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Preface

The design of structures and foundations supporting dynamic loads has gradually
avolved from an approximate rule-of-thumb procedure to a scientifically sound engineer-
ing procedure. Current state of the art allows engineers to reliably design structures which
support increasingly heavier and larger machines. Recent advances in a number of
engineering disciplines, when merged with a traditional well-established body of
theoretical knowledge, have resulted in definite procedures for the analysis and design of
dynamically loaded structures. However, most concepts and procedures used in the
design of structures carrying dynamic machines and uitimately supported by the soil have
herstofore been dispersed in texts dealing with a single aspect or a limited portion of the
problem. This text brings together all those concepts and procedures for design of
dynamicaily loaded structures. Disciplines that are involved in modern design procedures
include: theory of vibrations, geotechnical engineering including soil dynamics and half-
space theory, computer coding and applications, and structural analysis and design. Itis
assumed that the reader is an engineer or designer who is familiar with these areas.
However, a basic introduction in each area is also included in the text to enhance the
background of some readers.

The book includes an introductory chapter which reviews basic fundamentals. Chapter
2 describes alternatives of modeling dynamically loaded systems while Chapter 3 con-
siders and lists the information necessary for design. Chapters 4 and 5 describe the geo-
technical aspects of the probiem and Chapter 5 specifically considers flexible mats and
deep foundations. Finally, Chapters 6 and 7 include actual examples of ditferent types of
structures supporting dynamic machines.

This book is written by practicing engineers and engineering teachers. Practitioners
and students will find the information contained here useful in their work. Also, the book
will provide additional opportunities to merge the real world of design with senior- and
graduate-level engineering classroom instruction, Finally, this book will serve as a model
for integration of knowledge which cuts across several traditional, but previously loosely
connected areas.

Suresh C. Arya
Michael W. O’Neill
George Pincus

March, 1979
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1!/Introduction-

The analysis and design of foundations and structures
subjected to vibratory loads is considered a very complex
problem because of the interaction of structural engi-
neering, geotechnical engineering, and the theory of
vibration. These foundations may be designed as a
simple block, either of plain concrete or of reinforced
concrete, not different in resemblance from a footing
designed for static loads. The practicing engineer who
is generally not theoreticaily motivated ordinarily
shuns theoretical investigations partly because these in-
vestigations on a massive concrete block do nat result
in any additional reinforcement other than ordinary
minimum percentage of reinforcement required by the
governing codes. Even when engineering talent is avail-
able for a theoretically exact analysis, other factors such
as economy, lack of high-speed computers, or design
tradition result in an approximate nondynamic design.
Thus, it has become imperative to devise practical de-
sign procedures which include the various aspects of
design and analysis of these foundations in a way that
the least effort is involved in the theoretical investiga-
tion. The design engineer should recognize that the
theoretical dynamic investigation is an integral part of
the design effort.

In this book, an effort has been made to use and
simplify the latest theoretical knowledge available in
this field (ref. 1). An easy-to-follow step-by-step routine
is developed for actual design problems.

In addition, at every step of investigation, 2 brief
description is presented explaining the physical meaning
of the parameters used and role they play in the design
process.

Structural System of Foundations

The structural form of machine foundations is gen-
erally determined by the information provided by the

Fundamentals

geotechnical consultant and the machine manufacturer.
However, during the design phase, it may become neces-
sary to adjust the dimensions or shape of the foundation,
partly to meet the design criteria or to aveid interference
with other fixed objects such as pipelines and building
foundations. The broad categories of foundations are
(a) shallow foundation (resting on soil) and (b) deep
foundation (supported by piles or piers). A further
classification involves the structural configuration of the
foundation:

1. Block-type foundation, consisting of 2 thick slab
of concrete directly supporting the machine and
other fixed auxiliary equipment.

2. Elevated pedestal foundation (table top), consist-
ing of a base-slab and vertical columns supporting
a grid of beams at the top on which rests skid-
mounted machinery. These types of foundations
are illustrated in Figure l-1.

Theoretical Approach

Vibrations developed by operating machinery preduce
several effects which must be considered in the design
of their foundations in addition to the usual design
static loads. In some cases, if the size of the machine
involved is small, it may be appropriate to design the
foundation for equivalent static loads instead of strictly
applying the vibration design criteria. However, once
the design engineer has recognized the need for a
vibration analysis, it is necessary that the designer possess
a clear understanding of the fundamentals of the theory
of vibration (refs. 3, 3, 6 and 7}, modeling techniques
(refs. 2 and 8}, soil dynamics (ref. 1), and in some
cases, the application of computer programs {refs. 2
and 3 of Chapter 7).

In the step following the selection of the foundation
gross geometry, the design engineer is faced with the
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(a) Block-type foundation supporting
reciprocating compressor

(Table Top)

(b) Typical pedestal foundation

Figure 1-1. Types of foundations for vibrating machines.

vibration analysis, The usual procedure is to establish
a mathematical model of the real structure which is
a necessary prerequisite in order to apply the theory
of vibrations. The mathematical representation of a
structural system is usually defined in terms of a lumped
mass, an elastic spring, and dashpot for each degree
of freedom. The terms which are used in the develop-
ment of the theory of vibrations are described in the
Terminology section provided at the end of this chapter.

Fundamentals of Theory of Vibrations

The subject of vibration deals with the oscillatory
behavior of physical systems. All physical systems built
of material possessing mass and elasticity are capable of
vibration at their own natural frequency which is known
as a dynamic characteristic. Engineering structures sub-
jected to vibratory forces experience vibration in differ-
ing degrees, and their design generally requires deter-
mination of their oscillatory behavior. The present
“design office” state-of-the-art considers only their linear
behavior because of the convenience afforded by apply-
ing the principle of superposition, and also because
the mathematical techniques available for their treat-
ment are well developed. In contrast, nonlinear be-
havior of systems is less well known, and the mathema-
tical treatment is difficult to apply. However, all struc-
tures tend to become nonlinear at high amplitude of
oscillation, and a nonlinear analysis is required under
those conditions.

Single-Degree-of-Freedom System

An engineering structure (a fixed beam) is idlustrated
in Figure 1-2a. The beam is supporting a machine

generating a harmonic centrifugal force. A step-by-step
procedure will be described for modeling the actual
structure.

Calculation of Parameters
for Mathematical Model

Equivalent Mass, m,

The beam has distributed mass along its length, and
its ends are fixed against rotation. In calculating the
mass for the mathematical model, it is necessary to lump
the mass only at points where the dynamic force is act-
ing, and also at those points where the dynamic response
is required. In this example, the dynamic force is acting
at the middle and the response is also required at the
middle. The technique for obtaining the lumped mass is
to equate the kinetic energies of the real and the equiva-
lent systems (refs. 2 and 8}. First, a deflected shape of
the real system is assumed, Figure 1-2b which corre-
sponds to the predominant mode. In this example, the
beamn can have predominant translational modes in the
x-y plane, the x-z plane, and a rotational mode about
the x-axis. Thus, the model has three single-degree-of-
freedom systems independent of each other. Considering
only the deflected shape in the x-y plane, and assuming
the shape is the same as that which would be caused by
a concentrated load P applied statically in the middle,

(1-1)
(1-2)

Assuming the beam’s behavior stays within the elastic
range and the maximurm velocity at any point aleng the

yu = (Px'/48 EL) (3! — 4x)
Yumexr = PL/192 EI,
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Figure 1-2. SDOF representation of a fixed beam supporting

beam is proportional to the ordinate of the deflection
curve at that point, then the velocities of the beam are

¥, = (CP¥'/48 EL) (3 — 4x) and
Vaar = C(PF/192 EL) ,

where C = constant relating velocity to deflection.

Thus,
V, = &£/F) (3l — 42) Vau (1-3)

The total kinetic energy of the beam is given by

machinery in the middie.

KE,

*
jo'l%mb Vu dx

8 mo/* Veax(2) fo‘“(gz’x‘ + 168 — 24i5) dx,
(1-4)

where mp mass per unit length.

Then,
_g‘ﬂ(gzﬁx‘ + 162° — 24dx")dx

13/11207

Equation (1-4} after integration reduces to
KE, = (13/70) Vaux ms,

where m; = my [, the total mass of the beam. The kinetic
energy of the equivalent system is given by

KE, = }m. V.
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Since the kinetic energies must be equal In both sys-
tems, and since Vo, must equal V,,

KE, = KE,
(13/70) m, Vs = 3 m, Vo

or

037l my = m, (1-5)

Therefore, 37.19% of the total distribution mass should
be included as the corresponding mass of the mathemati-
cal model. However, the mass of the machine is located
at the middle; hence, that entire mass should be con-
sidered part of the equivalent mass.

me = 0371 m, + mn (1-6)
Similarly, equivalent mass can be calculated in the
x-z plane which will also have the same magnitude since
the deflection curve of the beam remains the same.
Table 1-1 lists equivalent mass factors for beams and
slabs with different types of loads and support conditions.

Equivalent Spring Constant, k,

The spring constant of an equivalent system is obtained
by equating the resistances to deformation of the proto-
type and the mathematical model, in this case, the uni-
formly distributed loaded beam vs. the modeled middle
loaded beam. The resistance offered by the beam per
unit load is given by the reciprocal of the deflection
produced by the same unit static load applied at that
point. Therefore, in the example under consideration,
the resistance offered due to a unit concentrated load at
midspan (ref. 9) is

R, = 1/(’/192 EL)

= 192 EL/T, (1-7)

which when equated to the resistance of the equivalent
systern gives

k, = 192 EL/I’ (1-B)

In Table 1-1, values of spring constants for equivalent
systems are presented for different types of loads and
support conditions.

Equivalent Forcing Function, F(t)
The dynamic force may be distributed over a certain

length of the element, and in order to obtain its equiva-
lent, concentrated load value for application in the

single-degree-of-freedom system, the work done by the
actual system is equated to that done on the equivalent
system. The load factor, k;, with which the distributed
dynamic force should be modified to determine the
equivalent, concentrated dynamic force is given in
Table 1-1. For the model shown in Figure 1-2a, the
dynamic force acts at the middle of the beam, thus, a
force modification factor is not required.

Formulation of Mathematical Model

A procedure for obtaining the values of various
parameters in a mathematical medel which equal these
in an actual system is given in the preceding section. An
equivalent mathematical model is shown in Figure 1-2c.
The mass and the spring constants are the equivalent
parameters corresponding to an actual system. An equiv-
alent damping coefficient is not required in this partic-
ular model since it is associated with the velocity of the
system only, and its effect is implicitly included when the
equivalent values of mass and spring constant parame-
ters are calculated. The chosen model has three inde-
pendent degrees of displacement and/or rotation, and
therefore, there are three individual equivalent models
having a single degree of freedom each, The technique
of mathematical formulation for each of the three models
is the same, and therefore, only one single-degree-of-
freedom model will be examined in detail.

A model, shown in Figure 1-2d with a weight W, is
attached to a weightless spring %, and the spring stretches
by an amount 8, = W/k. The system iz initially in a
state of static equilibrium with the dead weight W bal-
anced by the restoring pull of the spring k8:;:. Subse-
quently, the weight W is set into oscillation by the appli-
cation of some disturbance.

Starting at time equal to zero, the system vibrates freely
with an amplitude of o=y displacement (Figure 1-2e),
The forces acting on the body are applied against the
direction of motion and include: the resistance offered
by the spring & (y+ 3,.), the resistance Cj offered by
the viscous damping C, and inertia force m §, given by
Newton's second law of motion. The latter force is equal
to the mass of the system multiplied by its negative
acceleration (the state of motion of a mass at any instant
may be considered as in a state of static equilibrium
upon introduction of the inertia force). The force acting
in the direction of motion is the weight W, Summing up
the forces, the resulting equation of motion is

mj’. + C}" + k(l“l‘“u) = W}
which reduces to

mi + G + k=0 (1-9)
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This equation is an ordinary second-order linear dif-
ferential equation with constant coefficients, also calied
a homogenous equation. For the case when a forcing
function F(t) is also acting, the resulting equation is
classified as nonhomogenous (ref. 10} and is mwritten as

my + G + & = F(t) (1-10)

The solution of Equation (1-9) yields the dynamic
characteristic of the system such as the natural frequency,
the damped natural frequency, the critical damping
coefficient, or the transient motion of the system. Each
of these terms has a special significance depending upon
the particular problem at hand.

Transient or Free Vibrations

A solution of the form’y = e* is assumed for Equa-
tion {1-9) where s is a constant to be determined, and ¢
is the independent time variable; then,

2

y =3y =5%" (1-11)

Upon substitution of y, y, ¥ into Equation (1-9), the
following expression is obtained:

(" + [C/mls + [k/m]) & = 0O

Since e*’ must be greater than zero for all values of ¢,

(1-12)

&+ (C/m)s + (k/m) = 0 (1-13)

Equation (1-13) is a quadratic equation having twe
roots:

(1/2m) [—C + +/C* ~ 4km]
(1/2m) [—C — /C* — 4km)]

L3

(1-14)

52

Several terms, relating various parameters of Equa-
tion (1-9}, are defined as:

wn = Vk/m is called the circular natural frequency of
the system in radians/sec;

Co=2Vkm is the critical damping of the system in
units of force/ velocity;

D=C/Cs= C/Q\/ﬂ-k_f;; is called the damping ratio;
and wg = w, V1 — D? is named the frequency of oscilla-

tion of the system with damping included.
The complete solution of Equation (1-9) is

y = Ae™' + Be™, (1-15)

where 4 and B are arbitrary constants which depend
upon the initial problem conditions. The motion de-
scribed by Equation (1-13) is called transient motion
of the system, and the oscillations die out in a short
interval of time when significant damping is present.

Equations (1-14) and (1-15) show that the nature of
oscillation depends upon the value of C. Four possible
values of € will be considered here (ref. 6) to illustrate
the physical significance of Equation (1-15).

Case 1: C =0 (no damping). This case reduces the
preblem to an undamped system, and the roots obtained
from Equation (1-14) are 5;,» = == tw,. Equation (1-15)
can be written as

¥ = A 4. Betent (1-16)

Equation (1-16) can be written in three alternate forms
by the use of trigonometric identities and complex
numbers:

5= Con? (1-17)
¥ = Bycos wyt + B sin wyt (1-18)
> = G cos {wyt — ¢) (1-19)

Equation (1-17) is in terms of phasors, while C, and
¢ are components of a complex number. B, and B, are
arbitrary constants in Equation (1-18) representing the
rea]l part of the solution and can be evaluated from the
initial boundary conditions. For example, at time ¢ =0,
the system has a given initial displacement »{0) =y,
and an initial velocity y(0) = v,. Equation (1-18) then
becomes

¥ = pocos wyt + (vp/w,) sin wyt (1-20)
and the velocity function,
Jfa, = —ypsin wet + (vo/ws) cOS wot (1-21)

Equation (1-19) can be obtained from Equation
(1-18) if the following substitutions are made: B, = C,
cos ¢, and B, =C;sin¢. Then tan ¢ = B,/B,, and
C\*=B,*+ B,®. By using the trigonometric identities,

Y= C; cos (ont — ¢) (1-22)

$76n = —Cysin (wat — 9) (1-23)

In Equation (1-22), C;= V/¥* + (vejwa}? is called
amplitude of vibration, and ¢ =tan? (vo/unys) is
called the phase angle. A graphical representation of
Equation (1-22) is given in Figure 1-3a by the projec-
tions of a vector C, rotating about a fixed point O, with
a constant velocity w,. The projection upon the ordinate
axis represents the instantaneous displacement y, while
the projection on the abscissa gives the velocity function
¥/wn according to Equations {1-22) and (1-23), respec-
tively. A displacement time curve based on Equa-
tion (1-20) can be obtained fom Figure 1-3a by project-



| BT N, ¥ U
(e}

ing instantaneous values of point P to the right, as shown
in Figure 1-3b. A velocity versus time plot based on
Equation (1-21) can be obtained by projecting point P
vertically, as shown in Figure 1-3¢. The variation of
these terms with time is shown for a complete cycle. The
time required for one complete cycle is called the peﬁod
T and equals 2w /w. sec. The corresponding cycle fre-
quency is fn = 1/7' = wa/2m cps. These cycles are iden-
tically repeated since this system is undamped.

Case 2: C* < 4 km, but > 0O (underdamped). In
this case, the roots of Equation (1-14) are complex con-
jugates, and 5 and s. become

—_— —_— y —_— 2

n=uw(—D+i~/1—-D% (1-24)
53 = wn(—D-—i\/I—Dz)

when the damping ratio D=C/Cc= C/2Vkm =

C/2usm is introduced. Further substitution of Equa-

tion (1-24) into Equation (1-15) and conversion to a

trigonometric form with the aid of Euler's formula
e+i0 = cos § = isin B, gives

y=Pm (Bisine, v 1 — Dt
4+ Breosw, v/ 1 — DY)

(1-25)
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E

¥~ Figure 1-3. Undamped free vibrations ini-
tial conditions, y (0) = yg. ¥ (0) =ug Source:
A.H. Church, Mechanical Vibrations, sec-
ond edition, New York: John Wiley, 1963.

or

y = ¢ " Vsin (wgt + ¢) (1-26)

Where Bi=Ycos¢ and B:=VYsing and wg=
m,.\/ﬁ. The term wq is called the damped natura!l
frequency, and Y and ¢ are arbitrary constants to be
determined from the initial boundary conditions in a
similar way to the procedure used in Case 1. The type of
motion described by Equation (1-26) is oscillatory with
frequency of wq and is shown in Figure 1-4a. The ampli-
tude of oscillation ¥ will diminish with time and is
proportional to e” P’ as shown by the dotted lines.

Case 3: C2 = 4 km (critical damping). The damping
corresponding to this case (C= 2vkm, C=C; or
C/Ce=D = 1.0) is referred to as critical damping. For
this value of C? = 4 km, Equation {1-13) has two equal

roots, s, = — C/2m. In this case, the general solution
of the second-order differential equation is
y = Ag—(cl!m)l + Bte—(aﬂm)! (1_27)

Substituting the value of C/2m =2Vkm/2m = wn
and applying the initial boundary condition, ¥ (¢ ==0)
=y, and § (t = 0) = voin Equation (1-27) gives

3 = Ly + [(wo/w) + y] wat P (1-28)
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A graphical representation of Equation (1-28) is
shown in Figure 1-4b. The motion described by Equa-
tion (1-28) is aperiodic. Since critical damping repre-
sents the limit of aperiodic damping, motion is reduced
to rest in the shortest possible time with no oscillation.

Case 4;: C* > 4 km {overdamped). Referring to
Equation (1-14), the roots of Equation (1-13) are real
and unequal. The value of the roots, after substituting
the relationship C/m = 2u, D, is given by

S1p = —w, D+ w, D — 1 {1-29)

and the resulting solution by using Equation (1-15) is
given by

¥ = AE(_D+ vV Da—!)w"t + Be(*D -/ D’—I)w,,.! (1_30)

Since the roots in Equation (1-29) are real and nega-
tive for all values of D> 1.0, the value of ¥ in Equa-
tion (1-30) will decrease exponentially without a change

T'?V?\/

v

Ye—0Ount

T e — Unt

T~ ‘-—-.
WSS

{a} Underdamped periodic osciliation
{c2 <dkm-or D < 1.0}

4|
\\/

A el-D+

in sign. A graphical representation of Equation (1-30) is
shown in Figure 1-4c, which indicates that there are no
oscillations, and the system is said to be overdamped.

Steady-State Solution of Forced Vibrations

The solution of Equation (I1-10) includes two parts
(ref. 3): (a) transient or free vibrations and (b) steady-
state or forced vibrations. Transient motion, which in
mathematical terms is called the complementary func-
tion, is a solution of the homogenous equation, as previ-
ously noted.

The particular integral of Equation ( 1-10) gives the
steady-state or forced-vibrations solution, This solution
includes the influence of the forcing function, Structures
and machines which are subjected to excitation forces
which vary with time are susceptible to vibrations. The
excitation can be in the form of a pure, simple, harmonic

¥,
[Ya + (5 + Yo)wntleont
n

Yo

—_— Wyl

(b) Critical damped aperiodic oscillation
{c2=4kmor D =1.0)

D2 1) wpt

o
/Wt
b8
0

af

—
/‘\
/! B el-0-+/02-1; ut

———
wat

(¢} Overdamped aperiodic oscillation
(2> 4kmor D > 1.0

Figure 1-4. Damped free-vibration response of SDOF system. Source: Wiiliam T. Thompson, Vibration
Theory and Applications, © 1965, pp. 39-40. Reprinted by permission of Prentice-Hall, Inc., Englewood

Cliffs, N.J.



force or displacement, or it may have some other periodic
form. These other periodic disturbances can be resobved
into a number of harmonic components in the form of
Fourier series as illustrated in Table 1-2. A third type of
time-dependent excitation is in the form of a series of
repeated shocks and impulses, pulse waves, or step func-
tions or force or displacement applied to the mass or to
its support.

The most common source of excitation in structures
supporting machines is the internal excitation caused by
an unbalanced condition in the machines or the external
excitation produced by a nearby dynamic system. These
excitations are generally in the form of harmonics under
steady-state conditions and will be further considered
here.
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Equation {1-10) with a harmonic force is

my + G + ky = Fosinot, (1-31)

where o is the frequency of the harmonic excitation, The
particular integral solution for this equation is

yp = Ay sin ot + 4; cos wt (1-32)
with 3, = wdy cos wf — wAy sin wt (1-33a)
and ¥, = —wld; sin wt — @'As cos wt (1-33b)

Substitution of Equations (1-32), (1-33a), and
(1-33b) in Equation {1-31) and collections of the coeffi-
cients multiplying the sine and cosine terms yield

Table 1-2

Harmonic Components of Periodic Disturbances {Ref. 7)

e

h ~ =
no tlwt) = 4—.:' Z -"I;-SlN kwt
—h k=), 3,5,
h| -
| [ | h . 2h
@ 0 L en- LD & SIN ket
.=|!:.5I”'
h a0
2h (=1*+
{31 © < flwt) = 5 E SIN kwt
-h L~ l/ e l,2,3, 0 “
h o0
A p_ 2h |
4 —a =21 - = —_
@) o oty =7 ~ =2 S oS kut
k=1,3,8,
d Kt i
h (-1
+ 7 z . SIN kwt
k=1,2,5,

{5} 0

h
(6) fo] /\ .

=h

h - SIN wt
"o \|/\ ™ 1

»8IN wt

, hW
l

3
h 4h |
flwt)= 3 - z -kv'zcos kwt

w
k=1,3,0,
= (k=1)/2
_ 8h (—i})
flat) = o Z —m SIN kewt
k= ,5,6, -
fHat = 2+ 2 s wt
-
2h {
-5 Z 5 C0S kut
k= 2,4,6,
-]
2h 4h 1
flwt)= ¥ -7 z '—Ez-_—l— COS kwt
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[(k — mo*) Ay — Cwd,] sin ot
+ [Cud; + (E— ma') As] cos wf = Fysin wt  (1-34)

and equating the sine and cosine terms on the two sides
of the equation yields

[(k — mw”) 41 — Cwdy] sin wt = Fy sin ot
[Cwd, + (k — mo®) Ay] cos wt = 0

Solving of these two simultaneous equations for the
two constants A, and 4. and substituting in Equa-
tion (1-32} yields '

_ Rk - mot) sin wt — Fy Cw cos wt
= {k ~ ma?)’ + (Cw)®
The particular integrals for various forms of the forc-
ing function are presented (in Table 1-3} to illustrate
the physical feel of resulting oscillation. An alternate
form for Equation (1-36) is

(1-35)

(1-36)

Jo = [Fo/+/(k — mw®)* + (Cw)’] sin (0t — ¢y)
= ¥ sin (wt — ¢1), |

where ¥ = Fy/+/(k -~ mw®) + (Cw)®

and ¢; = tan~" [Cuw/(k — mw?)]

(1-37)

Y is the amplitude of the steady-state response, and
¢, is the “phase lag” of ¢, (¢} with respect to the fore-
ing function F, sinet. Substitution of the expression for
D and o, in the expression for ¥ and ¢, and replacing
w/ws by the frequency ratio r in Equation (1-37) and
rearranging Equation (1-37) in nondimensional form
gives

_ ¥ 1
&/E) - T—7T + 2DT
¢1 = tan 2Dr /(1 —1%)

M

(1-38)

Table 1-3
Particular Integrals (Ref. 7)

F{1)

[=— F (1) Yp

z 2
PE-FT-T)

35 1Y ot 2mt | 2%, 4me 26
al  RP ThE-T-s RN
F F,

-t
5 — st L %
ke P—catk
F
5 e N
a ms*+cs+k

7 F, tin wi

Rk~ mew®) sin wi-Bew coy wt
(k= maf 2t (ewl?

F
8 Fy coswt Fv%

Rew $in wi+5, (k-mu® coa wt
[ k—mw?}2+fcw)?




where M is called the dynamic magnification factor, ¢,
has been defined earlier. Equation {1-38) shows that the
M and , facters are functions of the frequency ratio 7
and the damping ratio D. These functions are shown in
Figure 1-5. These curves indicate that the damping ratio
D is effective in reducing the amplitude and phase angle
in the region of resonance, that is when r approaches
unity, the particular values of M and ¢, depend on the
damping ratio D.

Dynamic System Subjected to
Rotating-Mass-Type Excitation

In some dynamic systems, the excitation force present
arises out of unbalances in the rotating masses. Examples
of such systems are reciprocating and centrifugal ma-
chines. The forces generated by a reciprocating machine
are of the form (ref. 1)

2
F, = (mygq & Mppy) 7’0 COS @l

+ e 10 /L] & cos Qut (1-39a)

(1-39b)

F, = (mm) 7' W’ sin wt

where F, and F, are horizontal and vertical inertia
[orces, respectively. There are two masses: one moving
with the piston at point P in Figure 1-6a called M.
{reciprocating) ; and one moving with the crank pin at
point C called M. (rotating). The crank mechanisin
for this type of machine is illustrated in Figure 1-6a.

The forces generated by the unbalanced rotating mass
of the centrifugal machine shown in Figure [.6b are
given by

(1-40a)
(1-40Db)

Fy = mgew” cos wi
s
F, = mgw 5in wt

Equations (1-39) and (1-40) indicate that the magni-
tude of the forcing function is proportional to the rotat-
ing mass my, its eccentricity to the true axis ¢, and the
speed o. The rotating mass and its eccentricity remain
constant, but the value of « varies from start-up of the
machine to its stable steady-state condition. Therefore,
during that period, the maximum amplitude of the forc-
ing function given by Equations (1-39) or (1-40} is
directly proportional to the square of the operating
speed.

The equation of motion for the forcing function in the
centrifugal machine is given by 2 damped single-degree-
of-freedom system in the y-direction:

my + G+ k= (meew”) sin wt

By comparing Equation (1-41) with a constant-force-
amplitude expression, Equation (1-31), and substituting
m;ea? = Fy in Equation (1-37), the following expression
is obtained:

(1-41)
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180 T

w

—] {b)

Phase angle (¢:)
g

X}

Magnification factor (M)

(a) Frequency ratio {r)

Figure 1-5. Magnification factor (M) versus fre-
quency ratio (r); (a) and phase angle (¢,) versus
frequency ratio (r); (b) for a singte-degree-of-
freedom system subjected to a constant force
amplitude force, F = F; sin t. Source: William T.
Thompson, Vibration Theory and Applications, ©
1965, p. 54. Reprinted by permission of Prentice-
Hall, Inc., Engiewood Cliffs, NJ.

() Sl l

Figure 1-6. (a) Crank mechanism of a reciprocating
machine; {p) Forces from a centrifugal machine
(rotating mass excitation).

