

## EXAMPLE PROBLEMS

## PROBLEM 1.1

A spacecraft's engine ejects mass at a rate of $30 \mathrm{~kg} / \mathrm{s}$ with an exhaust velocity of $3,100 \mathrm{~m} / \mathrm{s}$. The pressure at the nozzle exit is 5 kPa and the exit area is $0.7 \mathrm{~m}^{2}$. What is the thrust of the engine in a vacuum?

## SOLUTION,

```
Given: \(q=30 \mathrm{~kg} / \mathrm{s}\)
    \(\mathrm{Ve}=3,100 \mathrm{~m} / \mathrm{s}\)
    \(\mathrm{Ae}=0.7 \mathrm{~m}^{2}\)
    \(\mathrm{Pe}=5 \mathrm{kPa}=5,000 \mathrm{~N} / \mathrm{m}^{2}\)
    \(\mathrm{Pa}=0\)
```

Equation (1.6),

```
F=q}\times\textrm{Ve}+(\textrm{Pe}-\textrm{Pa})\times\textrm{Ae
F=30\times3,100+(5,000-0)\times0.7
F = 96,500 N
```


## PROBLEM 1.2

The spacecraft in problem 1.1 has an initial mass of $30,000 \mathrm{~kg}$. What is the change in velocity if the spacecraft burns its engine for one minute?

## SOLUTION,

Given: $\quad \mathrm{M}=30,000 \mathrm{~kg}$
$q=30 \mathrm{~kg} / \mathrm{s}$
Ve $=3,100 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}=60 \mathrm{~s}$
Equation (1.16),

```
\DeltaV = Ve x LN[ M / (M - qt) ]
\DeltaV = 3,100 < LN[ 30,000 / (30,000-(30 x 60))]
\DeltaV = 192 m/s
```


## PROBLEM 1.3

A spacecraft's dry mass is $75,000 \mathrm{~kg}$ and the effective exhaust gas velocity of its main engine is $3,100 \mathrm{~m} / \mathrm{s}$. How much propellant must be carried if the propulsion system is to produce a total $\Delta v$ of $700 \mathrm{~m} / \mathrm{s}$ ?

## SOLUTION,

Given: $\mathrm{Mf}=75,000 \mathrm{~kg}$
$C=3,100 \mathrm{~m} / \mathrm{s}$
$\Delta V=700 \mathrm{~m} / \mathrm{s}$
Equation (1.20),

$$
M o=M f \times e^{(D v / C)}
$$

```
Mo = 75,000 \times e (700 / 3,100)
Mo = 94,000 kg
```

Propellant mass,

```
Mp = Mo - Mf
Mp = 94,000-75,000
Mp = 19,000 kg
```


## PROBLEM 1.4

A $5,000 \mathrm{~kg}$ spacecraft is in Earth orbit traveling at a velocity of $7,790 \mathrm{~m} / \mathrm{s}$. Its engine is burned to accelerate it to a velocity of $12,000 \mathrm{~m} / \mathrm{s}$ placing it on an escape trajectory. The engine expels mass at a rate of $10 \mathrm{~kg} / \mathrm{s}$ and an effective velocity of $3,000 \mathrm{~m} / \mathrm{s}$. Calculate the duration of the burn.

## SOLUTION,

Given: $M=5,000 \mathrm{~kg}$
$q=10 \mathrm{~kg} / \mathrm{s}$
$\mathrm{C}=3,000 \mathrm{~m} / \mathrm{s}$
$\Delta V=12,000-7,790=4,210 \mathrm{~m} / \mathrm{s}$
Equation (1.21),

```
t = M / q x [ 1 - 1 / e(DV / C) ]
t = 5,000 / 10 x [ 1 - 1 / e(4,210/ 3,000) ]
t = 377 s
```


## PROBLEM 1.5

A rocket engine burning liquid oxygen and kerosene operates at a mixture ratio of 2.26 and a combustion chamber pressure of 50 atmospheres. If the nozzle is expanded to operate at sea level, calculate the exhaust gas velocity relative to the rocket.

## SOLUTION,

Given: $\quad 0 / F=2.26$
$\mathrm{Pc}=50 \mathrm{~atm}$
$\mathrm{Pe}=\mathrm{Pa}=1 \mathrm{~atm}$
From LOX/Kerosene Charts we estimate,

$$
\begin{aligned}
& \mathrm{Tc}=3,470 \mathrm{~K} \\
& \mathrm{M}=21.40 \\
& \mathrm{k}=1.221
\end{aligned}
$$

Equation (1.22),

```
Ve = SQRT[ (2 x k / (k - 1)) x (R* x Tc / M) x (1 - (Pe / Pc)(k-1)/k) ]
Ve= SQRT[ (2 x 1.221 / (1.221 - 1)) × (8,314.46 x 3,470 / 21.40) x (1 - (1 / 50)(1.221-1)/1.221) ]
Ve = 2,749 m/s
```


## PROBLEM 1.6

A rocket engine produces a thrust of $1,000 \mathrm{kN}$ at sea level with a propellant flow rate of $400 \mathrm{~kg} / \mathrm{s}$. Calculate the specific impulse.

## SOLUTION,

Given: $\quad F=1,000,000 \mathrm{~N}$

$$
\mathrm{q}=400 \mathrm{~kg} / \mathrm{s}
$$

Equation (1.23),

```
Isp = F / (q a g )
Isp = 1,000,000 / (400 x 9.80665)
Isp = 255 s (sea level)
```


## PROBLEM 1.7

A rocket engine uses the same propellant, mixture ratio, and combustion chamber pressure as that in problem 1.5. If the propellant flow rate is $500 \mathrm{~kg} / \mathrm{s}$, calculate the area of the exhaust nozzle throat.

## SOLUTION,

Given: $\mathrm{Pc}=50 \times 0.101325=5.066 \mathrm{MPa}$

$$
\mathrm{Tc}=3,470 \mathrm{~K}
$$

$$
M=21.40
$$

$$
\mathrm{k}=1.221
$$

$$
\mathrm{q}=500 \mathrm{~kg} / \mathrm{s}
$$

Equation (1.27),

```
Pt = Pc x [1 + (k - 1) / 2]-k/(k-1)
Pt = 5.066 x [1 + (1.221 - 1) / 2] -1.221/(1.221-1)
Pt = 2.839 MPa = 2.839\times106 N/m
```

Equation (1.28),

```
Tt = Tc / (1 + (k - 1) / 2)
```

$\mathrm{Tt}=3,470 /(1+(1.221-1) / 2)$
$\mathrm{Tt}=3,125 \mathrm{~K}$

Equation (1.26),

```
At = (q / Pt) x SQRT[ (R* × Tt) / (M x k) ]
At = (500 / 2.839\times106) x SQRT[ (8,314.46 x 3,125) / (21.40 x 1.221) ]
At = 0.1756 m
```


## PROBLEM 1.8

The rocket engine in problem 1.7 is optimized to operate at an elevation of 2000 meters. Calculate the area of the nozzle exit and the section ratio.

## SOLUTION,

Given: $P c=5.066 \mathrm{MPa}$
At $=0.1756 \mathrm{~m}^{2}$
$\mathrm{k}=1.221$
From Atmosphere Properties,

$$
\mathrm{Pa}=0.0795 \mathrm{MPa}
$$

Equation (1.29),

```
\(\mathrm{Nm}^{2}=(2 /(\mathrm{k}-1)) \times\left[(\mathrm{Pc} / \mathrm{Pa})^{(\mathrm{k}-1) / \mathrm{k}}-1\right]\)
\(\mathrm{Nm}^{2}=(2 /(1.221-1)) \times\left[(5.066 / 0.0795)^{(1.221-1) / 1.221}-1\right]\)
\(\mathrm{Nm}^{2}=10.15\)
\(\mathrm{Nm}=(10.15)^{1 / 2}=3.185\)
```

Equation (1.30),

```
Ae = (At / Nm) x [(1 + (k - 1) / 2 x Nm2)/((k + 1) / 2)](k+1)/(2(k-1))
Ae = (0.1756 / 3.185) x [(1 + (1.221-1) / 2 x 10.15)/((1.221 + 1) / 2)] (1.221+1)/(2(1.221-1))
Ae = 1.426 m
```


## PROBLEM 1.9

For the rocket engine in problem 1.7, calculate the volume and dimensions of a possible combustion chamber. The convergent cone half-angle is 20 degrees.

## SOLUTION,

Given: At $=0.1756 \mathrm{~m}^{2}=1,756 \mathrm{~cm}^{2}$
$D t=2 \times(1,756 / \pi)^{1 / 2}=47.3 \mathrm{~cm}$
$\theta=20^{\circ}$
From Table 1,

$$
L^{*}=102-127 \mathrm{~cm} \text { for LOX/RP-1, let's use } 110 \mathrm{~cm}
$$

Equation (1.33),

```
Vc = At x L*
    Vc = 1,756 x 110= 193,160 cm
```

From Figure 1.7,

```
Lc = 66 cm (second-order approximation)
```

Equation (1.35),

```
Dc = SQRT[(Dt }\mp@subsup{}{}{3}+24/\pi\times\operatorname{tan}0\times\textrm{Vc})/(\textrm{Dc}+6\times\operatorname{tan}0\times\textrm{Lc})
Dc = SQRT[(47.3 3 + 24/\pi \times tan(20) x 193,160) / (Dc + 6 x tan(20) x 66)]
Dc = 56.6 cm (four interations)
```


## PROBLEM 1.10

A solid rocket motor burns along the face of a central cylindrical channel 10 meters long and 1 meter in diameter. The propellant has a burn rate coefficient of 5.5 , a pressure exponent of 0.4 , and a density of $1.70 \mathrm{~g} / \mathrm{ml}$. Calculate the burn rate and the product generation rate when the chamber pressure is 5.0 MPa .

## SOLUTION,

Given: a = 5.5

$$
n=0.4
$$

$\mathrm{Pc}=5.0 \mathrm{MPa}$
$\rho_{\mathrm{p}}=1.70 \mathrm{~g} / \mathrm{ml}$
$\mathrm{Ab}=\pi \times 1 \times 10=31.416 \mathrm{~m}^{2}$
Equation (1.36),

$$
\begin{aligned}
& r=a \times \mathrm{Pc}^{\mathrm{n}} \\
& r=5.5 \times 5.0^{0.4}=10.47 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

Equation (1.37),

```
q = \rhop x Ab < r
q}=1.70\times31.416\times10.47=559 kg/
```


## PROBLEM 1.11

ammonium perchlorate, $18 \%$ aluminum, and $14 \%$ HTPB by mass.

