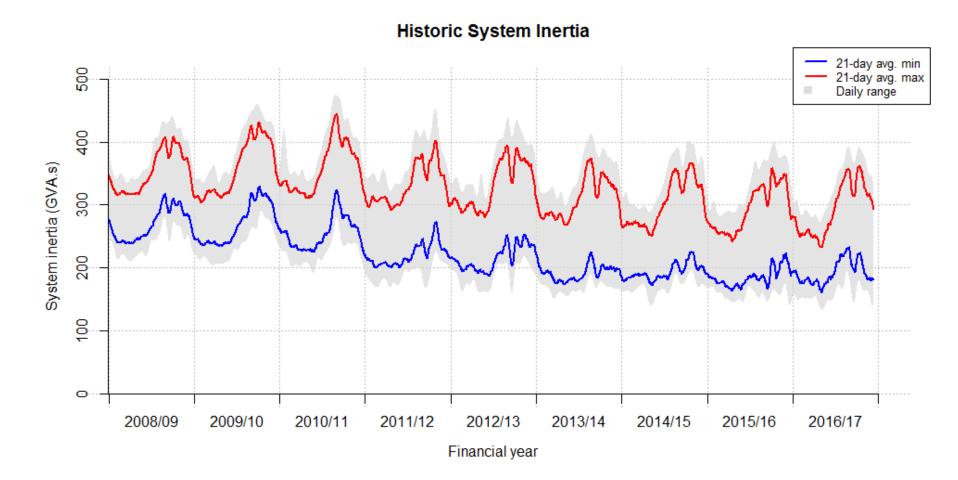

Electricity Networks - Transmission

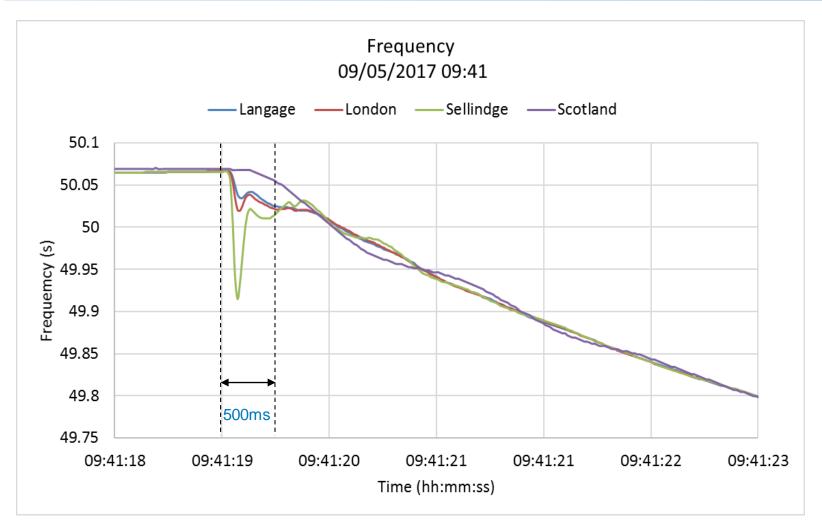
Electricity Networks - Transmission


Frequency


Time

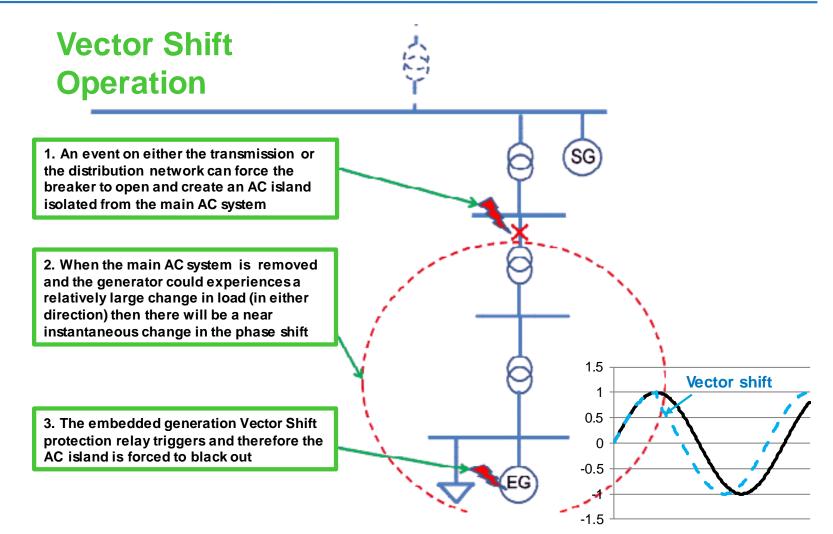
http://www2.nationalgrid.com/uk/industry-information/electricity-transmission-operational-data/