Py = mew” sin(mnt—dh)/\/(k—mmz)2 + (Cw)®  (1-42a)
Y = miemz/\/(k-—mwzjz + (Cw)® and

_ -1 Cw
¢1 = tan —"——(k ) {1-42b)
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Manipulating and rearranging Equatien (1-422) in a
similar manner as was done with Equations {1-37) to
{1-38) gives

Y/[(met) /K] = 1/V/ (=" + 2Dr] = M

or Y/(mefm) = () M = M.,

{1-43)

where M, is the dypamic magnification factor for the
rotating-mass-type excitation case. Figure 1-7 shows the
plot of M, in relation to the frequency ratio 7 for the
various values of damping ratio I

Substituting x = m;/m in Equation (1-43} yields

M, = Y/ = ()M (1-44)

The term pe is called the free amplitude.

For a given system, the values of p, ¢, D, and w, are
constant, so that Figure 1-7 is, in effect, a plot of the
amplitude of the mass against the rotating speed of the
unbalanced force for various amounts of damping. For
a small value of 7, or at low rotating speed, the total
mass m moves very little; at a speed approaching the
natural frequency of the system, r = 1, the amplitude
builds up to large values for small amount of damping.
Further on, at higher rotating speeds, 7 — o0, the curves
approach the value M, equal to unity since the inertial
force of the total mass is then approximately 180° out
of phase with the unbalanced force.

Comparing the curves of Figures 1-5 and 1.7, it may
be observed that resonant peaks occur at 7 < 1 for the
case of a constant force excitation, and r > 1 for the
case of rotating-mass-type excitation.

The various expressions which may be derived from
the equations of motion of these two cases are listed in
Table 1-4.

The combination of transient or free vibration (com-
plementary function) and steady-state vibration (partic-
ular integral} gives the complete solution for Equa-
tion (1-10).

Terminology

A single-degree-of-freedom lumped mass system is
presented above including the derivation of the differ-
ential equation describing the behavior of the model
leading up to the development of formulae for the calcu-
lation of the dynamic response. In the area of dynamics
of foundations and structures, the investigation may
extend to a variety of systems, some having several
degrees of freedom, and as a result, the modeling tech-
niques and derived formulae are more complex. The
fundamental principles of single-degree-of-freedom sys-
tems are also applicable to the multidegree-of-freedom
systems; however, additional information from theory of
vibrations is required for consideration of the more com-
plex multidegree-of-freedom systems. A complete intro-

=
(=5

T 1
~ a0k s
= Bl -
-l i<
2 o
B o
S o} 18 ; : :
c Z S e 20 30 40 5.0
2 o (b) Frequency ratio (r}
] — - T
3 T .
= i
o
o
L]
=

2.0 3.0 4.0 50

Frequency ratio {r)

Figure 1-7. Magnification factor (M,) vs. frequency
ratio (r): (a) and phase angle {¢4) versus frequency
ratio (r): (b) for a single-degree-of-freedom system
subjected to a rotating-type excitation, F = m,ew?
sin wt. Source: William T. Thompson, Vibration
Theory and Applications, © 1965, p. 60. Reprinted
by permission of Prentice-Hall, inc., Englewood
Cliffs, NJ.

duction to the theory of vibration is not presented here;
however, Chapter 1 lists a number of references on the
subject. The following list of terminologies summarizes
the most commonly used terms (refs. 4 and 5) in the
field of vibrations. An example of each defined term is
also included to provide further information on its
application.

1. Accelerating Bodies

Acceleration

Definition: Newton’s Law of Motion—a vector quan-
tity when applied to the mass, produces a force in the
direction of application.

Example: the rate of change of velocity with time.
For the x-coordinate it is denoted by d?x/dt* or X. See
Figures 1-8 and 1-9.

Velocity

Definition: a vector quantity which represents time
rate change of position for a particle or body.

Example: the rate of change of displacement with
time. For the x-coordinate it is denoted by dx/d¢ or .
See Figures 1-8 and 1-9.

Displacement

Definition: a vector quantity that represents the
change of position of a particle or body from a state of
equilibrium,. ]

Example: a displacement which is a function of time.
For the x-coordinate it is denoted by x. See Figures 1-8
and 1-9.



Introduction-Fundamentais 13

Table 1-4
Summary of Derived Expressions for a
Single-Degree-of-Freedom System

Expression

Constant Force Excitation

Fy Constant

Rotating Mass-type Excitation,

Fo = e w?

Magnification factor

Amplitude at frequency f

Resonant frequency

Amplitude at resonant frequency f;

Transmissibility factor

1

M = —_——————
V{1—=r*)? + (2Dr)?

Y = M (Fo/k)

far = fa N1-2D2

(Fo/k)
Yopar = ————
2D+1— D?
~1+(2Dr)

T

V=77 + @ Dry

2

M, =
¥{1—7%3)7 + (2D

Y = M, (mje/m)

fu
fmr =
J1—2D2
(mie/m)

Ymnx =
2p1= Dt
vt ¥ F (2 Dr)

 yA=PP T @D

T

where r = w/wa :
w, {Undamped natural circular frequency) = v (Rjm)
D (Damping ratio) = C/C,

Co (Critical Damping) = oy Em

= Force transmitted/Fo

T, =
T, = Force transmitted/m; ew?,

whA

w

\NPE

Figure 1-8. Rotating vector representation of a har-
manic function x = A sin wt.

X

/2 piSPL. x=A sinwt

VEL. X zwh sinfwt +Z )
t

ACCL. X =oA sin{wt+7T)

Figure 1-9. Harmonic motion representation of dis-
placement velocity and acceleration.

2. Amplitude

\/ Displacement

Definition: the maximum change of position of a body
or some part of the system from a reference point
{generally equilibrium position) at any given time.

Example: the maximum displacement of a sinusoidal
quantity x = A sin w¢, which is 4 in this function.

Vibration
Definition: the time-varying magnitude of peak dis-
placement (of a physical body) from a reference point.
Example: a time-varying displacement of a rotor shaft
of a machine, or a foundation structure from the static
equilibrium condition.

3. Analysis

Computer

Definition: resolution of complex mathematical prob-
lems into simple elements with digital (discrete number
operation) or analog (continuous chart cperation) com-
puters.

Example: solution of indeterminate structures or
determination of vibration in a dynamic system using
computer programs.
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Dynamic (Vibratian}

Definition: a study of motion of a physical system at a
particular time.

Example: the calculation of the amplitude of vibra-
tions In a machine or in a foundation structure.

Matrix Method

Definition: the study of motion of masses in multi-
degree-of-freedom systems.

Exampie: the solutions of simultaneous equations
using the techniques of matrix algebra.

Modal

Definition: the dynamic analysis of a multidegree-of-
freedom system, where the responses in the normal modes
{each treated as independent one-degree systems) are
determined separately, and then superimposed to pro-
vide the total response.

Example: vibration analysis of a “Table top”, when a
computer program is employed,

Static

Definition: the investigation of a physical system in
equilibrium under the action of a system of stationary
forces.

Example: dead-load analysis of a structural system.

4. Balancing
Static

Definition: adjustment of mass distribution of a rotat-
ing body such that statically the system is at neutral
equilibrium.

Example: see Figure 1-10,

Dynamic
Definition: the adjustment of mass distribution in a
rotating body such that the vibrations are controlled.
Example: see Figure 1-11.

5. Beat

Definition: the maximum resulting amplitude of two
simple harmonic wave forms of slightly different fre-
quencies which are superimposed.

Example: see Figure 1-12 in which beat frequency
{fs) = Abs. [w, — w:]/27. Frequency of combined oscil-
lation (f) = (o1 + ez} /47. Beat period (T3) = 1/fs
Period of resulting oscillation (T) = 1/f; xpax = A4; -+ A3}
Xmio = Abs (A, — A;).

6. Conditions

Boundary
Definition: the known physical relationships at specific
points of a structural body, usually at the supports.
Example: see Figure 1-13 in which (Boundary Condi-
tions) Deflection: y (x =0, L) =0; Slope: ET dy/dx
{x=1L/2) =0; Moment: EI d%/d«* (x=0,L)=0;
Shear: EI d¥y/dx® (x = L/2) =0C.

BALANCING
MASS

UNBALANCED
MASS
Figure 1-10. Static balancing. This system under ro-
tation produces equal centrifugal forces, but pro-
duces unbalanced moments in shaft and pressure
on the bearings.

ADJUSTOR
MASS

UNBALANCED MASS
Figure 1-11. Dynamic balancing. For this system
during rotation, not only are centrifugal forces
balanced but the forces and moments in the shaft (in
one revolution) are alse balanced.
X 3 X = Ay sin{wy t = &) + Ag Sin (wt — o)

e ) r
Sy
|

| ' I
Figure 1-12. Resulting motion of two simple har-
monic¢ wave forms containing a beat.

i w

IR T IR T N N K ) - X

r

Figure 1-13. Simple beam loaded with uniform load
w.

Constraint

Definition: the imposition of limitations on the be-
havior of a physical body.

Example: see Figure 1-14.
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Figure 1-14. Cantilever of uniformly distributed
mass. The cantilever is constrained to deform in a
circular profile.

c k

Figure 1-15. Single lumped-mass dashpot system.
X4;
X -

. |

N~ —

Figure 1-16. Critical damped oscillation ot a single
lumped-mass system.

dashpot

c L';’:l/

Figure 1-17. Symbolused ina jumped-mass system.

*l

Figure 1-18. Coordinates of element “O" in space.
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Initial

Definition: the known motion of a physical body at
the reference time, often taken as zero.

Example: the application of brakes on a steadily
moving vehicle. At the time of application of brakes,
velocity = V and deceleration = 0.

7. Damping

oefficient or Constant

Definition: a factor used in a dynamic system to
account for dissipation of energy.

Example: see Figure 1-15, where equation of motion
is m¥ + Cx+ kx =0. In this equation, the constant C
accounts for viscous damping in the system.

Critical

Definition: a mathematical equality derived in vis-
cously damped system, such that the free displacement
comes to rest without oscillation.

Example: see Figure 1-16 in which eritical damping

(Co) =2 Vim.

Dashpot

Definition: a schematic representation of a viscous
damper.

Example: see Figure 1-17.

Factor or Ratio

Definition: the ratio of actual resistance in damped
harmonic motion to that necessary to produce critical
damping.

Example: D= C/C.=C/2 Vim.

Viscous
Definition: a type of damping assumned in a dynamics
model such that the dissipation of energy during oscilla-
tion is Jinearly proportional to the velocity of the mass.
Example: damping force = Cx.

8. Coordinates

Cartesian

Definition: linear quantities that describe the location
of a point in space with respect to a system of three-
dimensional orthogonal axes.

Example: see Figure 1-18.

Generalized

Definition: a specification of a configuration by a set
of independent geometric quantities, which may be
lengths, angles, or their combinations.

Example: a set of 7 independent geometric coordi-
nates which specify the configuration of an n-degree-of-
freedom system.
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Normal or Principal

Definition: a particular set of generalized coordinates
which describes equations of motion such that there is
neither static nor dynamic coupling among them.

Example: a procedure followed in modal analysis in
which the general motions of the masses of a multi-
degree-of-freedom system can be expressed as a super-
position of its principal modes of vibration.

9. Differential Equations (Equations of Motion)

Linear

Definition: an equation relating to two or more vari-
ables in terms of derivatives or differentials such that no
terms involving the unknown function or its derivatives
appear as products or are raised to a power different
from unity. The order of a differential equation is equal
to the order of the highest derivative in the equation.
When the independent variable is a time function, then
it is called an Equation of Motion.

Example: see Figure 1-19 for which the Equation of
Motion is mz+ Ci+kz=F(t) or m(d%z/dt) +
C(dz/dt) + kz = F(t). This is a nonhomogenous ordi-
nary second-order linear differential equation with con-
stant coefficients. In this equation, z and ¢ are variables,
where z is the dependent variable, In case z is dependent
on more than one independent variable, then the equa-
tion will change from an ordinary to a partial differen-
tial equation. If m, C, and & are not constant and are
independent of z or its derivatives, but are dependent of
the variable ¢, then the equation is called a differential
equation with variable coefficients. If the right-hand
term of the equation F(t) is zero, then the equation Is
called homogenous. The solution of a homogenous equa-
tion 15 called its complementary function and is given by

Ze () = Ae P sin (wat + )

where 4 and  are constants to be specified by the initial
conditicns. This solution gives the transient motion of
the system. The solution which satisfies the nonhomoge-
nous equation is called the particular integral. For
F(t) = Fy sin of it is given by:

zp () = Fosin (wt — ¢)/+/(k—ms")* -+ (Cw)?

This solution gives the steady-state response or steady-
state vibration. The complete solution of the equation is
the sum of the complementary function z.{¢) and the
particular integral zp(2).

Simuitaneous

Definition: linear differential equation which contains
more than one dependent variable related to a single
independent variable t.

Fit) I j

L%
ljié:

Figure 1-19. Single degree spring-lumped-mass-
dashpot system.

L

Figure 1-20. Two-degree-of-freedom system {multi-
degree).

Example: see Figure 1-20 in which the Equations of
Moetion are mz + Gy (8, — 2) + &y (75 — 2,) = Fy(¢)
and maZ; + Coty — Cy (81 = &) + koo — Ky (21 — 22
= Fy(t). This two-degree-of-freedom system contains two
dependent variables, 2), 2, and an independent vari-
able, . The general solution of these two simultaneous
differential equations will consist of a complementary
function and a particular integral.

10. Dynamic

Eigenvalues (characteristic values
or natural frequencies)

Definition: the roots of the characteristic equation
which results from the expansion of the determinant
of the simultaneous differential equations. (See also
definition of normal modes.)

Example: when the simultaneous equations are equa-
tions of motion of the free undamped multidegree-of-
freedom system, then their roots are called eigenvalues
which are equal to the squares of the natural frequencies
of the modes.

Eigenvectors (characteristic vectors
or natural modes)

Definition: these are the characteristic vectors which
are obtained by substituting the characteristic values or



eigenvalues in a set of simultanecus differential equa-
tions of a multidegree-of-freedom system. Alternately,
eigenvectors are the independent vibrating modes of a
multidegree-of-freedom system such that during vibra-
tion the ratio of the displacements of any of two masses
is constant with time.

Example: a multidegree system has exactly the same
number of natural modes as degrees of freedom. Associ-
ated with each mode is a natural frequency and a char-
acteristic shape.

Force, load

Definition: a force whose duration and amplitude is a
function of time. .

Example: centrifugal force generated by an unbal-
anced rotating mass is given by F = myew? sin wl.

Load Factor

Definition: the ratio of the dynamic deflection at any
time to the deflection which would have resulted from
the static application of the dynamic load.

Example: the dynamic load factor caused by the con-
stant centrifugal force of rotating mass on undamped
one-degree system is given by DLE=1/[1— (a/w:)*]-

System

Definition: an elastic system which possesses mass and
whose parts are capable of relative motion.

Example: an engineering structure, machine, or its
components, and most physical bodies consisting of
matter.

11. Excitation

impulse

Definition: the product of force and time while force
is acting on the mass.

Example: see Figure 1-21.

Inertial
Definition: excitation generated by the mass in motion.
Example: see Figure 1-22.

Harmonic, Sinusoidal

Definition: a pulsating force of the form: F, sin «f
or F, cos wt.

Example: see Figure 1-23.

Periodic
Definition: a time-function excitation which repeats
itself identically at regular intervals of time.
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I= F'Af

FORCE

o

IMPULSE = FxA,
Figure 1-21. Rectangular pulse.

RN
NN

'l’fli”l’l’lll'l’l’lfl'l

IF= 2mjedPsinut

Figure 1-22. Rotating mass oscillator generated ex-
citation: F(f) = 2m, ew® sin wt.

R b

VA
r/w

Fo

FORCING FUNCTIQN = FoSinwt

Figure 1-23. Harmonic force. The figure shows a
centrifugal force of amplitude Fy generated by a
rotating machine.

FA
sinwt
b
r fw ' —
Figure 1-24. Forcing function generated by the cam
of a machine.

Example: see Figure 1-24 for which the following
equation holds:

oo
F(t) _%Hﬁzkzl_lcoskmt

™ w

k= 2,46..
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Transient

Definition: a temporary arbitrary excitation which
disappears with time.

Example: see Figure 1-25.

12, Foundation Structure (for Machines)

Block-type

Definition: a small area concrete foundation of such
thickness so that the structural deformation caused by
the superimposed load is negligible.

Example: see Figure 1-26.

Elevated Frame (Table Top)

Definition: a three-dimensional elevated reinforced
concrete structure consisting of beams framing into
columns and supported by a heavy foundation slab. The
tops of the columns are connected by a top slab or heavy
longitudinal and transverse beams forming a rigid table
on which the machinery rests. The foundation structure
may be supported by piles or directly on the soil.

Example: see Figure 1-27.

Mat Slab

Definition: a flexible cencrete slab which is resting on
soil and supports 2 machine or battery of similar
machinery.

Example: see Figure 1-28.

Overtuned and Undertuned

Definition: a machine foundation is said to he over-
tuned when the ratio of the speed of mounted machine
to the natural frequency of the foundation is less than
1.0 and 1s called undertuned when that ratio is greater
than 1.0,

Example: see Figure 1-29.

13. Frequency

Angular or Circular

Definition: the time rate of change of angular dis-
placement given in units of radians per second. For an
oscillating system, it is the number of vibrations in units
of radians per second.

Example: see Figure 1-30.

Damped Natural or Harmonic

Definition: the natural frequency of a linear system
which includes viscous damping C.

Example: see Figures 1-31 and 1-32 for which the
following equation holds:

Damped Frequency, wy = &, v/1 — D?
Damping Ratio, D = G/2 v/km < 1.0

F

>

A

Figure 1-25. An arbitrary transient forcing function.

Figure 1-26. Block-type foundation for a recipro-
cating machine.

o
/ MAT FOUNDATIOCN

E———

Figure 1-28. Vibrating machine supported by a mat-
type foundation.
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Figure 1-29. Magnification factor (M) versus fre-
quency ratio for various amounts of damping ratio
(D).
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-
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8\= wt
—
X
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m 1

Figure 1-30. Angular or
circular frequency w.

RS
Figure 1-31. Damped-
free linear system.

o}

X2

0 1 /\ wal
U wyt) \/ wytz

Figure 1-32. Damped-free oscillation.
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Excitation, Forcing or Operating
Definition: the number of times a dynamic force
achieves an identical amplitude in a time period of one
second, and is given in cycles per second {Hertz).
Example: see Figure 1.33.

Fundamental

Definition: the lowest value of all natural frequencies
of an osciliating system.

Example: the frequency associated with the first mode
of vibration.

Natural

Definition: the dynamic property of an elastic bedy or
system by which it oscillates repeatedly back and forth
from a fixed reference point when the external force
application is removed.

Example: see Figure 1-34 for which the following
equation of motion holds: m¥ + kx =0; Natural fre-

quency in Hertz (fa) = (1/27) Vkjm

Rayleigh's

Definition: patural frequency of a system computed
by an arbitrary selection of a deflected shape which satis-
fies the system boundary condition so that it gives the
values of maximum kinetic energy to make the lowest
natural frequency a minimum. In a muitidegree system,
the displacement 3,, 82 of the masses, caused by the
masses acting as static loads,

PE = J Wb + 3 Wb + - ..
K.E = %%a{%ﬁ + %W” Slw ...
P.E. = K.E.
F A B, 4F, 2 1
_1% _EA Fo(wt)=?——“_2—EFCOSkwt
k=1,365..
F,T-—=
wt
» | CYCLE*
Figure 1-33. Frequency of a cam in a machine.
X w
m £l |
AL
Tmee——l 3
k D I

Figure 1-35. Weightless
cantilever supporting
load W at its end.

Figure 1-34. Un-
damped free sin-
gle-degree-of-free-
dom system.
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e WO E I Wb ...

w= %W;Bf_%_%wgﬁf_i_
2 g
EW{&[

Example: see Figure 1-35 for which the following
holds:

Rayleigh’s Frequency (/) = El; VeWsIWe

— 5, Vals

wil
3EI

where § =

g = acceleration of gravity

14. Magnification or Amplification Factor

Definition: in a dynamic system, it is the ratio of a
steady-state displacement response caused by a dynamic
force to the displacement caused by an equivalent static
force of a magnitude equal to the amplitude of the
dynamic force.

Example: see Figure 1-36. The figure gives the re-
sponse curves for a damped systemn subjected to 2 forcing
function, F(t) = F,sin «t. Steady-state Displacement
Response Amplitude,

x = Fo/v/(k—ma™)* + (Ca)”
Static Displacement x, = Fy/k

Therefore, Magnification Factor,

M = xfr, = L= T + 2DET

15. Mass

Consistent or Continuous

Definition: 2 mass function which is distributed at
each point of its domain and has infinite possible num-
ber of independent degrees of freedom.

Example: see Figure 1-37.

Equivalent Lumped or Lumped

Definition: a concentrated rigid mass in an idealized
system which 1s obtained by equating the total kinetic
energy of the actual system to that of the eguivalent
system.

Example: see Figure 1-38.

4
z -0
. ol
x 3
o
2| |
: \
v
z 03
g, o8
& — O]
(e
20
3 ———
o ] 2 3

FREQUENCY RATIO (a“‘;)
Figure 1-36. Magnification factor (M) versus fre-

quency ratio {w/w,) for various amounts of damping
ratio (D).

Jy . 2

AN
m i
[

S ]
Figure 1-37. A fixed ended beam with distributed
mass over the span.

203.5EI
ke=—73 .
L Czkz
“T—04ImL T T
I
Figure 1-38. ldealized |
SDOF system for a fixed ¢

beam of Figure 1-37 (see
also Table 1-1).

-mz

Figure 1-39. Free-body
diagram of SDOF system
of Figure 1-19.

16. Motion

Equation of Motion

Definition: 2 differential equation describing the rela-
tionship among acceleration, velocity, and displacement
of a mass in a dynamic system.

Example: see Figure 1-39 for which the dynamic equi-
iibrium condition = equaticn of motion, mzZ+ Cz +
kz=0.

Periodic, Aperiodic

Definition: motion of mass which repeats itsell at
equal intervals of time and can be resclved into har-
monics. These harmonics may be of different amplitudes
and frequencies. Conversely, when the mass slowly movyes
back to the equilibrium position, rather than vibrating
about it, the motion is said to be aperiodic.

Example: see Figure 1-40 and 1-41.

\.
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X (uf):%?— sinm—%sinswﬁ-l—shﬁut-..}

25
Figure 1-40. Periadic motion of a cam in a machine.

y

X
wpt

0

Figure 1-41. Aperiodic motion of damped-free
SDOF system.

An L.
[S/RRAY)

Figure 1-42. Harmonic motion A sin «t and its vector
representation.

(A) Asinwt (HARMONIC)
t (8) Bsin 44 (SUBHARMONIC)

~

x{wt)

x(u1)=(A)+(B),(PERIODIC)
Figure 1-43. Subharmonic, harmonic, and periodic
motions.

X (wt} =Asinwt + Bsin2wt
(PERIODIC MOTION)

Asinwt {HARMONIC)

X (wt}

Bsin2w! ( SUPERHARMONIC)

Figure 1-44. Superharmeonic, harmonic, and periodic
motions.
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Simple Harmonic or Sinusoidal
Definition: motion of a body or parts of a
described by a trigonometric function, a sine or a cosine
which repeats itself in any equal interval of time.
Example: see Figure 1-42.

system

Subharmonic

Definition: a sinusoidal quantity having frequencies
that are fractional (1/2, 1/3, 1/n) or a submultiple of
the exciting frequency of a periodic function to which
it is related.

Example: see Figure 1-43.

Superharmonic

Definition: a sinusoidal quantity having frequencies
that are multiple (2, 3, n) of the exciting frequency of
a periodic function to which it is related.

Example: see Figure 1-44.

17. Modes

Coupled

Defizition: modes of vibration of a multidegree sys-
tem where the motions are not independent but influ-
ence each other because of energy transfer from one
mode to the other.

Example: see Figure 1-45 with two degrees of free-
dom, x and 6, for vertical and pitching oscillations,
respectively.

Case I: Coupling due to mass (Center of Gravity of
mass eccentric but equal strength supporting springs),
also called dynamic coupling. Equations of motion:

(a)
(b)

In these equations, coupling is due to a mass which does
not have its center of gravity at the midpoint of the
system. If L, = Lg, then Equations (a) and (b) are inde-
pendent.

m¥+2k;x—k1(L1—L2)B=0

T4+ k(I + LY — k(L — L)x=0

Ly Lz
T
l— — — I -
x-L, 81 F= = T x+L,0
37“1 8 K|
CENTER OF
GRAVITY

Figure 1-45. Simplified two-degree-of-freedom
model of an automobite.
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Case 11 Coupling due to spring (center of gravity of
mass centric, but unequal strength supporting springs),
also called static coupling. See Figure 1-46.

Equations of motion:

m¥ 4 (ke + k) x — L{ki — k)8 =0 (a)
Jo8 4 L3k + k) 8 — L (ks — k) x = O (b)

In these cquations, coupling is due to the unequal
strength springs £, k.. If these springs are equal, then
both Equations (a) and (b) are independent and thus,
represent uncoupled {independent) modes.

Uncoupled
Definition: the modes of vibration of a multdegree
systern where each mode deseribes the complete motion
of a particular type by a single independent coordinate.
Example: see Figure 1-47 with two degrees of
freedom, y and 4, for vertical and pitching oscillation,
Equation of motion:

my - 2ky = F ()
J, 0+ (2kd% 8 = M, )

Because of symmetry of mass center of gravity and equal
values of supporting springs k, the vertical oscillation
described by vy and pitching osciliation described by & are
independent of each other.

First, Lowest, Fundamental

Definition: in a multidegree-of-freedorm system, a
mode shape which corresponds to the lowest frequency
is called fundamental or first mode. The mode shapes
are determined from characteristic equations.

Example: see Figure 1-48 where the beam with con-
tinuously distributed mass has infinite degrees of free-
dom. The frequencies w, and mode shapes ¢, are given

by:

w, = n'n NEIg/dy /L°, ¢, = sin nxx/L ,

wheren = 1,2, 3. ..
F = modulus of elasticity
I=moment of inertia
A = cross-sectional area
y= material density

Also, see Figure 1-49 for the various mode shapes.

Normal, Principal (Eigenvector)

Definition: the independent natural modes which
satisfy the solution of a multidegree-of-freedom systern.
They have the following characteristics:

a. They represent undamped free vibration.

b. They are harmonic.

[ L L,
S g
- — - =Y.— —— %
E e X x+L&
6/ v
k, ZCENTER 2k
OF
GRAVITY

Figure 1-46. Two-degree-of-freedom system.

Figure 1-47. Mass with two independent degrees of
freedom.

2 .
T L 3

Figure 1-48. Hinged-hinged beam.

D"\-_.________________/a

[A) ——_ D
0.3333L
f"’—‘\w =\
0.6687L
0.25L. 0.75L
L T35 —D

Figure 1-49. Various mode shapes of a hinged-
hinged beam.



¢. During vibration, at any two instants, the ratio of

. displacement of any two masses is constant with
time. These modes are called principal modes
(eigenvectors) when their amplitude is arbitrary.
Where the amplitude of the principal modes is nor-
malized o unity, then they are called normal
modes (normalized eigenvectors). A correspoending
normal mode shape is associated with each degree
of freedom.

Example: see Figurc 1-50 where the system is con-
strained to oscillate in the vertical direction only, and
described by two independent coordinates x, and x..
Equations of motion:

Mmoo+ (ky + ko) — kexe = Fi(£) z
(1-45)

maxy + (ke t ko) s — kox: = Fa(£) S

These are linear second-order differential equations and
coupling between coordinates is due to spring k..