## SOLUTION,

```
Given: \(W_{A P}=0.68\)
    \(\mathrm{w}_{\mathrm{Al}}=0.18\)
    \(W_{\text {HTPB }}=0.14\)
```

From Properties of Rocket Propellants we have,
$\rho_{\mathrm{AP}}=1.95 \mathrm{~g} / \mathrm{ml}$
$\rho_{\mathrm{Al}}=2.70 \mathrm{~g} / \mathrm{ml}$
$\rho_{\text {HTPB }}=\approx 0.93 \mathrm{~g} / \mathrm{ml}$

Equation (1.38),

```
\rhop = 1 / \Sigma 立 (w / \rho ) i
\rhop = 1 / [(0.68 / 1.95) + (0.18 / 2.70) + (0.14 / 0.93)]
\rhop = 1.767
```


## PROBLEM 1.12

A two-stage rocket has the following masses: 1st-stage propellant mass 120,000 kg, 1st-stage dry mass $9,000 \mathrm{~kg}$, 2nd-stage propellant mass $30,000 \mathrm{~kg}$, 2nd-stage dry mass $3,000 \mathrm{~kg}$, and payload mass $3,000 \mathrm{~kg}$. The specific impulses of the 1 st and 2 nd stages are 260 s and 320 s respectively. Calculate the rocket's total $\Delta \mathrm{V}$.

## SOLUTION,

```
Given: \(\quad \mathrm{Mo}_{1}=120,000+9,000+30,000+3,000+3,000=165,000 \mathrm{~kg}\)
    \(\mathrm{Mf}_{1}=9,000+30,000+3,000+3,000=45,000 \mathrm{~kg}\)
    \(\mathrm{Isp}_{1}=260 \mathrm{~s}\)
    \(\mathrm{Mo}_{2}=30,000+3,000+3,000=36,000 \mathrm{~kg}\)
    \(\mathrm{Mf}_{2}=3,000+3,000=6,000 \mathrm{~kg}\)
    \(\mathrm{Isp}_{2}=320 \mathrm{~s}\)
```

Equation (1.24),

```
\(\mathrm{C}_{1}=\mathrm{Isp}_{1} \mathrm{~g}\)
    \(C_{1}=260 \times 9.80665=2,550 \mathrm{~m} / \mathrm{s}\)
    \(C_{2}=I s p_{2} g\)
    \(C_{2}=320 \times 9.80665=3,138 \mathrm{~m} / \mathrm{s}\)
```

Equation (1.39),

```
\DeltaV
\DeltaV
\DeltaV
\DeltaV2 = C2 }\times\textrm{LN}[\mp@subsup{\textrm{Mo}}{2}{}/\mp@subsup{\textrm{Mf}}{2}{}
\DeltaV2 = 3,138 \times LN[ 36,000 / 6,000 ]
\DeltaV2 = 5,623 m/s
```

Equation (1.40),
$\Delta V_{\text {Total }}=\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}$
$\Delta V_{\text {Total }}=3,313+5,623$
$\Delta V_{\text {Total }}=8,936 \mathrm{~m} / \mathrm{s}$

## PROBLEM 3.1

## SOLUTION,

Given: $L_{N}=400 \mathrm{~mm}$

$$
\mathrm{d}=200 \mathrm{~mm}
$$

$$
d_{F}=200 \mathrm{~mm}
$$

$$
\mathrm{d}_{\mathrm{R}}=160 \mathrm{~mm}
$$

$$
\mathrm{L}_{\mathrm{T}}=120 \mathrm{~mm}
$$

$$
X_{P}=900 \mathrm{~mm}
$$

$$
C_{R}=240 \mathrm{~mm}
$$

$$
C_{T}=120 \mathrm{~mm}
$$

$$
S=240 \mathrm{~mm}
$$

$$
L_{F}=247 \mathrm{~mm}
$$

$$
\mathrm{R}=80 \mathrm{~mm}
$$

$$
X_{R}=120 \mathrm{~mm}
$$

$$
X_{B}=1,760 \mathrm{~mm}
$$

$$
N=3 \text { each }
$$

Equations (3.1) through (3.6),

$$
\begin{aligned}
& \left(C_{N}\right)_{N}=2 \\
& X_{N}=0.466 \times L_{N} \\
& X_{N}=0.466 \times 400=186 \mathrm{~mm} \\
& \left(C_{N}\right)_{T}=2 \times\left[\left(d_{R} / d\right)^{2}-\left(d_{F} / d^{2}\right]\right. \\
& \left(C_{N}\right)_{T}=2 \times\left[(160 / 200)^{2}-(200 / 200)^{2}\right] \\
& \left(C_{N}\right)_{T}=-0.72 \\
& X_{T}=X_{P}+L_{T} / 3 \times\left[1+\left(1-d_{F} / d_{R}\right) /\left(1-\left(d_{F} / d_{R}\right)^{2}\right)\right] \\
& X_{T}=900+120 / 3 \times\left[1+(1-200 / 160) /\left(1-(200 / 160)^{2}\right)\right] \\
& X_{T}=958 \mathrm{~mm} \\
& \left(C_{N}\right)_{F}=(1+R /(S+R)) \times\left[4 \times N \times(S / d)^{2} /\left(1+S Q R T\left[1+\left(2 \times L_{F} /\left(C_{R}+C_{T}\right)\right)^{2}\right]\right)\right] \\
& \left(C_{N}\right)_{F}=(1+80 /(240+80)) \times\left[4 \times 3 \times(240 / 200)^{2} /\left(1+S Q R T\left[1+(2 \times 247 /(240+120))^{2}\right]\right)\right] \\
& \left(C_{N}\right)_{F}=8.01 \\
& X_{F}=X_{B}+X_{R} / 3 \times\left(C_{R}+2 \times C_{T}\right) /\left(C_{R}+C_{T}\right)+1 / 6 \times\left[C_{R}+C_{T}-C_{R} \times C_{T} /\left(C_{R}+C_{T}\right)\right] \\
& X_{F}=1760+120 / 3 \times(240+2 \times 120) /(240+120)+1 / 6 \times[240+120-240 \times 120 /(240+120)] \\
& X_{F}=1,860 m m
\end{aligned}
$$

Equations (3.7) and (3.8),

```
(CN}\mp@subsup{)}{R}{}=(\mp@subsup{C}{N}{}\mp@subsup{)}{N}{}+(\mp@subsup{C}{N}{}\mp@subsup{)}{T}{}+(\mp@subsup{C}{N}{}\mp@subsup{)}{F}{
(CN}\mp@subsup{)}{R}{}=2-0.72+8.01=9.2
X = [(CN C ( }\mp@subsup{)}{N}{}\times\mp@subsup{X}{N}{}+(\mp@subsup{C}{N}{}\mp@subsup{)}{T}{}\times\mp@subsup{X}{T}{}+(\mp@subsup{C}{N}{}\mp@subsup{)}{F}{}\times\mp@subsup{X}{F}{}]/(\mp@subsup{C}{N}{}\mp@subsup{)}{R}{
X = [2 < 186-0.72 < 958 + 8.01 x 1860] / 9.29
X = 1,570 mm
```


## PROBLEM 4.1

Calculate the velocity of an artificial satellite orbiting the Earth in a circular orbit at an altitude of 200 km above the Earth's surface.

## SOLUTION,

From Basics Constants,
Radius of Earth $=6,378.14 \mathrm{~km}$
GM of Earth $=3.986005 \times 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}$
Given: $\quad r=(6,378.14+200) \times 1,000=6,578,140 \mathrm{~m}$
Equation (4.6),

```
v = SQRT[ GM / r ]
v = SQRT[ 3.986005\times1014 / 6,578,140 ]
v = 7,784 m/s
```


## PROBLEM 4.2

Calculate the period of revolution for the satellite in problem 4.1.

## SOLUTION,

Given: $\quad r=6,578,140 \mathrm{~m}$
Equation (4.9),

```
P}\mp@subsup{}{}{2}=4\times\mp@subsup{\pi}{}{2}\times\mp@subsup{r}{}{3}/G
P = SQRT[ 4 }\times\mp@subsup{\pi}{}{2}\times\mp@subsup{r}{}{3}/\textrm{GM}
P = SQRT[ 4 < \mp@subsup{\pi}{}{2}\times6,578,1403 / 3.986005\times1014 ]
P = 5,310 s
```


## PROBLEM 4.3

Calculate the radius of orbit for a Earth satellite in a geosynchronous orbit, where the Earth's rotational period is $86,164.1$ seconds.

## SOLUTION,

Given: $P=86,164.1 \mathrm{~s}$

Equation (4.9),

```
P2 = 4 }\times\mp@subsup{\pi}{}{2}\times\mp@subsup{r}{}{3}/G
r=[ P
r= [86,164.12 \times 3.986005\times10年 / (4 \times \mp@subsup{\pi}{}{2})\mp@subsup{]}{}{1/3}
r = 42,164,170 m
```


## PROBLEM 4.4

An artificial Earth satellite is in an elliptical orbit which brings it to an altitude of 250 km at perigee and out to an altitude of 500 km at apogee.
Calculate the velocity of the satellite at both perigee and apogee.

## SOLUTION,

Given: $R p=(6,378.14+250) \times 1,000=6,628,140 \mathrm{~m}$

$$
R \mathrm{Ra}=(6,378.14+500) \times 1,000=6,878,140 \mathrm{~m}
$$

Equations (4.16) and (4.17)

```
Vp = SQRT[ 2 < GM × Ra / (Rp x (Ra + Rp)) ]
Vp = SQRT[ 2 < 3.986005\times10 14 * 6,878,140/(6,628,140 * (6,878,140 + 6,628,140)) ]
Vp = 7,826 m/s
Va = SQRT[ 2 x GM x Rp / (Ra x (Ra + Rp)) ]
Va = SQRT[ 2 x 3.986005\times10 14 × 6,628,140/ (6,878,140 × (6,878,140 + 6,628,140)) ]
Va = 7,542 m/s
```

A satellite in Earth orbit passes through its perigee point at an altitude of 200 km above the Earth's surface and at a velocity of $7,850 \mathrm{~m} / \mathrm{s}$. Calculate the apogee altitude of the satellite.

## SOLUTION,

```
Given: \(R p=(6,378.14+200) \times 1,000=6,578,140 \mathrm{~m}\)
```

    \(\mathrm{Vp}=7,850 \mathrm{~m} / \mathrm{s}\)
    Equation (4.18),

```
Ra = Rp / [2 < GM / (Rp x Vp 2) - 1]
Ra = 6,578,140/[2 < 3.986005\times1014 / (6,578,140\times7,8502) - 1]
Ra = 6,805,140 m
Altitude @ apogee = 6,805,140 / 1,000 - 6,378.14 = 427.0 km
```


## PROBLEM 4.6

Calculate the eccentricity of the orbit for the satellite in problem 4.5.