Loss of Mains Protection (RoCoF based)


Background

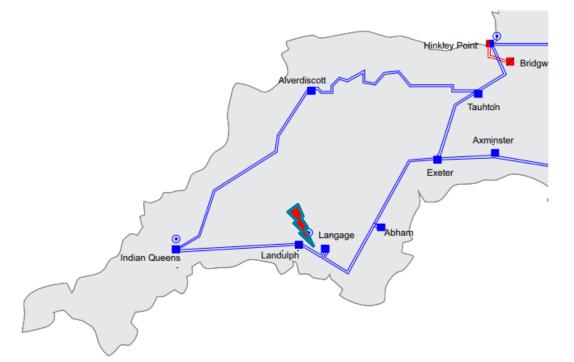
Evolution of system inertia

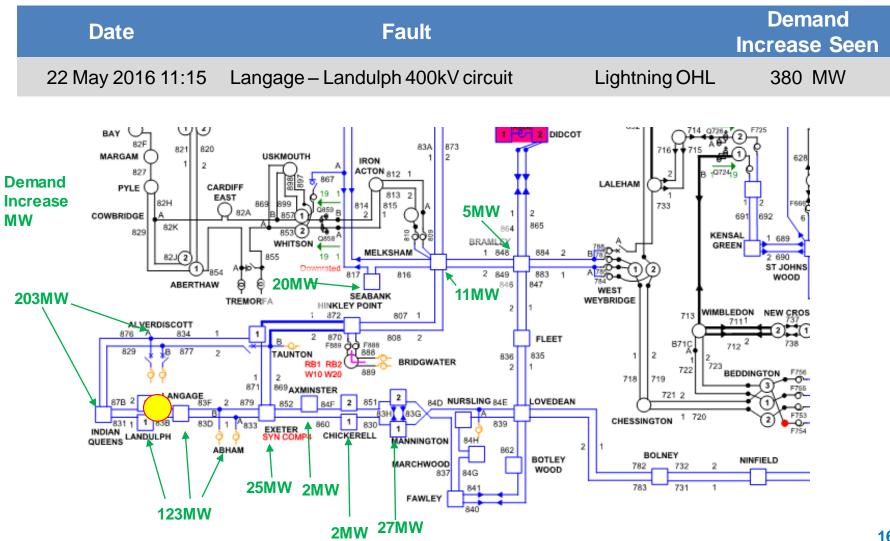
Background



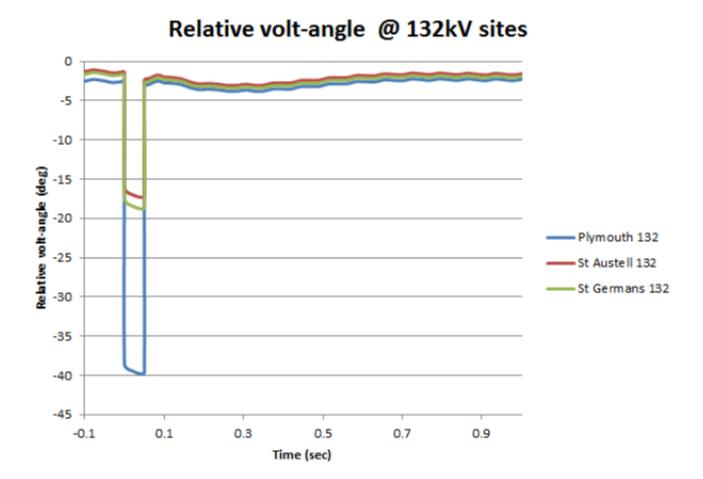
Summary of the RoCoF Risk

- The maximum rate of change risk occurs when demand is low and there is a large instantaneous infeed or offtake risk to manage
- The maximum rate of change is rising because
 - Synchronous generation is being displaced by nonsynchronous plant – interconnectors, wind, photo-voltaic etc
 - There will be larger infeed losses in the future