To solve for frec vibration of the system, the initial
conditions are:

Fi(t) = F,(t) =0

It is assumed that motion of every point in the system
is harmonic: :

%, = A, sin {wt + ¢)
(1-46)
Xe = Ag Sin (u)t + lf:’)

Substituting Equation (1-46) in the homogenous part
in the equations of motion the following are obtained:

(hy + ko — maw?) Ay — kedo =10
(1-47)
kol (ks + ke — maw?) A, =0

These equations are satisfied for any value of 4, and A4
if the following determinant is zerc:

by + ke — ma?) (k)
=0
(— k) Gy + ko — ma ')
Expanding this determinant,
o — ki+kc+k1+kc]w‘2
ny b3
{1-48)

ks + (b 4 Bdee _ g

myria

+
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K
F, l(t)
Y M l"n
ke
X0
e T,
k2

Figure 1-50. Normal mode vibration of a two-degree-
of-freedom system.

This characteristic equation in quadratic form in o

leads to two roots e? and w.?, which give the natural
frequencies w, and we.

Ratio of ampiitudes: From Equations {1-46),
first mode (&® = w*) !

(AifAz)m = k. (k1 + f2 - )

Second mode (& = wi): (1-49)

4;)‘” btk = ma
Ay ke

Symmetrical Case:
ky=k.=k
my=m;=m
Substituting in the characteristic Equation (1-48),

o — (4k/m)w® + (3k?/m?*) = 0 which results in two roots
wt = (2k/m) = V4(k/m)* — 3(k/m)*

=kjm[2 % 1]
mlz\/k_/_?‘;
nea = \/3kfm

and a corresponding amplitude ratio in Equation (1-49).

First Mode v, =V k/m
(A ] A:) @ = k/[2k — m(k/m)y]=1

The masses appear to move as a single mass in either
direction without deflecting the central spring.

Second Mode w. =/ 3k/m
(A fA.) 0 = [2k — m{3k/m)ijk=—1
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The two masses move in oppesite direction and there is
a node at the center of the middle spring. Each half
then behaves as a single-degree-of-freedom system.

Sec also Figure 1-51.

18. Modes of Vibrations

Definition: a dynamic system which is undergoing free
vibration, where the characteristic shape is such that the
motion of every particle is a simple harmonic with com-
mon frequency.

Example: see Figure 1-52 with motion described by
harmonic displacement x; and .

19. Node

Points

Definition : fictitious points used in a computer mathe-
matical mode! for the purpose of determining response
values usually located where the masses are lumped
and/or response is to be determined.

Example: see Figure 1-33.

Vibrating Systems

Definition: a stationary point in a particular mode
shape which has a constant zero amplitude from equilib-
rium position.

Example: see Figure 1-54.

20. Oscillation

Definition: in dynarnics, it is a displacement of a mass
which moves back and forth with respect to time from
a reference point.

Example: see Figure 1-35.

21. Peak-to-Peak (Double Amplitude of Vibration)

Definition: an algebraic difference between opposite
extremes of vibration displacement measured in a rotat-
ing mass.

Example: see Figure 1-56.

22. Period

Definition: the time duration for a single repetition of
a periodic motion.

Example: see Figure 1-57, where period (T') = 1/f,
and f = number of cycles/sec.

23, Phase

Angle
Definition A: in a dynamic system it is a measure of
the time difference between a periedic excitation and

+| +|

|+ | -~

T 7

nnr 77
FIRST SECOND
MCDE MODE

Figure 1-52. Mades of vibration of a two-degree-of-
freedom system.

NODE POINTS =

e

5

Figure 1-53. Node points in a space frame model
(usually located where masses are |lumped and
response is determined).
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Figure 1-54. Node points in vibrating strings.

L L

5

REFERENCE POINT

Figure 1-55. Oscillation of a simple penduium.

PEAK

PEAK-TO-PEAK
CR

0 /\ / 7 DOUBLE AMPLITUDE
OF VIBRATION

PEAK

VIBRAT!ON AMPLITUDE

Figure 1-56. Peak-to-peak (double amplitude) of
vibration.

ONI'fCYCLEk*_T—’i

ANANA
ARV
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Figure 1-57. Period of periodic mation.
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the resulting displacement response oscillating at the
same frequency.
Example: see Figures 1-58 and 1-59.

Definition B: alternately, in rotating vector form, it
is the angle lag by which the response vectors stays be-
hind the excitation vector.

Example: see Figure 1-60.

Definition C: phase angle in a damped SDOF is given
by ¢ = tan™ [Co/(k — ma®) ]
= tan [2D (w/wn) / (1 = (ofwn}?)]
Example: see Figure 1-61.

24. Resonance

Condition

Definition: a phenomenon of uncontrolled increase in
vibration amplitude exhibited by a physical system when
it is subjected to an external vibration force of a fre-
quency (w) that approaches the natural free oscillation
frequency (wa), 1€, {w/on} = 1.0. In a damped system,
a resonance condition occurs when the displacement be-
comes maximized as o goes from 0 to wa.

C
k
M'L lx
F(t)=Fosinwt Asin{wt - )
(EXC!TATION (DISPLACEMENT
FORCE) RESPONSE)

Figure 1-58. Damped SDOF subject to harmonic
force, F(t) = Fysin wt.

Fo sinwt (1 zAsin{wt - ¢}

AN pAN -
& ’ \41 AR AR
Zotf \ ! \ L A
e 'y v \
Z |/ \ v
3 ~F L
<L

-
/
£ pHASE anGLE  wt

qb, AS TIME LAG
{time lag, 1= ¢p/w)

Figure 1-59. Response motion lags harmenic load-
ing by phase angle ¢.
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Example: see Figures 1-62 and 1-63. Due to the
presence of damping in every system, a resonance condi-
tion at which the vibration amplitude 4 will approach
infinity is in fact seldom achieved.

Frequency

Definition: when the frequency of a dynamic system
(related to the undamped natural frequency) equals the
frequency of the applied force, a resonance condition
occurs. In this condition, the response is maximized.

Example (formulae for resonance frequency) :

1. For maximum amplitude magnification.

A. Damped resonance frequency (constant force oscil-
lator, F = F, sin wt). See Figure 1-64 for which the
following holds:

Resonance frequency (fum.} = fn V1 — 2D?
(D £1/v2)
Magnification factor {M)=
1/{(2Dv/1 — D*) = 1/2D

B. Damped resonance frequency (rotating mass oscil-
lator), F = m; ew® sin wt. See Figure 1-65 for which
the following holds:

Rescnance frequency (fm,) = fu/ VI —2D2
(D < 1/V2)
Magnification factor (M,) = A/me/m
= 1/{2Dv/1—D* = 1/2D
2. For maximum transmissibility factor, T, Damped

resonance frequency {constant force oscillator, F = F,

sin wt}.

Resonance frequency (fm,} = fo VU — 1/2D

U
T, = FT/FO = 'JU.‘. [1— (U — 1)/4'-02]2 — 1

where U7 = v/8D? + | and Fy = transmitted force.

25. Response

Dynamic

Definition: the time-varying displacement and/or
stresses which result when a dynamic force is applied to
a physical system.

Example: see Figure 1-66 for which the equation of
motion is mx -+ Ci + kx = Fysin wt, The complete gen-
eral solution x(¢) of this equation of motion is called
dynamic response.

Steady State (forced part)

Definition: the sustained periodic motion of a physical
system which has the same frequency and duration as
the dynamic force.

= sz
(ACCELERATION)
X= wh

(VELOCGITY)

kA {SPRING
RESISTANCE)

cwh Fq
(DAMPING {EXCITATION)
RESISTANC
X=A mweA
{DISPLACEMENT) (INERTIA)

MOTION VECTORS FORCE VECTORS

Figure 1-80. Response vector lags excitation vector
by phase angle ¢.

Fsin cwt

Figure 1-62. Damped SDOF system subjected to F(t)
= F, Sinwl.

RESONANCE
CONDITION
o0 } o0
i
e
3 Ao o.o:_'
Mz e
2D~ T-p?
2 020
-
<u? 0.40
= | 0.707
Loge
0 1O 20 wp

Figure 1-63. Response curve for damped SDOF sys-
tem (Figure 1-62).

£5 3% 35 08

[m 7T T

F=mjewdsinwt
Figure 1-65. SDOF sys-
tem subjected to F =
m; ew? Sin wi.

F=F, sinwt
Figure 1-64. SDOF sys-
tem subjected to F =
F, sin wt



Fxample: see Figure 1-67 for which the folloswing
holds:
General Solution x{t) = xp{¢) + x(2),
where x,(¢) = particular integral or steady-state response
x.(t) = complementary function or transient
solution

Transient

Definition: a form of free vibration, which quickly
vanishes due to the presence of damping.

Example: see Figure 1-67.

26. Shaft

Critical Speed

Definition: the angular speed at which a rotating
shaft exhibits dynamic instability with rapid increase in
~ lateral amplitude. This develops when the angular speed
is in resonance with the natural frequencies of lateral
vibration of the shaft.

Example: see Figure 1-68.

Flexible

Definition: a rotating shaft of a machine which has a
first lateral natural frequency which is lower than the
rotating speed.

Example: according to an industrey standard for gas
turbines, the first lateral frequency of a shaft shall be at
least 15% below any operating speed; the second lateral
speed must be 209 above the maximum continuous

speed.

Rigid (Stiff)

Definition: a rotating shaft of a machine which has
a first lateral natural frequency which is greater than
the rotating speed.

Example: according to industry standards for rigid-
shaft compressors, the first lateral frequency of the shaft
shall be at least 20% higher than the forcing frequency
which may be the rotor speed or some multiple thereof.

27. Spring Stiffness

Constant

Definition: a constant of proportionality between the
force and the relative deformation it produces in the
direction of application in a massless structural element.
An elastic spring observes Hooke's Law, that is, the
spring force is linearly proportional to the spring de-
formation.

Fxample: see Figures 1-69 and 1-70.
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.

Fosinwt

Figure 1-66. Damped SDOF system subjected to dy-
namic force, F(f) = Fysin wt.

‘f )/‘Xp =%Msin(wt-¢)
\\ —
/ \)

/

DISPLACEMENT X(t)

/7 X=XC+ xP
x=AsDUn ! sin(awgt + )
Figure 1-67. General solution of the equation of
motion of Figure 1-66. From Introduction to Struc-

tural Dynamics by John M. Biggs, Copyright 1964,
McGraw-Hill Book Co.

Disk

Shaft (Ef)

Figure 1-68. Rotating shaft with lateral amplitude
in x and y directions.

U
V')
Tt
_F
oy

Figure 1-69. Linear spring

constant.
Figure 1-70. Torsional

spring constant.
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Equivalent

Defnition: an assumed theoretical representation of
an actual physical system such that force-displacement
relationship in the former i$ equivalent to the latter.

Example: see Figures 1-71 and 1-72. For Figure 1-71
assume the following:

1. Frame weight 1s negligible.

2. Girder is sufficiently rigid to prevent rotation at top

of columns.

Equivalent spring stiffness:

12X 2 X 30 X 10° X 56.4
o (20)° X 144

35,250 Ihs. /ft

i = 12QED

Linear (Elastic)

Definition: an elastic spring ohserves Hooke’s Law,
that is, the spring [orce is linearly proportional to the
spring deformation.

Example: sce Figure 1-73.

Nonlinear
Definitien: in a hnonlinear spring, the load in the
spring is not linearly proportional to the displacement.
Example: see Tigure 1-74, for which the following
holds: k(&) = Ap (&) /Aa8(L).

Seil
Definition: in a soil dynamics system, a schematic
representation of a linear load-deformation relationship
of the soil using a linear force displacement spring.
Example: see Figures 1-75 and 1-76.

28. System

Continuous

Definition: a body which has continuously distributed
mass density {p) and elasticity (&) in its domain. In a
vibration analysis, this body has an infinite number of
degrees of freedom.

Example: see Figure 1-77,

Dynamic
Definition: a structural body which has mass and elas-
ticity and whose parts are capable of relative moticn.
Example: see Iigures 1-78 and 1-79.

Free

Definition: if a dynamic system is set into motion by
some disturbance at initial time equal to zero and there-
after no force is applied, the resulting oscillations caused

in the system are called free vibrations and the system 1s
calied a free system.
Example: see Figure {-80.

Idealized or Equivalent

Trefinition: an idealized system Is a convenient repre-
sentation of an actual structure such that a mathematical
investigation can be performed. The parameters of an
idealized system are usually selected so that the deflec-
tion of the concentrated mass is the same as that for
some significant point on the prototype structure. The
idealized system with the equivalent parameters is called
an equivalent system.

Example: see Figures 1-81 and 1-82. From Table 1-1,
Case 2, equivalent parameter values are

ke = {k;) 3B4 EI/L*=0.53 x 384 El/L"

=203 5 EI/L?
me= 04l mL
F,=033F, L

Linear

Definition: systern where the principle of superposi-
tion is applicable and where cause and effect are linearly
related.

Example: the influence of various forces acting on a
mass is algebraically additive, as in the case of static
analysis.

Nonlinear

Definition: in dynamics, the vibration whose ampli-
tude is large such as when sin # cannot be represented
by only the first term in its expansion but must include
several terms {(sind=86—8*/3+8°/5— . ..); or
when the spring-restoring force on the vibrating mass is
not proportional to its displacement.

Example: see Figures 1-83 and 1-84.

Lumped-Mass Spring-Dashpot

Definition; an idealized system in which the parame-
ters of a real elastic system have been lumped and where
the translational displacements are defined.

Example: see Figure 1-85.

Single-Degree-of-Freedom (SDOF)

Definition: rectilinear or rotational motion described
by a single coordinate associated with a mass.

Example: see Figures 1-86 and 1-87.

Multipie-Degree-of-Freedom (MDOF)

Definitien: a rigid body in space has six degrees of
freedom, namely, three coordinates to define rectilinear
positions and three to define the angular positions. 1f
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Figure 1-71. Uniformly loaded portal frame.
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Figure 1-72. Mathematical model of portal frame
(Figure 1-71) with equivalent spring stiffness, k.
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Figure 1-73. Characteristic of a linear (elastic) spring
constant “k.”
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Figure 1-74. Characteristic of a nonlinear spring
constant “k.”
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Fit)
i Ve Footing

Elastic . Ft )
z half-space mzf l Efootlng
Figure 1-75. A circular o X
footing subjected to dy- 5
namic force F = F, sinwt p= k.2

and resting on semi-in-
finite soil medium {(elas-
tic half-space).

Figure 1-76. Math-
ematical model of
the footing with an

z equivalent soil
spring stiffness,
k

P

X

Figure 1-77. A body of continuous mass in three-
dimensional space.

Q Head

Upper torso

Arm- { Thorax-
shoulder E'_ul abdomen
system
Stiff — (simplified)
elasticity
of spinal Hips
column t Force applied
Legs to sitting
subject

Force applied to
standing subject

Figure 1-78. The hu-
man body—a typical
dynamic system.

Figure 1-79. Rheo-
logical model of a
human body.

Figures 1-78 and 1-79 are trom Shock and Vibration
Handbook by C.M. Harris and C.E. Crede, ©@ 1976.
Used with permission of McGraw-Hill Book Co.
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Figure 1-80. Free oscillation of a simple pendulum
system.
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Figure 1-81. An actual physical structure of a fixed
beam of a uniform mass and subjected to a uniform
dynamic force. F() = F, sinwf.
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Figure 1-82. Equivalent (idealized} SDOF system.
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Figure 1-83. Elasto-plastic behavior in a fixed steel
beam.
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Figure 1-84. Bi-linear spring representation of the
elasto-plastic system of Figure 1-83.
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Figure 1-85. Lumped mass, spring and dashpot.
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Figure 1-86. Single recti-
linear motion in x-direc-
tion in a cantilever.
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Figure 1-87. Single rota-
tional motion in a ¢ direc-
tion in a torsional pen-
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Figure 1-88. A mass element with a six-degree-of-
freedom system.
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Figure 1-89. Transmissibility factor vs. frequency
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Figure 1-90. Transmissibility factor vs. frequency
ratio for various damping factors.
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there are n masses in a system with no constraints, then
the total degrees of freedom for that system will be
6 X n.

Example: see Figure 1-88,

29. Transmissibility Factor

Definition: the ratio of the magnitude of the force
transmitted to that of the impressed force,

Example:

1. See Figure 1-89. Constant Force Amplitude
Excitation F = F sin wt.
Transmissibility {T,) = Fp/Fo = V1 + (2 Dr)?*/
vV (1 =733+ (2Dr)?, where Fr is the force trans-
mitted.

2. See Figure 1-90. Rotating Mass-Type Excitation,
F = men® sin ut.
Transmissibility (T,) = Fp/ m;ws®
=21+ (2Dr) 2/ (1 — ) + (2Dr)®

=77,
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A detailed dynamic analysis of a structural system as
it physically appears in real life is rarely attempted. The
usual practice is to choose an idealized model consisting
of springs and lumped masses which will closely perform
in the same way as the actual structure. It is only neces-
sary that a proper selection of the systern parameters be
made such that equivalence of the idealized spring,
dampirfg element, and lumped mass in the model results
in equivalent displacements at analogous points of signifi-
cance in the prototype structure. In addition, the
idealized model should behave, time-wise, in exaotly the
same manner as the actual prototype structure.

Modeling Techniques

The techniques adopted in the modeling of structures
subjected to dynamic leads are stil] in the developing
stage. The approach used in the modeling of simple
systems, such as a beam supporting a vibrating load or a
rigid block-type foundation supporting a machine, is
straightforward. However, when the structures involved
are of an indeterminate type which rest on soils and are
subjected to complex dynamic forces, the modeling
approach differs depending on the analyst {ref. 2). These
differences do not necessarily mean disagreement in the
basic fundamentals, but rather relate mostly to the accu-
racy and efficiency achieved in the solution. During the
1960s, the investigation of structural systems used in
space exploration and more recently in structures used
in nuclear power plants and offshore structures has
resulted in an established state-of-the-art in the field of
structural dynamics (refs. 3 and 5). The rigorous use of
digital computers and finite-element analysis techniques
have been the principal agents in the development of the
state-of-the-art (ref. ). Therefore, it is imperative that
designers who wish to solve structural problems should
have adequate exposure to these analytical tools. Model-
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ing of any structual system is dictated by the require-
ments imposed on the selution. The desired solution may
be for one fundamental frequency or for a spectrum of
frequencies of all possible modes. In some cases it may
be necessary to find the vibration response at various
points of interest. There are a few practical considera-
tions which are commonly used in all model representa-
tions. These include the following:

1. The Lumping of Mass. The logical location of
cquivalent lumped mass in a model should be at: (a) the
point where dynamic force or load is acting; (b) a point
where vibration response is desired; (c) a point where
maximum static deflection will occur, e.g., at the free
end of a cantilever or at the midspan of a beam; (d) the
intersection point of a beam and a column; (e) the node
point of finite elements in a continuous system; (f) the
center of gravity of all masses, when a single-degree-of-
freedom system is employed.

2. Eiastic Spring Constant. The spring constant rep-
resents a linear relationship between the applied load
and the displacement of the mass. A value for the spring
constant is derived by determining the structural stiff-
ness of the elastic medium existing between oscillating
masses or between a mass and another infinite stiff sup-
port. Specifically, the elastic properties of: (a) a pris-
matic member can be represented by three lirear springs
and three rotational springs; (b) a thin plate can be
represented by two linear springs and two rotational
springs which are equivalent to stretching and hending
occurring in the planc of the plate; {c) a massive con-
crete block approaches infinite stiffness; (d) soil reactions
to the foundation loads can be represented by elastic
springs capable of acting in tension and compression.

3. Damping Ratio. The dashpot of the lumped sys-
tem {Figure 1-2) represents the damping in a dynamic
system, Damping may occur due to several factors present
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in the system, for example, the frictional resistance and
slippage occurring at the interface of surfaces at the
contact joints or the sliding phenomenon in the molec-
ular structure of the elastic spring.

The damping assumed in the structural system is of
the viscous type and includes the following additional
assumptions: (a} the internal damping present in con-
crete and steel structures is nominal, i.e., the damping
ratio varies from 2.0 to 5.0 percent for concrete struc-
tures and 1.0 to 7.0 percent for steel structures and nor-
mally is neglected; (b) the damping agent associated
with the soil is in the form of internal damping and
geometric damping. The internal damping value is of
small magnitude in all modes of oscillation except in the
rocking mode. Geometric damping has considerable
effect on the dynamic response of the system and s
generally included in the model representation. Chap-
ter 4 further describes the nature and evaluation of soil
damping.

4. Forcing Function. The forcing function is normally
treated as an equivalent concentrated force applied at
points where masses are lumped. Torques are applied at
mass points either in concentrated form or are converted
into an equivalent force-couple. The effect of earthquake
forces may be obtained by the application of a time-
history acceleration at the mass points. A time-history
displacement applied at the supports may also be used
for earthquake loads as a type of forcing function (refs.
3, 4 and 5 of this chapter and ref. 4, 5 and 6 of chap-
ter 3).

Models

Civil engineering structures of various kinds use dif-
ferent modeling techniques depending on the type of
solution desired (ref. 1}, Modeling types are given in
Figures 2-1 through 2-11 (page 39)for typical structures
having different constraint conditions. Also shown is the
mathematical mode] used to represent each physical sys-
tem and a short description of the model, as well as list-
ing 'the applicable equations of motion. Each model is
further described below.

Development of Equations of Motion

The equations of motion which describe the behavior
of the mathematical model are developed using one of
the following two methods (ref. 3).

(a). Dynamic equilibrium equation, In this method,
the condition of equilibrium of a mass at any instant of
time under the influence of forces and reactions is con-
sidered. In order to account for dynamic equilibrium,
the mass inertia force is included. Consider, for example,

the vertical excitation for the “Machine supported on
inertia-block and vibration isolated from the foundation™
shown in Figure 2-3(a). The dynamic equilibrium equa-
tions are derived as follows:

Assuming that at any instant of time, the masses m;
and m, have moved up through displacements Z; and
Z., respectively, from their reference position, then, for
mass m

1. Resistance of spring ku = ka (Z1 — Z2) {acting
downward)

2. Inertia force of mass m;, = m(d*Z,/dt?) = mlzl
(acting downward—opposite to the direction of dis-

placement;.
3. Excitation force = F, (¢} (acting upward)
Since summation of downward forces = upward
forces, .- myZy -+ ka (2, — Zy) = F(t) (2-1)

Similarly for mass m,:

I. Resistance of spring kzn = kn (Z, — Z2) (acting
upward)

2. Resistanice of spring k.. k.. Z; (acting down-
ward)

3. Resistance of damping €. = Cuy Z._, (acting oppo-
site to the direction of movement Z,, thus acting
downward)

4, Resistance of inertia force of mass mzzmzéz
(acting opposite to the direction of movement Zs,
thus acting downward)

Equating the downward resistance to the upward

resistance,

s+ Con Zo+ ksy Zo3 = koy (Z, — Z)

or
MoZey + Coa Dot hay (Za— Z1) F ke 2o =0 (2-2)
Equations (2-1) and {2-2) are the same set of Equa-
tions (a) shown in Figure 2-3 of meodel. It should be
noted that Z and Z stand for the first and second deriva-
tives of the displacement Z with respect to time ¢, ie,
Z =dz/dt and Z = d*z/d¢?.

(b) Lagrange’s Equation. Lagrange’s equation, in
its fundamental form for a conservative system in
generalized coordinates g; is given by

d_( 3K.E. )_ D(K.E) , B(PE) (DE)_3(Wo)
dt\  oq; 2q: g g,  oq
(2-3)

where K.E. = kinetic energy of the system,
P.E. = potential energy of the system,
D.E. == dissipation energy of the system,
W.= work done by the real external forces on
the system.



34 Design of Structures and Foundations for Vibrating Machines

The use of Lagrange’s equaticn will directly yield as
many equations of motion as the number of degrees of
freedom of the system, given that basic energy expres-
sions of the system are known,

This method is applied to the model discussed earlier
where the dynamic equilibrium equation method was
used in section {a}. In this example, there are two co-
ordinates, that is, ¢; = Zy, g2 = Z..

The energy expressions in terms of Z are as follows:

Kinetic Energy = K.E. = 1§ m, (Z'l):’ + 14 my (Z,)°

Potential Energy = P.E. = 14 k.o (Z2)° + 14 ks

(7.~ 22)®

Dissipation Fnergy = D.E. = {— C.. Z.)(Z,)

Work by external force = W, =F, (Z,)

The dissipation energy due to damping force must be
taken as negative, since a positive damping force is
always in a direction opposite to the positive displace-
ment. The derivatives with respect to Z, are

ad (K.E. a (K.E. - d 38 (K. -
( . ) = ( . ) = my, — (igl = mif1
dgi éiZl dt 621
d (K.E.) _ 0
agl
d(P.E) d(PE) s
3171 - 821 e k?x (Zl ‘{3)
d{D.E) 9(DE) 0
6g1 - 821 -
o (W) _a (W)
g~ oz, 2@
Substitution of the above in Equation (2-3) leads to
mi :2;1 + k(2 — 2) = Fo) (2-4)
The derivatives with respect to Z, are
a (KE) _9 (KE) _ maZz, d (Q_(KE) _ ng.g
3!]2 aZQ df GZE
0 (K.FE) d(KE) 0
aqg o 6Zg -
d (P.E)} @d(PE) _
bps 6z kade = ke (Z1 — Zn)
d(D.E) d(DE) _ .
o= s G e
o) _aw _
a@ - aZg -

Substitution of the above in Equation (2-3) leads to the
equation of motion:

mﬂé'] + CseZ? + ki (Z: - 21) + k2 =0 (2-5)

These equations are readily verified by consideration of
dynamic equilibrium given by Equations {2-1) and
{2-2). The above method s generally an inefficient way
of obtaining the equation of motion. Furthermore, it
should be recognized that the Lagrange equation is
merely a device for writing the equation of metion and 1s
not an independent method of solution.

Model 1—Vibkrating Machine Supported by
Block-type Foundation (Figure 2-1)

This type of foundation is a very common form of
physical systemn and is usually considered by design engi-
neers in petrochemical and industrial plants. Three
forms of dynamic mode shapes are possible and should
be investigated (ref. 2). Vertical and horizontal modes
are described by linear differential equations, and the
solution for the natural frequencies and vibration
response are casy to obtain. In the rocking mode, the
coupling effect of the horizontal mode may be ignored
for very shallow foundations, In that case, /i, is zero,
therefore, no coupling effect is present and thus Equa-
tion {c) of Figure 2-1 reduces to Equation (b}. Simi-
larly, Equation {d) of Figurc 2-1 is also “reduced”
{uncoupled) and describes the motion in coordinate
and is as follows:

I +Codv+ kv =FH=T, cos wt (2-6)

This equation along with Equations (a) and (b) of
Figure 2-1 can be solved according to the procedures
given in Chapter 1. An example is solved in Chapter 6
which describes the required steps in the caleulation
procedure. When the vibration response of the coupled
modes is desired for Equations (c) and {d) ef Figure
2-1, then the solution can be found by substituting

(2-7a)
(2-7b)

y = A, sin wt + A4, cos wt

¥ = Ay, sin wt + Ay, cos wf

in Equations (c¢) and (d) and then separating the
equations containing either sines or cosines. This pro-
cedure will result in four simultaneous equations with
four unknowns. A complete solution of this type of
equation is given in Appendix A,

Model 2—Vibrating Machine Supported by
Mat-type Foundation (Figure 2-2)

This type of foundation system may be used for the
situation where several small units are placed side by
side or where a firm soil with a high water table is en-
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countered at plant grade level. Due to the flexibility of
the foundation mat, a high magnitude of damping will
be encountered in the rocking and horizontal modes.
Therefore, only the frequency and vibration response
calculations in the vertical mode are required.