## SOLUTION,

```
Given: }Rp=6,578,140 
```

    \(V p=7,850 \mathrm{~m} / \mathrm{s}\)
    Equation (4.20),

```
e = Rp }\timesV\mp@subsup{p}{}{2}/GM-
e=6,578,140\times7,8502 / 3.986005\times1\mp@subsup{0}{}{14}-1
e = 0.01696
```


## PROBLEM 4.7

A satellite in Earth orbit has a semi-major axis of $6,700 \mathrm{~km}$ and an eccentricity of 0.01. Calculate the satellite's altitude at both perigee and apogee.

## SOLUTION,

```
Given: \(a=6,700 \mathrm{~km}\)
    \(\mathrm{e}=0.01\)
```

Equation (4.21) and (4.22),

```
\(R p=a \times(1-e)\)
\(R p=6,700 \times(1-.01)\)
\(R p=6,633 \mathrm{~km}\)
Altitude @ perigee \(=6,633-6,378.14=254.9 \mathrm{~km}\)
\(R a=a \times(1+e)\)
\(R a=6,700 \times(1+.01)\)
\(\mathrm{Ra}=6,767 \mathrm{~km}\)
Altitude @ apogee = 6,767-6,378.14 = 388.9 km
```


## PROBLEM 4.8

A satellite is launched into Earth orbit where its launch vehicle burns out at an altitude of 250 km . At burnout the satellite's velocity is $7,900 \mathrm{~m} / \mathrm{s}$ with the zenith angle equal to 89 degrees. Calculate the satellite's altitude at perigee and apogee.

## SOLUTION,

Given: $r 1=(6,378.14+250) \times 1,000=6,628,140 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{v} 1 & =7,900 \mathrm{~m} / \mathrm{s} \\
\gamma_{1} & =89^{\circ}
\end{aligned}
$$

Equation (4.26),
$(R p / r 1)_{1,2}=\left(-C \pm \operatorname{SQRT}\left[C^{2}-4 \times(1-C) \times-\sin ^{2} \gamma_{1}\right]\right) /(2 \times(1-C))$
where $C=2 \times G M /\left(r 1 \times v 1^{2}\right)$

$$
\begin{aligned}
& C=2 \times 3.986005 \times 10^{14} /\left(6,628,140 \times 7,900^{2}\right) \\
& C=1.927179
\end{aligned}
$$

$(R p / r 1)_{1,2}=\left(-1.927179 \pm \operatorname{SQRT}\left[1.927179^{2}-4 \times-0.927179 \times-\sin ^{2}(89)\right]\right) /(2 \times-0.927179)$
$(R p / r 1)_{1,2}=0.996019$ and 1.082521
Perigee Radius, $\mathrm{Rp}=\mathrm{Rp}_{1}=\mathrm{r} 1 \times(\mathrm{Rp} / \mathrm{r} 1)_{1}$
$R p=6,628,140 \times 0.996019$
$R \mathrm{R}=6,601,750 \mathrm{~m}$
Altitude @ perigee $=6,601,750 / 1,000-6,378.14=223.6 \mathrm{~km}$
Apogee Radius, $R a=R p_{2}=r 1 \times(R p / r 1)_{2}$
$R a=6,628,140 \times 1.082521$
$\mathrm{Ra}=7,175,100 \mathrm{~m}$
Altitude @ agogee $=7,175,100 / 1,000-6,378.14=797.0 \mathrm{~km}$

## PROBLEM 4.9

Calculate the eccentricity of the orbit for the satellite in problem 4.8.

## SOLUTION,

Given: $r 1=6,628,140 \mathrm{~m}$
$\mathrm{v} 1=7,900 \mathrm{~m} / \mathrm{s}$
$\gamma_{1}=89^{\circ}$
Equation (4.27),

```
    e = SQRT[ (r1 < v12 / GM - 1)2 }\times\mp@subsup{\mp@code{sin}}{}{2}\mp@subsup{\gamma}{1}{}+\mp@subsup{\operatorname{cos}}{}{2}\mp@subsup{\gamma}{1}{}
    e = SQRT[ (6,628,140 * 7,900 2 / 3.986005\times1014 - 1)2 }\times\mp@subsup{\mp@code{Sin}}{}{2}(89)+\mp@subsup{\operatorname{cos}}{}{2}(89)
    e = 0.0416170
```


## PROBLEM 4.10

Calculate the angle $\theta$ from perigee point to launch point for the satellite in problem 4.8.

## SOLUTION,

Given: $\quad r 1=6,628,140 \mathrm{~m}$

$$
\mathrm{v} 1=7,900 \mathrm{~m} / \mathrm{s}
$$

$$
\gamma_{1}=89^{\circ}
$$

Equation (4.28),

```
tan v=(r1 < v12 / GM) }\times\operatorname{sin}\mp@subsup{\gamma}{1}{}\times\operatorname{cos}\mp@subsup{\gamma}{1}{}/[(r1\timesv\mp@subsup{1}{}{2}/GM)\times\mp@subsup{\operatorname{sin}}{}{2}\mp@subsup{\gamma}{1}{}-1
tan}v=(6,628,140\times7,90\mp@subsup{0}{}{2}/3.986005\times1\mp@subsup{0}{}{14})\times\operatorname{sin}(89)\times\operatorname{cos}(89
```



```
tan v = 0.48329
```


## PROBLEM 4.11

Calculate the semi-major axis of the orbit for the satellite in problem 4.8.

## SOLUTION,

Given: $r 1=6,628,140 \mathrm{~m}$ $\mathrm{v} 1=7,900 \mathrm{~m} / \mathrm{s}$

Equation (4.32),
$a=1 /\left(2 / r 1-v 1^{2} / G M\right)$
$\left.a=1 /\left(2 / 6,628,140-7,900^{2} / 3.986005 \times 10^{14}\right)\right)$
$a=6,888,430 \mathrm{~m}$

## PROBLEM 4.12

For the satellite in problem 4.8, burnout occurs 2000-10-20, 15:00 UT. The geocentric coordinates at burnout are $32^{\circ} \mathrm{N}$ latitude, $60^{\circ} \mathrm{W}$ longitude, and the azimuth heading is $86^{\circ}$. Calculate the orbit's inclination, argument of perigee, and longitude of ascending node.

## SOLUTION,

Given: $\beta=86^{\circ}$
$\delta=32^{\circ}$
$\lambda_{2}=-60^{\circ}$
From problem 4.10,
$v=25.794^{\circ}$
Equation (4.33),
$\cos (i)=\cos (\delta) \times \sin (\beta)$
$\cos (i)=\cos (32) \times \sin (86)$
$\mathrm{i}=32.223^{\circ}$
Equations (4.34) and (4.36),
$\tan (\ell)=\tan (\delta) / \cos (\beta)$
$\tan (\ell)=\tan (32) / \cos (86)$
$\ell=83.630^{\circ}$
$\omega=\ell-v$
$\omega=83.630-25.794$
$\omega=57.836^{\circ}$
Equations (4.35) and (4.37),

```
\(\tan (\Delta \lambda)=\sin (\delta) \times \tan (\beta)\)
\(\tan (\Delta \lambda)=\sin (32) \times \tan (86)\)
\(\Delta \lambda=82.483^{\circ}\)
\(\lambda_{1}=\lambda_{2}-\Delta \lambda\)
\(\lambda_{1}=-60-82.483\)
\(\lambda_{1}=-142.483^{\circ}\)
\(\Omega=\) Sidereal time at -142.483 longitude, \(2000-10-20,15: 00\) UT
\(\Omega=7^{h} 27^{\prime} 34 "=111.892^{\circ}\)
```


## PROBLEM 4.13

A satellite is in an orbit with a semi-major axis of $7,500 \mathrm{~km}$ and an eccentricity of 0.1. Calculate the time it takes to move from a position 30 degrees past perigee to 90 degrees past perigee.

## SOLUTION,

```
Given: \(a=7,500 \times 1,000=7,500,000 \mathrm{~m}\)
e \(=0.1\)
\(\mathrm{t}_{0}=0\)
\(v_{0}=30 \mathrm{deg} \times \pi / 180=0.52360\) radians
\(v=90 \mathrm{deg} \times \pi / 180=1.57080\) radians
```

Equation (4.40),

```
cos E = (e + cos v) / (1 + e cos v)
Eo = arccos[(0.1 + cos(0.52360)) / (1 + 0.1 x cos(0.52360))]
Eo = 0.47557 radians
E = arccos[(0.1 + cos(1.57080)) / (1 + 0.1 x cos(1.57080))]
E = 1.47063 radians
```

Equation (4.41),

```
M = E - e x sin E
Mo = 0.47557-0.1 x sin(0.47557)
Mo = 0.42978 radians
M = 1.47063 - 0.1 x sin(1.47063)
M = 1.37113 radians
```

Equation (4.39),

```
n = SQRT[ GM / a3 ]
n = SQRT[ 3.986005\times1014 / 7,500,0003 ]
n = 0.00097202 rad/s
```

Equation (4.38),

```
M - Mo = n x ( t - to)
t = to + (M - Mo) / n
t = 0 + (1.37113 - 0.42978) / 0.00097202
t = 968.4 s
```


## PROBLEM 4.14

The satellite in problem 4.13 has a true anomaly of 90 degrees. What will be the satellite's position, i.e. it's true anomaly, 20 minutes later?

## SOLUTION,

Given: $a=7,500,000 \mathrm{~m}$
$\mathrm{e}=0.1$
$\mathrm{t}_{0}=0$
$\mathrm{t}=20 \times 60=1,200 \mathrm{~s}$
$v_{0}=90 \times \pi / 180=1.57080 \mathrm{rad}$
From problem 4.13,

$$
\begin{aligned}
& M o=1.37113 \mathrm{rad} \\
& \mathrm{n}=0.00097202 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Equation (4.38),

$$
M-M o=n \times\left(t-t_{0}\right)
$$

```
M = Mo + n x (t - to)
M = 1.37113 + 0.00097202 \times (1,200-0)
M = 2.53755
```

METHOD \#1, Low Accuracy:
Equation (4.42),

```
v ~ M + 2 x e x sin M + 1.25 < e}\mp@subsup{e}{}{2}\times\operatorname{sin}2
v~2.53755 + 2 < 0.1 }\times\operatorname{sin}(2.53755) + 1.25 \times 0.12 \times sin(2 < 2.53755
v ~ 2.63946 = 151.2 degrees
```

METHOD \#2, High Accuracy:
Equation (4.41),
$\mathrm{M}=\mathrm{E}-\mathrm{e} \times \sin \mathrm{E}$
$2.53755=E-0.1 \times \sin E$
By iteration, E $=2.58996$ radians

Equation (4.40),
$\cos E=(e+\cos v) /(1+e \cos v)$
Rearranging variables gives,
$\cos v=(\cos E-e) /(1-e \cos E)$
$v=\arccos [(\cos (2.58996)-0.1) /(1-0.1 \times \cos (2.58996)]$
$v=2.64034=151.3$ degrees

## PROBLEM 4.15

For the satellite in problems 4.13 and 4.14, calculate the length of its position vector, its flight-path angle, and its velocity when the satellite's true anomaly is 225 degrees.