Loss of Mains Protection (Vector Shift based)



EG tripping for transmission fault


- VS protection could trip inappropriately over a wide area for transmission faults
- 22/5/2016 11:15; following the transmission fault at Langage – Landulph 400kV circuit, 380MW demand increase was observed

EG tripping for transmission fault

Simulated VS during the 22/5/2016 fault

Other VS risk system events

Date/ Time	Fault	T Demand Increase	National Solar Output
17/3/2016 12:27	Grain Bus Coupler 4	469MW	61%
20/3/201616:13	Grain-Kingsnorth 400kV circuit	200MW	17%
22/5/2016 11:15	Langage – Landulph 400kV circuit	380 MW	52%
07/6/2016 17:04	Cowley-Leighton Buzzard-Sundon 400kV circuit	145MW	28%
21/5/2017 18:20	Littlebrook 400kV Reserve Bar	200 MW	39%
08/6/2017 16:47	COTT – EASO – RYHA CCT energised from EASO4 only	241MW	22%
10/7/2017 14:19	Bramford – Sizewell 4 400kV circuit	300 MW	37%
17/7/2017 15:26	Kensal Green Reserve Bar	580MW DG Loss less 160MW demand loss	50%

Technical Solutions

Options for Managing the Risk

- Limiting the largest loss limits the rate of change
- Increasing inertia by synchronising additional plant reduces the rate of change

displaces non synchronous generation

- Limiting the Rate of Change using automatic action (not currently feasible)
- Changing or Removing RoCoF based protection
- Changing or Removing VS based protection
- Different LoMs approach
- Each option comes at a cost

The Voice of the Networks

Energy Networks Association

Changing LoM Settings

Setting changes - history

- GC0035 WG started work on RoCoF risks in 2012
- Revision to settings etc are implemented through changes to the Distribution Code (and G59 and G83)
- All changes subject to industry governance, overseen by the Distribution Code Review Panel and have to be approved by Ofgem
- Worth noting that the EU Network Codes (currently being implemented in GB UK law) require RoCoF withstand and ride through.
- G59 and G83 republished for EU Network Code requirements, as G99 and G98, to take effect from 27 April 2019.
- G59 and G83 (and G98 and G99) are compatible with the EU Network Code requirements
- All the settings issues discussed here apply equally to storage

DCRP/GCRP Workgroup completed

- GC0035 Workgroup
 - Recommended the new RoCoF setting for DG >5MW
 - Up to 0.5Hzs⁻¹ and to 1Hzs⁻¹ with 0.5s definite time delay
 - · Base-lined against current recommended settings
 - Encompassing 'larger' distributed generation (between 5MVA and 50MVA)
 - Building on previous LoM and NVD work
 - · Risk assessment completed by the University of Strathclyde
 - Proposals approved on 24 July 2014 and has been implemented; to date, setting changes on 5GW of generation has been completed

DC0079 summary

- Summary of LoM protection changes recommended:
- August 2014
 - RoCoF to be set at 1.0 Hzs⁻¹, 0.5s definite time for <u>all</u> >5MW generation (0.5Hzs⁻¹, 0.5s allowed for synchronous)
 - VS unchanged
- Feb 2018
 - RoCoF to be set at 1.0Hzs⁻¹, 0.5s definite time for <u>new</u> non-type-tested generation <5MW
 - VS banned for <u>all new non-type-tested generation</u>
 - Only applies to generation connected under G59