A single lumped mass model may be used when one
set of machines is supported by a relatively rigid mat
foundation. However, the model is divided into discrete
lumped masses when several! sets of machines are lo-
cated on a flexible mat foundation. In this case, con-
straint conditions are applied to the boundaries in the
directions of translation for the sake of stability. The
spring constants for each element depend on the mat
rigidity as described in Chapter 5.

Model 3—Machine Supported on an Inertia Block and
Vibration lsolated from the Foundation (Figure 2-3)

In special cases and due to environmental conditions,
it may be necessary to limit the vibration amplitude at
the foundation base to much lower values than those
usurally allowed. This requirement may not be practical
to achieve even by proper selection of mass or base area
of the foundation. In such cases, use of an inertia block
and spring absorbers is recommended.

In normal behavior, three forms of excitation are
possible. Excitation in the vertical direction is inde-
pendent of the other forms of oscillation. Excitation in
the horizontal direction is generally coupled with the
rocking mode; however, for a machine which is located
at relatively low height (A is < %% b} then investigation
of the horizontal and recking excitation independent
modes is sufficient.

The parameters k:; and k:; are properties of the
spring ahsorbers. Parameter m, is the combined mass
of the machine and the -inertia block together. The
parameters ksz, ks, koo and Cez, Csa, Cvy are spring con-
stants and damping coefficients, respectively, of the soil
in the three modes considered and should be determined
using the elastic half-space theory as described in
Chapter 4. Parameters m. and I, are the mass and mass
moment of inertia, respectively, of the foundation.

The solution of the differential Equations {a) and
{b} of Figure 2-3 can readily be found for the natural
frequencies, mode shapes, transmissibility factors, and
the wvibration response. Often, the fundamental fre-
quency and the transmissibility factor are the principal
results of the analysis. The set of differential equations
{c) of Figure 2-3 is in simultaneocus form, and a manual
solution is tedious te perform. This system of simul-
taneous equations is rarely solved by hand unless a
thorough investigation of the system is required, and
then the solution is obtained with the help of a computer

program. However, solution for a similar type of equa-
tion of motion has been performed in Appendix A.

Model 4—Vibrating Machine Supported by a
Cantilever (Figure 2-4)

It is sometimes required that a vibrating machine
be supported on a cantilever. In such instances, a vibra-
tion analysis is considered necessary. Two modes (verti-
cal and rocking) are possible (ref. 3). The calculation
of the rocking mode may be ignored if the distance
15 found to be small, and the cantilever arm is rigidly
secured. The calculation of the vertical mode is generally
performed because this provides the fundamental fre-
quency and the largest vibration response. The mass
parameter m, is considered lumped at point O and con-
sists of the mass of the machine plus an equivalent mass
for a portion of the cantilever calculated according to
the procedure explained in Chapter 1. The spring stiff-
ness parameter k. is the fexural stiffness of the canti-
lever at point Q. Damping in the systern varies from
0.003 to 0.05 of critical, depending on the material.

The investigation for the rocking mode is performed
on a similar basis as for the vertical mode. The mass
moment of inertia parameter Iy is calculated for the
equivalent mass m, about the point. O. The rotational
spring constant k¢ is calculated by applying a moment
at point O about the x-axis (the x-axis is perpendicular
to the figure).

The 'maximum vibration response calculated for each
mode may occur at different times. Therefore, in ob-
taining the total response, the maximum of the sum may
occur at some specific time within the interval of inter-
est. However, obtaining this maximum value may be
difficult. Therefore, a simple summation of the individ-
ual maxima is generally performed, which results in
a conservative estimate of total displacement. The
solution of the equations of motion has previously been
described in Chapter 1.

Model 5—Vibrating Machine Supported by a
Fixed Beam (Figure 2-5)

Mathematical modeling technique for this physical
system is similar to the cantilever system above except
that the parameter determination differs.

The mass parameter m, is the combined mass of
machine and a certain length of beam and is tumped
at the intersecting axes of the machine and the beam.
The spring constant k, is a function of the fiexural stiff-
ness of the beam. Both parameters m, and &. can be eval-
uated by using the expression given for Case II in Table
1-1. The parameters [+ and ks can be determined by
following the procedure described under Model 4 above.
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All modes of oscillation which may occur due to the
action of the forcing function generally need investiga-
tion. In this case, the vertical mode and the rocking
mode (about the x-axis) fall in this category. The
vertical mode investigation is necessary because it gives
the lower value of natural frequency and the higher
level of vibration response. On the other hand, the rock-
ing mode investigation provides higher value of natural
frequency and a lower level of vibration response.
Therefore, if the machine operating frequency is found
to be very close to the rocking mode natural frequency,
then the model parameters may need modification in
order to avoid possible resonance conditions. Thus, both
modes may need to be considered in some machine
supports.

Model 6—Typical Elevated Pedestal Foundation
(Table Top) (Figure 2-6)

In this physical model, there is some variation in the
use of the modeling technique (ref. 1). In this example,
four models are considered, and the merits of each and
the effort involved in their solution is discussed. In the
modeling procedure the following factors may be used
in determining the type of model to be used.

Model A: Single-Lumped Mass {(Uncoupled
Superstructure and Foundation) (Figure 2-7)

—A preliminary investigation is required.
—Reliable information on the parameters is lacking.
—The structural framing system Is not well defined
and preliminary dynamic characteristics are desired.
—The beams have much higher stiffness than the
colurmns.
—Information on vibration response is not required.
Because of the lack of interaction between super-
structure and substructure, this medel gives the dynamic
solution of individual subsysterns and generally results
in a calculated higher fundamental frequency. There-
fore, the engineer must use conservative criteria to avoid
the resonance condition by first making certain whether
the system is to be low or high tuned. This condition is
generally achieved by varying the mass or stiffness of the
systemn components. The calculation of parameters for the
superstructure representation would require a famiiiarity
with structural frame analysis for the calculation of the
spring stiffness constants &, and k;. The mass parameters
m, is the mass of machine plus the mass of top framing
and upper half-length of columns. The substructure
investigation during the initial investigation phase of the
total foundation is not conducted because its influence
on the sclution of the superstructure portion is small.

However, if the substructure base slab configuration is
necessary, then information on dynamic soil properties
will be required, and the slab should be rigid encugh
such that it can be represented by a single lumped mass.
The model parameters for spring stiffness kg, ki, Ay
and damping constant C;, C,, Cy in the three modes of
excitation can be determined from the soil properties
by the elastic half-space theory as described in Chapter
4. The mass parameter m. is the total mass of machine
and of the entire foundation structure. The parameter
I+ is the mass moment of inertia of the machine and
the entire foundation at the center line and at the base
of footing. The equations of motion involved in both
the subsystemns are linear second-order differential equa-
tions which can be solved for the natural frequency
and vibration response by the procedures described in
Chapter 1.

Model B: Multi-Lumped Mass (Uncoupled
Superstructure and Foundation) (Figure 2-8)

This model may be used when the following types of
results are desired according to the listed conditions:

—-Superstructure is well defined, and the fundamental
frequency is to be lower than the machine operating
frequency (structure to be undertuned},

—TFoundation structure is supported either on highly
firm soil or rock formation or a rigid deep founda-
tion.

—Accurate determination of vibration response is not
a requirement.

—Foundation structure height is low (less than 20
ft) and foundation is not supporting more than two
machines.

The dynamic characteristic of the superstructure may
be calculated in either of two ways:

1. Rayleigh's Frequency (see definition in Chapter
1). In this method, the weights of structure and of the
machines are applied as static forces at a discrete num-
ber of points acting in the direction of the deflected
shape of the structure (assumed as the fundamental
mode) . The following formula is used:

\/g 2 F b

Wy = At

" 3 F 8
i

where F; are the equivalent lumped forces of distributed
weight of structure and machine acting at point i; §;
are displacements of the structure at points 1 produced
by the forces F;; g is the gravity constants; w, is circular

(2-8)
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natural frequency in the mode corresponding 1o the
direction of the acting forces. .

The accuracy of the natural frequency calculation
obtained by this method depends entirely on how close
to reality are the assumptions made in assuming the de-
flected shape of the structure. However, note that for
the approximate results obtained by this method, the
lowest frequency always gives the best approximation.

2. Modal Multidegree Lumped Mass Analysis. The
normal modes {modal analysis and normal modes are
defined in Chapter 1) are determined separately and
then superimposed to provide the total response. A
normal mode {or natural mode) of vibration is associ-
ated with each degree of freedom of lumped mass in
the system. The property of a normal mode is that the
system could, under certain circumstances, vibrate freely
in that mode alone, and during such vibration the ratio
of the displacements of any two masses is constant with
time. The ratio defines the characteristic shape of the
mode.

The equations of motion in matrix form for a multi-
degree system, but having no external acting force and
no damping, have the foliowing form:

mij;i + k!j_J’_f =0 (2'9)

The natural frequencies of all modes are found by as-
suming 2 harmonic motion for each mode. During
vibration in any single mode, the displacements of sev-
eral masses is always in the same proportion, ie., all
possible positions are geometrically similar. Substitution
of the assumed mode function in the equations of mo-
tion and rearrangment would result in a characteristic
value problem. Briefly, solution of these equations con-
sists of expansion of their determinant and subsequent
solving for the characteristic values (or eigenvalues,
natural frequencies).

The vibration response of the multidegree system due
to applied forces or initial conditions is obtained by
treating each normal mode as an independent one-
degree system. The formulation of the problem by this
method of analysis requires a thorough background in
dynamics analysis and is generally attempted using 2
computer program. The results obtained from this
method will be the natural frequencies for each degree
of freedom of the masses, mode shapes for each fre-
quency, and response at the joints in the form of vibra-
tion amplitudes, internal forces, and moments. An
example problem for three degrees of freedom based
on this method of analysis has been presented in Ap-
pendix A.

The investigation of the substructure is performed
according to the procedures stated for Model A. The
vibration response results obtained for both the sub-
systerns are combined by some rational procedure such
that maximum values are achieved at a particular mo-
ment in time.

Model C: Two-Lumped Mass with Coupled Soil-Struc-
ture Interaction (Figure 2-9)

Model C includes soil-structure interaction and also
includes the true dynamic characteristics of the founda-
tion system. This model representation may be employed
when the following conditions are satisfied:

— Foundation structure is supporting not more than
two machines, ie, the length of the structure
should be small and its height is not greater than
20 ft.

— Foundation structure is well defined, and reliable
information on the soil is available.

—Natural frequencies of all subsystems of the model
do not fall in the rescnance zone (0.5 to 1.5 of the
acting frequency of the forcing funetion}.

The types of results obtained {rom this model are:

—_Natural frequencies for all important modes which
are excited by the forcing function.

— Vibration response at the axis of rotation of the
machines and also at the base of the foundation.

The dynamic behavior of the model has been sep-
arated into parts a and b. Part a represents the coupled
modes of horizontal and rocking oscillations while part
b represents the behavior for vertical oscillation. The
equations of motion of these two parts are described in
Model C of Figure 2-9.

The natural frequencies of these models can be de-
termined from the equations of motion by initially
ignoring the terms containing damping and forcing
functions. An exponential type of displacement function
is substituted for each degree of freedom (mode shape)
in these equations. A determinant is formed from the
resulting equations which, when expanded, results in a
characteristic or frequency equation. The solution of the
frequency equation will give the expression for the
natural frequencies. A general solution can be formu-
lated with the use of natural frequency expressions to
obtain the mode shapes. The constant of integration
in the equations is evaluated by equating the general
solution to the initial conditions. The manual calculation
of vibration respense of coupled mode part a is tedious
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and time-consuming and normally is accemplished with
the use of computer programs; however, a manual
solution is presented in Appendix A. The techriques
used in vibration response analysis follow a modal anal-
ysis of the Iumped mass multidegree system which is
briefly described above in discussing Model B. The re-
sponse analysis of part b is relatively simple and can
be obtained manually in a manner similar to part a.
However, if a computer program is used for the solution
of part a, then parameters of part b can also be easily
combined in order to provide the total results (ref. 2).
In that case, the rocking spring ks of part a should be
represented by three equivalent vertical springs of equal
stiffness (see Figure 2-10) with the following conditions:

ky = 2 ke
k= 3k
or
e = 3k /2 k,

In this case &+ = rocking spring constantk. is the verti-
cal spring constant of m,, and ¢ is the distance between
two equivalent springs of stiffness £, The distribution
of damping coefficient Cy related to C; is rather com-
plex; however, a similar form of logic may be followed
as has been done for the spring constant. The damping
coefficients associated with the equivalent vertical spring
ke would not be all equal if the same value of ¢ is used.
Therefore, an equal value of the damping coefficient C.
has been used for the exterior springs, and a different
value of damping coefficient C, has been used for the
middle spring. The member which connects the three
equivalent springs should possess an infinite flexural stiff-
ness but should also maintain the eguivalent values of
ny and .

Model D: Multi-Lumped Mass with Coupled Soil-
Structure Interaction (Figure 2-11)

This model provides the design engineer with a com-
plete insight of not only the dynamic behavior of the
superstructure but also identifies the critical modes in
the soil-structure systemn. In cases whers access to a
computer program capable of solving dynamics problem
is available, then it is very convenient to resort to this
modeling technique. In this investigation, several kinds
of results can be obtained provided that the following
parameters are available:

— Member sizes of the structure and geometry are avail-
able and have been proportioned such that: (a} the
rigidity center of gravity of the structure in plan
coincides with the center of gravity of the masses

of the structure; (b) the flexural displacement of
the top of the structure in either direction is uni-
form across the length when the top mass of the
structure and of the machines are made to act as
horizontal loads; {c) all columns deflect equally
under static loads; (d) the center of resistance of
the supporting soil coincides with the centroid of
all statically imposed loads.

—Information on founding depth of the structure and
on scil, such as shear modulus (G), Poisson’s ratio
(v}, and bearing capacity of the soil is readily avail-
ahle.

The results that can be obtained from the analysis of
this model include:

—The natural frequencies (eigenvalues) ; the number
of frequencies will depend on the number of active
joints with lumped masses and the degrees of f{ree-
dom of each joint considered in the analysis.

—The mode shapes (eigenvectors) for each of the natu-
ral frequencies. ‘

—The vibration response (in terms of displacements,
velocities and accelerations) for each mass having
six degrees of freedom.

—The moments and forces at each mass joint and the
reactions at the supports.

A dynamic solution of this model using the computer
program STRUDL is presented in Chapter 7 (page
114).
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Vibrating Machine
Supported by

Block-Type Foundation
(Model 1)

Vertical Mode

Vertical mode normally behaves independent of other modes. The mass (m)
of machine and foundation is assumed to be concentrated on the vertical
axis. Spring constant of soil (k,), damping in soil (C,), inertia of mass (m,)
and the forcing function (F,) of the machine have thelr line of action coincid-
ing with the vertical axis. Equation of motion:

mz+C,z+k,z=F,(t)
(a)

ALY

Horizontal Mode

The representation for the horizontal mode involves an approximation. In
this mode, contrary to the vertical mode, the masses do not lie on the same
horizontal axis, nor the line of action of the forces coincides. Due to these
reasons, this mode is normally coupled with the rocking mode. Equation
of motion:

my+ Cy+ ky=F,(t]
{b)

P‘%
-

v
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Rocking Mode

This model is a better representation of the true dynamic behavior of the
structure. However, the analytical solution is difficult to attempt due to cou-
pling of horizontal and rocking motions. This coupling effect should be
investigated for the case when the machine is located high above the found-
ing tevel. Equations of motion:

my + Cy + k, {y —v¥hy) - hDCy\f; = F,cos wt (c}

I+ (C, + h2C N + (k, + A2 k)¢ (d)
—h,Cy — hok,y = F(t} H = T,(t) = F,H cos wt

Figure 2-1. Model 1. Vibrating machine supported by block-type foundation.
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MAT
FOUNDATION

Vibrating Machine
Supported by Mat-Type
Foundation

{Model 2)

nrrrryerrrrr R

Single Lumped Mass
Vertical Mode

For a mat foundation, which is relatively rigid {corner dis-
placement is .85 x maximum under machine load at the
center), machine and mat slab can be lumped into a single
mass. Only the vertical mode needs investigation. Classi-
fication of a mat as “rigid” is discussed in Chapter 5. The
spring constant k, and the damping constant C, are to be
obtained from elastic half-space theory or from soil data.
Equation of motion:

mi+Cz+kz=F,(t)

¥4

FINITE T
ELEMENTS E
Z

MASS mj

x/ SPRING CONSTANT k

Discrete Number of Lumped Masses
Vertical Mode

When the mat foundation is a thin concrete slab, and dy-
namic analysis is required, a discrete lumped-mass model
is more appropriate for analysis. The mat may be divided
into a symmetrical arrangement of finite elements (either
triangular or rectangular shape) with at least bending
capability. The masses at the joints can be lumped by a
computer program command. The mass of the machine is
to be added through the computer program input at the
appropriate joints. The soil spring constant calculated
for the total mat should be proportioned to the joint in rela-
tion to the peripheral areas for a rigid mat. For flexible
mats, the procedures described in Chapter 5 should be
used. A computer program is necessary for frequencies
calculations, If vibration response calculations are desired,
an equivalent damping constant of about 0.1 may be used.

Figure 2-2. Model 2. Vibrating machine supported by mat-type foundation.
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ISOLATION
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FOUNDATION
Machine Supported on Inertia-Block

and Vibration Isolated from the Foundation
(Model 3}

Fi Equivalent

Z| I ‘ machine +
m1 inertia

»_block
h
zl Equivalent
ZZ_T__ 2 Foundation
CZZH - hlE

Vertical Excitation

This model representation yields the natura! frequencies and vibration
response in the vertical direction. Since there are two masses in the model,
there are two degrees of freedom and two natural frequencies, and maode
shapes will be obtained. Damping in isolation spring is generally neglected.
However, soil damping is significant and is, therefore, included, Equations of
motion:

m.Z, + Ky, (2, — 2,) = F, (1)
m,Z, + Cppty + by (2, — 2) + K2, = 0 {a)

m m
2 Fy

g

343 3 0358

Horizontal Excitation

The characteristics of this model are similar to the above model except
that ali the parameters are related to the horizontal axis. Equations
of motion:
m, + k., (x, — X} = F (1)
iy + Copkp + Ky (% — X1 T kaXy =0 {b)

X
l%gp;ml —"

K =

Cx2 kxl
X
r: 1 v
x2 22
Ky2Sy2

Coupled Horizontal and
Rocking Modes

[CELRR LY

This mode! incorporates the coupled dynamic properties of the horizontal
and rocking modes. This model has three degrees of freedom associated
with the three coordinates x,, x, and . Therefore, three mode shapes are
possible, each with its own natural frequency. investigation of this model,
if carried out, would make the solution of model for the horizontal
excitation above unnecessary. Equations of motion:

Mk, + Ky (X = Xy = ) = F (1)
My, + Cpaky + KegXo = Ko (Xy = Xz ~ d2P) = 4] (c)
Iy + C.,Lz‘:l;z +mXh+ kb, = F (t)h

Figure 2-3. Model 3. Machine supported on inertia-block and vibration isclated from the foundation.
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Vibrating Machine

Vibrating Machine :
- ted b
Supported by a Cantilever Supporte (Mgdgl 5F)|xed Beam

{(Model 4)

Both physical systems can be represented by a similar form of mathematical model. However, because of ditferent
physical dimensions and boundary conditions, dynamic model parameters will change. Two form of modes in the direc-
tion of dynamic forces require investigation:

, IR
1

Rocking Mode
{Rotation about x-Axis)

Vertical Mode

1. Vertical Mode—Mass (m,) is the mass of machine 2. Rocking Mode—Mass (/) is the moment of iner-
+ equivalent mass of support and is lumped at tia of mass of the machine + that portion of support
point O. Spring stiffness (k;) is the deflection stiff- about point O. Torsional spring stiffness {k,} is the
ness at point O for a fiexural member. Damping in rotational stiffness at point O for a flexural member.
such a system is small and is neglected. Equation Damping is small and thus is not considered. Equa-
of motion: tion of motion:
Mz + ,Z = F, sin wt W+ kg  =Fyhcoswt
= M, cos wt

Note: Mathematical lorm and description are common to both these systems.
Figures 2-4 and 2-5. Model 4 is a vibrating machine supported by a cantilever. Model § is a vibrating machine
supported by a fixed beam.

Moiof Axls of Rotation
of Machines

Soil
« Supported
S

Figure 2-6. Model 6 is a typical elevated pedestal
foundation “table top.”
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ECGUIPMENT +
SUPERSTHUC TURE]
ELASTIC
\ HALF-SPACE

~

BASES
FIXED

a. SUPERSTRUCTURE —¥» REPRESENTATION b. FOUNDATION —p REPRESENTATION

Model A

This mode! is composed of two parts: Figure a representing the top floor plus the supporting columns, and
Figure b representing the total structure and equipment plus the bearing soil. These two subsystems are
assumed to possess independent dynamic characteristics, and there is a lack of interaction behavior between
the two. The basic assumption in this model is to consider the column bases as perfectly fixed. The structure
is so modeled that only its three predominant motions (lateral, vertical, and rotational) are predictable at
the C.G. of masses. Equatiens of motion:

For{a) m, +kx,=F, () For (b): mx, + Cx, + kx,= F (1)
myZ, + k,z; = Fi(1} m2,+C,z, tk, z,'= F{i}
1 + Cplb + kg = Fy (H(H)

Figure 2-7. Model A. Single-lumped mass model of table top (uncoupled supersiructure and foundation).

BASES
FIXED ™

L
0. SUPERSTRUCTURE =+ REPRESENTATION — b. FOUNDATION — REPRESENTATION

Mode! B

This model representation is similar to Model A, but some refinement is added by lumping the masses in the
superstructure at points where dynamic response is important {see Figure a). The basic assumptions in this
model are still the same, but each individual element acts independently of all others. Thisis generally permis-
sible when the natural periods of the elements differ by at least a factor of two in any one direction of moticn.
In Figure b, the representation is similar to Model A. This model is assumed to include the complete dynamic
characteristics of individual members of the superstructure. Equations of motion:

For(a): mj, +kyy;=F; Theseequations are in For(b): mi, + Cx, +kx, =F.(t)
matrix form and can only mz, +C2 +kz;=F()
be solved with the help I+ C+ kb =F()-H

of a computer program.

Figure 2-8. Model B. Multi-lumped mass model of table top funcoupled superstructure).
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H = +
ELASTIC
HALF-SPACE
~ - a b
TWO DMENSIONAL SUPER- _ COUPLED LATERAL AND ROCKNG , VERTICAL OSCLLATION
STRUCTURE AND FDUNDATION OSCILLATION REPRESENTATION REPRESENTATION
Model C

This model is an improvement over Model A due to the incorporation of interactive capability between struc-
ture and soil which was neglected in Model A. The model is shown in two parts, Figure a for the coupled hori-
zontal and rocking mode and Figure b for vertical mode. The model can be analyzed as shown without much
loss of analytical accuracy; however, a coupled mode of both of these modes can also be studied without
additional difficulty. The method of parameter calculation also does not change. The drawback in this model
becomes apparent when the natural frequency of individual elements is required or it is necessary to calculate
the vibration response at some other points in the structure. Equations of motion:

For (a): For (b}
m X, + Ky(x, — x, = yH) = F (1) miZ, + k{2, —z,} = F (1)
mix, +C %, + kx, — kfx,—x, —¢H) =0 mZ, +Cuz, vk, (z,~2,)+k,z,=0

b+ Cpfp + myH + kb = Fop () - H
Figure 2-9. Model C. Two-lumped mass model of table top with coupled soil-structure interaction.

EQUIVALENT
kh-'" v

Figure 2-10. Model C-Alternate form. Coupled lateral, rocking, and vertical oscillation representations of
table top for computer program application.
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COMPLETE STRUCTURE
+ FOUNDATION

This model Is an improvement in relfation to the previous model, not only with respect to degree of reliability
of results, but also with regard to availablility of sufficient information at all points of interest. The approach Is
based on lumping the masses at the points of maximum displacement occurring for any direction of motion.
The foundation slab Is modeled using finite-element procedures and Is supported by soil-springs at the node
points. The interaction of the soll's stiffness with the foundation structure is obtained through the use of the
elastic half-space theory. The calculation of stiffness for the structure is quite complex and is generally done
through the use of computer programs. An average damping constant may be used when performing the

response calculation for ali modes.

Figure 2-11. Model D. Multi-lumped mass model of table top with coupled soil-structure interaction.
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The design of a dynamically loaded structure reguires
that certain site and loading parameters be known even
before preliminary sizing of the structure can be com-
pleted. These design conditions and requirements may
be generally classified into three groups: machine prop-
erties and requirements, soil parameters, and environ-
mental requirements. Therefore, the required design
information includes not only geometrical constraints of
the actual machine to be supported but also includes
detailed knowledge of the structural supports. These
supports are in turn related to the particular site con-
ditions and can be of three types: soil supports, piles,
or piers. Structures supporting dynamic machines are
generally soil supported, or may be supported by piles
if the soil is of low-bearing capacity. Characteristics of
these foundation support types are further described in
Chapters 4 and 5. Some foundations lying close to bed-
rock or resting on thick deposits of overconsolidated
clay have been supported on piers, but this is a relatively
unusual situation.

Machine Properties and Requirements

Machines causing dynamic loads on structures are
of many types but may be classified in either of two
large groups: centrifugal or reciprocating machines. In
either case, a periodic time-dependent loading function
is transmitted through the structure into the foundation.
In order to design the structure, a number of machine
geometrical and performance factors are required. These
factors may be supplied by the machine manufacturer
or may be available in sales catalogues or engineering
handbooks. Often, the information is not available, and
the designer must either perform some preliminary cal-
culations or make some assumptions. The required

46

Development of
Information,
Trial Sizing, and
Design Checklist

machine properties and parameters include the fol-
lowing:

—OQutline drawing of machine assembly

—PFunctions of machine

---Weight of machine and its rotor components

—Location of center of gravity both vertically and
horizontally

——Speed ranges of machine and components or fre-
quency of unbalanced primary and secondary forces

—Magnitude and direction of unbalanced forces both
vertically and horizontally and their points of ap-
plication

—Limits imposed on the foundation with respect to
differential deflection between points on the plan
area of foundation

—Foundation requirements

The physical size of the structure depends on the
required base dimensions for the machine. Often, ap-
purtenances such as platforms and piping supports re-
quire increases in base dimensions. The outline for the
machine base generally specifies minimum dimensions
and locates specific areas that must be left clear for
machine attachments. For example, in turbines, certain
regions under and over the machine must be left clear
for condensors and piping.

Machine function includes information on the overall
purpose and critical nature of the machine, Should the
machine be of an extremely critical importance to over-
all operations, then a more conservative design approach
s recommended. For example, shut down of a small
pump may not affect plant production. However, if a
large centrifugal compressor is to be shut down, a multi-
million dollar operation may be affected. The designer
must set the level of conservativeness balanced against
possible unnecessary expense.
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The weights of the machine and its components are
provided by the manufacturer and serve to give a pre-
liminary indication of soil support feasibility. The weight
of rotors and speed in centrifugal machines determine
the magnitude of possible machine unbalanced forces.
The center of gravity location in the horizontal and
vertical planes is often provided. When not available,
calculations or assumptions may be needed. Basically,
the machine is set on the foundation in such a way
as to avoid eccentricities between the resultant of all
loads and the support center of resistance, that is, the
centroid of the pile group if pile supported or the center
of resistance of the supporting soil if soil supported.

The speed range and frequencies of primary and
secondary forces are required in the dynamic analysis
in order to check for possible resonance. The designer is
generally only interested in the operating frequencies,
although in many machines, there will be particular
speeds briefly attained during start-up or shut down
where the assembly will be in resonance with the ma-
chine frequency. A temporary resonance condition may
be tolerated in such cases especially when significant
damping is available.