## SOLUTION,

Given: $a=7,500,000 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{e}=0.1 \\
& \mathrm{v}=225 \text { degrees }
\end{aligned}
$$

Equations (4.43) and (4.44),

```
    \(r=a \times\left(1-e^{2}\right) /(1+e \times \cos v)\)
    \(r=7,500,000 \times\left(1-0.1^{2}\right) /(1+0.1 \times \cos (225))\)
    \(r=7,989,977 \mathrm{~m}\)
    \(\phi=\arctan [\mathrm{e} \times \sin v /(1+\mathrm{e} \times \cos v)]\)
    \(\phi=\arctan [0.1 \times \sin (225) /(1+0.1 \times \cos (225))]\)
    \(\phi=-4.351\) degrees
```

Equation (4.45),

```
v = SQRT[ GM x (2 / r - 1 / a)]
v = SQRT[ 3.986005\times1014 \times (2 / 7,989,977 - 1 / 7,500,000)]
v = 6,828 m/s
```


## PROBLEM 4.16

Calculate the perturbations in longitude of the ascending node and argument of perigee caused by the Moon and Sun for the International Space Station orbiting at an altitude of 400 km , an inclination of 51.6 degrees, and with an orbital period of 92.6 minutes.

## SOLUTION,

Given: $\quad i=51.6$ degrees
$n=1436 / 92.6=15.5$ revolutions/day
Equations (4.46) through (4.49),

```
\Omega
\Omega
\Omega
\Omega
\Omega
\Omega
\omega}\mathrm{ Moon }=0.00169\times(4-5\times\mp@subsup{sin}{}{2}\mathrm{ i) / n
\omega}\mathrm{ Moon }=0.00169\times(4-5\times \mp@subsup{\operatorname{sin}}{}{2}51.6)/15.
\omega}\mathrm{ Moon = 0.000101 deg/day
\omega
\omega
\omegasun = 0.000046 deg/day
```


## PROBLEM 4.17

A satellite is in an orbit with a semi-major axis of $7,500 \mathrm{~km}$, an inclination of 28.5 degrees, and an eccentricity of 0.1 . Calculate the $J_{2}$ perturbations in longitude of the ascending node and argument of perigee.

## SOLUTION,

Given: $a=7,500 \mathrm{~km}$

$$
\begin{aligned}
& \mathrm{i}=28.5 \text { degrees } \\
& \mathrm{e}=0.1
\end{aligned}
$$

Equations (4.50) and (4.51),

```
\Omega
```



```
\Omega J2 = -5.067 deg/day
\omegaJ2}=1.03237\times1\mp@subsup{0}{}{14}\times\mp@subsup{a}{}{-7/2}\times(4-5\times\mp@subsup{\operatorname{sin}}{}{2}i)\times(1-\mp@subsup{e}{}{2}\mp@subsup{)}{}{-2
```



```
\omega J2 = 8.250 deg/day
```


## PROBLEM 4.18

A satellite is in a circular Earth orbit at an altitude of 400 km . The satellite has a cylindrical shape 2 m in diameter by 4 m long and has a mass of $1,000 \mathrm{~kg}$. The satellite is traveling with its long axis perpendicular to the velocity vector and it's drag coefficient is 2.67 . Calculate the perturbations due to atmospheric drag and estimate the satellite's lifetime.

## SOLUTION,

Given: $a=(6,378.14+400) \times 1,000=6,778,140 \mathrm{~m}$

$$
\begin{aligned}
& A=2 \times 4=8 \mathrm{~m}^{2} \\
& m=1,000 \mathrm{~kg} \\
& C_{D}=2.67
\end{aligned}
$$

From Atmosphere Properties,

$$
\begin{aligned}
& \rho=2.62 \times 10^{-12} \mathrm{~kg} / \mathrm{m}^{3} \\
& H=58.2 \mathrm{~km}
\end{aligned}
$$

Equation (4.6),

```
V = SQRT[ GM / a ]
V = SQRT[ 3.986005\times1014 / 6,778,140 ]
V = 7,669 m/s
```

Equations (4.53) through (4.55),

```
\(\Delta \mathrm{a}_{\mathrm{rev}}=\left(-2 \times \pi \times C_{D} \times A \times \rho \times \mathrm{a}^{2}\right) / \mathrm{m}\)
\(\Delta \mathrm{a}_{\text {rev }}=\left(-2 \times \pi \times 2.67 \times 8 \times 2.62 \times 10^{-12} \times 6,778,140^{2}\right) / 1,000\)
\(\Delta \mathrm{a}_{\mathrm{rev}}=-16.2 \mathrm{~m}\)
\(\Delta P_{\text {rev }}=\left(-6 \times \pi^{2} \times C_{D} \times A \times \rho \times a^{2}\right) /(m \times V)\)
\(\Delta\) Prev \(=\left(-6 \times \pi^{2} \times 2.67 \times 8 \times 2.62 \times 10^{-12} \times 6,778,140^{2}\right) /(1,000 \times 7,669)\)
\(\Delta \mathrm{P}_{\text {rev }}=-0.0199 \mathrm{~s}\)
\(\Delta \mathrm{V}_{\mathrm{rev}}=\left(\pi \times \mathrm{C}_{\mathrm{D}} \times \mathrm{A} \times \rho \times \mathrm{a} \times \mathrm{V}\right) / \mathrm{m}\)
\(\Delta V_{\text {rev }}=\left(\pi \times 2.67 \times 8 \times 2.62 \times 10^{-12} \times 6,778,140 \times 7,669\right) / 1,000\)
\(\Delta \mathrm{V}_{\text {rev }}=0.00914 \mathrm{~m} / \mathrm{s}\)
```

Equation (4.56),
$\mathrm{L} \sim-\mathrm{H} / \Delta \mathrm{a}_{\mathrm{rev}}$
L~-(58.2 $\times 1,000$ ) / -16.2
L ~ 3,600 revolutions

## PROBLEM 4.19

A spacecraft is in a circular parking orbit with an altitude of 200 km . Calculate the velocity change required to perform a Hohmann transfer to a circular orbit at geosynchronous altitude.

## SOLUTION,

Given: $\quad r_{A}=(6,378.14+200) \times 1,000=6,578,140 \mathrm{~m}$
From problem 4.3,

$$
r_{B}=42,164,170 \mathrm{~m}
$$

Equations (4.58) through (4.65),

```
\(a_{t x}=\left(r_{A}+r_{B}\right) / 2\)
\(a_{t x}=(6,578,140+42,164,170) / 2\)
\(a_{t x}=24,371,155 \mathrm{~m}\)
\(\mathrm{Vi}_{\mathrm{A}}=\operatorname{SQRT}\left[\mathrm{GM} / \mathrm{r}_{\mathrm{A}}\right]\)
\(V i_{A}=\operatorname{SQRT}\left[3.986005 \times 10^{14} / 6,578,140\right]\)
\(\mathrm{Vi}_{\mathrm{A}}=7,784 \mathrm{~m} / \mathrm{s}\)
\(V f_{B}=S Q R T\left[G M / r_{B}\right]\)
\(\mathrm{Vf} \mathrm{f}_{\mathrm{B}}=\operatorname{SQRT}\left[3.986005 \times 10^{14} / 42,164,170\right.\) ]
\(V f_{B}=3,075 \mathrm{~m} / \mathrm{s}\)
\(V \mathrm{tx}_{\mathrm{A}}=\operatorname{SQRT}\left[\mathrm{GM} \times\left(2 / \mathrm{r}_{\mathrm{A}}-1 / \mathrm{a}_{\mathrm{tx}}\right)\right]\)
\(V \mathrm{tx}_{\mathrm{A}}=\operatorname{SQRT}\left[3.986005 \times 10^{14} \times(2 / 6,578,140-1 / 24,371,155)\right]\)
\(V \mathrm{Vx}_{\mathrm{A}}=10,239 \mathrm{~m} / \mathrm{s}\)
Vtx \({ }_{B}=\operatorname{SQRT}\left[G M \times\left(2 / r_{B}-1 / a_{t x}\right)\right]\)
\(\operatorname{Vtx} \mathrm{B}_{\mathrm{B}}=\operatorname{SQRT}\left[3.986005 \times 10^{14} \times(2 / 42,164,170-1 / 24,371,155)\right]\)
\(\mathrm{Vtx}_{\mathrm{B}}=1,597 \mathrm{~m} / \mathrm{s}\)
\(\Delta \mathrm{V}_{\mathrm{A}}=\mathrm{Vtx} \mathrm{A}_{\mathrm{A}}-\mathrm{Vi}_{\mathrm{A}}\)
\(\Delta V_{A}=10,239-7,784\)
\(\Delta V_{A}=2,455 \mathrm{~m} / \mathrm{s}\)
\(\Delta V_{B}=V f_{B}-V t x_{B}\)
\(\Delta V_{B}=3,075-1,597\)
\(\Delta V_{B}=1,478 \mathrm{~m} / \mathrm{s}\)
```

```
\DeltaV
\DeltaV
\DeltaV
```


## PROBLEM 4.20

A satellite is in a circular parking orbit with an altitude of 200 km . Using a one-tangent burn, it is to be transferred to geosynchronous altitude using a transfer ellipse with a semi-major axis of $30,000 \mathrm{~km}$. Calculate the total required velocity change and the time required to complete the transfer.