DC0079 summary continued

- July 2018
 - RoCoF to be set at 1.0Hzs⁻¹, 0.5s definite time for <u>new</u> type-tested generation <5MW
 - VS banned for <u>all new</u> type-tested generation
 - Applies to both G59 and G83 generation
- Proposal is now:
 - to retrospectively apply the 1.0 Hzs⁻¹, 0.5s definite time, and to remove VS, to all non-type-tested G59 generation
 - No need to change G83 (or G59) type tested generation
 - Change the O/F setting to single stage 52.0 Hz where possible
 - On non-synchronous plant, other than DFIG, in cases where RoCoF relay settings cannot be changed LoM protection should be disabled
 - The ability remains to agree different settings with the DNO in exceptional circumstances

Proposed settings for <5MW generation

RoCoF settings for Power Stations <5MW Registered Capacity		
Date of Commissioning		
		Not to be less than K2 x 0.125 Hz/s [#]
Generating Plant Commissioned before 01/02/18	Settings permitted until [01/01/22]	and not to be greater than
		1.0Hz/s ^{¶#} ,
		time delay 0.5s
	Setting permitted on or after	1.0Hz/s ^{¶#} ,
	[01/01/22]	time delay 0.5s
Generating Plant commissioned on or after 01/02/18		1.0Hz/s ^{¶#} ,
		time delay 0.5s

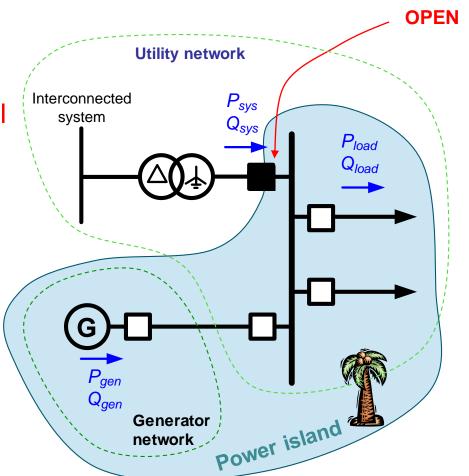
Note - only applies retrospectively to non-type-tested generation

Proposed settings for \geq 5MW generation

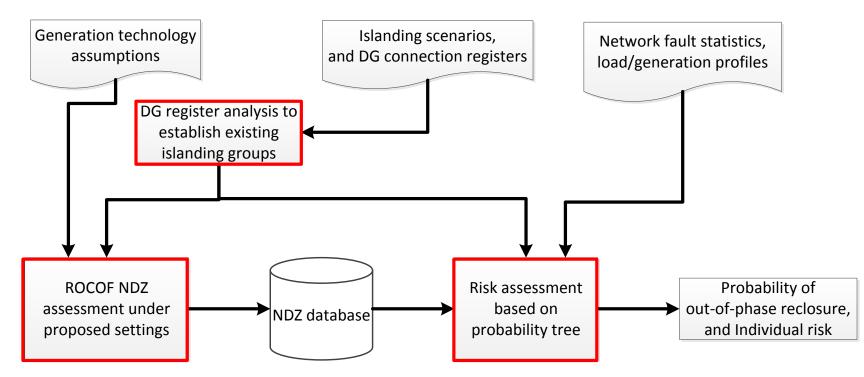
RoCoF ^s settings for Power Stations ≥5MW Registered Capacity			
	Small Power Stations		Medium
Date of Commissioning	Asynchronous	Synchronous	Power Stations
Generating Plant Commissioned before 01/08/1 <u>6</u> 4 Settings permitted until 01/08/16	<u>1.0Hz/s[¶]</u> ; <u>time delay 0.5s</u> Not to <u>be less than</u> K2 x 0.125 Hz/s and not to be greater than 1.0Hz/s[¶]; time delay 0.5s	0.5Hz/stime delay0.5sto be lessthanK2 x 0.125 Hz/sand not to begreater than0.5Hz/stime delay 0.5s	Intertripping Expected
Generating Plant commissioned between 01/08/14 and 31/07/16 inclusive	1.0Hz/s^{¶#}, -time delay 0.5s	0.5Hz/s^{¶# Ω}, - time delay 0.5s	Intertripping expected
Generating Plant commissioned on or after 01/08/16	1.0Hz/s^{¶#}, time delay 0.5s	1.0Hz/s^{¶#}, time delay 0.5s	Intertripping expected