The magnitude and direction of unbalanced forces
are often not available from the machine manufacturer.
Some claim that their centrifugal machines are perfectly
balanced, a condition that may be approached initially
at the manufacturing plant. However, after a few years
of use and due to normal wear, some eccentricity will
exist regardless of initial machine and installation work-
manship. Eccentricity criteria useful in designing struc-
tures supporting centrifugal machines are given in
Table 3-1 and Figure 3-1. For reciprocating machines,
the unbalanced forces, which are generally of consider-
able magnitude, are provided by the machine manu-
facturer,

Limits on differential deflection allowed between
peints of the foundation are set to avoid possible damage
to piping and other appurtenances that connect to the
machine. In some high pressure (50,000 psi} piping,
differential deflection limits are approximately less than
0.0001 in, This is generally the case for machines with
very rigid (thick} attached piping.

Foundation requirements refer to minimum depth of
foundation, as dictated by expansive soils, frost action,
fluctuating water table, piping clearance, or paving
elevation. The top layer of weathered soil is often not
recommended for supporting foundations since firm,
undisturbed soil is required. Also, the bearing strength
required for the soil may dictate placing the bottom of
the foundation at a deeper level for soil-supported struc.
tures. The recommendations of the geotechnical consul-
tant must be integrated into the design process {ref. 3).

Soil Parameters

Knowledge of the soil formation and its representa-
tive properties is required for static and dynamic analy-
sis. In the case of a sand or clay formation, the informa-
tion is to be obtained from field borings and laboratory
tests. These are usually performed by the geotechnical
consultants. Chapter 4 describes procedures for proper
evaluation of these parameters and discusses other soil-
related problems. The following parameters are generally
required:

—density of soil, y

-—Poisson’s ratio, v

~—shear modulus of soil, G, at several levels of strain

(or magnitudes of bearing pressure)

Table 3-1
Design Eccentricities for Centrifugal Machines

For operating speeds up to 3,000 rpm, we have the following:

Eccentricity, in.

Operating Speed* (Double Amplitude)

750 .014-.032
1,500 .008
3,000 002

*Major, A., Vibralion Analysis and Design of Foundations for
Machines and Turbines, Akademiai Kiado, Budapest, Collet's
Holdings Limited, London, 1962.

The following are the modified API standardst for centrifugal
COMpPressors:

e (mil} = a v12,000/rpm < 1.0 {mil},

where & = 0.5 at installation time,
= 1.0 after several years of operation,
rpm = operating machine speed, rev/min,
1 mi! = 0.001 in.

fAmerican Petroleum Institute Standard for Centrifugal Com-
pressors # 617, Section 2.18.4, as modified by the parameter o,

For gear units, we have the following:**

Double amplitizde
including runout, mils
Maximum continuous

speed, rpm
Shop test Shop test
unloaded loaded
Up to 8,000 2.0 1.5
8,000 to 12,000 1.5 1.0
Over 12,000 Less than 1.5 Less than 1.0

**American Institute Petroleum Standard, “High Speed, Special
Purpose Gear Units for Refinery Service,” AP Standard 613,
August 1968.

(Table 3-1 continued on page 48)
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For motors, we have the following:

Integral Horsepower Electric Motors}

Peak-to-peak displacement

Speed, rpm* amplitude, in.

3,000-4,000 0.0010
1,500-2,999 0.0015
1,000-1,49% 0.0020

999 and below 0.0025

*For alternating-current motors, use the highest synchronous
speed. For direct-current motors, use the highest rated speed,
For series and universal motors, use the operating speed.

tNational Electrical Manufacturers Association Standard,
“MG1-12.05, Dynamic Balance of Motor,” December 1871.

Large Induction Motors***

Peak-to-peak displacement

Speed, rpm amplitude, in.
3,000 and above 0.0010
1,500-2,999 0.0020
1,000-1,49% 0.0025

999 and below 0.0030

***National Electrical Manufacturers Association Standard,
“MG1-20.52, Balance of Machines," July 1969.

Form-wound Squirrel-cage Induction Motorsttf

Peak-to-peak displacement
amplitude, in.

Synchronous speed, rpm

Motor on Motor on
elastic mount rigid mount
720 to 1,499 0.002 0.0025
1,600 to 3,000 0,0015 0.002
3,000 and above 0.001 0.001
tttAmerican Petroleum Institute Standard, “*Recommended

Practice for Form-wound Squirrel-cage Induction Motors,”
API Standard 541.

—coefficient of subgrade reaction of soil, if the above
parameters are not accurately known
—the foundation depth and the bearing pressure at
which the above parameters are applicable
—other information required for the static design of
the footing
The soil density y and Poisson’s ratio v are normally
reported by the geotechnical consultant. Chapter 4 lists
the typical range of values for these parameters. Often,
mass density p is reported in lieu of soil density y, but if
one s given, the other is known, since

P = /g

where g is the gravitational constant.
The soil shear medulus & is not usually reported unless
specifically requested. Since this parameter is a controlling
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Figure 3-1. Classification of severity of machinery
vibration. From C.M. Harris, and C.E. Crede, Shock
and Vibration Handbook. Used with permission of
McGraw-Hill, 1976.

factor in the calculation of the half-space spring con-
stants it is desirable that the most reliable value be
available. This often means that field testing will be
necessary to obtain G since Inaccurate values of this
parameter will result in a worthless analysis. Therefore,
Chapter 4 describes methods and procedures which
should be followed in the calculation of G. The soil
strain level has an important effect on the value of the
shear modulus and should be accounted for in its calcu-
lation as discussed in Chapter 4.

The coefficient of subgrade reaction may be used in
liew of G or directly in a Barkan analysis (ref. 2). How-
ever, since the elastic half-space theory (ref. 1) is recom-
mended here, its availability may be used as a check on
the order of magnitude of the soil moduli as calculated
using the half-space theory.

The soil parameters discussed above generally vary
with depth and effective bearing pressure. Therefore, the
specific values to be used in design should correspond to
the actual bearing pressure and foundation depth used.
In particular, the shear modulus is sensitive to strain
level and since dynamic loads often preduce low strain
levels, the shear modulus used in analysis should cor-
respond to the actual dynamic strain level expected.

In addition to the information listed above, the design
engineer, either by himself or with the help of the gec-
technical consultant, should establish the layout for the
foundation structure. There are two common types of
foundations used: concrete block footing placed directly
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on the soil or rock, and concrete footing supported by
piles or piers. The preference of one system over the
other should be decided by taking into consideration:
relative economy, settlement, bearing capacity of the solil,
vibration isolation, and the level of the underground
water table, Pile- or pier-supported footings are the
exception and are used only where poor soil conditions
are found.

Environmental Conditions

There can be several situations during which a machine
installation is in the vicinity of vibration sources such as
quarry blasting, vehicular traffic, construction pile driv-
ing, or the location is in a continental zone where seismic
occurrence is possible. The design engineer must then
establish the severity of the situation and, if required,
should seek the help of a vibration measurement con-
sultant. The information requested should include the
character of the vibration and the attenuation at the
installation site, The effects of seismic forces can be
determined through information and procedures de-
scribed in References 4, 5, and 6.

Trial Sizing of a Block Foundation

The design of a block foundation for a centrifugal
or reciprocating machine starts with the preliminary
sizing of the block. This initial sizing phase is based on a
number of guidelines that are partially derived from
empirical and practical experience sources. Initial sizing
1s only preliminary; it does not constitute a final design.
A block foundation design can only be considered com-
plete when a dynamic analysis and check is performed
and the foundation is predicted to behave in an accept-
able manner as illustrated in Chapter 6. However, the
following guidelines for initial trial sizing have been
found to result in acceptable configurations:

1. The bottom of the block foundation should be
above the water table when possible. It should not
be resting on previously backfilled soil nor on a
specially sensitive (to vibration) soil. The recom-
mendations of the geotechnical consultant are
usually followed with respect to depth of structures
supporting dynamic or vibratory machines. Sorne-
times, the soil quality is poor, and the geotechnical
consultant may recommend using piles or piers.

2. The following items apply to block-type founda-
tions resting on soil:

a. A rigid block-type foundation resting on soil
should have a mass of two to three times the
mass of the supported machine for centrifugal
machines. However, when the machine is recip-

rocating, the mass of the foundation should be
three to five times the mass of the machine,

b. The top of the block is usually kept 1 ft above
the finished floor or pavement elevation to pre-
vent damage from surface water runoft.

¢. The vertical thickness of the block should not be
less than 2 ft, or as dictated by the length of
anchor bolts used. The wvertical thickness may
also be governed by the other dimensions of the
block in order that the foundation be considered
rigid. The thickness is seldom less than one fifth
the least dimension or one tenth the largest
dimension.

d. The foundation should be wide to increase
damping in the rocking mode. The width should
be at least 1 to 1.5 times the vertical distance
from the base to the machine centerline.

e. ‘Once the thickness and width have been selected,
the length is determined according to {a} above,
provided that sufficient plan area is available to
support the machine plus 1-ft clearance from
the edge of the machine base to the edge of the
black for maintenance purposes.

f. The length and widih of the foundation are
adjusted so that the center ol gravity of the
machine plus equipment coincides with the cen-
ter of gravity of the foundation. The combined
center of gravity should coincide with the center
of resistance of the soil.

g. For large reciprocating machines, it may be
desirable to increase the embedded depth in soil
such that 30 to 80% of the depth is soil-
embedded. This will increase the lateral resiraint
and the damping ratios for all modes of vibra-
tion,

h. Should the dynamic analysis predict resonance
with the acting frequency, the mass of the foun-
dation is increased or decreased so that, generally,
the modified structure is overtuned or under-
tuned for reciprocating and centrifugal machines,
respectively.

. The following guidelines only apply to bleck foun-

dations supported on piles:

a. The pile cap mass should be 1.5 to 2.5 times
and 2.5 to 4 times the mass of the machine for
centrifugal and reciprocating machines, respec-
tively.

b. The thickness, width, and length of the block is
selected as in 2(b) through 2(f}.

¢. The number and size of piles are selected such
that no single elernent carries over one half of its
allowable design load.

d. The piles are arranged so that the centroid of
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the pile group coincides with the center of
gravity of the combined structure and machine
loads.

e. Piles are battered away from the pile cap to
carry any transverse and longitudina! unbalanced
forces. Vertical piles provide small resistance to
horizontal loads, and the batter piles are usually
designed to carry all such horizontal forces as
axial loads.

f. When piers are used, bells inay be desirable to
Increase their overall capacity.

g. If resonance conditions are predicted to occur,
modifications are necessary as described in 2(h)
above.

h. Piles and piers must be properly anchored to the
slab for adequate rigidity and for meeting the
design conditions assumed during the analysis
phase.

Trial Sizing of Elevated Foundations (Table Tops)

Preliminary sizing and geometrical member arrange-
ment constitute the initial design phase for elevated
foundations. Although this preliminary phase is often
based on the experience of the designer, suggested guide-
lines can be useful in arriving at a satisfactory final
design. It should be emphasized that the general guide-
lines for trial sizing are only useful in the initial phase
and are no substitute for a thorough dynamic analysis
and check as described in Chapter 7. These general
guidelines include the following:

1. The designer should carefully analyze equipment
size and clearance requirements to assure that
sufficient space is allocated to equipment, anchor
bolts, piping, and clearance for installation,
maintenance and operation, that is, physical space
limits and requirements should be clearly identified
and considered,

2. The bottom of the foundation mat should be
placed no higher than the minimum founding
depth recommended by the soil consultant, This
generally includes considering the location of ade-
quate bearing strata, water table, depth of frost
penetration, paving elevation, and special local
soil conditions. However, in very poor soils, the
geotechnical consultant may recommend the use
of piles. The mat thickness ¢ should not be less
than

t =007 L2

where L is the average of two adjacent spans between
columns.

3.

10.

11.

All columns should be stressed almost equally
when subjected to vertical load. Thus, the column
areas should be proportional to the load caried by
the column, and F;/A4; should be fairly constant
for ali columns where P; and 4; are the axial load
and cross-sectional area of any column. The
columns should be capable of carrying six times
the vertical load. Column spacing should prefer-
ably be less than 12 ft. The intermediate columns
should be located preferably under the couplings
or the gear box.

. The beam depth should be a minimum of one

Afth of the clear span, and the beam width is
normally equal to the width of the column con-
sistent with anchor bolt requirements for spacing,
embedded depth, and edge distance. The beams
should not deflect over 0.02 in. when subjected
to static loads.

. The flexural stiffness of the beams should be at

least twice the flexural stiffness of the columns.

. The total mass of the structure Including the mat

should be no less than three times the mass of the
supported machine for centrifugal machines and
five times the mass of the machine for reciprocat-
ing-type machines.

. The mass of the top half of the structure should

not be less than the mass of the supported ma-
chine.

. The maximum static-bearing pressure for soil-

supported foundations should not exceed one half
of the allowable soil pressure. For pile-supported
foundations, the heaviest loaded pile should not
carry over one half of its allowable load.

. The center of resistance of the soil should be

within 1 ft of all superimposed loads for soil-
supported foundations. For pile-supported founda-
tions, the centroid of the piles should be within
1 ft of the superimposed loads.

The center of column resistance should coincide
with the center of gravity of the equipment pius
the top half of the structure loads in the longi-
tudinal as well as the transverse directions, that is,
the column moments of inertia should be “bal-
anced” about the centroid of the equipment as
shown in Figure 3-2.

All the columns should deflect equally in the ver-
tical, lateral, and longitudinal directions when
subjected to equivalent static machine loads acting
in those directions. These equivalent loads are
often assumed to be 0.5, 0.3, and 0.1 of the total
load for the vertical, transverse, and longitudinal
directions, respectively, with the vertical dead load
acting in all conditiens. Chapter 7 gives a further
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description of these approximate equivalent static
loadings. The maximum horizontal deflections for
these equivalent static loadings should be less than
0.02 in, in all cases.

The columns and beams should be checked for
individual member resonance with the machine-
acting frequency. The lowest natural frequency of
the columns is approximately given by

£y 44800 (f.)**

a VPL

where ', is the concrete strength in psi, p is the
actual column axial stress in psi and is usually in
the 40-300 psi range, L is the column height in
inches, and £, is in rpm,

When piles or piers are recommended by the geo-
technical consultant, additional guidelines 3(a)
through 3(h) given above for block foundations
may be used in arriving at a trial configuration.

Checklist for Design

Once the proposed structure is modeled (see Chap-

ter 23,

trial sizes are selected, and an analysis is performed

i=]
NI,

Z6

(see Chapters 6 and 7). The predicted behavior of the
proposed structure is checked or compared against cer-
tain design requirements. These design requirements
include: (1) the usual static strength checks against soil,
structural failures, and excessive deformations; (2) com-
parison to limiting dynamic behavior including maximum
amplitude of vibration, maximum velocity and accelera-
tion, maximum magnification factor, maximum dynamic
load factor, possible resonance conditions, and maximum
transmissibility factor; (3) inspection of all modes of
oscillation including coupled modes; (4) consideration
of possible fatigue failures in the machine, structure, or
connections; (5) consideration of environmental de-
mands such as physiological and psychological effects on
peaple, effect on adjoining sensitive equipment, possible
damage to the structure, and possible resonance of indi-
vidual structural components.

Figures 3-3 through 3-7 are used in checking cn the
dynamic behavior of the proposed structure. Suitable
limits of vibration amplitude, velocity, and acceleration,
which are all functions of operating frequency, are given
in these figures. Table 3-2 lists appropriate limits of peak
velocity for certain categories of machine operation.

In order to account for the relative importance of the
machine to overall plant operation, increased factors. of

{text continued on page 54)
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Table 3-2

General Machinery-Vibration-Severity Data*

Singie-stage centrifugal pump, electric motor, fan. . 1.0
Typical chemical processing
equipment, noncritical ... ..., .o oL L 1.0

Horizontal Peak Velocity

Turbine, turbogenerator, centrifugal compressor. .. 1.6
Centrifuge, stiff-shaft}; multistage

(in./fsec.) Machine Operation
centrifugal pump . ... Lo o 2.0

<(.005 Extremely smooth . .
0.005-0.010 Very smooth Miscellaneous equipment,
38})8-8820 %mooth p characteristics unknown .......... ... .. ..., 2.0
g:olg:g:ggg Gzi)}é £o0 Centrifuge, shaft-suspended, on shaft near basket. . 0.5
8(328—8%% glz‘lirhtl " Centrifuge, link-suspended, slung . .. .. .. ...03
0.3150.630 R(l)gughy roue Effective vibration = measured single amplltude ubra-

>0.630 Very rough tion, inches multiplied by the service factor.

*After Baxter and Bernhard (ref. 8).

safety (service factor) have been proposed. These factors
are applied to the computed maximum amplitude of
vibration to obtain an effective vibration amplitude.

Use of a service factor® {or additional factor of safety)

Machine tools are excluded. Values are for bolted-
down equipment; svhen nct bolted, multiply the ser-
vice factor by 0.4 and use the product as a service

" factor. .

Caution: Vibration is measurcd on the bearing hous-
ing, except as stated.

has been proposed to account for the relative importance
of the machine to overall plant operation. The actual

vibration amplitude is multiplied by the service factor to
obtain an effective vibration amplitude. The effective
vibration amplitude (rather than the actual vibration
amplitude) is then used to determine the adequacy of

the installation.

The design checklist and design procedure may be
summarized as follows. Note that most of the steps listed
in the design checklist are implicitly considered in a
computer analysis (see chapter 7). The checklist is
appropriate for analysis of block-type foundations.

Design Checklist

Design Conditions
Static Conditions

Static Bearing Capacity
Static ‘Settlement

Bearing capacity: Static plus Dynamic

I.oads

Settlement: Static plus Repeated Dy-
namic Loads

Limiting Dynamic Conditions

Vibration Amplitude at Operating
Frequency

* From Blake (ref. 9).

T Horizontal displacement on basket housing.

Procedures

Preportion footing area for 509 of allowable soil pressure.

Settlement must be uniform; center of gravity of footing and machine
loads should be within 5% of any linear dimension.

The sum of static plus modified dynamic load should not create a bearing
pressure greater than 75% of the allowable soil pressure given in the soil
report.

The combined center of gravity of the dynamic leads and the static loads
should be within 5% of the linear dimension from the center of gravity
of footing. In the case of rocking motion, the axis of recking should
coincide with principal axis of the footing. The magnitude of the resulting
settlement should be less than the permissible deflecting capability of the
connected piping system.

The maximum single amplitude of motion of the foundation system as
calculated from Table 1-4 should lie in zone A or B of Figure 3.3 for
the given acting frequency. Where unbalanced forces are caused by



Velocity

Acceleration (Note: not necessary if
the two conditions above are satis-
fied)

Magnification Factor (Note: applica-
ble to machines generating un-
balanced forces)

Dynamic Load Factor, DLF (Note:
applicable to foundation subjected
to quarry blasting or seismic shock
waves)

Resonance

Transmissibility Facter (Note: usually
applied to high-frequency spring
mounted machines)

Resonance of Individual Structural
Components {Superstructure With-
out the Footing)

Possible Modes Of Vibration

Vertical Oscillation

Horizontal Translation

Rocking Oscillation

Torsional Oscillation

Coupled Mode

Fatigue Failures

Machine Components

Connections

Supporting Structure
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machines operating at different frequencies, the total displacement
amplitudes to be compared at the lower acting frequency, are taken
as the sum of all displacement amplitudes.

9xf (cps) X {Displacement Amplitude as calculated in the condition
above) should he compared against the limiting values in Table 3-2 and
Figure 3-3 at least for the case of “good” operation. The resultant velocity
where two machines operate at different frequencies is calculated by the
RMS (root mean sguare) method, V = [{0i41)*+ (w2Ad,) %% where
I© = resultant velocity, in/sec, i, vz = operating frequencies for machines
t and 2, respectively, rad/sec, and 4, A. = vibration displacement, m.,
for machines 1 and 2, respectively.

422 % {Displacement Amplitude as calculated above) should be tested
for zone B of Figure 3-3.

The calculated values of M or M, {Table 1-4) should be less than 1.5
at resonance frequency.

The value of DLF is to be obtained from refs. 1 and 7. The duration of
shockwave may be taken as 0.1 to 0.5 sec.

The acting frequencies of the machine should not be within +20% of
the resonance frequency (damped or undamped) .

The value of transmissibility is to be obtained from Table 1-4 and should
be less than 3%.

The resonance condition with the lowest natural frequency shall be
avoided by maintaining the frequency ratio either less than 0.5 or
greater than 1.5.

This mode is possible if the force acts in this direction.

This mode is possible if the force acts in this direction.

This mode is possible when the point of application of horizontal force
is above mass center of foundation.

This mode is possible when the horizontal forces form a couple in
horizontal plane.

The horizontal transtation and rocking oscillation are usually coupled.
16/ Fuz ¥ o] frafn S 2/3F then the coupling effect may be ignored;
the horizontal translation and the rocking oscillation modes can be treated
alone, and the results can be combined. See nomenclature on page 98 for
definition of terms.

Limits stated in Figure 3-4 and/for Table 3-2 are to be followed. In case
machine components are very delicate, then the machine should be
mounted on springs with an added inertia block.

Same as the machine components condition above and check stresses using
AISC code when connectors are bolts or welds (ref. 13).

For steel structures, use the connections condition above. For a concrete
footing, if reversal of stresses takes place and the amplitude is very high
such that the peak stress reversal is over 50% of the allowable stress, the
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main and the shear reinforcement (if any) should be designed for the
stress reversal condition (ref. 14),

Environmental Demands

If the machine is located inside a building, use the procedure given in the
transmissibility factor condition above and use the limits indicated in
Figures 3-4 through 3-7. The concept of physical isolatien of the supporting
structure is another alternative. The amplitude of vibration in any direc-
tion should fall below the zone “troublesome to persons” for the specific
acting frequency as determiried from Figure 3-4.

Use the procedures indicated in the condition immediately above. In case
the facility is located very close to people not connected with machine
operations, use acoustic barriers.

Physically isolate the support system from the sensitive equipment.

Use the limits indicated in Figures 3-4 and 3-5 to avoid structural damage.

Physiological Effects on Persons

Psychological Effects on Persons

Sensitive Equipment Nearby
Damage to Structure
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= area within hysteresis loop

age of soil deposit

= crosshatched area under hysteresis loop

amplitude of displacement
mass ratios

inertia ratios

effective stress cohesion

= geometric damping ratio
== material damping ratio
= relative density

total damping ratio
equivalent grain diameter for which 10% of
sample is smaller

= characteristic depth
= Young’s modulus

void ratio

frequency in cycles per second

undamped natural frequency

resonant frequency with damping included
fundamental resonant frequency

shear modulus of soil

= shear modulus at very low-strain amplitude
== shear modulus after 1000 min of consolidation

gravitational constant
thickness of soft stratum
depth of embedment or borehole spacing

= mass moment of inertia

= at rest earth pressure coefficient
= shear modulus factor

= plasticity factor

spring constant for horizontal excitation

= spring constant for vertical excitation
= spring constant for torsional excitation
= spring constant for pure rocking excitation

length of Rayleigh wave
mass of footing plus load vibrating in phase
relative density term

= number of stress cycles

Notation for Chapter 4

Geotechnical
Considerations

N, == number of log cycles of time required for re-
establishment of soil fabric
n = relative density term
ny = correction factor for By

OGR = overconsolidation ratio

Q, = unbalanced vertical force
ga = dynamic bearing stress
go = static bearing stress
1o = effective radius of footing
s« = undrained shear strength
t, = time for shear wave to pass from penetrometer
to geophone
u = pore fluid pressure
W = weight of foundation plus load vibrating in
phase
z = depth coordinate

I

21, 22 = displacement amplitudes for two successive

cycles
a = embedment factor for damping
y = shear strain amplitude
v» = reference shear strain
ys = unit weight of soil
AG = increase in shear modulus
Agy = vertical stress due to static load
ep = permanent axial (vertical) strain
7 = embedment factor for stiffness
A= gaf0e
v = Poisson’s ratio
p = mass density
o, = confining pressure
og == vertical dynamic stress
@ = horizontal effective stress
%, = octahedral normal effective stress
ay = vertical total stress
#, = vertical effective stress
= shear stress

Tmax = shear stress related to shear strain through Gumax

& = effective stress angle of internal friction

57
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Dynamically loaded foundations induce strains in the
supporting soil, which, in turn, require the elements of
the foundation (footing, piles, etc.} to deform in a man-
ner compatible with the deformation of the seil. It is
therefore necessary to adopt a model that will predict
the response of the soil to imposed dynamic loadings in
order to allow the structural designer to include the
effects of foundation deformation in a global structural
analysis. Several models are available to accomplish this
prediction, but the model that is most widely accepted
is the “elastic halfspace model”” The halfspace model,
which 1s used in this book for shallow foundations, pre-
sumes that a circular footing rests upon the surface of an
elastic halfspace (the soil} extending to an Infinite
depth, which is homogeneous and isotropic and whose
stress-strain properties can be defined by two elastic con-
stants, usually shear modulus (G) and Poisson’s ratio
{v). With the elastic halfspace model it is possible to
predict the response (e.g., deformation at a peint vs.
time) of the soil and, therefore, of the footing, to har-
monic vertical forces, rocking moments, twisting mo-
ments, horizontal shears, and combinations of such loads
applied to the footing, which is considered to be rigid.
The maodel provides for dissipation of energy through
radiation or “geometric” damping. Exact mathematical
expressions have been derived from halfspace models
which define the response of footings to harmonic lead-
ing of any of the above types, These expressions indicate
that the stiffness of the scil and the amount of damping
that occurs is a function not only of elastic properties of
the soil (halfspace), but also of the frequency of load-
ing. Since it is inconvenient to include this so-called
frequency-dependent respense in most algorithms for
structural analysis, lumped parameter approximations of
the halfspace model have been developed that allow the
soil to be represented by linear spring constants, which
resist applied loads in vertical, horizontal, twisting, and
rocking modes, and dashpot constants, which simulate
viscous damping in the halfspace in the respective
medes. Both spring and damping constants are fre-
quency independent. It is possible, therefore, to assign
spring constants and damping ratios to the seil and de-
termine deformation-time relationships using the funda-
mental lumped parameter relationships introduced in
Chapter 1. In those relationships, the mass is taken to be
that of the footing and any load vibrating in phase with
the footing. None of the soil mass is included.

The user of the elastic halfspace model must make
a judgment whether such a model can sufficiently de-
scribe the soil-foundation system at a given site, particu-
larly with regard to the assumption of isotropy and
homogeneity. If it can not, alternative models should
be used. Common alternatives, which are actually modi-
fications of the elastic halfspace model, include tech-

niques for predicting focting respense in strongly strati-
fied soils, response of foetings (caps) supported by piles,
and response of footings embedded beneath the surface
of the ground. Each of these technigues is discussed in
this chapter and Chapter 5.

The basic elastic halfspace model is valid only for
isolated foundations. No valid theory has been developed
to permit the precise calculation of the response of two
or more footings situated near each other, although
finite-element modeling of the soil itself can be useful
in this respect. Empirically, however, the soil spring
constants for the individual footings are usually reduced
by placing footings near each other, and the geometric
damping is always reduced, These points should be kept
in mind when applying the techniques described here.

For design purposes, the assumption of frequency in-
dependence of stiffness and damping is valid for low
frequencies. Specifically, “low frequency” exists when the
driving frequency f is less than about (I /xr) (Gg/v) "
where 7, is the radius of a circular footing or is (BL/#}%"
for translatory motion or (BL*/37)%%* for rocking mo-
tior of a rectangular footing, G is the low-amplitude
shear modulus of the soil {discussed later), y is the total
unit weight of the soil, and g is the gravitational con-
stant. B and L are the plan dimensions of a rectangular
footing, where L is the dimension perpendicular to the
axis of rocking.

