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Notation
The following symbols are used:

a = height of point of application of load above Mo =. elastic buckling moment of beam under

shear centre; uniform moment (8 = -1);
BF = bottom flange; Mg = elastic buckling moment of substructure;
b = height of lateral brace above shear centre; Mp = plastic moment;
C = subscript referring to critical segment; My = first yield moment; .
c = ratio of buckling load of braced beam and m = moment modification factor,

similar unbraced beam; n =

E = Young's modulus of elasticity;

G = shear modulus of elasticity,
GaA,Gp = restraint parameters;

h = distance between flange centroids,
ly = minor axis second moment of area;
le = warping section constant;

J = torsion section constant;

K = beam parameter;

k = effective length factor,

ks = brace stiffness;

L = length of beam;

M,Mg = elastic buckling moment;

Mp = allowable moment;

1. Introduction

Beams of open cross-section such as I|-beams are
usually loaded so as to bend about the major axis. The
design of such beams requires consideration of bending
strength and deflection. Bending strength may be limited
by the plastic moment capacity, Mp, for heavily braced
beams, by local buckling loads for thin flanged
fabricated beams or by the flexural-torsional or lateral
buckling load for beams not so heavily braced. Beam
failure by flexural-torsional buckling is shown in Fig.1.

1.1 CLASSIFICATION OF BUCKLING FAILURES

A typical classlfication of buckling failure types is
presented in Fig. 2 which shows possible load-deflection
curves for a beam with a mid-point load. Beam
slenderness decreases from A to D. Curve A is for a
slender beam which buckles while fully elastic. Curve B
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stiffness coefficient, commonly 2, 3, 4,

R = subscript referring to rest;aining segment;
minor axis radius of gyration;

shear centre;

top flange;

lateral deflection of shear centre,

major and minor principal axes;
centroidal axis;

location of brace;

= moment gradient or ratio of major axis end
moment;

A = load factor
$ = angle of twist.
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is for a beam of intermediate slenderness which is
partially yielded at failure. Geometrical and material
imperfections influence the yielding pattern and hence
the capacity. Curve C applies to a beam with a fully
plastic zone but without the lateral support necessary for
plastic hinge action. Most practical beams would exhibit
type B or C failure under increasing loads. Beams of
adequate rotational capacity under fully plastic
conditions are described as compact beams. Curve D is
intended to illustrate this behaviour. Compact beams
may exhibit lateral buckling deformations before
eventual collapse following local buckling.

1.2 INFLUENCE OF IMPERFECTIONS

The phenomenon of beam buckling has been studied
theoretically and experimentally. Most theoretical
analyses assume an initially straight beam and seek the
load at which the beam enters a state of neutral
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equilibrium. These are referred to as bifurcation-of-
equilibrium analyses. At the bifurcation load the beam is
theoretically capable of maintaining a buckling mode
shape characterized by lateral displacement and twist.
Experiments have shown that real beams with
geometrical imperfections exhibit buckling type
displacements from the onset of loading. The
experimental buckling load is essentially the maximum
attainable load at which buckling type displacements
become large. Fig. 3 shows the capacity versus
slenderness behaviour of a beam which indicates that
geometrical and material imperfections reduce

capacities from the ideal, particularly as slenderness
reduces.

1.3 PRESENT DESIGN RULES

Many codes of practice and design proposals (1, 2, 3)
relate the strength of a beam to its elastic buckling
capacity (1, 3). The current Australian Steel Structures
Code AS 1250-1981 (1) uses a set of semi-empirical
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|-Beam.
14
"fests \ L
LETRANESAN \ -

T~ &y Elastic Buckling
105 Typical >~ ¢ Ll -

Inelastic Curve\“\u\\
a

>081 -
E 066  ~._ 3
o -
= a6 0.607 \:\
£ :
04l quation 2 ~
02 Equation 1
o 1 1 1 1
0 04 08 12 1.6 20

Modified Slenderness (=yMy/Mg)
Fig. 3 — Design Rules in AS 1250-1981.

equations to relate the allowable moment of a beam, Mp,
to its first yield moment, My and its elastic buckling
moment, ME. For slender beams, when ME is less than
My,

Mp/Mg = 0.55-0.10 ME/MY (1)
and for intermediate length beams, when Mg = My
Mp/My = 0.95 - 0.50¢/My/MEg (2

- in which Mp/My} 0.60 or 0.66 depending on the width-
to-thickness ratio of the compression flange outstand.
Equations (1) and (2) are compared with typical inelastic
buckling curves and with experimental results in Fig. 3. It
is seen that these equations provide a safety factor
varying from 1.67 for short beams to 1.9 for long beams.
To achieve factors of safety in this range, designers need
accurate values of ME.