RoCoF settings for Power Stations ≥5MW Registered Capacity		
Small Power Stations	Medium Power Stations	
1.0Hz/s, time delay 0.5s	Intertripping Expected	

Vector Shift

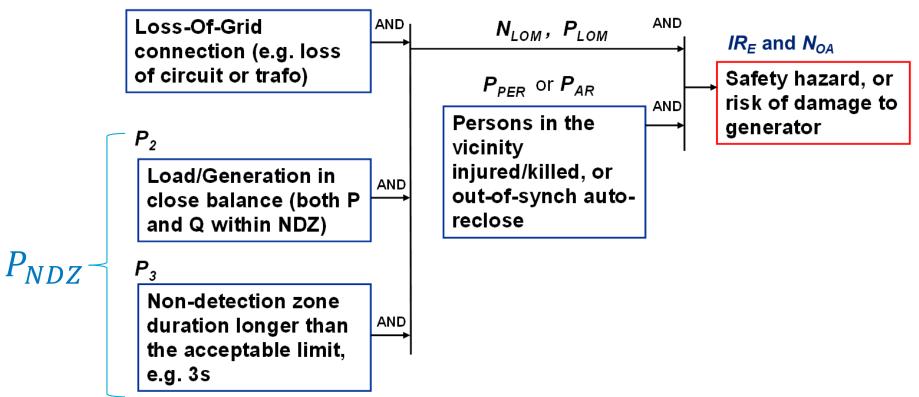

Historic Vector Shift Settings		
	Small Power Stations	Medium
Date of Commissioning		Power
		Stations
Settings permitted for Generating		
Plant commissioned before		Intertripping
01/02/18 and allowable up to	K1 x 6 degrees	Expected
[31/12/21]. VS is not allowed		
from [01/01/22]		
Settings permitted for Generating	Vector Shift not allowed as LoM in	Intertripping
Plant commissioned on or after	these Power Stations	Expected
01/02/18		

Loss-of-Mains – LoM


- Risks of operating in islanded mode
 - System can become unearthed
 - Faults in islanded mode may remain undetected (personal safety)
 - System can be live when utility personnel believe it is not energised
 - Unsynchronised reclose can occur (damage to generator)
- \Rightarrow Islanding is not permitted in most countries.

Risk assessment methodology*

- Establishing dominant islanding generation groupings (mixes)
- Simulation based non-detection zone (NDZ) assessment
- Probability tree based risk calculation

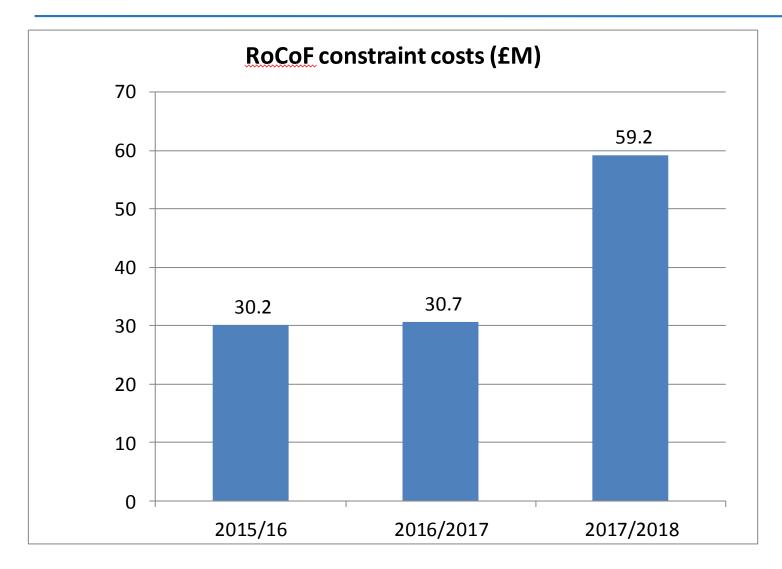


^{*} Similar methodology was used in early NVD risk assessment study (2008-09) for G59/2, for the earlier stages of DC0079, and also in the recent revision of the LoM settings in Northern Ireland.