## SOLUTION,

Given: $\quad r_{A}=(6,378.14+200) \times 1,000=6,578,140 \mathrm{~m}$

$$
r_{B}=42,164,170 \mathrm{~m}
$$

$$
a_{t x}=30,000 \times 1,000=30,000,000 \mathrm{~m}
$$

Equations (4.66) through (4.68),

```
\(\mathrm{e}=1-\mathrm{r}_{\mathrm{A}} / \mathrm{a}_{\mathrm{tx}}\)
\(e=1-6,578,140 / 30,000,000\)
e \(=0.780729\)
\(v=\arccos \left[\left(a_{t x} \times\left(1-e^{2}\right) / r_{B}-1\right) / e\right]\)
\(v=\arccos \left[\left(30,000,000 \times\left(1-0.780729^{2}\right) / 42,164,170-1\right) / 0.780729\right]\)
\(v=157.670\) degrees
\(\phi=\arctan [\mathrm{e} \times \sin \mathrm{v} /(1+\mathrm{e} \times \cos \mathrm{v})]\)
\(\phi=\arctan [0.780729 \times \sin (157.670) /(1+0.780729 \times \cos (157.670))]\)
\(\phi=46.876\) degrees
```

Equations (4.59) through (4.63),

```
Vi
ViA}= SQRT[ 3.986005\times1014 / 6,578,140 ]
Vi
Vf
Vf}\mp@subsup{B}{B}{}= SQRT[ 3.986005\times1014 / 42,164,170 ]
Vf}\mp@subsup{\textrm{B}}{}{\prime}=3,075\textrm{m}/\textrm{s
Vtx
VtxA}= SQRT[ 3.986005\times1014 x (2 / 6,578,140 - 1 / 30,000,000)] 
VtxA = 10,388 m/s
Vtx }=\mathrm{ SQRT[ GM x (2 / r m - 1 / atx )]
Vtx}\mp@subsup{B}{B}{}=\mathrm{ SQRT[ 3.986005*1014 }\times(2/42,164,170-1 / 30,000,000)] [
Vtx}\mp@subsup{B}{B}{}=2,371 m/
\DeltaVA}=Vt\mp@subsup{x}{A}{}-V\mp@subsup{i}{A}{
\DeltaV
\DeltaV
```

Equation (4.69),


```
\DeltaV
\DeltaV
```

Equation (4.65),

$$
\begin{aligned}
& \Delta V_{T}=\Delta V_{A}+\Delta V_{B} \\
& \Delta V_{T}=2,604+2,260 \\
& \Delta V_{T}=4,864 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

```
E = arccos[(e + cos v) / (1 + e cos v)]
E = arccos[(0.780729 + cos(157.670)) / (1 + 0.780729 x cos(157.670))]
E = 2.11688 radians
TOF = (E - e x sin E) x SQRT[ atx % GM ]
TOF = (2.11688-0.780729 x sin(2.11688)) }\times\operatorname{SQRT}[30,000,00\mp@subsup{0}{}{3}/3.986005\times1\mp@subsup{0}{}{14}
TOF = 11,931 s = 3.314 hours
```


## PROBLEM 4.21

Calculate the velocity change required to transfer a satellite from a circular 600 km orbit with an inclination of 28 degrees to an orbit of equal size with an inclination of 20 degrees.

## SOLUTION,

Given: $\quad r=(6,378.14+600) \times 1,000=6,978,140 \mathrm{~m}$
$\theta=28-20=8$ degrees
Equation (4.6),
Vi = SQRT[ GM / r ]
Vi $=$ SQRT $\left[3.986005 \times 10^{14} / 6,978,140\right.$ ]
$\mathrm{Vi}=7,558 \mathrm{~m} / \mathrm{s}$
Equation (4.73),

```
\DeltaV = 2 x Vi }\times\operatorname{sin}(0/2
```

$\Delta V=2 \times 7,558 \times \sin (8 / 2)$
$\Delta V=1,054 \mathrm{~m} / \mathrm{s}$

## PROBLEM 4.22

A satellite is in a parking orbit with an altitude of 200 km and an inclination of 28 degrees. Calculate the total velocity change required to transfer the satellite to a zero-inclination geosynchronous orbit using a Hohmann transfer with a combined plane change at apogee.

Given: $\quad r_{A}=(6,378.14+200) \times 1,000=6,578,140 \mathrm{~m}$
$r_{B}=42,164,170 \mathrm{~m}$
$\theta=28$ degrees
From problem 4.19,

$$
\begin{aligned}
& V f_{B}=3,075 \mathrm{~m} / \mathrm{s} \\
& V t x_{B}=1,597 \mathrm{~m} / \mathrm{s} \\
& \Delta V_{A}=2,455 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Equation (4.74),

$$
\begin{aligned}
& \Delta V_{B}=\operatorname{SQRT}\left[V \operatorname{tx}_{B}{ }^{2}+V f_{B}^{2}-2 \times V \mathrm{Vtx}_{\mathrm{B}} \times V f_{\mathrm{B}} \times \cos \theta\right] \\
& \Delta \mathrm{V}_{\mathrm{B}}=\operatorname{SQRT}\left[1,597^{2}+3,075^{2}-2 \times 1,597 \times 3,075 \times \cos (28)\right] \\
& \Delta V_{B}=1,826 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Equation (4.65),

$$
\begin{aligned}
& \Delta V_{T}=\Delta V_{A}+\Delta V_{B} \\
& \Delta V_{T}=2,455+1,826 \\
& \Delta V_{T}=4,281 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## PROBLEM 4.23

change the inclination to 32 degrees and the longitude of the ascending node to 80 degrees.

## SOLUTION,

```
Given: \(i_{i}=30\) degrees
\(\Omega \mathrm{i}=75\) degrees
\(\mathrm{i}_{\mathrm{f}}=32\) degrees
\(\Omega f=80\) degrees
```

Equation (4.75),

```
a1 = sin(in})\operatorname{cos}(\Omegai)=\operatorname{sin}(30)\operatorname{cos}(75)=0.12941
a2 = sin(i}\mp@subsup{\textrm{i}}{\textrm{i}}{})\operatorname{sin}(\Omega\textrm{i})=\operatorname{sin}(30)\operatorname{sin}(75)=0.48296
a3 = cos(ii) = cos(30) = 0.866025
b1 = sin(if)}\operatorname{cos}(\Omegaf)=\operatorname{sin}(32)\operatorname{cos}(80)=0.092019
b2 = sin(if) sin(\Omegaf) = sin(32)}\operatorname{sin}(80)=0.52186
b3 = cos(if})=\operatorname{cos}(32)=0.84804
0= arccos(a1 x b1 + a2 x b2 + a3 x b3)
0= arccos(0.129410 * 0.0920195 + 0.482963 \times 0.521869 + 0.866025 \times 0.848048)
0 = 3.259 degrees
```


## PROBLEM 4.24

Calculate the latitude and longitude of the intersection nodes between the initial and final orbits for the spacecraft in problem 4.23.

## SOLUTION,

From problem 4.21,

$$
\begin{aligned}
& \text { a1 }=0.129410 \\
& \text { a2 }=0.482963 \\
& \text { a3 }=0.866025 \\
& \text { b1 }=0.0920195 \\
& \text { b2 }=0.521869 \\
& \text { b3 }=0.848048
\end{aligned}
$$

Equations (4.76) and (4.77),

```
c1 = a2 x b3 - a3 x b2 = 0.482963 x 0.848048-0.866025 x 0.521869 = -0.0423757
c2 = a3 x b1 - a1 x b3 = 0.866025 x 0.0920195 - 0.129410 x 0.848048 = -0.0300543
c3 = a1 x b2 - a2 x b1 = 0.129410 x 0.521869 - 0.482963 x 0.0920195 = 0.0230928
lat }\mp@subsup{1}{1}{}=\operatorname{arctan}(c3 / (c12 + c2 2 ) 1/2 )
lat }\mp@subsup{|}{}{\prime}=\operatorname{arctan}(0.0230928 / (-0.04237572 + -0.03005432 2) 1/2 )
lat}\mp@subsup{}{1}{}=23.965 degrees
long1 = arctan(c2 / c1) + 90
long1 = arctan(-0.0300543 / -0.0423757) + 90
long1 = 125.346 degrees
lat }\mp@subsup{2}{2}{=-23.965 degrees
long2 = 125.346 + 180 = 305.346 degrees
```


## PROBLEM 4.25

Calculate the escape velocity of a spacecraft launched from an Earth orbit with an altitude of 200 km .

## SOLUTION,

Given: $\quad r=(6,378.14+200) \times 1,000=6,578,140 \mathrm{~m}$
Equation (4.78),

```
V esc = SQRT[ 2 x GM / r ]
V esc}= SQRT[ 2 < 3.986005 *1014 / 6,578,140 ]
V esc }=11,009 m/
```


## PROBLEM 4.26

A space probe is approaching Mars on a hyperbolic flyby trajectory. When at a distance of $100,000 \mathrm{~km}$, its velocity relative to Mars is $5,140.0 \mathrm{~m} / \mathrm{s}$ and its flight path angle is -85.300 degrees. Calculate the probe's eccentricity, semi-major axis, turning angle, angle $\eta$, true anomaly, impact parameter, periapsis radius, and parameter p .

## SOLUTION,

From Basics Constants,
GM of Mars $=4.282831 \times 10^{13} \mathrm{~m}^{3} / \mathrm{s}^{2}$
Given: $\quad r=100,000 \times 1,000=100,000,000 \mathrm{~m}$

$$
v=5,140.0 \mathrm{~m} / \mathrm{s}
$$

$$
\phi=-85.300^{\circ}
$$

Equations (4.30) and (4.32),
$\mathrm{e}=\operatorname{SQRT}\left[\left(\mathrm{r} \times \mathrm{v}^{2} / \mathrm{GM}-1\right)^{2} \times \cos ^{2} \phi+\sin ^{2} \phi\right]$
$e=\operatorname{SQRT}\left[\left(100,000,000 \times 5,140^{2} / 4.282831 \times 10^{13}-1\right)^{2} \times \cos ^{2}(-85.3)+\sin ^{2}(-85.3)\right]$
$\mathrm{e}=5.0715$
$\mathrm{a}=1 /\left(2 / \mathrm{r}-\mathrm{v}^{2} / \mathrm{GM}\right)$
$a=1 /\left(2 / 100,000,000-5,140^{2} / 4.282831 \times 10^{13}\right)$
a $=-1,675,400 \mathrm{~m}$
Equations (4.80) through (4.85),
$\sin (\delta / 2)=1 / e$
$\delta=2 \times \arcsin (1 / 5.0715)$
$\delta=22.744^{\circ}$
$\cos \eta=-1 / e$
$\eta=\arccos (-1 / 5.0715)$
$\eta=101.37^{\circ}$
$v=\arccos \left[\left(a \times\left(1-e^{2}\right)-r\right) /(e \times r)\right]$
$v=\arccos \left[\left(-1,675,400 \times\left(1-5.0715^{2}\right)-100,000,000\right) /(5.0715 \times 100,000,000)\right]$
$v=-96.633^{\circ}$
b $=-\mathrm{a} / \tan (8 / 2)$
$b=1,675.4 / \tan (22.744 / 2)$
b $=8,330.0 \mathrm{~km}$
$r_{0}=a \times(1-e)$
$r_{0}=-1,675.4 \times(1-5.0715)$
$r_{0}=6,821.4 \mathrm{~km}$
$p=a \times\left(1-e^{2}\right)$
$p=-1,675.4 \times\left(1-5.0715^{2}\right)$
$\mathrm{p}=41,416 \mathrm{~km}$

PROBLEM 4.27
The space probe in problem 4.26 has moved to a true anomaly of 75 degrees.