In determining the elastic buckling moment, AS 1250-

1981 gives designers the option of either obtaining Mg
from an elastic buckling analysis, which is not always
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possible in design offices, or by using approximate
formulae or tables in the Code. These formulae or tables
are based on a number of sImplifying assumptions and
were derived for a simply supported beam under uniform
moment which is considered the worst loading condition.
Although some guidelines are given in the Code for
estimating effective length -factors for beams under
various loading and restraint conditions, these are very
crude. :

The purpose of this paper is to present designers with
accurate elastic buckling solutions for beams subjected
to common loading and restraint conditions, so that a
more economical design may be achieved.

1.4 SCOPE

The following Sections summarize many available
elastic buckling solutions obtained from bifurcation
analyses. The solutions are applicable to uniform beams
of doubly symmetric cross-section such as I|-beams.
Infermation on the buckling of monosymmetric beams
and non-uniform beams can be obtained from
References 4 to 8.

Section 2 considers simply supported beams and
cantilevers under moment gradient loading, point
loading and uniformly distributed loading. Solutions are
also presented for single span beams with a variety of
end restraint conditions. The influence of the level of
application of transverse loading is also examined.

Section 3 examines elastic beams and cantilevers with
internal bracing. The influence of brace type and location
Is Investigated along with that of the level of application
of load above and below the shear centre. Moment
gradient loading, point loading and uniformly distributed
loading are considered. The Section provides data on
optimum internal brace location.

Section 4 presents a general method for determining the
elastic buckling loads of laterally continuous structures.
These range from beams with multiple supports and
braces to grid structures. An analysis procedure and
worked examples are presented.

2. Buckling of End Restrained Beams

2.1 INTRODUCTION

This Section gives lateral buckling capacities for single
segment beams under a variety of major axis loading and
end restraint conditions. The data applies to elastic
beams which are initially straight and are of doubly
symmetric cross-section. Additional information can be
found from the references cited.

2.2 SIMPLY SUPPORTED BEAMS WITH END MOMENTS

The basic loading configuration Is shown in Fig. 4. Also
shown are characteristic buckling displacements: lateral
displacement, u, and twist, ¢. The simple supports
prevent twist and lateral movement at ends A and B but
warping and minor axis rotatlon are free to occur. The
moment ratio, §, lies in therange -1< < + 1withg = -1
for uniform bending. The elastic buckling solutions limit

the value of the larger end moment, M, which occurs at
end A.
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2.2.1 Unlform Moment Loading (8 = -1)
The elastic buckling moment for a beam in uniform

bending is

Mo = nL/ElyGJ [ﬁ + K"’] @)
in which Ely = minor axis bending rigidity; GJ = St
Venant torsional rigidity; El,, = warping rigidity; L =
beam length and K = beam parameter,

The beam parameter, K, is a measure of the beam'’s
ability to resist non-uniform torsion via internal warping
restraint along its length. For practical purposes it
ranges from K = 0 (narrow rectangular beam) to K = 3.0
(stocky I-beam). Fig. 5 indicates the variation of K with
cross-sectional properties and length for I-beams.
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Fig. 4 — Simply Supported Beam with End Moments.
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Fig. 5 — Variation of Beam Parameter, K.
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Fig. 6 — Moment Modification Factors for Beams and

Cantilevers.

2.2.2 Moment Gradient Loading (-1 < g < + 1)

No closed form expressions are available for g > -1.
Approximate capacities can be expressed in terms of
Equation (3) and a moment modificatlon factor, m, found
by numerical solution of the governing differential
equations (e.g. Reference 3).

M
in which

m= 175+ 1.058 + 0.32<2.56

= Mg = mMg

©)

(6)

and M is the larger end moment. Fig. 6 lists moment
modification factors for a range of beams and
cantilevers. A more detailed presentation of mis offered
in the following Sections.

2.3 BEAMS WITH END MOMENTS AND
ADDITIONAL END RESTRAINTS

This Section considers moment gradient beams with end
restraints in addition to simple supports. End warping
restraints and minor axis rotational restraints are
examined separately and together at one or both ends.
The restraint stiffness is assumed to be large enough to
fully restrain the action in question.

Moment capacities can be found from

M = cMg

in which ¢ = buckling load ratio from Figs. 7 to 11.