Spring constants for the halfspace model are evaluated
under such conditions as the elastic static spring con-
stants. Expressions for the theoretical spring constants
for vertical, horizontal, rocking and torsional motion are
given in Table 4-1. Note that it is possible to evaluate
the spring constants for both circular and rectangular

Table 4~1
Equivalent Spring Constants for Rigid
Circular and Rectangular Footings
{after ref. 19)

Mode of
Vibration Circular Footing Rectangular Footing
4 GTQ G R
Vertical k, = LR k, = 8. ¥vBL%y,
1—» 1—»
32{1—¥)Gro | -
Horizontal &, = ————— 5, k, = H14-2)G 8, ¥ BLy,
7—8
8 G?’us
Rocking ky = n ky = B4 BL2gy
31—} —y
16 Grg? No sofution available;
Torsional ky = Use rg from Table 4.2
3




footings and for footings resting on the surface or em-
bedded beneath the surface. Embedment effects are dis-
cussed further in the latter part of this chapter.

In Table 4-1, v is the Poisson’s ratio of the soil; the
y-factors are embedment coefficients defined in Table
4-2; and the g-factors are geometry factors defined in
Figure 4-1.

The damping ratios can be computed from the mass
or inertia ratios as indicated in Table 4-3. The weights
W in the mass ratio expressions are the total weights
of the footing plus the load supported by the footing
vibrating in phase with it, including machinery, The
moments of inertia Iy and Ig are the rocking and twist-
ing mass moments of inertia about the axis of rotation,
which is an axis in the plane of the base of the founda-
tion perpendicular to the plane of rocking for rocking
motion and an axis perpendicular to the foundation and
to the plane of twisting for torsional motion. The factors
a are damping ratio coeflicients to account for the in-
creased geometric damping that occurs due to effective
embedment. Equations for evaluation of a are given in
Table 4-4. The factor ny is an inertia ratio correction
factor for rocking, given in Table 4-5.

| 15
K
b - /’1
1 ::_,__,:‘ J
| ]
z « T o .
s, 1 | 5% -
[35 [ ‘r?{g = }é A By
X k.4
LR L o
| LT o3
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=
o o
Q. ga 04 086 10 Z2 4 6 8 IC
/B

Figure 4-1. Coefficients §,, B,,and Bw for rectangular
footings (after ref. 19),

Table 4--2
Embedment Coefficients for Spring Constants
(after ref. 18)

'\];\;Il;)r‘;iigﬁl e f%:)ll}:gg:?ogr? tar Coefficient
Vertical ~'BL/x e = 4+ 0.8 {1—s)k/ro)
Horizontal VBL/x g, =1+ 0.55(2—»)h/ro}
Rocking v EL'"‘—/S; A %f-‘i(_)]é(zfl(ir)’gz(}lrg’)g)
Torsional v Em None available

Notes: b is the depth of foundation embedment below grade;
L is horizontal dimensicn perpendicular to axis of rock-
ing; B is remaining horizontal dimension.
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Table 4.6 gives typical expressions for mass moments
of inertia of simple volumes. Generally, mass moments
of inertia for most machines and foundations can be
adequately represented by these expressions.

It is obvious that a primary objective of foundation
design is to maximize geometric damping, consistent
with economy. It is observed that the damping ratios
for a halfspace (Table 4-3) increase with increasing
foundation size (7,) and decrease with increasing weight
(W) or mass moment of inertia (7). It can be con-
cluded, therefore, that, ideally, foundations should be
as wide and shallow as is practicable,

Evaluation of Soil Parameters

In order to evaluate the spring constants k., kg, ke,
and ky and the corresponding damping ratios required
for computer analysis of dynamic structure-soil interac-
tion problems, it is necessary to determine relevant
values for the soil parameters & (shear modulus), v
{Poisson’s ratio}, p {mass density) and D, (internal or
material damping ratio). Furthermore, factors not
needed directly in the computer analysis, such as the
permanent settlement that will occur beneath the foun-
dation of a structure supporting vibrating machinery,
also need to be considered before the structure is con-
structed. The objective of this chapter is to describe
procedures by which the soil parameters can be evalu-
ated and permanent settlements estimated. In addition,
certain other special problems will be discussed. It will
be assumed throughout that the reader possesses a basic
knowledge of elementary soil mechanics and under-
stands foundation engineering terminology.

This chapter is intended primarily to be a source of
information for those interested in analyzing or design-
ing structures to support vibrating machinery. As a re-
sult, the emphasis is on procedures or criteria developed
from research rather than on fundamental aspects of
soil behavior, For the reader who wishes to pursue a
more detailed treatment of behavior of dynamically
loaded soil, papers by Richart (ref. 11) and Seed and
Idriss (ref. 14) and texts by Richart, Hall and Woods
(ref. 12) and Wu (ref. 20} provide execellent points of
departure.

The discipline of soil dynamics is a relatively new one,
and many problems faced by the practicing engineer
have either not yet been treated in a rigorous manner,
have been considered only for ideal conditions which
may not occur in geological materials, ar have been
studied in some detail but without dissemination of
criteria to the profession in general. Examples of such
problems are the assessment of permanent settlements
beneath near-surface vibratory loads, the response of soil

{text continued on page 62)
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Table 4--3
Equivalent Damping Ratio for Rigid Circular and Rectangular Footings
(after ref. 12)

Mode of
Yibration Mass (or Inertia) Ratio Damping Ratio D
(1—») W 0.425
Vertical = - Dy = o,
4 o’ VB,
7—8 W 0.288
Horizontal = D, = oy
32(1 —y} yrg® VB,
3(1—v) Iy 0.15 ap
Rocking By = —_ Dy = ——
8  prgd (14n¢By) v nyBy
Is 0.50
Torsional By = — =
pra® 1+2By
Table 4-4
Effect of Depth of Embedment on Damping Ratio
(after ref. 18)
Mode of Vibration Damping Ratioc Embedment Factor
k
14191 —p) —
Yo
Vertical ey = —
‘V”Jl
h
1+192 —»)—
To
Horizontal a, = —
'\r"f:
14 0.7(1 — v) (R/ro) + 0.6(2 — ») (h/r, )
Rocking oy = -
V mp
Tabte 4-5
Values of n, for Various Values of g3,*
By 5 3 2 1 0.8 Q.5 0.2
ny 1.079 1.110 1.143 1.219 1,251 1.378 1.600

* After Richart, Hali, and Woods (ref. 12). Reprinted by permission of Prentice-Hall, Inc., Englewcod Cliffs, NJ
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beneath flexible mats loaded by vibrating machinery,
and the response of pile groups. Nonetheless, rational
analysis of structures for which such problems are in-
herent still must be conducted. Therefore, the authors
have chosen to present procedures for parameter evalua-
tion and for prediction of foundation behavior that are
based on rigorous dynamic solutions verified by observa-
tions, where such procedures exist, and to present pro-
cedures based on related static or dynamic models, modi-
fied empirically by experience, where they do not exist,
It is fully anticipated that, as further research is dene,
many of the procedures described in this chapter will
become outdated and will be replaced by more accurate
ones.

Shear Modulus

Unbalanced loads in vibrating machinery produce
shear strains in the supporting soil that are usunally of a
much smaller magnitude than the strains produced by
static loading. The mechanism governing the stress-
strain behavior of soils at small strains involves mainly
the stress-deformation characteristics of the soil particle
contacts and is not controlled by the relative slippage of
particles associated with larger strains. As a consequence,
the stress-deformation behavior of soil is much stiffer at
very small strain levels than at usual static strain levels.
It is therefore inappropriate to obtain a shear modulus
directly from a static stress-deformation test, such as a
laboratory triaxial compression test or a field plate bear-
ing test, unless the stresses and straing in the soil can be
measured accurately for very small values of strain.
Special techniques, which will be described subsequently,
must therefore be employed.

Even at very small values of strain, the stress-strain
relationship is nonlinear. Therefore, it becomes ex-
pedient to define the shear modulus as an equivalent
linear modulus having the slope of the line joining the
extrernities of a closed lvop stress-strain curve (Figure
4.2). It is obvious that the shear modulus so defined is
strain dependent and that in order to conduct an equiva-
ient linear analysis of the type described in previous
chapters it is necessary to know the approximate strain
amplitude in the soil. For conditions of controtled ap-
plied strain, the ordinates of shear stress in Figure 4-2,
and therefore G, will vary {usually decrease) with num-
ber of cycles applied until a stable condition is reached.
Henceforth, only the stable equivalent linear value of
shear modulus will be considered and will be termed
“the shear modulus,” since the response of the structure
after at least several thousand cycles of load is the condi-
tion of principal interest to the structural desigrer.

v {SHEAR STRESS) /(& 6,

=

y (SHEAR
STRAIN)

Figure 4-2. Hypothetical Shear Stress-Strain curve
for soil.

Richart (ref. 11} has described at least eight variables
that influence the shear modulus of soil:

1. Amplitude of dynamic strain

2. Mean effective stress {octahedral normal effective

stress} and length of time since the stress was
applied

. Void ratio

. Grain characteristics and structure of the soil

. Stress history

. Frequency of vibrations

. Degree of saturation

. Temperature

Regarding Variable 1, the amplitude of strain due
only to the dynamic component of loading should be
considered when evaluating the shear modulus in normal
practice, as superimposed static strain levels have a rela-
tively minor effect on G unless the static strains are of
a very large magnitude not usually present in a founda-
tion for vibrating machinery.

The first five variables are considered directly or indi-
rectly in the procedures for obtaining G which follow.
Variables 6-8 are generally of secondary importance,
although the temperature of the soil may alter G con-
siderably near the freezing point of the soil.

Soil shear modulus may be determined by field mea-
surements, laboratory measurements, and use of pub-
lished correlations that relate shear modulus to other
more easily measured properties.

Field Procedures. Two widely used in situ procedures
are the steady-state oscillator test (ref. 12) and the cross-
hole test (ref. 16). The steady-state oscillator test is ilius-
trated in Figure 4-3. An oscillator is placed on the
surface of a site to be investigated, and Rayleigh (sur-

QO ~I Oy L oep
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Figure 4-3. Surface Oscillator Test (after ref. 12).

face} svaves are created. Pickup devices (e.g., acceler-
ometers} are moved relative to each other and to the
oscillator until they are found to be vibrating in phase,
and the distance between the pickup devices is then
measured. If no closer spacing can be found such that
the pickup devices remain in phase, the spacing between
the devices is one Rayleigh wave length. Since Rayleigh
and shear wave velocities are nearly equal for soils with
Poisson’s ratios greater than about 0.35 (ie., for most
soils},

Cone o (4-1)
=~ pf?Lp?
where G, = shear modulus (at the very Jow strain level
occurring in the test),
p = total mass density of the soil; soil unit
weight/acceleration of gravity,
f = frequency of oscillation in cycles per unit
of time, -
Ly = measured wave length,
vs = shear wave velocity.

The process is normally repeated with the pickup de-
vices in several positions relative to the oscillator and
with different oscillator frequencies to obtain an average
value for Gp,y at a given location.

Since most sites in or near developed areas have con-
siderable low-frequency background noise, steady-state
tests with small oscillators are generally limited to high-
frequency vibrations {generally greater than 100 cps).
In such a case the Rayleigh wave length will seldom be
more than a few feet. Oscillator tests measure an aver-
age shear modulus in a zone of soil from the surface to
a depth of about one Rayleigh wave length, Hence, it is
apparent that such high-frequency tests are limited to
very shallow depths, usually no more than 2 to 5 feet.
Furthermore, soil borings should also be made in con-
junction with the oscillator test in order to assess
whether the measured shear modulus represents a single
layer or more than one layer of soil. Low-frequency tests
can be conducted on quiet sites, but to be accurate, they
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Figure 4-4. Crosshole Test (after ref. 16).

often must be conducted with very heavy oscillators,
which generally renders the method uneconomical rela-
tive to crosshole testing as described below.

The crosshole test is depicted in Figure 4-4. Test
equipment simply consists of a device to create a shear
wave below the surface, another device a known distance
away and at the same level to sense the passage of the
shear wave, and an instrument to measure the time re-
quired for the wave to traverse the distance between the
two devices. The shear modulus is then computed from
the equation given in Figure 4-4. The shear wave veloc-
ity is measured because the shear wave is not influenced
to any great degree by the presence of a water table,
whereas the compression wave travels at its velocity in
water, regardless of soil type, below the water table.

Crosshole tests permit an accurate assessment of the
variation of shear modulus with depth to relatively large
distances below the ground surface. Since they can be
made an integral part of standard boring operations, the
soils encountered can be inspected as a means of verify-
ing qualitatively the validity of the results, and water
table locations can be conveniently determined.

Tt should be pointed out here that the values of Grax
obtained from oscillator or crosshole tests occur at values
of strain amplitude that may be somewhat less than
those which will occur under a prototype foundation.
The value of shear modulus G to be used in the struc-
ture-soil interaction analysis will, therefore, probably be
slightly less than G, Adjustments to Gmax can be made
by applying the correction suggested by Hardin and
Drnevich described in detail in the section on saturated
clays, or a simple procedure suggested by Whitman
(ref. 18) can be adopted. Whitman suggests that for
vertical motion the structure-soil system be analyzed as-
suming that G can vary from 0.7 Ggay to Guax and that
for rocking motion the system be analyzed assuming that
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G can vary from 0.5 Gaae t0 Gau. Simply stated, the
system should meet the design criteria for any shear
modulus value within the staged ranges.

Laboratory Procedures. The shear modulus can be
evaluated from very low-amplitude cyclic triaxial com-
pression or simple shear tests, although such tests must
be run with such precision that their use i1s limited
mainly tc research. However, another type of test, the
resonant column test, is also an accurate means of ob-
taining Grae It has found generally wide acceptance
among practicing engineers because of its relative sim-
plicity. In the most common type of resonant column
test, a solid, cylindrical column of soil is excited either
iongitudinally or torsionally at low amplitude within a
cell in which an appropriate confining pressure has been
applied. The exciting frequency is varied and the ampli-
tude of deformation in the soil is monitored at each
exciting frequency in order to determine the resonant
frequency of the soil column. Simple elasticity equations
for vibrating rods are then used to compute Gpay. The
reader is referred to Richart, Hall, and Woods (ref. 12)
for a complete description of the resonant column test
and the appropriate elasticity equations.

Field and/or laboratory shear modulus determinations
should be performed for each specific project wherever
possible. As a means of checking field and laboratory
measurements, published correlations between G, and
G and the various factors listed earlier, developed
through resonant column and very low-amplitude cyclic
triaxial and simple shear tests, should be consulted.
These correlations can also be used as guidelines for
calculating the shear modulus value in the absence of
direct measurements; however, shear modulus obtained
only from published correlations must be considered to
be relatively uncertain, and the structure-soil system
should be analyzed assuming that the shear modulus (or
spring constant) can vary within a large range both
above and below the calculated value.

Several significant published correlations for shear
modulus are summarized in the following sections:

Published Correlations: Sands and Gravels. Hardin
and Richart (ref. 8) published criteria for the shear
modulus of dry or saturated sand derived from resonant
column tests conducted at or below a shear strain level
that would cccur under most foundations for vibrating
machinery. Two expressions for G were obtained. For
round grained sands where the void ratio is equal to or
less than 0,80,

_2630(2.17—¢)"
N I +¢

G (psi) @)% (4-2)

and for angular sands,

_ 1230(2.97

G (psi) = HEGE=G e (4-3)

where ¢ = void ratio,
o, = octahedral (or mean) normal effective stress in
psi, given by Equation 4-4.
7, = 0.333 (5, + 2 7, (4-4)
where o, = vertical effective stress in psi,

@, = horizontal effective stress in psi,

= 0%y

In order to obtain w,, the vertical effective stress in
the soil in guestion is computed by summing component
stresses due to geostatic and applied loads (specifically
considered later), and the horizontal effective stress is
then computed by multiplying the vertical effective stress
by the earth pressure coefficient at rest, K, which
according to Brooker and Ireland (ref. 2), is a func-
tion of the plasticity index of the soil and the overcon-
solidation ratioc {OCR)}. The overconsolidation ratio for
an element of soil may be defined as the ratio of the
maximum past effective vertical stress (approximately
equal to the preconsolidation pressure iadicated by a
one-dimensional consolidation test) to the present total
vertical stress minus the free pore fluid pressure .
Curves relating K, to plasticity index and overconsolida-
tion ratio, developed by Brooker and Ireland, are given
in Figure 4-5.

Seed and Idriss (ref. 14} have presented a slightly
different correlation:

G (psi) = 83.3 K, (5,)°° (4-5)

where K, is a factor which depends on relative density
(D;) and shear strain amplitude, as shown in Figure 4-6.

In situ relative density is often determined for sands
by conducting standard peneration tests and correlating
penetration resistance {or “blow count”) to relative
density. Typically, an approximate correlation made by
Gibbs and Holtz (ref. 6) is utilized for saturated soils
(Figure 4-7}. Similar correlations are alse given by
Gibbs and Holtz for air-dry and moist sands. Care should
be exercised in applying the correlation of Figure 4-7,
particularly for “dirty” sands (sands containing more
than 59 fines), since considerable data scatter is evi-
dent and since the correlation is based only on tests for
two soils. Factors not explicitly included in the Gibbs
and Holtz correlations, such as angularity and gradation,
are known to have an effect on penetration resistance,
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Thus, if it is economically justifiable, it is recornmended
that a “calibration” be made by conducting a series of
penetration tests and recovering undisturbed samples of
sand near the test points. The relative density can then
be assessed from the measured dry density of the samples.
In such a case extreme care must be taken tc determine
the maximum and minimum dry densities according to
appropriate published American Society for Testing and
Materials procedures. In effect, a correlation similar to
the one shown in Figure 4-7 is thus developed specif-
ically for the soils at the site being investigated.

Example. Standard penetration tests are conducted on
a stratum of clean, medium, round-grained sand 30 ft
below the soil surface, which is at the base of a very
large 20-ft-deep excavation. The penetration resistance
is 16 blows per foot. The unit weight of the sand being
tested and overlying soil is 117 pef; and the void ratio
of the soil being tested is 0.65. The water table is situ-
ated 10 ft below the bottom of the excavation, and the
sand is known to have been normally consolidated prior
to the time the excavation was made. What is the in situ
shear modulus at the peint where the penetration test is
conducted?

Using Equation (4-2):

7, = 10(117) + 20(117-62.4) = 2262 psf = 15.7 psi

Maximum past &, {asswming constant water table posi-

tion) = 30(117) + 90(117-62.4) == 4602 psf = 32.0 psi

32,0 _
OCR= 5= =20

K, (Figure 4-3, plasticity index = 0) = 0.6
7, =0333 (15.7) [1+2(06)] = 11.5 psi
— 2

=202 065)" 11 5y05 = 12,490 psi

Using Equation (4-3):

D, (Figure 4-7) = 75%

K, (shear strain at right-hand edge of crosshatched

area, Figure 4-6) = 50

G =833 (50) (11.5)%° = 14,120 psi
As is demonstrated in this example, the Hardin-Richart
and Seed-Idriss approaches usually yield somewhat dif-
ferent values for G.

Published Correlations: Saturated Clays. Hardin
and Drnevich (ref. 7) obtained detailed correlations
between the shear modulus of clays (and sands) and
(1) void ratio, (2) effective octahedral normal stress,
(3) overcensolidation ratio, and (4) strain amplitude by
conducting laboratory resonant column tests on speci-
mens of natural scil that had been sampled with thin-
walled sampling devices. The results are expressed as

(2973 — &°

1o (OCR)* @)

Grmex (psi) = 1230 (4-6)
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where & = plasticity constant determined from Table ¢-7.

The value of Gpae in Equation (4-6) corresponds to
the shear modulus at a shear strain amplitude of about
0.25 X 10-*%, which is generally below the amplitude
appropriate for use in analysis of foundations for vibrat-
ing machinery. In order to obtain the value of G corre-
sponding to the correct strain magnitude, Equation {4-7)
must be employed.

G = Gmax/(l + 'Y/'Yr) (4"7)

where y is the desired shear strain magnitude expressed
as a percentage and y. is a “reference strain” defined
by Equation (4-8):

Yr = (Tmax/Gmux) X 100 (4'8)

If the effective vertical stress 7,, the effective stress
coefficient of earth pressure at rest K,, the effective
cohesion Z, and the effective stress angle of internal fric-
tion ¢ are known, tma. can be evaluated by using the
Mohr-Coulomb failure theory. The quantity 7y, is
defined as the shear stress on a horizontal plane at failure
for the case where failure is induced by application of
shear stresses on the horizontal and vertical faces of a
soil element, from which, for an initial anisotropic state
of stress:

Tmax = [(1 _;K“ . sin ¢ + ¢ cos g)q

- (% 5] (4-9)

The quantity &, is usually evaluated as the total verti-
cal geostatic stress (o,} minus the pressure in the free
pore fluid {u), which is a valid definition for sands, nor-
mally consolidated clays, and lightly overconsolidated
clays. However, in heavily overconsolidated clays %, may
exceed o, — 1, which creates more difficulty in applying
the results of the calculations, The OCR term in Equa-
tion {4-6) is an empirical parameter which minimizes
this effect if &, (Equation {(4-6) ) and 7, (Equation (4-9) )
are always defined as total stress minus free pore fluid
pressure. Therefore, &, and &, can be evaluated from

results of routine borings and laboratory tests.

The value of K, again can be determined from
Figure 4-5. The shear strength parameters ¢ and ¢ can
be evaluated from static, conselidated-undrained
strength tests in shich pore pressures are measured or
from static, consolidated-drained strength tests.

Example. A sample of saturated clay is recovered from
a depth of 15 ft. Its total unit weight, as well as that for

Table 4-7
Values of k
Plasticity Index k
0 0
20 0.18
40 0.30
60 0.41
80 0.48
> 100 0.50

the overlying soil, is measured to be 125 pcf. Piezometer
tests in the berehole indicated a piezometric surface
{water table) depth of 5 {t. A consolidation test is con-
ducted on the sample, which yields an indicated precon.
solidation pressure of 4000 psf and an initial void ratio
of 0.60. The plasticity index of the clay is measured to
be 30.

A set of consolidated-undrained triaxial compression
tests is then conducted on the soil in which confining
pressures are in the order of &, and ¢ and ¢ are found
to be 3 psi and 20 degrees, respectively. What is & at a
shear strain amplitude of 5 X 10-3%?

oy = 153(125) — 10(62.4} = 1251 psf = B.69 psi
_ 4000 psf _
OCR = To5T psf 3.2
K, = 0.9 (Figure 4-5)
7 = 0.333 5, (1+ 2K,) = 8.1 psi
k = 0.24 (interpolated from Table 4-7)

Gmax = 1230 [(2.973—0.60)%/1.60] (3.2)** (8.1)**
= 16,288 psi

rmax = [(1.9/2) 8.7 sin 20° + 3 cos 20°)*
— ((0.1/2) 8.7)°*1"® = 5.63 psi

G is desired at a shear strain level of 5 X 10-%:

Y¥r = (Tmax/Gmax) X 100 = (5.63/16,288) x 100
= 0.03469,

G = 16,288/(1 4 0.005/0.0346) = 16,288/1.14
= 14,288 psi

Note that & is about 88% of Gpa, which is a typical
reduction for shear strains in the usual range for machine
foundations.

Seed and Idriss (ref. 14) have shown that the shear
moduli calculated from the Hardin-Drnevich equations
underestimated in the in situ shear moduli by factors of
4 and 14 for two soft normaliy consolidated marine clays
with void ratios exceeding 1.6. This effect has been



observed by others as well, leading to the conclusion that
the Hardin-Dmevich equations should not be expected
to correlate well with in situ moduli for marine soils
with high void ratios and for soils of otherwise relatively
high sensitivity. For such soils it is advisable that the
shear modulus be determined directly from in situ tests.

Alternatively, the results of laboratory resonant column
tests can be employed for sensitive clays, provided the
effect of sampling disturbance can be estimated in a
rational way. Anderson and Woods {ref. 1) have shown
that all soils experience a slow, time-dependent increase
in shear modulus as measured in a resonant column
device after an initia} disturbance. This increase appar-
ently occurs as a result of reestablishment of a stable soil
fabric following sampling or other disturbing processes.
The indicated shear modulus generally plots in a strajght
line as a function of the logarithm of time after initial
confinement in a cell. For cohesive soils, Anderson and
Woods have found that

(AG/Guw) (%) = 2exp ('1.7__0'25% -+ 0.37¢), (4-10)

where AG(%) = the increase in shear modulus per log
cycle of time in min,

Gjp00 = shear modulus obtained after sarnple has con-
solidated in a cell for 1000 min (approximately
the value that would be predicted using the
Hardin-Drnevich equations},

sy = undrained shear strength of the soil in kg/cm®
.or tons/ft,?
¢ = initial void ratio of the soil.

Factors such as magnitude of confining pressure do
not play a major role in the rate of time-dependent
increase in the value of shear modulus, or “secondary
gain.” Examination of Equation (4-10) indicates that
the rate of secondary gain increases with increasing void
ratio and decreasing shear strength, which is consistent
with the observation of Seed and Idriss that the Hardin-
Drnevich equations, which do not account for sampling
disturbance, underpredict the shear modulus in soft clays
with high void ratios.

Equation {4-10) can be used to convert in an approxi-
mate fashion the shear modulus measured by short time-
of-consolidation laboratory resonant column tests, and
possibly that predicted by the Hardin-Drnevich equa-
tion, into an equivalent value representative of the un-
disturbed soil. The value of G, can be obtained from
Equation (4-10) as

{ N. 2% (@)
Guax = 1000 (4’-1 1 )

—1—60—*————!-1]01@,
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where N, is the number of log cycles of time in min
(beginning at 1000 min) required for the soil fabric to
reestablish itself as it existed in situ prior to sampling,
using 1000 min as the point of reference. The correction
can also be applied directly to G with little error. For
soils of the type being considered, the appropriate time
required for complete fabric reestablishment depends
mainly upon the mineralogical properties of the soil.
Very little data exist relative to this point. However, if
all the fabric reestablishment is assumed to be due to
thixotropy, as suggested by Anderson and Woods, experi-
mental relationships developed by Skempton and Northey
(ref. 13) can be used to obtain order of magnitude
values for the time in question. For soils whose sensi-
tivity is less than about 8 (moderate sensitivity}, Skemp-
ton and Northey indicated that disturbed soils appear to
regain their in situ strength (and by implication their -
in situ structure) in a period approximately equal to the
geological age of the deposit. Using the above observa-
tion as a criterion, N, can be defined by the following
equation:

N, =2.72 + logie4y, (4-12)

where A, = age of deposit in years.

Equation (4-12) does not apply to heavily overcon-
solidated clays, whose structure is not significantly
changed by the sampling process, nor does it apply to
soils whose sensitivity exceeds about 8. For the latter
class of soils, no reliable methods exist to predict N,;
therefore, only in situ tests should e used to obtain the
shear modulus, Furthermore, such soils should be avoided
altogether as founding strata for structures supporting
vibrating equipment whenever possible.

Example. A deposit of slightly overconsolidated clay
on an industrial site adjacent to an estuary is known to
be 10,000 years old. Soil recovered from the deposit
from a depth of 30 ft has a shear strength of 500 psf
(0.25 kg/cm?) as determined by unconfined compression
testing. The soil has an in situ void ratio of 1.6 and a
sensitivity of 6. Resonant column tests yield a value of
G of 2000 psi. What is the corrected in situ shear
modulus?