Calculate the radius vector, flight path angle, and velocity.

## SOLUTION ,

$$
\begin{aligned}
\text { Given: } & \mathrm{a}=-1,675,400 \mathrm{~m} \\
& \mathrm{e}=5.0715 \\
& \mathrm{v}=75^{\circ}
\end{aligned}
$$

Equations (4.43) through (4.45),

```
r=a x (1- e
r = -1,675,400 x (1 - 5.07152) / (1 + 5.0715 x cos(75))
r = 17,909,000 m
\phi = arctan[ e x sin v / (1 + e x cos v)]
\phi = arctan[ 5.0715 x sin(75) / (1 + 5.0715 x cos(75))]
\phi = 64.729
v = SQRT[ GM x (2 / r - 1 / a)]
v = SQRT[ 4.282831\times10013 x (2 / 17,909,000 - 1 / -1,675,400)]
v = 5,508.7 m/s
```

PROBLEM 4.28
A spacecraft is launched from Earth on a hyperbolic trajectory with a semi-major axis of $-36,000 \mathrm{~km}$ and an eccentricity of 1.1823. How long does it take to move from a true anomaly of 15 degrees to a true anomaly of 120 degrees?

## SOLUTION,

Given: $a=-36,000 \times 1,000=-36,000,000 \mathrm{~m}$
$\mathrm{e}=1.1823$
$v_{0}=15^{\circ}$
$v=120^{\circ}$
Equation (4.87),

```
cosh F = (e + cos v) / (1 + e cos v)
Fo = arccosh[(1.1823 + cos(15)) / (1 + 1.1823 x cos(15))]
Fo = 0.07614
F = arccosh[(1.1823 + cos(120)) / (1 + 1.1823 x cos(120))]
F = 1.10023
```

Equation (4.86),
$\mathrm{t}-\mathrm{t}_{0}=\operatorname{SQRT}\left[(-\mathrm{a})^{3} / \mathrm{GM}\right] \times[(\mathrm{e} \times \sinh \mathrm{F}-\mathrm{F})-(\mathrm{e} \times \sinh \mathrm{Fo}-\mathrm{Fo})]$
$\mathrm{t}-\mathrm{t}_{0}=\operatorname{SQRT}\left[(36,000,000)^{3} / 3.986005 \times 10^{14}\right] \times[(1.1823 \times \sinh (1.10023)-1.10023)$

- (1.1823 x $\sinh (0.07614)-0.07614)]$
$\mathrm{t}-\mathrm{t}_{0}=5,035 \mathrm{~s}=1.399$ hours

PROBLEM 4.29
A spacecraft launched from Earth has a burnout velocity of $11,500 \mathrm{~m} / \mathrm{s}$ at an altitude of 200 km . What is the hyperbolic excess velocity?

## SOLUTION,

Given: $\quad V_{b o}=11,500 \mathrm{~m} / \mathrm{s}$
From problem 4.25,

$$
V_{\mathrm{esc}}=11,009 \mathrm{~m} / \mathrm{s}
$$

Equation (4.88),

$$
V_{\infty}{ }^{2}=V_{b o}{ }^{2}-V_{e s c}{ }^{2}
$$

```
V\infty
V\infty
```

PROBLEM 4.30
Calculate the radius of Earth's sphere of influence.

## SOLUTION,

From Basics Constants,
$D_{\text {sp }}=149,597,870 \mathrm{~km}$
$M_{p}=5.9737 \times 10^{24} \mathrm{~kg}$
$M_{S}=1.9891 \times 10^{30} \mathrm{~kg}$
Equation (4.89),

```
\(R_{\text {Earth }}=D_{\text {sp }} \times\left(M_{p} / M_{S}\right)^{0.4}\)
\(R_{\text {Earth }}=149,597,870 \times\left(5.9737 \times 10^{24} / 1.9891 \times 10^{30}\right)^{0.4}\)
\(R_{\text {Earth }}=925,000 \mathrm{~km}\)
```


## PROBLEM 5.1

Using a one-tangent burn, calculate the change in true anomaly and the
time-of-flight for a transfer from Earth to Mars. The radius vector of Earth at departure is 1.000 AU and that of Mars at arrival is 1.524 AU . The semi-major axis of the transfer orbit is 1.300 AU .

## SOLUTION,

```
Given: \(\quad r_{A}=1.000 \mathrm{AU}\)
    \(r_{B}=1.524 \mathrm{AU}\)
    \(a_{t x}=1.300 \mathrm{AU} \times 149.597870 \times 10^{9} \mathrm{~m} / \mathrm{AU}=194.48 \times 10^{9} \mathrm{~m}\)
```

From Basics Constants,
GM of Sun $=1.327124 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}$
Equations (4.66) and (4.67),

```
e = 1 - rat / atx
e = 1 - 1.0 / 1.3
e = 0.230769
v = arccos[(atx x (1- e
v = arccos[(1.3 x (1-0.2307692) / 1.524-1) / 0.230769 ]
v = 146.488 degrees
```

Equations (4.70) and (4.71),

```
E = arccos[(e + cos v) / (1 + e cos v)]
E = arccos[(0.230769 + cos(146.488)) / (1 + 0.230769 x cos(146.488))]
E = 2.41383 radians
TOF = (E - e x sin E) x SQRT[ atx / GM ]
TOF = (2.41383-0.230769 x sin(2.41383)) x SQRT[ (194.48\times109) 3 / 1.327124\times1020 ]
TOF = 16,827,800 s = 194.77 days
```


## PROBLEM 5.2

For the transfer orbit in problem 5.1, calculate the departure phase angle, given that the angular velocity of Mars is 0.5240 degrees/day.

## SOLUTION,

Given: $\quad v_{2}-v_{1}=146.488^{\circ}$

$$
\mathrm{t}_{2}-\mathrm{t}_{1}=194.77 \text { days }
$$

$$
\omega_{\mathrm{t}}=0.5240^{\circ} / \text { day }
$$

Equation (5.1),

```
\mp@subsup{\gamma}{1}{}}=(\mp@subsup{v}{2}{}-\mp@subsup{v}{1}{})-\mp@subsup{\omega}{t}{}\times(\mp@subsup{t}{2}{}-\mp@subsup{t}{1}{}
\gamma
\gamma
```


## PROBLEM 5.3

A flight to Mars is launched on 2020-7-20, 0:00 UT. The planned time of flight is 207 days. Earth's postion vector at departure is 0.473265 X - 0.899215 Y AU. Mars' postion vector at intercept is $0.066842 \mathrm{X}+1.561256 \mathrm{Y}+0.030948 \mathrm{Z}$ AU . Calculate the parameter and semi-major axis of the transfer orbit.

## SOLUTION,

Given: $\mathrm{t}=207$ days
$\mathbf{r}_{1}=0.473265 \mathrm{X}-0.899215 \mathrm{Y} \mathrm{AU}$
$r_{2}=0.066842 X+1.561256 Y+0.030948 Z A U$
$\mathrm{GM}=1.327124 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}$
$=1.327124 \times 10^{20} /\left(149.597870 \times 10^{9}\right)^{3}=3.964016 \times 10^{-14} \mathrm{AU}^{3} / \mathrm{s}^{2}$
From vector magnitude,

```
r
r
r}\mp@subsup{r}{2}{}=\operatorname{SQRT}[0.06684\mp@subsup{2}{}{2}+1.56125\mp@subsup{6}{}{2}+0.0309482 ] 
r}\mp@subsup{r}{2}{=1.562993 AU
```

From vector dot product,

```
\Deltav = arccos[ (0.473265 \times 0.066842 - 0.899215 x 1.561256) / (1.016153 × 1.562993) ]
\Deltav=149.7709670
```

Equations (5.9), (5.10) and (5.11),

```
k = r }\mp@subsup{1}{1}{*}\mp@subsup{r}{2}{}\times(1-\operatorname{cos}\Deltav
k = 1.016153 x 1.562993 x (1 - cos(149.770967))
k = 2.960511 AU
\ell = r r + + r 2
\ell=1.016153 + 1.562993
\ell = 2.579146 AU
m = r }\mp@subsup{1}{1}{}\times\mp@subsup{r}{2}{}\times(1+\operatorname{cos}\Deltav
m = 1.016153 x 1.562993 \times (1 + cos(149.770967))
m = 0.215969 AU
```

Equations (5.18) and (5.19),

```
\(\mathrm{p}_{\mathrm{i}}=\mathrm{k} /(\ell+\operatorname{SQRT}(2 \times m))\)
\(\mathrm{p}_{\mathrm{i}}=2.960511 /(2.579146+\operatorname{SQRT}(2 \times 0.215969))\)
\(\mathrm{p}_{\mathrm{i}}=0.914764 \mathrm{AU}\)
\(\mathrm{p}_{\mathrm{ii}}=\mathrm{k} /(\ell-\operatorname{SQRT}(2 \times \mathrm{m}))\)
\(\mathrm{p}_{\mathrm{ii}}=2.960511 /(2.579146-\operatorname{SQRT}(2 \times 0.215969))\)
\(\mathrm{p}_{\mathrm{ii}}=1.540388 \mathrm{AU}\)
```

Since $\Delta v<\pi, 0.914764<p<\infty$
Equation (5.12),
Select trial value, $\mathrm{p}=1.2 \mathrm{AU}$


```
a = 0.215969 * 2.960511 \times 1.2
    / [(2\times0.215969-2.5791462) < 1.2 2 + 2 * 2.960511 * 2.579146 * 1.2 - 2.9605112]
a = 1.270478 AU
```

Equations (5.5), (5.6) and (5.7),

```
f=1 - r2 / p x (1 - cos \Deltav)
f = 1 - 1.562993 / 1.2 x (1-cos(149.770967))
f}=-1.42787
g = r r }\times\mp@subsup{r}{2}{}\times\operatorname{sin}\Deltav/\operatorname{SQRT}[GM\timesp 
g = 1.016153 }\times1.562993\times\operatorname{sin}(149.770967) / SQRT[ 3.964016\times10-14 \times 1.2 ]
g = 3,666,240
\dot{f}=\operatorname{SQRT[ GM / p ] x tan(\Deltav/2) }\times[(1-\operatorname{cos}\Deltav)/p-1/r ( - 1/r r ]
f}=\operatorname{SQRT}[3.964016\times1\mp@subsup{0}{}{-14}/1.2]\times\operatorname{tan}(149.770967/2
    x[(1-\operatorname{cos(149.770967)) / 1.2-1/1.016153-1/1.562993 ]}
f}=-4.747601\times1\mp@subsup{0}{}{-8
```

Equation (5.13),

```
\DeltaE = arccos[ 1 - r_ / a x (1 - f) ]
\DeltaE = arccos[ 1 - 1.016153 / 1.270478 x (1 + 1.427875) ]
\DeltaE=2.798925 radians
```

Equation (5.16),

```
t = g + SQRT[ a / GM ] x (\DeltaE - sin \DeltaE)
t = 3,666,240 + SQRT[ 1.2704783 / 3.964016\times10-14 ] x (2.798925 - sin(2.798925))
t = 21,380,951 s = 247.4647 days
```

Select new trial value of $p$ and repeat above steps,

```
p = 1.300000 AU, a = 1.443005 AU, t = 178.9588 days
```

Equation (5.20),

```
p
p n+1 = 1.3 + (207-178.9588) x (1.3-1.2)/(178.9588-247.4647)
p
```

Recalculate using new value of $p$,
$\mathrm{p}=1.259067 \mathrm{AU}, \mathrm{a}=1.336197 \mathrm{AU}, \mathrm{t}=201.5624$ days
Perform additional iterations,

```
p = 1.249221 AU, a = 1.318624 AU, t = 207.9408 days
p = 1.250673 AU, a = 1.321039 AU, t = 206.9733 days
p = 1.250633 AU, a = 1.320971 AU, t = 206.9999 days <-- close enough
```


## PROBLEM 5.4

For the Mars transfer orbit in Problem 5.3, calculate the departure and intecept velocity vectors.