2.3.1 Minor Axls Rotationai Restraint

Flg. 7 indlcates buckling load ratios due to a rotational
restraint at elther end. The restraint is most effective
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Fig. 9 — Buckling Load Ratios for Moment Gradient
Beams with One End Restrained Against Warping.

when placed at end A (moment = M) and when -0.25< g
< 0.5. A restraint at end B (moment = M) becomes less
effective as fincreases. When B=0.75 the buckling mode
shape, u, has a zero derivative, du/dz, at end B and a
restraint at B has no influence. Buckling load ratios in
excess of unity In this region of g reflect inaccuracies in
Equation (6) rather than any beneficial effect of the
restraint.

Fig. 8 shows that minor axis rotational restraints at both
ends increase the buckling ioad by a factor = 2 over the
fuil g and K ranges. Figs. 7 and 8 Indicate a moderate
variation of ¢ with K.

2.3.2 Warping Restraint

Buckling ioad ratios for beams with a warping restraint
at either A or B are given in Fig. 9. The restraint is best
placed at end A and is most effective for higher moment
gradients. A warping restraint at end B produces a lesser
and more uniform buckiing ioad ratio. The modal warping
dispiacement distribution, d¢/dz, and its derivative,
d?%/dz?, are less sensitive to changes in 8 than are u and
du/dz. Of particular infiuence is the beam parameter K.
Small K implies a beam which reslsts torsion mainly by
deveioping St Venant shearing stresses. The restraint of
end warping has thus only a marginal effect on torsional
stiffness and hence on buckiing capacity.

Warping restraints at both ends result in the buckling
load ratios in Fig. 8. Again K {s of importance. References
9 and 10 provide warping restraint details and design
methods.
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Fig. 10 — Buckling Load Ratios for Moment Gradient
Beams with One End Restrained Against Warping and
Minor Axis Rotation.

2.3.3 Combined Warping and Rotational Restraint

Figs. 10 and 11 show the effect of combined restraints at
either or both ends. For a single combined restraint, the
restraint location, moment gradient and beam parameter
are of influence. Combined restraints at both ends
produce buckling load ratios which depend mainly on K.

2.4 SIMPLY SUPPORTED BEAMS WITH
TRANSVERSE LOADING

24.1 Central Point Load

Moment modification factors, m, for loading at three
levels; top flange (TF), shear centre (SC) and bottom
flange (BF), are given in Fig. 12. These factors are to be
used with Equation (5) where Mo is found from Equation
(3. The buckling moment thus obtained limits the
maximum moment which, in this instance, occurs at mid-
span. The loads are free to sway laterally hence load
application ievei is of importance as is the beam
parameter. In comparlson to a load at the shear centre,
top flange ioading is more severe as it accentuates
twisting whereas a bottom flange load opposes it. The
range of m is therefore iarge.
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Fig. 11 — Buckling Load Ratios for Moment Gradient
Beams with Both Ends Restrained Against Warping
and Minor Axis Rotation.

2.4.2 Uniformly Distributed Load

Moment modification factors for top flange, shear centre
and bottom flange loading are given in Fig. 13. Equation
(5) provides a limit to the mid-span moment. Again, top
flange loading is seen to be most severe and a
substantial range of m is evident. This range increases
with increasing K but is reasonably constant for K> 2.0.
References 11 and 12 provide additional data.

2.5 BEAMS WITH TRANSVERSE LOADING AND
ADDITIONAL END RESTRAINTS

Beams with transverse loading and end restraints in
addition to simple supports are considered here.
Warping restraints and minor axis rotational restraints
are examined separately or together at both ends.
Reference 11 provides additional data.

2.5.1 Minor Axls Rotational Restraint

Figs. 14 and 15 give buckling load ratios for beams with
both ends restrained against minor axis rotation and
carrying the transverse loadings consldered In Section
2.4. The ratios are sensltive to load level and beam
parameter. They are to be used with Equation 7.
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Fig. 12 — Moment Modification Factors for Simply
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Flg.13 — Moment Modification Factors for Simply
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Fig. 16 — Buckling Load Ratios for Warping and Minor
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2.5.2 Warping Restralnt

End warping restraints in addition to simple supports
produce the buckling load ratios in Figs. 16 and 17. As K
increases, the additional torsional stiffness afforded to
the beam by the restraint of end warping has a most
pronounced influence when loading is at top flange level.
The buckling load ratios are highest for loading at this
tevel. This occurs for both transverse load types. The
combined factor, cm, is highest for bottom flange
loading.