Risk Probability Tree

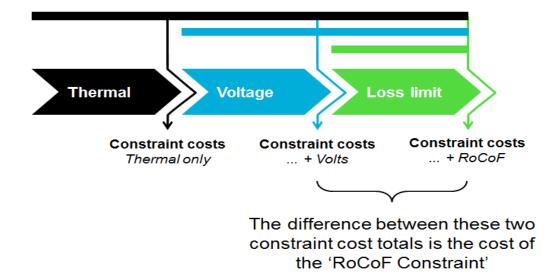
P_1

- Personal risks related to the proposed change of settings of the RoCoF based LoM protection are all within the broadly acceptable region (i.e. <10⁻⁶)
- NDZ evaluation of VS protection demonstrated very poor sensitivity for settings above 6°, meaning that most generation fitted with VS in effect has no LoM.
- Based on NDZ values for RoCoF protection, in cases where RoCoF with recommended settings cannot be easily applied, it is acceptable to disable LoM protection except for SG and DFIG.
- Single-phase PV inverters remain stable under VS events up to 50°. Some three-phase inverters may disconnect under imbalanced transmission system faults.



DC0079 retrospective change cost benefit analysis

Past RoCoF Constraint Costs


Forecasting Model

- BID3 Economic Model
 - Pan-European Market Model
 - Used for the Network Options Assessment
- Typically used for assessing network reinforcement options
- New developments are allowing us to start to investigate other operability constraints
 - Real-time voltage 'rules'
 - Area unit constraints on synchronous generators
 - Large loss risk limit
 - Loss risk size constraint given RoCoF limit of 0.125 Hz/s

Calculating RoCoF Constraint Cost

- The BID3 first run with only thermal and voltage constraints activated.
- It was then re-run with additional RoCoF constraints activated.
- The cost of the RoCoF constraint is the difference between the total constraints costs of the two runs.

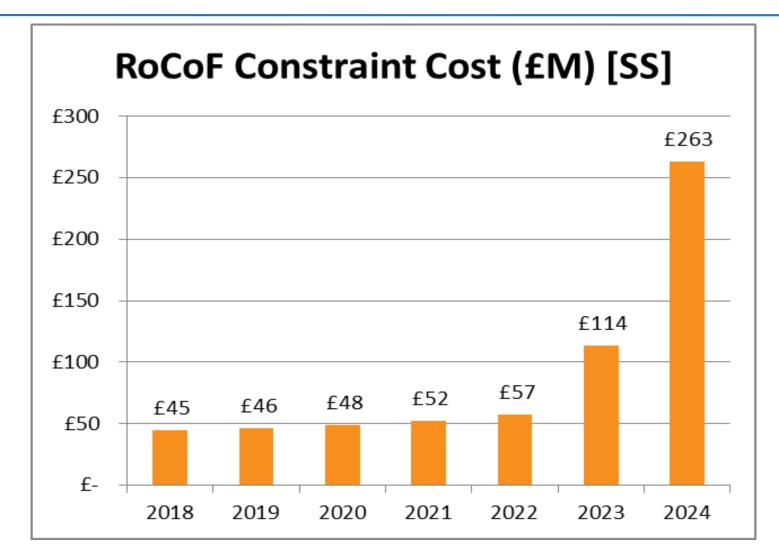
The model re-optimises all constraints when a new constraint is added.

FES scenarios

Less focus

Green ambition

More focus


Steady state

Steady State

In **Steady State** business as usual prevails and the focus is on ensuring security of supply at a low cost for consumers. This is the least affluent of the scenarios and the least green. There is little money or appetite for investing in long-term low carbon technologies, therefore innovation slows.