## SOLUTION,

Given: $\quad r_{1}=0.473265 X-0.899215 Y \mathrm{AU}$
$r_{2}=0.066842 X+1.561256 Y+0.030948 Z A U$
$r_{1}=1.016153 \mathrm{AU}$
$r_{2}=1.562993 \mathrm{AU}$
$\mathrm{p}=1.250633 \mathrm{AU}$
$\mathrm{a}=1.320971 \mathrm{AU}$
$\Delta v=149.770967^{\circ}$
Equations (5.5), (5.6) and (5.7),

```
f=1- r
f=1 - 1.562993 / 1.250633 x (1- cos(149.770967))
f = -1.329580
```

```
g = r r }\times\mp@subsup{r}{2}{}\times\operatorname{sin}\Deltav/\operatorname{SQRT[ GM * p ]
g=1.016153 \times 1.562993 }\times\operatorname{sin}(149.770967)/\operatorname{SQRT}[3.964016\times1\mp@subsup{0}{}{-14}\times1.250633 ]
g = 3,591,258
f}=\operatorname{SQRT[ GM / p ] x tan(\Deltav/2) x [(1 - cos \Deltav) / p - 1/r r - 1/r2 ]
f}=\operatorname{SQRT}[3.964016\times10-14 / 1.250633 ] × tan(149.770967/2)
    x [(1-\operatorname{cos(149.770967)) / 1.250633-1/1.016153-1/1.562993 ]}
f}=-8.795872\times1\mp@subsup{0}{}{-8
g}=1-\mp@subsup{r}{1}{}/p\times(1-\operatorname{cos}\Deltav
g}=1-1.016153 / 1.250633 x (1 - cos(149.770967)
g}=-0.51453
```

Equation (5.3),

```
v
v
    + [(1.561256 + 1.329580\times-0.899215)/ 3,591,258] Y
    + [(0.030948 + 1.329580 * 0) / 3,591,258] Z
v
\mp@subsup{v}{1}{}}=28996.2X + 15232.7Y + 1289.2Z m/s
```

Equation (5.4),

```
v
\mp@subsup{v}{\mathbf{2}}{\prime}}=[-8.795872\times1\mp@subsup{0}{}{-8}\times0.473265-0.514536\times0.000000193828] X X
    + [-8.795872\times1\mp@subsup{0}{}{-8}\times-0.899215-0.514536 \times 0.000000101824] Y
    +[-8.795872\times1\mp@subsup{0}{}{-8}\times0-0.514536\times0.000000000861759] Z
```



```
\mp@subsup{v}{2}{\prime}}=-21147.0X + 3994.5Y - 663.3Z m/s
```


## PROBLEM 5.5

For the Mars transfer orbit in Problems 5.3 and 5.4, calculate the orbital elements.

## SOLUTION,

Problem can be solved using either $\mathbf{r}_{\mathbf{1}} \& \mathbf{v}_{\mathbf{1}}$ or $\mathbf{r}_{\mathbf{2}} \& \mathbf{v}_{\mathbf{2}}$ - we will use $\mathbf{r}_{\mathbf{1}} \& \mathbf{v}_{\mathbf{1}}$.

```
Given: \(\quad r_{1}=(0.473265 X-0.899215 Y \mathrm{AU}) \times 149.597870 \times 10^{9} \mathrm{~m} / \mathrm{AU}\)
    \(=7.079944 \times 10^{10} \mathrm{X}-1.345206 \times 10^{11} \mathrm{Y} \mathrm{m}\)
    \(r_{1}=1.016153 \times 149.597870 \times 10^{9}=1.520144 \times 10^{11} \mathrm{~m}\)
    \(G M=1.327124 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}\)
```

From problem 5.4,

$$
\mathbf{v}_{1}=28996.2 \mathbf{X}+15232.7 \mathbf{Y}+1289.2 Z \mathrm{~m} / \mathrm{s}
$$

Also,

$$
v=\operatorname{SQRT}\left[28996.2^{2}+15232.7^{2}+1289.2^{2}\right]=32,779.2 \mathrm{~m} / \mathrm{s}
$$

Equations (5.21) and (5.22),

```
\(h=\left(r_{Y} v_{Z}-r_{Z} v_{Y}\right) X+\left(r_{Z} v_{X}-r_{X} v_{Z}\right) Y+\left(r_{X} v_{Y}-r_{Y} v_{X}\right) Z\)
\(h=\left(-1.345206 \times 10^{11} \times 1289.2-0 \times 15232.7\right) \mathbf{X}+\left(0 \times 28996.2-7.079944 \times 10^{10} \times 1289.2\right) \mathbf{Y}\)
    \(+\left(7.079944 \times 10^{10} \times 15232.7+1.345206 \times 10^{11} \times 28996.2\right) \mathrm{Z}\)
\(h=-1.73424 \times 10^{14} \mathbf{X}-9.12746 \times 10^{13} \mathbf{Y}+4.97905 \times 10^{15} Z\)
\(\mathbf{n}=-h_{Y} X+h_{X} Y\)
\(n=9.12746 \times 10^{13} \mathbf{X}-1.73424 \times 10^{14} \mathrm{Y}\)
```

Also,
$h=\operatorname{SQRT}\left[\left(-1.73424 \times 10^{14}\right)^{2}+\left(-9.12746 \times 10^{13}\right)^{2}+\left(4.97905 \times 10^{15}\right)^{2}\right]=4.98291 \times 10^{15}$

```
n= SQRT[ (9.12746\times1\mp@subsup{0}{}{13}\mp@subsup{)}{}{2}+(1.73424\times1\mp@subsup{0}{}{14}\mp@subsup{)}{}{2}]=1.95977\times1\mp@subsup{0}{}{14}
```

Equation (5.23),

```
e = [(v v -GM / r) < r - (r | v) < v ] / GM
    v
    r ev = 7.079944\times10 10 * 28996.2-1.345206\times1\mp@subsup{0}{}{11}\times15232.7 + 0 x 1289.2 = 3.80278\times1\mp@subsup{0}{}{12}
e}=[2.01451\times1\mp@subsup{0}{}{8}\times(7.079944\times1\mp@subsup{0}{}{10}X-1.345206\times1\mp@subsup{0}{}{11}Y
        - 3.80278\times1\mp@subsup{0}{}{12}\times(28996.2X + 15232.7Y + 1289.2Z) ] / 1.327124\times1020
e = 0.106639X - 0.204632Y - 0.000037Z
```

Equations (5.24) and (5.25),

```
a=1/(2/r-v /GM )
a=1/(2 / 1.520144\times1\mp@subsup{0}{}{11}-32779.\mp@subsup{2}{}{2}/1.327124\times1\mp@subsup{0}{}{20})
a = 1.97614\times10 11 m
e=SQRT[ 0.1066392 + (-0.204632) 2 + (-0.000037) 2 ]
e=0.230751
```

Equations (5.26) though (5.30),

```
cos i = hz / h
cos i = 4.97905*1015 / 4.98291\times1015
i = 2.255
cos \Omega= n
cos}\Omega=9.12746\times1\mp@subsup{0}{}{13}/1.95977\times1\mp@subsup{0}{}{14
\Omega=297.76
cos \omega = n - e / ( n x e)
cos}\omega=(9.12746\times1\mp@subsup{0}{}{13}\times0.106639-1.73424\times1\mp@subsup{0}{}{14}\times(-0.204632)+0\times(-0.000037)
    /(1.95977\times10 14 \times 0.230751)
\omega}=359.7\mp@subsup{7}{}{\circ
cos \mp@subsup{v}{0}{}=\mathbf{e}\cdotr/(e\timesr)
cos}\mp@subsup{v}{0}{}=(0.106639\times7.079944\times1\mp@subsup{0}{}{10}-0.204632\times(-1.345206\times1\mp@subsup{0}{}{11})-0.000037\times0
    / (0.230751 \times 1.520144\times1011)
vo}=0.22\mp@subsup{6}{}{\circ
cos \mp@subsup{u}{0}{}=n n r / ( n x r)
uo = 0 (launch point = ascending node)
```

Equations (5.31) and (5.32),

```
\Pi=\Omega + \omega
\Pi=297.76 + 359.77
\Pi = 297.53'
\ell
\ell
\ell 吘 297.76
```


## PROBLEM 5.6

For the spacecraft in Problems 5.3 and 5.4, calculate the hyperbolic excess velocity at departure, the injection $\Delta \mathrm{V}$, and the zenith angle of the departure asymptote. Injection occurs from an 200 km parking orbit. Earth's velocity vector at departure is $25876.6 \mathrm{X}+13759.5 \mathrm{Y} \mathrm{m} / \mathrm{s}$.