2.5.3 Combined Warping and
Minor Axis Rotational Restraint

An effect similar to that described in Section 2.5.2 is seen
in Figs. 16 and 18 for combined warping and rotational
restraints at both ends. The buckling load ratio is
sensitive to K for K< 1.0 and approaches a more uniform
value as K tends to 3.0.

2.6 PROPPED CANTILEVERS
WITH TRANSVERSE LOADING

Moment modification factors are presented in Fig. 19 for
propped cantilevers carrying a central point load or a
uniformly distributed load. Warping and minor axis
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Fig. 19 — Moment Modification Factors for Propped
Cantilevers.

rotation are prevented at the fixed end along with major
axis rotation. Conditions at the prop are assumed to
prevent twist and tateral movement. Equation (5) limits
the moment at the fixed end for both loadings. Three
toading tevels are considered and top flange loading is
seen to be the most severe. The total distributed foad is
larger than the point toad in ail corresponding instances.
Further information can be found in Reference 12.

2.7 FIXED-ENDED BEAMS WITH
TRANSVERSE LOADING

A central point load and uniformly distributed loading are
considered at top and bottom flange levels and at the
shear centre. All movement is prevented at the fixed
ends. Moment modification factors in Fig. 20 along with
Equation (5) limit the moments at these ends. As
expected top flange loading is most severe and point
loading Is less favourabie for stability than is distributed
loading. Modification factors for shear centre and
bottom flange loading increase rapidly with K. Reference
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Fig. 20 — Moment Modification Factors for Fixed
Ended Beams.

13 provides capacities for beams under variable major
axis rotational end restraints.

2.8 CANTILEVERS WITH TRANSVERSE LOADING

Fig. 21 provides moment modification factors for
cantilevers with tip loading or uniformly distributed
loading at three levels of application. The cantilevers are
free to move at all locations other than at the fixed end.
Buckling capacities from Equation (5) limit the moment
at this end. The modification factors vary with K and
reduce dramatically for top flange loading. Note that the
modification factors for transversely loaded cantilevers
in Fig. 6 apply only when K = 0. Additional data are
presented In References 14 and 15.

2.9 CONCLUSION

This Section has dealt with the stability of simply
supported beams, cantilevers and beams with a variety
of additional end restraints and under a number of
different loadings. Several parameters are of influence,
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_ stiffness.

notable the beam parameter, moment gradient and level
of application of transverse loading. The benefits of
judiciously chosen end restraints are obvious from the
many figures. Section 3 discusses the stability of beams
and cantilevers with braces along their {ength. Buckling
load ratios from that Section are to be used with
modification factors from Section 2 when assessing
buckling loads.

3. Bracing of Beams

3.1 TYPES OF BRACING

Bracing may be provided by either a continuous medium
such as a diaphragm or by one or more discrete braces
along the beam length. Usually it is not economical to
provide anything less than ‘rigid’ bracing for a member.
To achieve a condition of rigid bracing, the brace must
possess certain minimum stiffness. A typical
relationship between the ratio of the elastic buckling
load of a braced beam and the stiffness of the brace, kg,
is shown in Fig. 22. For members under uniform moment
with a central brace, there is a limiting value of the brace
In general the curve rises slowly with
increasing kg, and there is no distinct discontinuity in the
curve. However, the limiting stiffness can be defined as
one which is close to that corresponding to rigid bracing.
In practice, it is not difficult to achieve adequate bracing
stiffness and code rules for assessing this requirement
are available (References 1, 2 and 16). In this Section,
adequate stiffness is assumed for the types of braces

considered.

(a) Typical Braces
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}(ﬁ Lateral Brace

T—L ]

(V]

b

(M i
Rotational
Brace

\»

—d e J

(b) Idealised Braces

Fig. 23 — Cross-section at Brace.
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While beams may be braced in many different ways,
most arrangements can be represented by an idealized
system comprising an elastic lateral brace acting at a
distance b above the shear centre of the beam cross-
section and an elastic rotational brace (see Fig. 23). Full
bracing effectively prevents lateral deflection and twist
at the cross-section, while partial bracing allows some
limited twisting or lateral deflection to occur. The term
lateral bracing is used to describe bracing which
prevents lateral deflection at the point where the brace is
placed, while rotational bracing prevents twisting only.

The increase in the buckling capacity in a beam due to
the particular brace is defined by the buckling load ratio,
c:
_ buckling capacity of the braced beam
buckling capacity of a similar unbraced beam

@)

Unbraced beam capacities can be found in Section 2.
Resuits presented in the following Sections have been
obtained using the method of finite integrals (Reference
17) to solve the governing differential equations for
bending and torsion (Reference 18). Braces were
included by imposing appropriate boundary conditions
involving lateral deflection, u, and cross-sectional
rotation, ¢.