To correct the computed shear modulus, use Equa-
tions (4-10), (4-12), and (4-11):

(AG/Giou) (%) = 2exp [1.7 — 0.25(0.25)
+0.37(1.6)]
= 18.6%

N, = 2.72 +log(10,000)
=6.72
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G = [6.72(18.6/100 + 1] 2000
= 2.25(2000) = 4500 psi

Sced and Idriss suggest that shear modulus be cor-
related directly to undrained strength in an attempt to
circumvent the sampling disturbance problem, primarily
because strength is affected much less than modulus by
sampling. The shear modulus G was correlated to un-
drained shear strength s, for a number of clays by Seed
and Idriss. For low strain levels s5,, as obtained by
standard static tests, was correlated with G obtained
from in situ seismic tests. For high-strain levels s, was
correlated with G obtained from a variety of laboratory
tests, whose results were corrected by multiplying the
value of G obtained in the test by a factor of 2.5 to
account for the effects of sampling disturbance. The
results of the correlations, which are shown in Figure
4-8, vyield a simple procedure for estimating & from
standard static laboratory tests.

Calculation of Shear Modulus
for Structure-Soil Interaction Analysis

Since the shear modulus is a function of effective con-
fining pressure (7,) for both sands and clays, the value
of the shear modulus is influenced by both the geostatic
stress and the net bearing stress produced by the struc-
ture. Therefore, the static vertical stress produced in the
soil by the structure should be added to the geostatic
vertical effective stress when caleulating ¥, and o, and
subsequently G from Equations (4-2}, (4-3), (4-5),
(4-6), and (4-9) or when computing confining pressures
for resonant column tests. The principal exception to
this statement is that only geostatic effective stresses need
be considered for overconsolidated clays which remain
overconsolidated after being loaded by the structure.
Furthermore, static machine and foundation weights can
often be neglected in practice when evaluating Equation
(4-9), since their effects on shear modulus reduction are
small.

For reasonably uniform soils, it is sufficient to evalu-
ate the shear modulus for purposes of calculating soil
spring constants at only one characteristic depth d. be-
low the ground surface, as shown in Figure 4-9. For
freedraining soils, it is usually adequate to set 7, in the
various equations for shear modulus equal to & mia, also
defined in Figure 4.9, Since K, is needed in the calcula-
tion of oy, OCR, which is needed to obtain K, should
be computed by including the effect of the vertical
stresses from the structure, that is, by setting o, equal
to Tymin (Figure 4-9) in the definition of OCR.

If the soil is an overconsolidated clay which remains
overconsolidated after loading, the imposed stresses have

little effect on . Hence, values of G measured in situ
or computed only from geostatic stresses need be used.
Uniform deposits of such soils generally possess a reason-
ably uniform shear modulus with depth so that it is
usually not necessary to evaluate the modulus at a criti-
cal depth. - -
When the founding soil consists of a normally consoli-
dated clay (which is a rare circumstance) or a clay
which will become normally consolidated after the load
has been applied and excess pore pressures dissipate, the
shear modulus will increase with time, and two shear
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Figure 4-8. In situ shear modulus for saturated clay
(after ref. 14).
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modulus values and consequently two spring constant
values should be obtained and used in the analysis: first,
for the unconsolidated-undrained condition which exists
immediately after the static load is applied, and, second,
for the fully consolidated condition shich occurs at
some time in the future. The shear modulus for the
former condition should be evaluated using only geo-
static stress conditions (in which case d; corresponds to
the depth of the base of the footing) and soil properties
that exist just prior to placement of the structure. The
shear modulus for the latter condition should be evalu-
ated by the method described above or by assessing the
new undrained shear strength at depth d. beneath the
edge of the footing at the end of consolidation and using
Figure 4-8.

Example, Determine &, and ky for the footing shown
in Figure 4-10.

Assuming that the unit weight of the concrete and
unit weight of displaced soil are equal, the net static
bearing stress at the base of the footing is

25,000/ 4% = 497 psf _

Using the Boussinesq chart in Figure 4-9, the plot of
induced vertical stress at the edge of the footing is made
(Line A). The geostatic vertical effective stress is plotted
as Line B. Finally, the stresses from Lines A and B are
added to produce Line C. It is observed that d, is at the
base of the footing and that Gymin = 490 psf = 3.40 psi.
Since the sand is normally consolidated, K, = 0.4
{Figure 4-5}, and

7o = 0.333(5, + 2as)

=0.333[3.40 + (2) (0.4) (3.40)]
= 2.04 psi

Using the Seed-Idriss correlation, and assuming a
shear strain level of 3 X 10726,
G = 83.3K,(50)™*
= §3.3(52) (2.04)°°
= 6187 psi

Assuming that embedment is effective (footing is cast
against undisturbed soil or dense backfill is provided),
k, = [4Gro/ (1~ v)}{1 + 0.6(1 — v) (R/r0)]
= [4(6187)4(12)/0.61[1 + 0.6(0.6) (2/4)]
= 2.34 X 10°lb/in.
and ky = [8Gr3/3(1 —v)][1+ 1.2(1 — ) (h/r) +
0.2(2— ) (h/1)%]
=[8(6187)48%/3(0.6) 1[1 + 1.2(0.6) (2/4) +
0.2(1.6) (2/4)%}
=426 X 10°in.-Ib/rad.

Typical ranges of values of low-strain-amplitude shear
modulus for several soils are given in Table 4-8 for the
purpose of general information. Table 4-8 should never
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Figure 4-10. Footing for example calculations of soil
spring constants.

Table 4-8
Typical Values for Low-Strain-Amplitude Shear Modulus

Soil Type Shear Modulus (psi) 2.207 4p

Soft Clay 8,000- 5,000

Stiff Clay 10,000-20,000

Very Stiff to Hard Clay 220,000

Medium Dense Sand* 5,000~15,000

Dense Sand* 10,0600-20,000 =~

Medium Dense Gravel* 15,000-25,000

Dense Gravel* 20,000-40,000

*For shallow depths.

be used as a substitute for a rational determination of
modulus values,

Selection of Shear Strain Magnitude for Computing
Approximate Shear Modulus Beneath Footings

Since the shear modulus is a function of shear strain
magnitude, it is necessary to obtain an estimate of the
appropriate value of shear strain magnitude to use in
calculations of soil spring constants. The authors recom-
mend the following approximate procedure for vertical
loading, which is based on an analogy with static
conditions:

1. Select a shear strain amplitude in the range of the
crosshatched area of Figures 4-6 and 4-8, and
compute G,

2. Conduct the structure-soil interaction analysis and
determine the transmissibility factor T from Table
1-4 for the forcing frequency desired.

3. Multiply the unbalanced vertical force by the trans-
missibility factor and divide the result by the con-
tact area of the footing to obtain the dynamic
bearing stress gq.
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4. The approximate average shear strain y in a central
block of soil below the footing of dimensions
27, X 27, (horizental) X 4r, (vertical) is given by
Eq. (4-13).

(%) = 12 q./G (4-13)

Equation (4-13) presumes gq to induce the same strains

in the soil as it would if it were acting as a static stress

{ref. 10). Of course, the strains due to a dynamic bear-

ing stress emanate as waves, making Equation (4-13)

nonrigorous. Nonetheless, Equation (4-13} will yield

order-of-magnitude strain levels that are sufficiently

accurate for most analyses. Therefore Equation (4-13)

may be used to verify the assumed value of G (Step 1).

If the assumed and computed shear strains differ sig-

nificantly, these four steps should be repeated iteratively,

using the value of y computed on the preceding trial to
obtain G for the present trial, until the strains close to
within an acceptable difference.

If a particularly precise analysis is warranted, the
approach described above should be abandoned in favor
of a more comprehensive technique, such as the finite
element method, in which complete modeling of a rele-
vant volume of the soil and its constitutive relationships
’s considered.

It should be pointed out here that the shear strain
magnitude beneath a footing should be taken as that
produced only by the dynamic component of the footing
load. The static shear strain should be neglected, since
it in effect only provides a nonzero strain level about
which the dynamic strain is cycled. The small strain
shear modulus relative to that nonzero reference is
generally about the same as the small strain modulus
relative to a reference level of zero strain.

Damping Ratio

Damping in a soil-foundation system consists of a
geometric component, which is a measure of energy
radiated away from the immediate region of the founda-
tion, and material damping within the soil, which is a
measure of energy lost as a result of hysteresis effects.
Geometric damping ratios have been shown at the be-
ginning of this chapter to be related to the mass or
inertia ratio of the system through the wuse of elastic
halfspace theory. Relationships between mass and inertia
ratios and the geometric damping ratio are shown for
the four uncoupled modes of motion in Figure 4-11.

Material damping is defined in Figure 4-12. It is seen
to be proportional to the ratio of A, the area of the
soil hysteresis loop in simple shear (energy lost), to 4r,
the crosshatched area (energy input). Material damping
ratios can be obtained as a part of resonant column
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Figure 4-11. Geometric damping ratios for four
modes of loading. After Richart, Hall, and Woods,
ref. 12. Reprinted by permission of Prentice-Hall,
Inc., Englewood Cliffs, NJ.

T

Dn=A_/4TA;

Figure 4-12, Definition of ma-
terial damping (after ref. 7).

testing. After the soil has been vibrating in a steady-
state condition, the exciter is stopped and the soil vibra-
tions are monitored as they decay. The displacement-
time relationship is essentially sinusoidal, but with the
amplitudes decreasing with time. If two successive
amplitudes are z; and z,, then

Dn = (in [z/zs]) 47" + (In [2/za])* 170 (4-14)

Additional procedures are described by Richart, Hall
and Woods (ref. 12).

Seed and Idriss {ref. 14) have shown that material
damping in soils is primarily a function of strain ampli-
tude and soil type. Figure 4-13 gives typical values for
material damping proposed by Seed and Idriss.

In order to obtain the total soil-foundation system
damping ratio Dy, the geometric and material damping
ratios may be added directly. Since the material damp-
ing ratio is significant relative to the geometric damping
ratio in rotational modes, the total damping ratio,
rather than the geometric damping ratio, should be used
when analyzing the response of foundations in those
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modes. On the other hand, material damping is small
compared to geometric damping in the translatory
modes and may often be disregarded. The exclusion of
material damping from an analysis will result in ampli-
tudes that are too high, especially at or near resonance,
and resonant frequencies that, for rotating mass excita-
tion, are slightly too low.

Example. The inertia ratio By for a machine-founda-
tion system undergoing rocking oscillations and resting
on a saturated clay subgrade is determined to be 1.3.
How does material damping influence the deformation
at resonance and the resonant frequency?

According to Figure 4-11, the geometric damping
ratio of the system is 0.05. If the material damping
within the clay is neglected, the amplitude magnification
factor for rotating mass excitation (Equation 1-43) is ap-
proximately 10 at resonance. Further,

fae = (1/ V1= 2D%)fx

= 1.0025 f»

If material damping is considered, according to Equa-
tion 1-43, its value should be approximately 0.03 in the
typical range for machine foundations. Hence,

D;=D+ Dy

=0.05 + 0.03

=0.08
Using the value thus obtained for total system damping
in Equation 1-43, the amplitude magnification factor is
reduced to approximately 6. Also, using the total system
damping factor of 0.08,

fmr = 1.0065 fn

Consideration of material damping thus reduces the
rotational amplitude at resonance by about 40%, but
has only 2 minor effect upon the resonant frequency.
Other effects, discussed in Chapter 5, may also have
an influence on fmr and amplitude of motion in the
_ rocking mode.
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Whitman (ref. 18) has proposed that the effects of
geometric and material damping be combined and that
the total damping ratios be computed as follows:

Vertical Translation Mode:

Dy = 0.49 (M/pr)"? {4-15)
Horizontal Translation Mode:
D, = 031 (M/pr)™"* (4-16)

Rocking Mode:
D, = 0.05 4 0.1 ({Zy/prsT 11+ (Lo /4er) W (4-17)

where M = mass of foundation plus mass of structure
or machine vibrating in phase with the
foundation,

r, = effective foundation radius,

Iy = mass moment of inertia of foundation plus
that part of structure or machine vibrating
in phase with the foundation about a hori-
zontal axis through the base of the founda-
tion perpendicular to the plane of rocking,

p = total mass density of the soil (unit weight/
acceleration of gravity).

When the foundation being analyzed is 2 rigid footing
within a multi-degree-of-freedom structure and to which
yibrating machinery is not directly attached, it is con-
servative to calculate Dy from the above equations as-
suming that M is the mass of the foundation alone.
Under the same circumstances, when the geometric
damping ratio is determined from Figure 4-11, mass and
inertia ratio arguments may be computed from the mass
properties of the foundation alone.

Whitman’s proposed values for total damping ratios
can be seen to be somewhat lower than the geometric
damping ratios given by Figure 4-11. This apparent
anomaly is due to the fact that Whitman’s expressions
represent lower envelopes to available test data and
implies that geometric damping in a prototype may be
less than that predicted by halfspace theory, possibly
because of layering and boundary effects.

Selection of Poisson's Ratio and Soil Density

Soil-foundation interaction problems are relatively in-
sensitive to the values chosen for v and p. Generally,
Poisson’s ratio can be selected based on the predeminant
soil type using Table 4-9. It is also possible to obtain 2
value for Poisson’s ratio by measuring independently the
shear modulus (G) in a laboratory torsional resonant
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Table 4-9
Typical Values for Poisson's Ratio

Soil Type ¥
Saturated Clay 0.45-0.50
Partialiy Saturated Clay 0.35-0.45
Dense Sand or Gravel 0.4 -0.5
Medium Dense Sand or Gravel 0.3 04
Silt 0.3 0.4

column test and Young's modulus (£) in a laboratory
longitudinal resonant column test. Assuming isotropy,

v = (E/2G) — 1 (4-18)

Soil mass density values should always be calculated
from the total unit weight rather than the buoyant unit
weight because the density term in the mass and inertia
ratio equations always represents soil undergoing vibra-
tion. Total weights are used because both the solid and
liquid phases vibrate.

Effect of Footing Embedment

Analytical expressions have been given in Tables 4-2
and 4-4 that are to be employed as multipliers to the
equivalent spring constant and geometric damping ratio
values whenever the footing is embedded. A foundation
should be considered as “embedded,”” however, only if
it is cast against undisturbed soil or if it is formed and
backfilled carefully with a high compactive effort using
soils with low shrink-swell potential, Casual backfilling
is ineffective,

Stokoe and Richart (ref. 15) studied the response of
model circular footings embedded in a dense, dry, poorly
graded sand to vertical, horizontal, and rocking excita-
tion. Two sets of tests were conducted: one in which
the embedded footings were cast against the soil and
one in which a small air gap existed between the soil
and the sides of the footing. The results, which were
relatively consistent for all modes of loading, are sum-
marized in Figures 4-14 and 4-15.

It is evident that proper embedment had a significant
effect on both total damping and resonant frequency,
while embedment without adequate lateral support was
essentially ineffective.

The henefits of proper footing embedment are espe-
cially pronounced for the rocking mode, since D, can
be increased by several times by embedding the footing
to a depth equal to or greater than its equivalent radius.
1t is also desirable to embed pile caps in competent soil,
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Figure 4-14. Effect of embedment on damping (after
ref. 15).
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Figure 4-15. Effect of embedment on resonant fre-
quency (after ref. 15).

since the response of pile foundations is sharply peaked
at resonance in all modes. Cap embedment in cases
where significant lateral loading occurs in the piles is
especially important, since resonant displacements can
often be excessive without the damping and load trans-
fer provided by the cap. This problem will be addressed
in greater detail in Chapter 3.

Effect of Stiff Underlying Stratum

If the subgrade consists of a softer soil overlying an
appreciably stiffer soil or bedrock within two to three
footing diameters of the base of the footing, the response
will be altered significantly. A stiff stratum interface will



reflect a considerable proportion of the energy that
would ordinarily be radiated away from the foundation,
in effect producing a lower geometric damping ratio
than would occur in a homogeneous subgrade. This
effect is offset to a degree by the fact that the effective
lumped spring constant is increased due to the presence
of the stiff stratum,

Quantitative research in the vertical response of foun-
dations on layered media was described by Warburton
{ref. 17). Little usable information is available for the
rocking and sliding modes at present, making the use
of special modeling techniques such as the finite-eiement
method attractive for important problems in rocking and
sliding. Torsional response in a layered system is dis-
cussed by Richart, Hall and Woods (ref. 12).

Table 4-10 presents approximate relationships for cal-
culating k&, for various values of H/r,, where H is the
distance from the base of the footing to the stiff soil
contact. The stiff soil is assumed to be fully rigid.

Establishment of a lumped damping ratio in this case
is difficult; however, when 5 < W/yr® < 10 and
1 € H/ry, €2, damping in the vertical mode will be on
the order of 159% of that which would occur were the
subgrade a halfspace. Thus, the geometric damping
ratio, for vertical motion in the ranges defined above,
may be expressed approximately as

D =~ 0.06/+/B, (4-19)

It is evident that material damping in the overlying
soil will be important. Thus, in the analysis of a single-
or multi-degree-offreedom structure using lumped
spring constants and damping ratios to represent the
soil, the total damping ratio should be used.

The response of a single-degree-of-freedom system
undergoing vertical oscillations in layered soils can be
studied in an approximate way using Tables 4-11 and
4-12, which give theoretical values for displacement at
resonance and resonant frequency, respectively, and con-
sider only geometric damping. At frequencies below
about 609 of resonance and above about 1409 of
resonance, dynamic displacements will generally not ex-
ceed the static displacement produced by the dynamic
unbalanced load by more than about 50%. Hence, it is
good practice to operate machines in those two zones,
although harmonic resonant frequencies may be detect-
able in light structures at about 3, 5, 7, . . ., times the
fundamental resonant frequency.

Example. A rotating mass machine has an unbalanced
vertical force of 250 1b at 1000 rpm. It weighs 60,000
1b and is supported on a rigid block foundation weighing
80,000 b, The equivalent radius of the foundation is
5 ft and the foundation rests on the surface of a stratum
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Table 4-10
Approximate k, Variation with Stratum Thickness
(after Richart, Hall, and Woods, ref. 12)

Hiro . R /l4Gro/(1—2)]

1 2.1

2 1.6

[-+] 1.0
Table 4-11

Resonant Vertical Displacement for Stratum
Overlying Rigid Base: , = 0.25
(after Richart, Hall, and Woods, ref. 12)

A £y yEaonAnCH

Hiro 1(3/18)/{Qo/Gro)]
Wiyt = 5 10 20 30

1 5.8 11 21 29
2 8.0 16 3l 41
o 1.2 1.6 2.2 2.7
W = weight of footing plus machinery vibrating in phase.
Qo = unbalanced vertical force.

G = shear modulus of soft soil.
v, = total unit weight of soft soil,

» = Poisson’s ratio of soft soil.

Table 4-12
Resonant Frequency in Vertical Mode for Stratum
Qverlying Rigid Base: v = 0.25
{after Richart, Hall, and Woods, ref. 12)

W/r.red Fo/V Gg/vara®

H/ro = 1 2 «®
5 0.21 0.15 —
10 0.16 .12 0.10
20 0,12 0,094 0.080
30 0.097 0.080 0.064

fo = fundamental resonant frequency (in cps if g is in linear
units/sec?).

of dense sand having a shear modulus of 10,000 psi and
a unit weight of 112 pcf. The sand overlies bedrock at
a depth of 10 ft. What is the resonant frequency of
the system and the amplitude of vertical displacement if
material damping is neglected within the soil? How do
these values compare with those that would be calcu-
lated if the bedrock were absent? Assume v = 0.25.
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W = 60,000 4+ 80,000 = 140,000 Ib.
W /yars® = 140,000/112(5)3 = 10.0
Hjry=10/5=2

When bedrock is present, from Tahle 4-12,
fo=0.12[(10,000) (144} (32.2) /(112) (25) 1>
=154 cps

= 924 rpm

Then, Qo = (924/1000) 250 = 213 Ib, From Table 4-11,

Az, resonance = 16(3/16) (Q,/Gro)
=3(213) 7 (10,000) {5) (12}
=0.00107 in.

When bedrock is absent, from Table 4-12,
fo=0.1](10,000) (144} (32.2) /(112) (25) ]
T =129 cps
=774 rpm

Then Q, = (774/1000)2250 = 150 Ib.

From Table 4-11,

Aa’; resonance — 16(3/16) (Q«O/GTO)
= 3(150} /10(10,000) (5) (12)
= 0.000075 in.

The resonant frequencies will increase only slightly
when material damping is considered. Hence, the reso-
nant frequencies computed above would usually be ade-
quate for design purposes. Because of material damping,
and because even a bedrock boundary is not truly rigid,
the displacement amplitude for the layered system is
overestimated by using Table 4-11.

Effect of Stratum of Loose Granular Soil

It is considered to be generally poor practice to situate
footings supporting loads from vibrating machinery on
cohesive soily which will consolidate under the static
load or on granular soils having a relative density of
less than 70-75%. In granular soils having low relative
density, problems with permanent settlement due to
compaction can occur. In cases where soils with ade-
quate relative densities are not found, the soils should
be stabilized mechanically by vibroflotation,™ terra
probing,™) dynamic compaction, vibro-replacement,
removal and replacement, or similar techniques (ref. 21)
to increase the relative density to the appropriate value.
Chemical stabilization is not generally economical but
may be used in certain cases. When stabilization is not
economical, a carcfully designed deep foundation system
should be used.

Permanent settlement due to vibration is generally not
a problem in clays because cyclic stresses transmitted to
the subgrade in a well-designed facility are seldom suffi-
cient to generate pore pressure of a magnitude which
would either affect consolidation or reduce the shear
strength of the clay to the point where cyclic shear
failure (fatigue) could occur. Similarly, liquefaction or
cyclic mobility will seldom occur in waterbearing sands.

The designer is occasionally faced with a stratigraphic
situation in shich the majority of the soil profile con-
sists of either clays or very dense sands, but which con-
tains one or more layers of silt, sand, or gravel having
a relative density of less than 70-75%. If such layers
occur at a significant depth below the ground surface,
the only practical alternative to a shallow foundation
system may be a pile or pier foundation, which would
be expensive, and which, if not properly designed and
installed, could lead to worse performance than the shal-
low foundation alternate, Therefore, it becomes incum-
bent on the designer to assess the permanent settlement
that would occur beneath the shallow foundation due to
vibration-induced compaction in the looser layers. Un-
fortunately, no rational methods are known to the
authors to have been published regarding estimation of
permanent settlements of this type. Therefore, an ap-
proximate method which has been found to provide a
reasonable estimate of the permanent settlement due to
vibration is described below,

1. Undisturbed samples are recovered from near the
middle of the subject stratum. The in situ effective
octahedral normal stress is estimated (Equation
4-4}, and the specimen is subjected to a drained,
controlled stress cyclic triaxial test in which the
applied cyclic or “dynamic” stress a4, is a simple
percentage of the confining pressure o, which is
set equal to the in situ octahedral normal effective
stress. The test is conducted at about 5 cps con-
tinuously for several days, and a plot of number of
stress cycles (log scale) versus permanent axial
strain is made for the value of oe/o, (A} used in
the test. Typical results are shown in Figure 4-16.
According to D’Appolonia (ref. 4), the relationship
will be linear, so the test results can be extrapolated
to the number of cycles anticipated for any period
of service for the machine.

2. Repeat the procedure described above for other
samples with varying values of ¢z {and therefore A).

3. Determine the mean dynamic stress amplitude
transmitted to the soil by the vibrating equipment
by using Table 1-4 for a range of shear moduli,
and divide the transmitted forces so obtained by
the contact area of the base of the foundation.



4, For the largest value of transmitted force compute
oz for the prototype as the vertical stress at the
center of the subject layer directly beneath the cen-
of the foundation assuming that the dynamic con-
tact stress amplitude computed in Step 3 is dis-
tributed within the soil according to Boussinesg
theory. Limited evidence (e.g., ref. 5) indicates that
the use of Boussinesq theory, though nonrigorous
in 2 dynamic sense, is sufficiently accurate consider-
ing the magnitude of uncertainty of the other
variables.

5. Compute A for the value of g obtained in Step 4,
and determine the permanent vertical (axial) strain
in the layer for the number of stress cycles to be
applied in the field using a graph similar to that
shown in Fig. 4-16.

6. Compute the permanent settlement as the product
of the vertical strain and the layer thickness.

The procedure outlined above will usually give con-
servative results. Gaution should be used in its applica-
tion, however, particularly where reflective interfaces
(e.g., soil-rock interfaces) appear near the layer being
studied. If the layer being studied is thick, it should
be subdivided into two or more horizontal sublayers;
settlement should be ascertained in each sublayer sep-
arately; and the settlements should be summed.

In the absence of permanent strain soil test data, a
mathematica) relatienship developed for dry sand under-
going a relatively few stress cycles by Cuellar et al
(ref. 3) can be used. Cuellar’s relationship should be
applied with caution, although results apparently will
be very conservative at the large number of stress cycles
for which settlement is usually computed and for the
state of stress encountered beneath a vibrating footing.
The study reported by Cuellar et al. revealed that
permanent strain is primarily a function of initial rela-
tive density, magnitude of shearing strain, and number
of cycles of applied load, which may be related by

ep = —{1/3m)In [1 — my"N] (4-20)
where &, = permanent vertical strain (negative sign in-

dicates settlement),
N = number of stress cycles,

and
m = —33.33 D + 61.66 D, —~20 (4-21)
n = —0.95D; + 233 D, + 0.5¢ (4-22)

in which D, is the relative density expressed as a ratio
(not a percentage).
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Figure 4-16. Effect of number and amplitude of
stress cycles on permanent strain (after ref. 4),

The guantity y is the maximum shearing strain ampli-
tude (in percent) in simple shear. Since a simple shear
condition is not achieved beneath a vibrating footing, it
is recommended that y be taken as the amplitude of the
octahedral shearing strain at the location of and for the
stress state recommended for the procedure involving
the direct use of laboratory data. Therefore,

¥ (%) = (v/2/3G) (00) (100) = 47.1 (0,/G) (4-23)

The permanent settlement of the foating is again
the product of the permanent vertical strain and the
layer thickness.

Settlement in granular soil is, of course, accompanied
by a decrease in void ratio, with a resulting increase in
shear modulus. For example, according to the Hardin
and Richart correlation, a decrease in void ratio from
0.70 to 0.65 vyields a 10% increase in G. This, in turn,
leads to a 5% increase in the natural frequency of a
single-degree-of-freedom system undergoing vertical
oscillations. Corresponding resonance shifts can occur in
the rotary modes, which can have an effect on the long-
term performance of the foundation.