## SOLUTION,

Given: $\quad r_{0}=(6,378.14+200) \times 1,000=6,578,140 \mathrm{~m}$
$r=0.473265 X-0.899215 Y \mathrm{AU}$
$V_{P}=25876.6 X+13759.5 Y \mathrm{~m} / \mathrm{s}$

From problem 5.4,

$$
V_{S}=28996.2 X+15232.7 Y+1289.2 Z \mathrm{~m} / \mathrm{s}
$$

Equation (5.33),

```
V V/P = (V\mp@subsup{S}{X}{}
VS/P = (28996.2 - 25876.6)X + (15232.7 - 13759.5)Y + (1289.2 - 0)Z
VS/P = 3119.6X + 1473.2Y + 1289.2Z m/s
```

Equation (5.34),

```
VS/P
V/P/P}=\mathrm{ SQRT[ 3119.6 2 + 1473.2 2 + 1289.2 2 ]
VS/P}=3,683.0 m/s
V
```

Equations (5.35) and (5.36),

```
\(V_{0}=\operatorname{SQRT}\left[V_{\infty}{ }^{2}+2 \times G M / r_{0}\right]\)
\(V_{0}=\operatorname{SQRT}\left[3,683.0^{2}+2 \times 3.986005 \times 10^{14} / 6,578,140\right]\)
\(V_{0}=11,608.4 \mathrm{~m} / \mathrm{s}\)
\(\Delta V=V_{0}-\operatorname{SQRT}\left[G M / r_{0}\right]\)
\(\Delta V=11,608.4-\operatorname{SQRT}\left[3.986005 \times 10^{14} / 6,578,140\right.\) ]
\(\Delta V=3,824.1 \mathrm{~m} / \mathrm{s}\)
```

Equation (5.37),

```
r= SQRT[ 0.4732652 + (-0.899215) 2 + 02 ]
r=1.01615 AU
\gamma = arccos[(rX }\times\mp@subsup{v}{X}{}+\mp@subsup{r}{Y}{}\times\mp@subsup{v}{Y}{}+\mp@subsup{r}{Z}{}\times\mp@subsup{v}{Z}{})/(r\timesv)
\gamma=arccos[ 0.473265 < 3119.6-0.899215 < 1473.2 + 0 < 1289.2) / (1.01615 x 3683.0)]
\gamma=87.6770
```


## PROBLEM 5.7

For the spacecraft in Problems 5.3 and 5.4, given a miss distance of $+18,500 \mathrm{~km}$ at arrival, calculate the hyperbolic excess velocity, impact parameter, and semi-major axis and eccentricity of the hyperbolic approach trajectory. Mars' velocity vector at intercept is $-23307.8 \mathrm{X}+3112.0 \mathrm{Y}+41.8 \mathrm{Z} \mathrm{m} / \mathrm{s}$.

## SOLUTION,

Given: $\quad d=18,500 \mathrm{~km} / 149.597870 \times 10^{6}=0.000123664 \mathrm{AU}$

$$
\begin{aligned}
& \mathbf{r}=0.066842 \mathbf{X}+1.561256 \mathbf{Y}+0.030948 \mathbf{Z} \mathrm{AU} \\
& \mathbf{V}_{\mathbf{P}}=-23307.8 \mathbf{X}+3112.0 \mathbf{Y}+41.8 \mathbf{Z} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From Basics Constants,

$$
\text { GM of Mars }=4.282831 \times 10^{13} \mathrm{~m}^{3} / \mathrm{s}^{2}
$$

From problem 5.4,

$$
V_{S}=-21147.0 X+3994.5 Y-663.3 Z \mathrm{~m} / \mathrm{s}
$$

Equation (5.33),

```
VS/P = (VsXX - VPXX)X + (V\mp@subsup{V}{Y}{}
VS/P = (-21147.0 + 23307.8)X + (3994.5 - 3112.0)Y + (-663.3 - 41.8)Z
VS/P = 2160.8X + 882.5Y - 705.1Z m/s
```

Equation (5.34),

```
VS/P
V S/P = SQRT[ 2160.8 2 + 882.5 5 + (-705.1) 2 ]
VS/P}=2,438.2 m/s
V
```

Equations (5.38.A) and (5.38.B),

```
\(d_{x}=-d \times r_{y} / \operatorname{SQRT}\left[r_{x}^{2}+r_{y}^{2}\right]\)
\(d_{x}=-0.000123664 \times 1.561256 / \operatorname{SQRT}\left[0.066842^{2}+1.561256^{2}\right]\)
\(d_{x}=-0.000123551 \mathrm{AU}\)
\(d_{y}=d \times r_{x} / \operatorname{SQRT}\left[r_{x}{ }^{2}+r_{y}{ }^{2}\right]\)
\(d_{y}=0.000123664 \times 0.066842 / \operatorname{SQRT}\left[0.066842^{2}+1.561256^{2}\right]\)
\(d_{y}=0.0000052896 \mathrm{AU}\)
```

Equation (5.39),

```
0= arccos[(dx }\times\mp@subsup{v}{x}{}+\mp@subsup{d}{y}{}\times\mp@subsup{v}{y}{})/(d\timesv)
0=\operatorname{arccos[(-0.000123551 < 2160.8 + 0.0000052896 \times 882.5) / (0.000123664 \times 2,438.2)]}
0=150.4510
```

Equations (5.40) through (5.42),

```
b = d x sin 0
b}=18,500\times\operatorname{sin}(150.451
b = 9,123.6 km
a = -GM / V N }\mp@subsup{}{}{2
a = -4.282831\times1013 / 2,438.2 2
a = -7.2043\times106 m = -7,204.3 km
e = SQRT[ 1 + b
e = SQRT[ 1 + 9,123.62 / -7,204.3}
e = 1.6136
```


## PROBLEM 5.8

As a spacecraft approaches Jupiter, it has a velocity of $9,470 \mathrm{~m} / \mathrm{s}$, a flight path angle of 39.2 degrees, and a targeted miss distance of $-2,500,000 \mathrm{~km}$. At intercept, Jupiter's velocity is $12,740 \mathrm{~m} / \mathrm{s}$ with a flight path angle of 2.40 degrees. Calculate the spacecraft's velocity and flight path angle following its swing-by of Jupiter.

Given: $\quad V_{P}=12,740 \mathrm{~m} / \mathrm{s}$ $\phi_{p}=2.40^{\circ}$
$V_{s_{i}}=9,470 \mathrm{~m} / \mathrm{s}$
$\phi_{S_{i}}=39.2^{\circ}$
$\mathrm{d}=-2,500,000 \mathrm{~km}$
From Basics Constants,
GM of Jupiter $=1.26686 \times 10^{17} \mathrm{~m}^{3} / \mathrm{s}^{2}$
Equations (5.44) and (5.45),

```
VP}=(\mp@subsup{V}{P}{}\times\operatorname{cos}\mp@subsup{\phi}{P}{})X+(\mp@subsup{V}{P}{}\times\operatorname{sin}\mp@subsup{\phi}{P}{})
V P}=(12740\times\operatorname{cos}(2.40))X+(12740\times\operatorname{sin}(2.40))
VP}=12729X+533Y m/s
V\mp@subsup{s}{i}{}}=(V\mp@subsup{s}{i}{}\times\operatorname{cos}\phi\mp@subsup{s}{\mp@subsup{s}{i}{}}{})X+(V\mp@subsup{s}{i}{}\times\operatorname{sin}\phi\mp@subsup{s}{\mp@subsup{s}{i}{}}{})
V\mp@subsup{s}{i}{}}=(9470\times\operatorname{cos(39.2))X + (9470 }\times\operatorname{sin}(39.2))
Vsi
```

Equations (5.46) and (5.47),

```
Vs/Pi
Vs/P}\mp@subsup{\mathbf{i}}{\mathbf{i}}{=(7339-12729)X + (5985-533)Y
Vs/Pi}=-5390X + 5452Y m/s
VS/P}=\operatorname{SQRT}[(\mp@subsup{V}{S/Pi}{})\mp@subsup{x}{}{2}+(\mp@subsup{V}{S/Pi}{*})\mp@subsup{Y}{}{2}
VS/P}=\mathrm{ SQRT[ (-5390) 2 + 5452' ]
VS/P}=7,667\textrm{m}/\textrm{s
V\infty
```

Equation (5.48),
$\theta_{i}=\arctan \left[\left(\mathrm{V}_{\mathrm{s} / \mathrm{P}_{\mathrm{i}}}\right)_{\mathrm{Y}} /\left(\mathrm{V}_{\mathrm{s} / \mathrm{P}_{\mathrm{i}}}\right)_{\mathrm{x}}\right]$
$\theta_{i}=\arctan [5452 /-5390$ ]
$\theta_{i}=134.67^{\circ}$
Equations (5.40) through (5.42),
$b=d \times \sin \theta$
$b=-2,500,000 \times \sin (134.67)$
b $=-1,777,900 \mathrm{~km}$
$\mathrm{a}=-\mathrm{GM} / \mathrm{V}_{\infty}{ }^{2}$
$a=-1.26686 \times 10^{17} / 7667^{2}$
$a=-2.1552 \times 10^{9} \mathrm{~m}=-2,155,200 \mathrm{~km}$
$\mathrm{e}=\operatorname{SQRT}\left[1+\mathrm{b}^{2} / \mathrm{a}^{2}\right]$
$\mathrm{e}=\operatorname{SQRT}\left[1+(-1,777,900)^{2} /(-2,155,200)^{2}\right]$
$\mathrm{e}=1.2963$
Equation (5.49.B),

```
\delta = -2 x arcsin( 1 / e )
\delta=-2 x arcsin(1 / 1.2963 )
\delta=-100.960
```

Equation (5.50),

```
0f}=\mp@subsup{0}{i}{}+
0f}=134.67+(-100.96
0f}=33.71
```

Equation (5.51),
$V_{s / P f}=\left(V_{S / P} \times \cos \theta_{f}\right) X+\left(V_{S / P} \times \sin \theta_{f}\right) Y$
$V_{s / P_{f}}=(7667 \times \cos (33.71)) X+(7667 \times \sin (33.71)) Y$
Vs/Pf $=6378 \mathbf{X}+4255 \mathrm{Y} \mathrm{m} / \mathrm{s}$
Equations (5.52) and (5.53),
$V_{s_{f}}=\left(\left(V_{s / P_{f}}\right)_{X}+V_{P X}\right) X+\left(\left(V_{s / P_{f}}\right)_{Y}+V_{P_{Y}}\right) Y$
$V_{s_{f}}=(6378+12729) \mathbf{X}+(4255+533) \mathbf{Y}$
$\mathbf{V}_{\mathbf{f}}=19107 \mathrm{X}+4788 \mathrm{Y} \mathrm{m} / \mathrm{s}$
$V_{s_{f}}=\operatorname{SQRT}\left[\left(V_{s_{f}}\right) X^{2}+\left(V_{s_{f}}\right) Y^{2}\right]$
$V_{s_{f}}=$ SQRT $\left[19107^{2}+4788^{2}\right]$
$V_{s_{f}}=19,698 \mathrm{~m} / \mathrm{s}$
Equation (5.54),
$\phi_{S_{f}}=\arctan \left[\left(V_{s_{f}}\right)_{Y} /\left(V_{s_{f}}\right)_{X}\right]$
$\phi_{\mathrm{Sf}_{\mathrm{f}}}=\arctan [4788 / 19107$ ]
$\phi_{S_{f}}=14.07^{\circ}$