3.2 SIMPLY SUPPORTED BEAMS

3.2.1 Braced Beams with Point Loads

The buckling of simply supported beams with one or two
point loads acting at the shear centre is examined in Fig.
24. 1t is common in practice for load points to be braced
and hence the height of application of the load above the
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Fig. 25 — Buckling Load Ratios for Simply Supported
Beams with End Moments and a Full Brace, K = 0.1.
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Fig. 26 — Buckling Load Ratios for Simply Supported
Beams with End Moments and a Full Brace, K = 3.0.

shear centre, a, does not affect beam buckling capacity.
Buckling load ratios, c, are shown in Fig. 24 for three
values of beam parameter, K, and for one or two point
loads at location, a.

3.2.2 Braced Beams with End
Moments (-1 << + 1)

Simply supported beams with end moments are
considered in this Section. The effect of a full brace at
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various locations along a beam is shown respectively, in
Figs. 25 and 26 for K= 0.1 and 3.0. The curves indicate an
optimum brace location for each in-plane moment
distribution.

3.2.3 Braced Beams with Uniformly
Distributed Load

Simply supported beams with uniformly distributed
loads and with one or two intermediate braces are
considered in Figs. 27 and 28. This type of loading and
bracing is common in roof structures where the
distributed load may arise from wind or live loading. The
load may act at the top flange, shear centre, bottom
flange or at any other level. It is usual to provide fly-
bracing to the bottom flange of a roof beam under uplift
in order to increase its lateral buckling capacity.

Solutions for simply supported beams with distributed
loads acting at the shear centre are shown in Fig. 27.
These results are similar to those obtained for beams
with point loads (see Fig. 24) and demonstrate the
considerable influence of the beam parameter K on the
value of c. The effect of the level of load application is
shown in Fig. 28 for K = 1.0. The increase in the buckling
load ratio is more pronounced for a beam with top flange
loading. Unbraced loads applied above the shear centre
contribute to the destabilizing influence of in-plane
moments, hence appropriately placed braces are
particularly effective.

Figs. 27 and 28 show an increase in the buckling load
ratio as the brace is moved towards the beam centre. A
single brace is most effective when placed at mid-span.
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Fig. 28 — Influence of Load Height on Simply
Supported Beams with Uniformly Distributed Load and
Two Full Braces.

Two braces in close proximity combine to restrain minor
axis rotation and this is evident as the two approach mid-
span. Contrary to the common practice of bracing the
third points of a beam with uniformly distributed load, it
is better to locate braces at the 2/5 points (a = 0.4). This
leads to an increase in the elastic buckling loads of 10 to
15 percent.

3.2.4 Effect of Lateral or Rotational Bracing

Simply supported beams with lateral bracing or
rotational bracing alone are considered. Results for
beams with uniformly distributed load are compared in
Fig. 29. Beams with a lateral brace attached to the top
flange, the shear centre, or the bottom flange are
compared to beams with a rotational brace at the shear
centre, and to beams with a full brace. Lateral bracing is
most effective when acting at the top or compression
flange level. When attached to the bottom or tension
flange, the brace in this instance is completely
ineffective. A rotational brace is best located near mid-
span.

In Fig. 30, the effect of the position of the lateral brace
above and below the shear centre is considered with load
acting at the top flange, the shear centre or the bottom
flange. Solutions have been obtained for a number of
beam parameters and with the brace at mid-span {« =
0.5). Results indicate that the influence of the brace
depends on the brace level (2b/h), the load height (23/h)
and also the beam parameter K. Generally it is best to
attach the lateral brace to the compression side. For
small values of K, the position of attachment is
unimportant, and the brace is quite effective even if
placed at the tension flange level. However, for larger
values of K, the region suitable for brace attachment
diminishes. This reduction becomes more severe if the
load acts on the compression flange.
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Fig. 29 — Comparison of Brace Types for Simply
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3.3 CANTILEVERS

3.3.1 Braced Cantilevers

The influence of the position of a full brace is examined.
The buckling load ratio, ¢, for values of the beam
parameters K =0.1to 3.0 are shown in Figs. 31 and 32 for
cantilevers with a tip load and uniformly distributed load
respectively. The loads are applied at top flange, shear
centre or bottom flange. It can be seen that the increases
in the buckling load are greatest for large values of the
beam parameter and more so for top flange loading. The
maximum value of ¢ that may be achieved ranges from 3
for small values of K to 14 for large values of K.