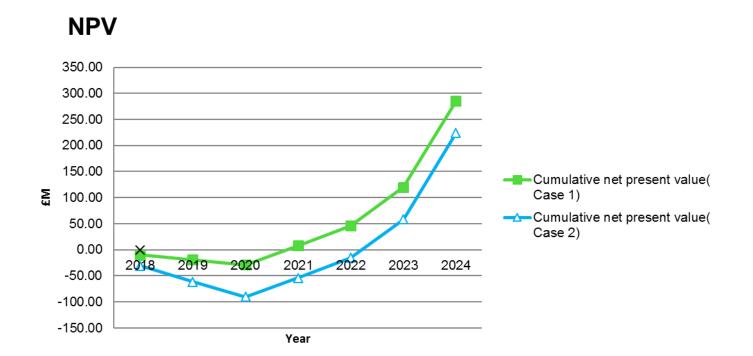
RoCoF cost forecast under Steady State

Implementation Cost Assumption

Nature Of Work	Cost per site (£)
Site Visit	200
Re-programme / reset /disable existing relay	200
Remove Vector shift (synchronous plant except DFIG)	200
Replace VS relay or single function RoCoF Relay	7700

Note that these costs assume an efficient integrated programme - ie site visits and labour organized to support an efficient programme

Implementation Cost


	Nature Of Work	Low Estimate		WG Estimate		High Estimate	
		Number of Sites	Cost (£)	Number of Sites	Cost(£)	Number of Sites	Cost(£)
1	Synch - reset RoCoF	355	71,074	477	95,379	260	52,070
2	Synch replace RoCoF	19	144,019	477	3,672,080	2,343	18,042,324
3	Synch reset VS to RoCoF	1,049	209,849	977	195,469	878	175,564
4	Synch replace VS with RoCoF	117	897,685	977	7,525,549	7,900	60,832,857
5	Asynch reset RoCoF	2,585	516,930	2,927	585,401	559	111,730
6	Asynch remove RoCoF	136	27,207	2,927	585,401	5,028	1,005,568
7	Asynch reset VS to RoCoF	41,176	8,235,255	20,625	4,124,951	3,304	660,876
8	Asynch remove VS	4,575	915,028	20,625	4,124,951	29,739	5,947,886

Plant Category	No of Sites	Expected Cost £m	Low estimate £m	High estimate £m
P _g >5MW	677	2.2	0.5	4.2
1MW <u><</u> P _g < 5MW	1445	4.6	1	8.9
P _g <1MW	47890	24.1	19.5	83.8
Total	50012	30.9	21	96.9

CBA Assumption

- Implementation will be over three years starting from 2018
- Social discount rate 3.5% from UK Government Green Book.
- Benefits will start accruing at the end of the project.

Result Summary and Conclusion

	Investment Cost(£M)	Discounted benefits (£M)	Discounted Cost (£M)	Net Present Value (£M)
Case 1	30.9	314.28	28.86	285.42
Case 2	96.9	314.28	90.49	223.78

The Voice of the Networks

Energy Networks Association

How to implement

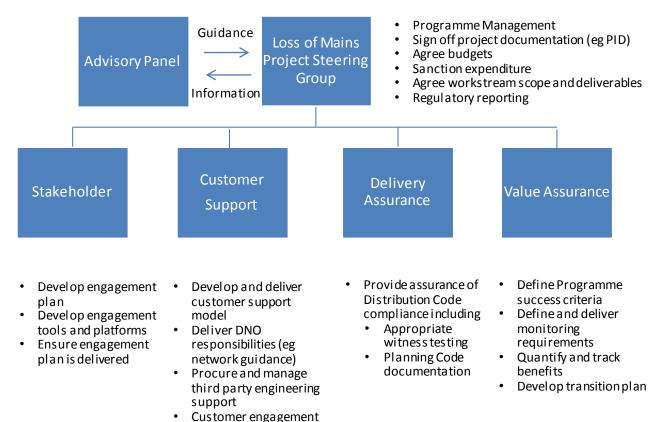
Issues

What are our known challenges?	What do we know that helps us?
 Large number of network users need to comply Stakeholders with little need or desire to interact with licensees or regulators Unprecedented retrospective programme More information required to define success criteria (ie when you can stop) Large number of network licensees involved in a rapidly changing environment Urgency 	 Lessons learnt from >5MW change Volume of challenge is under control Technical solution agreed Clear regulatory ask Ireland experience