The results show that for small values of K the optimum
brace location is near mid-span for a tip load, and near
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Fig. 31 — Buckling Load Ratios for Cantilevers with a
Tip Load and a Full Brace.

0.4 of the length from the fixed end for a uniformly
distributed load. For higher values of K, the optimum
brace locations approach the cantilever tip as the height
of load application moves toward the top flange. For a tip
load, the optimum location varies between a« = 0.5 and
0.8 and for a uniformly distributed load, between a = 0.4
and 0.7.

3.3.2 Effects of Lateral and/or Rotational Bracing

The effectiveness of lateral bracing at various levels of
attachment is compared with that of rotational bracing
and of full bracing for top flange, shear centre and
bottom flange loading, for values of K = 0.6 and 3.0. The
results are shown respectively, in Figs. 33 and 34 for tip
load and in Figs. 35 and 36 for uniformly distributed load.

The various braces have different influences on the
buckling load depending on the level of load height (2arh).
In all cases full bracing is by far the best. If full bracing
cannot be achieved, rotational bracing is the next best as
can be seen from Figs. 33 to 36. Optimum brace locations
are clearly evident.
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Fig. 32 — Buckling Load Ratios for Cantilevers with
Uniformly Distributed Load and a Full Brace.

For lateral bracing only, the buckling load ratios increase
slowly as the brace moves towards the tip, irrespective of
the level of the brace. Varying the value of K has only
little effect on the maximum value of ¢ for top flange and
bottom flange loadings. However, for shear centre
loading and with a top flange brace, the effect of
increasing K shows a marked improvement in the value
of c.

Lateral braces should be placed as close as possible to
the cantilever tip. The effectiveness increases as the
level of application of load moves towards the bottom
flange. In all cases if lateral bracing alone is used, it
should be placed near the top flange and as close as
possible to the cantilever tip. Braces placed less than
0.4L from the fixed end are practically useless.

3.4 CONCLUSION

The beam parameter K, has a significant influence on the
elastic buckling strength of simply supported beams and
cantilevers with intermediate braces. The effectiveness
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Fig. 33 — Comparison of Brace Types for Cantilevers
with a Tip Load, K = 0.6.

of any type of brace on a beam depends on both K and
the location of the brace.

For simply supported beams with a single lateral brace
only, the brace is generally effective when acting above
the shear centre. When the brace acts below the shear
centre the effectiveness depends on the beam parameter
K. In general the buckling resistance is significantly
increased when loads act below the shear centre.

For cantilevers, the optimum location of a full brace for
most cases varies between 0.4L to 0.7L from the fixed
end support. For cantilevers with single lateral brace, the
brace is best placed near the top (tension) flange level.
However, this arrangement is not as effective as a
rotational brace or a full brace.

4. Buckling of Laterally Continuous Beams

4.1 INTRODUCTION

This Section presents a simple, approximate method for
determining the elastic buckling strength of laterally
continuous beams. The term /aterally continuous implies
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Fig. 3¢ — Comparison of Brace Types for Cantilevers
with a Tip Load, K = 3.0.

indeterminacy in the lateral (minor axis) direction
imposed by braces both at and away from the beam
ends. Typical examples of laterally continuous
structures amenable to solution by this method are
shown in Fig. 37. The basic requirements are:

(i) the structures are loaded by point loads at braced
cross-sections;

(iiy  the braces prevent lateral deflection and twist (full
brace); and

(ili) elements of the structure are straight and major
axis curvature effects are negligible.

The approximate analysis follows the principles of
interaction buckling as set out in References 19 and 20
and for grids in Reference 21. A brief review of these
principles is given in the following Section.

4.2 INTERACTION BUCKLING

In an interaction buckling analysis a laterally continuous
beam is modelled as an assemblage of segments
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Fig. 35 — Comparison of Brace Types for Cantilevers
with Uniformly Distributed Load, K = 0.6.

connected at braced points. If the beam is disturbed from
its initially straight position it adopts patterns of minor
axis displacement and twist consistent with the brace
constraints of u = ¢ = 0. Compatibility at braced points
also requires minor axis bending and warping interaction
between segments at their ends. Reference 20 shows
that minor axis bending and warping stiffnesses at
segment ends are major axis load-dependent and
generally deteriorate parabolically with increasing load.
While these stiffnesses are positive the segment, taken
separately, is stable. If end stiffnesses become negative
the segment requires end restraint. At loads less than the
buckling load, some segments are able to offer minor
axis bending and warping end restraint to more severely
loaded segments and the beam as a whole is able to
resist disturbance. At the buckling load the reserve of
stiffness is zero. The beam enters a state of neutral
equilibrium in which it is unable to resist a vanishingly
small disturbance.

4.3 MODEL FOR ANALYSIS

4.3.1 Critical Segment and Subassemblage

Buckling analysis of the isolated segments (e.g. with
Equation (5)) can indicate whether a segment is likely to
provide restraint or to require it as the beam approaches
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Fig. 37 — Laterally Continuous Structures.

instability. Reference 19 introduced the term critical
segment to identify that segment giving the lowest beam
load factor for failure from an analysis excluding
segment interaction. In the approximate method it is
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Fig. 38 — Typical Beam and Sub-assemblage.

assumed that the critical segment undergoes an earlier
deterioration of stiffness and places a higher restraint
demand than does any other segment. it therefore
dominates in limiting beam capacity. An estimate of the
restraint available to the critical segment can be made by
examining the immediately adjacent segments. A sub-
assemblage comprising the critical segment and the two
adjacent segments is thus identified. It is assumed that
the behaviour of the sub-assemblage adequately reflects
that of the beam. A typical beam and sub-assemblage is
shown in Fig. 38.

4.3.2 Boundary Conditions

Boundary conditions are required at the far ends of the
restraining segments. Support conditions such as a
simple support or fixed end are retained. If the far end
continues on to another segment it is assumed that a
restraint demand equal to that from the critical segment
occurs at this end. Alternative conditions are discussed
in Reference 20.

4.3.3 Restraint Stiffness

it is assumed that both the warping and minor axis
bending stiffness at the end of a restraining segment
vary in the manner given for the bending stiffness in
Equation (9) (see Reference 20).

Minor axis bending stiffness at segment end

= n[Ely/L]R[1 - [M/MER]R ©)
where the subscript R refers to the restraining segment
and n = 3 if the far end is simply supported, n = 4 if
fixed, and n = 2 if continuous to another segment. The
moment Mg is the elastic buckling moment of the
restraining segment found from Equation (5) and M is the
larger end moment in the segment. The variation in
stiffness is parabolic and results in zero stiffness when
M/Mg = 1.0. The restraint stiffness is described in a
restraint parameter, G, where

o
® e BT,
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Subscript C refers to the critical segment and subscripts
A and B refer to ends A and B of the critical segment (see
Fig. 4 for A and B definition). The restraint parameter at
an end describes equally the warping and minor axis
bending stiffnesses available at that end.

4.4 EFFECTIVE LENGTH FACTORS

The load factor associated with the buckling of the
restrained critical segment is assumed to approximate
the load factor for beam failure.

The buckiing moment of the critical segment can be
expressed as:

MF = m n/kLJElyGJ.fi+ (K/k)2 an
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where kK effective length factor. When k 1.0,
Equation (11) reduces to Equation (5). Figs. 39 to 43
present effective length charts for restrained critical
segments for the full range of g and for K varying from 0.1
to 3.0 (see References 20 and 22 for details and
additional charts).
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4.5 ANALYSIS PROCEDURE AND WORKED EXAMPLES

4.5.1 Summary of Steps
(1

2
@)

Determine the major axis bending moment
distribution.
Determine K and f for each segment.
For each segment calculate Mg from Equation (5)
and the corresponding beam load factor, 4, to
produce Mg. The segment with the lowest load
factor, A, is the critical segment. The two (at most)
adjacent segments have higher load factors, AR.
Assume a trial value of AF, the load factor at sub-
assemblage buckling, and calculate Ga and Gg from
Equation (10). Note that
AFIAR = [MIMEIR (12)

and this substitution can be made in Equation (10).
The trial value Af should lie between Ac and AR (min).
Find the critical segment effective length factor, k,
using the appropriate chart from Figs. 39 to 43,
extrapolating linearly if necessary.
Calculate the revised critical segment buckling
moment, Mg, from Equation (11) and obtain a new
load factor, AF (new). Note that

Apnew)nc = Mg/MElc (13)
Compare the new load factor, A (new) with the
assumed factor, AF (Step 4), and repeat Steps 4to 6 if
necessary until good agreement is obtained.

The process of cycling ensures consistency between
assumed values at Step 4 and calculated values at Step
6. Usually only two or three cycles are required if a
reasonable initial guess for Af is made at Step 4.
Converging upper and lower bounds are found by
choosing an initial value of AF equal to Ac and

subsequent values of AF equal to those calculated at
Step 6.

(4

®)

®)

™
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4.5.2 Worked Example 1

The analysis procedure is applied to the beam in Fig. 44a.
Much of the data is summarized in Table 1.