Proposed Approach

Key Issues to Address	Proposal
 Large number of network users need to comply Stakeholders with little need or desire to interact with licensees or regulators 	 Proactive engagement – go out and find who needs to comply Provide the support required to do the work for customers that can't or don't want to do it themselves Give affected stakeholders opportunity to shape programme
Unprecedented Programme	 Set up governance necessary to allow decisions to be made as issues arise Agree success criteria at start of programme

Proposal: Programme


- Multi-workstream programme with Steering Committee Responsible for delivery
- Stakeholders playing major role on the Steering Group
 - Stakeholders delivering the change
- Core delivery through a Customer Support workstream tasked with facilitating compliance
- Assurance provided by two workstreams to ensure work is done and delivers the desired outcome

Structure: Responsibilities

DRAFT

DRAFT

The Voice of the Networks

Proposal: Customer Support

- Customer Support Workstream responsibilities
 - Identify and prioritise customers that need to comply
 - Make contact and identify those that want help to do so
 - Provide help for those that want it including assessing any network implications
 - Broader customer engagement in line with engagement plan
 - Manage risks and liabilities and statutory compliance

VS change accelerated programme

- National Grid in collaboration with three DNOs initiated an accelerated VS change programme to mitigate the risk for summer 2018
- Programme implemented under Balancing Service framework

	VS change 2018	DC0079
Duration	Within a month before June	Multi-Years
Target EG	800MW, 72 sites in specific area	More than 15GW and 50,000 sites nationally
Total cost	£250k	£31M
Benefit	Realized within year	Realized once the whole programme complete
Governance	Tactical exercise between licensees	Steering committee with stakeholder input

Key consultation questions

- Do you support the proposal to remove vector shift protection technique?
- Do you support the proposed change in RoCoF settings to 1Hzs⁻¹ with a delay of 500ms for all non-type-tested distributed generators below 5MW?
- Do you agree that RoCoF protection should be disabled, in cases where settings cannot be changed, for all non-synchronous plant except for DFIG?
- Do you support the proposal that all DFIG machines should use RoCoF protection technique set at 1Hzs⁻¹ with a 500ms time delay as loss of mains?

Key consultation questions

- Do you agree that all synchronous generation >5MW, should have a RoCoF setting of 1Hzs⁻¹ with a delay of 500ms retrospectively applied?
- Do you agree that the same approach for asynchronous generation <5MW should be applied to that >5MW in that if the existing protection cannot be reset to RoCoF of 1Hzs⁻¹ with a delay of 500ms, then it should just be disconnected/removed?
- Do you agree with the workgroup's proposal for type-tested plant?
- Do you agree that where practicable on existing relays, the overfrequency setting should be changed to the current requirements (and left as-set if the relay cannot accommodate it)?

Key consultation questions

- Do you agree with the workgroup's CBA analysis for the retrospective protection change?
- Do you agree with the proposed change implementation approach?
- What do you believe are the most important considerations in implementing the change?
- How can we ensure that all generation owners are aware of the consultation and given a chance to respond?

Discussion and Next Steps

- Questions:
 - What can we learn from the past programme of protection setting changes?
 - Who should be interested?
 - How do we make sure they have their say?

Getting Involved

- Options
 - Contact the workgroup, either individually or through the Technical Secretary
 - Contact a Distribution Code Review Panel member at an appropriate time
 - Respond to consultation
 - Further engagement events

Getting Involved

• Contacts from today:

Mike Kaymkay@iee.orgGraham SteinGraham.Stein@nationalgrid.comXiaoyao ZhouXiaoyao.zhou@nationalgrid.com