TABLE 1: Analysis Data

Segments 1-2 23 34 4-5

. = 0.0 -0.75 -0.22 0.0

K = 0.33 0.33 0.5 0.5

*Mg = 19.3 12.46 26.9 307
A = 40.21 25.96 70.72 384.12

STEP 5 Find the critical segment effective length factor
by interpolation between Figs. 39 and 40.
Effective length factor, k = 0.76. '

STEP 6 Calculate the revised critical segment buckling
moment, Mg, and corresponding load factor, AF.

MF =1.13n/0.3L x 0.76]{ElyGJ J1 +[0.33/0.76]2

=17.0 IyGJIL
and

AR = 35.364}EIYGJ/L2
TABLE 2: Cycles of Analysis

Cycle AF GA G k AF(new)
1 25.96 1.14 0.77 0.76 35.36
2 35.36 294 0.89 0.82 32.40
3 32.40 1.90 0.84 0.79 33.80
4 33.80 227 0.86 0.81 33.00

Table 2 shows the convergence of AF which is taken as

the mean value of the estimations at cycles 3 and 4, i.e.
AF=334 JELGJIL2

A finite integral analysis gives

AF =34.91 .JEIyGJ/L2
4.5.3 Worked Example 2

The analysis procedure can be refined to obtain better
estimates of Mg for restraining segments at Step 3. This
modification is advisable when the restraining segment
at end A of the critical segment has a well restrained or
fixed far end. Analysis of the cantilever in Fig. 44b
illustrates this. Table 3 summarizes analysis data.

TABLE 3: Analysis Data

* all multiplied byJEIyGJ/L
** all multiplied l:»y.IEIyGJ/L2

STEP 1 Calculate bending moments (see Fig. 44a).
STEP 2 Find # and K for each segment (see Table 1).

STEP 3 Calculate Mg and load factors, A, to produce
buckling in simply supported segments (see
Table 1). Segment 2-3 is the critical segment.
The sub-assemblage comprises segments 1-2,
2-3, 34.

STEP 4 Assume a value of AF and calculate Ga and Gg.
End 2 of the critical segment has the higher end
moment and is taken as end A. Usually a close
guess can be made for AF from the information
gathered at Step 3, but for the purposes of this
example, an initial value of 25.96«}EIyGJ/L will

be used.
Therefore
1
Ga = 2/3x0.3L/0.3L =
A X / X 25962 1.14
40. 2
and 0.21
1
Gg = 2/2x0.2L/0.3L =
B /2 % / X 25.967 0.77
70.722
Vol. 20 No. 1

Segment = 1-2 2-3
A = -0.7 0.0
K = 3.33 1.43
*Mg = 42.34 13.69
**A 42.34 19.56

* all multiplied byQIElyGJ/L

** all multiplied by [ElyGJ/L2

STEP 1 Calculate bending moments (see Fig. 44b).

STEP 2 Find # and K for each segment (see Table 3).

STEP 3 Calculate Mg and load factors A for buckling of
simply supported segments (see Table 3).
Segment 2-3 is critical and is restrained at end
A.

STEP 4 (revised). Calculate MF and load factor A for
buckling of segment 1-2 when simply
supported at end 2 and fully restrained at end 1.

G1 = GA = 0.0
Gy =Gg = andk =068
Hence, the contents of Table 3 are revised to:

TABLE 4: Revised Data

Segment = 1-2 2-3
*Mg = 89.4 13.69
A = 89.4 19.56

* all multiplied by»JEleJ/L

** all multiplied by<JElyGJ/L2
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STEP 5 Estimate AF =38

Therefore G = 2/4 x 0.3L/0.7L = 0.261

1
el
89.4
Gg =
STEP 6 Find the critical segment effective length factor
from Fig.41(p=0). k=0.675

STEP 7 Calculate the revised critical segment buckling
moment and corresponding load factor

MF = 27.24[El,GJIL
and
Ap =389fElyGJIL? cf 38JElyGJIL2
i.e. Ag is approximately 38.45. The standard

procedure leads to a value of 32.5 whereas a
finite integral analysis gives

AF = 37.6.[Ely GJIL2

4.6 CONCLUSION

The approximate method produces accurate results fora
wide range of laterally continuous structures as shown
by comparison with rigorous solutions (finite element
and finite integral) presented in References 20 and 21.
Reference 19 outlines a simpler but less accurate
method. Reference 23 develops an analysis procedure
which accounts for additional warping and minor axis
bending interaction which sometimes arises in beams
with concentrated moment loading.
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