Remarks. The procedures described in this chapter
for evaluating soil properties for lumped spring constants
and damping ratios should be considered approximate.
This fact, coupled with the fact that the frequency in-
dependent expressions for spring constants and damping
ratios given earlier are themselves approximate, makes
it prudent to conduct structure-soil interaction analyses
for several combinations of spring and damping values
within a reasonable range of uncertainty to assure that
resonant conditions are not encountered or, if resonant
conditions are encountered, to assure that structural
velocities and for displacements remain within allowable
limnits.
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It is impossible to make a general statement about the
range of spring constants and damping ratios that should
be employed. However, in most cases it will be sufficient
to vary the spring constant and damping ratio in any
mode about +-25% with respect to the computed value
if high-quality, direct field and/or laboratory measure-
ments of the soil shear modulus and material damping
ratio are made and £30% if correlative methods are
used. The above ranges are suggested for essentially uni-
form sites. If stratigraphic situations are encountered for
which no adequate theoretical model exists (such as a
footing resting on a hard, compacted, shallow fill over-
lying a softer subgrade or on a multilayered soil system)
spring constants may be assumed to be based on average
soil properties, but the uncertainty arising from such an
assumption requires that the ranges suggested above be
increased by a factor of about 1.5 to 2.0, depending on
the degree of soil variability. It is evident that, when an
uncertainty pertaining to the model occurs, soil proper-
ties should be obtained by direct measurements rather
than by correlative methods in order to obtain the best
possible values for the inputs and, therefore, reduce the
range of spring constants and damping ratios that should
be considered in the analysis.
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A = cross-sectional area of pile
A’ = corrected contact area
A, = contact area for discrete element
A, = amplitude of vertical displacement
¢y = undrained cohesion .
¢x = damping factor for horizontal excitation |
6zy = cross-damping factor }
¢, = damping factor for vertical excitation |
¢y = damping factor for pure rocking excitation
D, = total damping ratio :
D, = damping ratio for horizontal excitation i’
D, = damping ratic for vertical excitation
E = Young’s modulus (specifically for pile mate-
rial when a p subscript is included)
e == eccentricity of load
FS§ = factor of safety
f = superscript pertaining to pile cap
fi1, '35 = stifiness and damping terms for piles
G = shear modulus for soil (sometimes subscripted
with 5 to distinguish from other material)
g = gravitational constant; pertaining to group of
piles when used as superscript
h = depth of embedment of pile cap
I = moment of inertia
kb = spring constant for embedded portion of pile
k; = spring counstant for freestanding portion of
pile
Kz = relative stiffness
k, = coefficient of subgrade reaction
k. = spring constant for horizontal excitation
k. = spring constant for vertical excitation
ks = corrected value of %,
koy = Cross-stiff ness term
ky = spring constant for pure rocking excitation
Ly = embedded length of a pile

Notation for Chapter 5

Foundations

L; = freestanding length of a pile
{ = length of a fully embedded pile
I, = relative stiffness dimension for mat

M = mass of cap plus in-phase load on cap
M, = amplitude magnification factor

m = equivalent vibrating mass

m, = mass of pile cap

m, = mass of eccentric load
N = number of piles in group

P = load on pile
(J, = unbalanced force

7, = effective radius; pile radius
_§ = pile spacing (center-to-center)

§us, Sz = stiffness and damping constants for embedded
cap, horizontal excitation

:S-',', §, = stiffness and damping constants for embedded
cap, vertical excitation
S41, Sy2 = stiffness and damping constants for embedded
cap, pure rocking excitation
¢t = thickness of mat
ve = compression wave velocity in pile
v, = shear wave velocity in soil
W e = equivalent weight of pile
x, = dimension defined in Figure 5-6
2. = dimension defined in Figure 5-6
1 = superscript indicating single pile
oy = axial displacement influence factor

ar, = lateral displacement influence factor
8 = direction angle
v+ = unit weight of soil
¥ = unit weight of pile material
8= h/n
v = Poisson’s ratio of soil {sometimes subscripted
with § to distinguish from other material)
vm = Poisson’s ratio of mat material

77
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Foundations for dynamically loaded structures usually
fall into one of three categories: footings, mats, and deep
foundations (i.e., piles and piers). The choice depends
on structural loading and geometry and upon the quality
of the near-surface soil. In general, the procedures out-
lined in Chapter 4 can be used directly to analyze foot-
ings, which are considered to be essentially rigid and
must be designed structurally to be so. When a footing
becomes large enough to be classified as flexible (e.g., a
“mat” supporting several columns), it is necessary to
mode! it as a series of discrete elements, connected by
springs and damping elements and supported by soil
springs and damping elements. Since the soil is being
loaded not only by a given discrete element but also by
surrounding elements, assignment of damping and stiff-
ness values should be based on a somewhat different
rationale than for assignment of stiffness and damping
values for rigid footings. Deep foundations do not behave
as surface foundations and must be treated by special
methods. Prediction of the response of pile groups is
often complicated by the fact that a rigid cap is placed
over the heads of the piles, providing surface stiffness
and damping to the pile group.

The understanding of the dynamic behavior of mat,
pile, and pier foundations is at best in its infancy. Finite-
element modeling encompassing both the soil and the
structure represents the most complete and rational
mathematical approach to the analysis of such founda-
tions presently available. However, some aspects of soil-
structure interaction, such as clastic behavior at the
interface between the soil and the structure and absorp-
tive behavior of fictitious boundaries, are difficult to
model in a finite-element scheme. Furthermore, the out-
put from such an analysis is not in the form that will
allow the designer to easily assess the relative effects of
the variables in the problem. Therefore, soil-structure
finite-clement analyses should be conduected only by
experts. The cost of such an analysis usually precludes
its use on all but the most important structures or in
cases where uncertainties arising from simpler modes of
analysis cannot be resolved by other means. A descrip-
tion of the details of dynamic finite-element modeling
for soils is beyond the scope of this book,

An approximate procedure is described in this chapter
for obtaining equivalent vertical soil spring constants
and damping ratios for use in a discrete-element analysis
of a large mat or slab in which the soil is not explicitly
included in the model, but is instead represented by
springs and dashpots, as when a rigid block foundation
is being analyzed. The procedure is based on an empiri-
cal analogy with static load conditions, since little usable
theoretical guidance is available with respect to dynamic
response of the soil beneath a flexible mat. In essence,
static spring constants are used, a technique which can

be partially justified on the basis that at low frequency
the dynamic spring constant and the static spring con-
stant do not differ by a large amount and that at high
frequency, where the spring constants do differ appre-
ciably, their contribution to the response of the system is
subordinate to mass effects.

Several approximate procedures based both on mathe-
matical solutions and on empirical data from vibratory
load tests for analyzing the response of pile and pier
foundations are also described in this chapter. The
mathematical solutions are predicated on the assumption
that both the pile and the soil can be represented as
elastic materials. As with rigid footings in an elastic
halfspace, the problem of modeling flexible piles is
reduced to a one-degree-cf-freedom problem, allowing
expressions to be obtained for equivalent spring and
damping constants, which can in tumn be input con-
veniently into a structural analysis prograrm.

The reader is advised to use the procedures presented
in this chapter with caution and considerable judgment,
as none has been verified in the field in more than a few
simple cases. The procedures are therefore presented not
in the context of criteria but rather in the context of
best available information for the designer.

Modification of Foundation Response

Because of the uncertainties in the mathematical
models used to compute foundation response and the
uncertainties involved in determining relevant soil inputs
to the model, foundation behavior cannot be predicted
with the reliability that can be expected for elements of
the superstructure. The recommended ranges for founda-
tion response analysis described at the end of Chapter 4
are reflections of these uncertainties. Note that it is often
impossible to design a structure, particularly a multi-
degree-of-freedom structure, which will not contain one
or more foundation elements that will not potentially
resonate (or nearly resonate) in some mode, considering
the ranges of stiffness and damping that must be
designed for. The capable designer, anticipating this
problem, will, therefore, plan foundation elements that
can be corrected or “tuned” if a vibration problem arises
during operation (ref. 9). Foundation response can best
be altered during operation by changing the resonant
frequency of the foundation. Thus, provisions for sub-
tracting or adding mass to the foundation may be
included in final designs. Provisions for altering stiffness
are also advisable. Generally, it is easiest to increase,
rather than decrease, stiffness once the structure has
gone into operation. For example, grout holes can be
cast into footings or mats resting on a sandy subgrade
so the subgrade can be grouted if necessary and, there-
fore, stifened. Consideration may alse be given to instal-



ling piles and attaching the piles to the footing if a
considerable change in foundation stiffness is required
during operation. Hence, footing reinforcement in the
initial design may be established so the footing can also
be employed later as a pile cap, if necessary, Increasing
the bearing area of a footing is an effective means of
increasing stiffness in all modes. Where space will permit
later increases in footing area, original footing reinforce-
ment may be designed to accommodate additional mo-
ments that will occur with increased area. Rebalancing
or remounting of vibrating machinery to reduce unbai-
anced forces should always be considered before meodifi-
cations are made to foundation elements, since the cost
of machine modifications is often less than the cost of
tuning a foundation.

‘When rocking is the primary mode of motion, perma-
nent settlements of soil near the periphery of footings
can occur after a machine has been in operation for some
time, leaving the footing supported on a “fulcrum” of
soil near the axis of rocking for the majority of the load
cycle (ref. 9). This phenomenon is especially pro-
nounced where the subgrade is cohesionless and the
shear strength of the soil, therefore, is low near the edges
of the footing due to lack of confinement. The result is a
significant decrease in stiffness in the rocking mode. In
such a case, grout holes should be cast into the founda-
tion to permit future closing of the space between the
footing and soil with low-pressure grout and reestablish-
ment of the original stiffness properties.

Vertical Spring and Damping Constants
for Flexible Mats

Agarwal and Hudson {ref. 1) have indicated that the
vertical displacements in the vicinity of a static vertical
point load in the interior of an elastic, rectangular, pris-
matic mat supported on an elastic subgrade are not
influenced by mat dimensions, as long as the overall
horizontal mat dimensions exceed three times a refative
stiffness dimension /; in both directions, where {, is de-
fined as follows:

= [E/12 (1 — vp?)

kr] ’0.25

where E = Young’s modulus of mat material,
¢t = thickness of mat,
= — Poisson’s ratio of mat material,
k. = coefficient of subgrade reaction o

the sml( )
Y= RS o FA

Equivalent criteria for dynamic loading ave not been
established; however, if it is assumed that the static
criterion holds for dynamic loading, then it follows that
the soil reaction outside of an area 3 I, by 3 ; in the
interior of a mat has little or no effect on the response
of a relatively smaller discrete element situated at the

(5-1)
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center of that area, Since the soil spring constant depends
on the area of soil being loaded and since a flexible mat
is not effective in distributing a load applied to a small
area to the entire bearing area of the mat, it is obvious
that spring constants for the various discrete elements
employed in solving the mat-supported structure prob-
lem should not always be calculated using the overall
dimensions (or equivalent radius) of the mat. It is also
obvious that it is, in general, improper to assume that r,
obtained from the contact area of a discrete element is
appropriate for determining k., since doing so would be
equivalent to an assumption of Winkler springs, which
will result in a system model where stiffness is directly
dependent on the choice of element size.

It appears reasonable, therefore, to define a flexible
mat as one whose outside dimensions exceed 3 I, in each
direction and which is loaded by columns or machines
over a relatively small portion of its area. It is recom-
mended that when a structure is supported on such a
mat that a discrete-element model, rather than a rigid
block model, be used for the foundation to accommodate
its several modes of vibration. To obtain an approximate
value for k, for the individual elements, the effective
loaded area of the real (not discretized) mat in the
vicinity of the element should be computed assuming
that the area of soil loaded due to the vertical motion
of the element is 3 {, by 3 [, in plan. This area will
normally be greater than the area of the element. Utiliza-
tion of this area for elements near the edges of the mat
will lead to errors there; however, considering the lack
of information on the subject of lumped soil spring
constants for flexible mats, further sophistication is un-
warranted. .

Using Equation (5-1) and assuming that £, is that
for a loaded area 3 I, by 3 I,

1, =08t [(E/Gy) {1 —vs) /(1 — el

1o, (5-2)

where G, and v, are properties of the soil and 7, is the
effective radius to be used in computing k..

The value of k. can thus be computed from the half--
space equation for every element using the value of 7,
given by Equation (5-2) and an appropriately estimated
shear modulus and Poisson’s ratio for the soil. The value
of the spring constant must then be corrected to include
only the reaction against the contact area of the element.

This is not a straightforward process, however. For
example, if vibrating loads are spaced at such a distance
so that effective loaded areas do not overlap [eg.,
spacing greater than r;), then

kze = Ak: (5-3)

where (5-3a)



80 Design of Structures and Foundations for Vibrating Machines

in which A, is the contact area of the discrete element
and k. is the appropriate vertical spring constant for
the individual element. Equations {5-3} and ({5-3a)
yield higher soil spring constants than would be obtained
by taking the mat as a whole and dividing that value
among the discrete elements in proportion to their areas.
This is a valid representation for very flexible mats with
widely spaced loads because uneven contact stress distri-
butions cause the soil te behave more stiffly in the
vicinity of applied loads.

When loads are more closely spaced, £, is usually less
than the value given by Equation (3-3)} because a more
uniform contact pressure distribution in the primary
modes is likely. Its precise value is very difficult to deter-
mine and will, in fact, vary from mode to mode, depend-
ing on the phase differences between adjoining elements
and the spacing of the loads. As a limiting value, it can
be assumed that the soil responds as if the mat were
rigid ; hence,

ve = (de/Am) ke (5-4)

in which 4, is the area of the entire mat and %, is the
vertical spring constant for the entire mat. In most cases,
k:. will lie between the values given by Equations (5-3)
and (5-4) and judgment should be exercised in its selec-
tion. Most usage in the past has favored Equation (5-4).

The soil geometric damping ratio is more difficult to
evaluate in a flexible mat than the spring constant
because of phase differences in various parts cf the mat.
An upper limit for the geometric damping ratio for the
soil will be that computed from halfspace theory assum-
ing that a section of mat and in-phase loads supported
thereupon having a radius equal to r, computed from
Equation (5-2} vibrates as a rigid body. However, inter-
ference from surrounding sections of the mat makes the
use of the upper limit value entirely unreasonable and
the correct value virtually unpredictable using the half-
space approach. A value ofbt = 0.15 for discrete ele-
ments is suggested in the absence of any other criteria if
the subgrade is homogeneous.

Example. A 100-ft-square mat is 3 t thick. Its Young’s
modulus is 3 X 10 psi, and its Poisson’s ratio is 0.2
The mat rests upen a clay subgrade having a shear
modulus of 8000 psi and a Poisson’s ratio of 0.4. What
value of k;, should be used for a 10-ft-square discrete
element?

Using Equation (5-3):
1o = 0.8t [(E/Gs) (1 —vy) [{} —up?) |28

= 0.8(3) [ ({3 X 10°}/(8 X 10%))(0.6/0.96) ]**%
= 14.8 ft

ko= 4Gro/ (1 — v,) = 4(8000) (14.8) (12) /0.6
= 9.5 X 10° Ibjin.

o= [(10 X 10) /(=
= 1.38 X 107 Ib/in.

X 14.8%)] k,

Using Equation (5-1} :
o= (100 x 100/w)%° = 56.4 ft
ks = (4 > 8000 x 56.4 > 12) /{1 —~0.4)
=36 X 10°Ib/in.
k-e = (36 X10%) X (10 x 13) /(100 X 100)

=0.36 X 10°]b/in.

Deep Foundations

Pile or pier foundations (which hereafter will be
termed simply “pile” foundations} are often used to
support vibratory loads when soil conditions at a site
indicate that shallow foundations will result in unaccept-
able permanent settlements. Present understanding of
the behavior of pile foundatxons under vibi ryuloadmg
is relatively: poor, but it is: known that. th

se of plles
deécreases’ geometric dampmg, increases the resonant
frequency of - the foundation, and influences deformatwn
near resonance. Since in some cases, partmularly in the
lateral load mode, the effect of piles can be adverse,
piles should not be used without some understanding of
their behavior.

In this chapter approximate procedures developed by
Novak and his associates for analyzing the response -
characteristics of single piles and pile groups in the
uncoupled vertical, horizontal, and pure rocking modes
are described. The solutions are based on the assumption
of elastic, fully embedded vertical piles interacting with
uniform elastic soil. Furthermore, the pile tip is assumed
to be fixed against motion, except in the case of vertical
response, where the tip can be fixed or “relaxed.”

The limitations of applying Novak’s procedures to real
geological materials are obvious; however, they have
provided reasonable predictions for the response of small
pile groups in relatively simple soil profiles, and further-
more, they represent the current (1979) state-of-the-art
in the practical analytical treatment of pile-soil inter-
action. The solutions for spring and damping constants
developed by Novak are frequency dependent; however,
approximate frequency independent expressions have
also been developed for both the spring constant and
damping ratio. These will be described herein. Solutions
for the stiffness and damping of torsionally loaded indi-
vidual piles and for coupled rocking and sliding, ob-
tained by Novak and his associates, are also available
(refs. 10 and 14}, but are not included here.



Novak’s various procedures do not permit calculation
of the stresses induced in the pile material, although
such stresses can be important, particularly during lateral
loading. Ghazzaly, Hwong and O'Neill {ref. 5) describe
a numerical algorithm for making stress computations
in a pile undergoing harmonic lateral loading. A de-
tailed description of that algorithm is beyond the scope
of this text.

Both the spring constants and damping ratios should
be obtained experimentally from full-sized groups of test
piles whenever possible, especially if batter piles are con-
tained in the foundation or il short friction piles are
to be employed. (Novak’s procedures for pile group
analysis do not consider batter piles directly in expres-
sions for overall group stiffness and damping; however,
Saul’s procedure, referenced at the end of this chapter,
among others, does allow consideration of batter piles in
an approximate fashion.) Furthermore, according to
Novak and Grigg (ref. 13), the “apparent” shear modu-
lus to be used for analyzing laterally loaded piles should
be that value backcalculated from elastic beam on foun-
dation theory (e.g., ref. 17) using the results of a static
load test after several cycles of load have been applied.
The initial slope of the free-head load versus displace-
ment curve can be used conveniently in the calculations.
The reasons for using this approach are that the. soils
very near the surface control the load deformation prop-
erties of the pile. Field surveys and laboratory tests are
often conducted to obtain only a mean site value for G,
which is generally appropriate only for a depth greater
than that of the soil effective in resisting lateral motion.
Also, since a gap often forms behind a laterally loaded
pile, the use of a shear modulus obtained from load test
data provides a convenient ernpirical correction to
Novak’s elastic solution, which is not rigorous for such a
case, In a series of large-scale model tests in sand, Novak
and Grigg (ref. 13) determined that the apparent shear
modulus from static lateral pile tests was about one
fourth to one fifth the mean modulus to a depth of
about 30 pile diameters, obtained for the site from
oscillator tests.

Simple methods of interpreting field load test data are
discussed briefly at the end of this chapter. Approximate
procedures for estimating damping ratios and spring
constants based on results of several vibration tests
reported in the literature for vertically excited friction
piles are also given,

Two important rules should be followed relative to the
sizing and construction of deep foundations. First, the
factor of safety relative to the ultimate static axial load
on a pile should exceed 3 in order to restrict soil
stresses 1o a magnitude that will preclude the “resonant
driving” effect, wherein the soil around the pile
resonates with the pile and loses its ability to carry

Foundations 81

an appreciable load. If the static load is too large (e.g.,
more than one half the static capacity of the seil}, plung-
ing or load shedding can result as the soil resonates with
the pile.

Second, the pile cap should be buried in competent
soil (preferably dense granular soil} whenever possible
in order to take advantage of the damping afforded by
the pile cap.

Vertical Motion

The expression for the effective spring constant for a
single end-bearing (“fixed-tip”) pile undergoing vertical
motion, k.1, given by Novak (ref. 10) is

k= (Epd [175} f1s, (3-5)
where E, is the Young’s modulus of the pile material, 4
is the cross-sectional area of the pile, r, is the equivalent
radius of the pile, and fi,, is a factor given by Fig-
ure 5-1a {concrete piles) or Figure 5-1b (timber piles)
as a function of ratios of pile penetration ! to radius 7,
and z,fv. (shear wave velocity in soil above tip/com-
pression wave velocity in pile). Note that the factors
given in Figures 5-l1a and 5-1b are for fixed tip piles
{end bearing or combined friction and end bearing
piles). For friction piles these factors will be in error by
a relatively small amount for values /7, greater than 60
and for values for v,/v. greater than about 0.03 for
timber and concrete piles. For friction piles having lower
values of {/r, andjor vs/uc, the procedure for “relaxed
tip” piles (ref. 11) or an empirical approach, both de-
scribed later, should be employed. For steel piles Novak
and Grigg (ref. 13) have given a value of fi;,; = 0.030
where v;/v, = 0.033 (medium stiff soil) and {/r, > 80.

The effective geometric damping constant for vertical
motion in a single pile ¢, is given by Equation (5-6):

€2 = (Epd[vs} fra,2 (5-6)

where o, is the shear wave velocity of the soil through
which the pile is driven (\/ G,g/ys) and fus,2 is a factor
given by Figures 5-1a and 5-1b. The damping factors
f15,2 are also approximafely valid for friction piles in the
ranges described previously relative to the stiffness fac-
tors fus 1, although the error in the damping factor is
somewhat greater. For a steel pile in medium stiff soil
(vsfve = 0.033) and for I/r, > 80, fis,2 = 0.045.

For relatively short friction piles (that is, piles with a
“relaxed tip”}, Novak (ref. 10) suggests computing k;*
and ¢,* as follows:

k= (EpA/To) ]"13.1 (5'53)
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Figure 5-1. Stiffness and damping factors for vertically excited piles (after refs. 10 and 11). a. Fixed-tip con-
crete piles. b. Fixed-tip timber piles. c. Relaxed-tip concrete piles. d. Relaxed-tip timber piles. Figures
5-1a and 5-1b reproduced by permission of the National Research Council of Canada from the Canadian

Geotechnical Journal, Vol. 11 (1974), p. 586,

and ¢;* = (EpA[vs)f'1s,2 {5-6a)
where f'1,1 and f's5,. are stiffness and damping factors,
respectively, given in Figures 5-1c¢ and 5-1d for concrete
and timber piles. The values in Figures 5-1a, b, ¢, and d

are most appropriate for use for a; ( = 2r fro/ V G,g/v,)
between 0.1 and 0.8 where f is the machine frequency.
Stevens (ref. 20) suggests that they are valid even for
ap, as low as 0.05, which means that reasonable results
can be anticipated for slender piles and low forcing
frequencies.

The geometric damping ratic for a single pile sup-
porting a structure can be computed from the damping
constant by using Equation (3-7):

Dy = &'/2 vk m. (5-7)
where m, is the mass of the cap plus machinery or por-
tion of the structure vibrating in phase with the cap. It
may also be appropriate to include part of the pile
mass in mc, but for fully embedded piles, the ratio of
that mass to the mass of the supported weight is usually

small enough to be neglected.
Pile Groups

Most piles are installed in groups or clusters. The
group stiffness will not in general be the simple sum



of the stiffnesses of the individual piles. A similar state-
ment can be made relative to damping. If several
distinct groups are used to support a vibrating super-
structure, it is reasonable to obtain an equivalent spring
constant and damping ratio for each cluster, These
equivalent constants may then be applied to the struc-
ture at the appropriate supports for purposes of analysis
of structural response. An example of this approach is
a frame whose columns are supported by separate pile
groups.

Often, however, a block or rigid mat foundation will
be supported by a single large group of piles. In such
a case it 1s often convenient to represent the structure-
foundation system by Model C, described in Figure 2-9,
Chapter 2, where the entire group is modeled by a
single spring constant and a single damping ratio in
each mode of vibration.

Whenever piles are used to support a flexible mat,
when large torsional moments are applied to the super-
structure, or when batter piles are present, it is usually
necessary to employ a multidegree-of-freedom computer
model (Fig. 2-11) and to represent each individual pile
in the system by assigning linear support spring con-
stants and dashpots to the point in the structure where
the pile head is located. These spring constants repre-
sent uncoupled vertical stiffness and horizontal stiffnesses
in two perpendicular directions. When batter piles are
present, axial stiffness and damping parameters may be
computed from the “vertical” motion equations, and
lateral parameters may be computed from the “horizon-
tal” motion equations. Input values for stiffness and
damping can then be obtained by taking components
in the coordinate directions. The horizontal spring con-
stants (described later) are strongly dependent on the
manner in which the piles are fixed to the structure.
For block foundations and table top structures con-
taining a thick mat (which also serves as the pile cap),
the pile heads are normally assumed to be fixed rigidly
to the structure. While frame analysis programs allow
the inclusion of uncoupled rotational stiffness terms at
the pile head, it usually is necessary to include rotational
springs for rocking about transverse pile axes only when
Jarge rocking moments are present and when batter
piles are not present in the foundation. It is rarely
necessary to include a torsional stiffness constant for an
individual pile, since torsional moments applied to the
structure are resisted almost completely by couples pro-
duced by lateral reactions at the pile heads. While the
piles are represented individually in this type of analysis,
it is still desirable to include the softening effect of
group action in the model. This can be done by cal-
culating the stiffness for the pile group as a whole in
the appropriate mode, distributing the stiffness equally
among the piles (presuming that ali piles have the same
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size and penetration), and using the distributed stiff-
ness values in the analysis. In other words, it is not
appropriate to use the values given by Egs. 3-5 or 5-5a
or the corresponding equations presented in the follow-
ing section on single pile horizontal response.

The damping ratio to be assigned each pile for each
mode of translatory motion in a multi-degree-of-free-
dom-foundation representation should include a consid-
eration of group action, which will result in a higher
damping ratio for each pile than would be obtained
using the single pile damping ratio. Typically, each pile
in the system would be assigned a damping ratio equal
to the group damping ratio in a given mode divided by
the square root of the number of piles in the group.

In the remainder of this section simple equations
are given for the determination of group stiffness £.°
and damping D.? for a group of vertical piles oscillating
in the vertical mode. Similar expressions will be pre-
sented in the next section for horizontal translatory
stiffness and damping for vertical pile groups. Note that
in evaluating group effects for the latter mode it is
necessary to estimate the direction of primary horizontal
motion. Since no general solutions are available for the
assessiment of group effects in groups containing bafter
piles, some judgement is necessary to apply these ex-
pressions to batter pile foundations.

Novak and Grigg (ref. 13) have argued that the
deflection factors proposed by Poulos {ref. 15) for
groups of statically loaded piles may also be applied to
a pile group undergoing steady-state vibration. Hence,
Novak and Grigg propose that

N1
= ZI kz
E:TOCA

where N = number of piles in group
o4 = axial displacement interaction factor for a
typical reference pile in the group relative to
itself and to all other piles in the group, as-
suming the reference pile and all other piles
carry the same Joad.

(5-8)

LA

The factor e, can be evaluated using Figure 5-2.

The equivalent geometric damping ratio for the
group is given by
L
€z
g
D (5-9)

— 1
23 L7k me A[Llea
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Figure 5-2. o, as a function of pile length and spacing (after ref. 15),
where m, is defined as in Equation (5-7), that is, the Table 5-1

total mass of the cap plus machinery.

If the pile cap is not in contact with the ground,
Equations {5-8) and (5-9) can be used directly in the
structural analysis. Embedment of the pile cap, how-
ever, has a favorable effect on the response of the group
and should be employed whenever possible. It is good
practice to assume that embedment is effective only in
the development of side friction between the cap and soil
and only when dense granular backfill is used, since soil
beneath the base of the cap is likely to be of poor
quality and can settle away from the cap. Likewise,
cohesive backfill can shrink away from the sides and be-
come ineffective.

Novak and Beredugo (ref. 12) have given expressions
for calculating stiffiness and geometric damping con-
stants for the embedded cap, which are added to the
stiffness and damping values obtained in Equations
(5-8) and (5-9) to arrive at total system stiffness and
damping for a group of piles. Those expressions are
given here as Equations (3-10) ({stiffness, k) and
(5-11) (damping, ¢,/) with only the side resistance
component considered. Expressions for caps or footings
in complete contact at the base can be found in Novak
and Beredugo (ref. 12).

k= Gy h S, (5-10)

sz = #r, \/GJ 'Y.r/g S (5'11)
In Equations (5-10) and (5-11), & is the depth of
embedment of the cap, ry is the equivalent radius of
the cap, G, and y, are the shear modulus and total
unit weight of the backfill, and §, and S, are constants
given in Table 5-1, in which v, is the Poisson’s ratio
of the backfill soil.

Frequency Independent Constants for Embedded
Pile Cap with Side Resistance
{after refs. 3 and 12)*

¥, Sy Sa St §u2 Equ Eq:z
0.0 2.7 6.7 3.6 8.2 2.5 1.8
0.25 2.7 6.7 4.0 9.1 2.5 1.8
0.4 2.7 8.7 4.1 10.6 2.5 1.8

*Values are appropriate for ¢o = 2mfro/ ¥ G.g/7, in the range
( <&o %2 where f is the machine frequency. Sy is not con-
stant for », > 0.43. Reproduced by permission of the National
Research Council of Canada from the Canadion Geotechnical
Journal, Vol. 9 (1972), p. 495,

An interesting comparison from a theoretical study
of the vertical response of a machine and its foundation
when the foundation is embedded and when it is placed
on the surface without embedment was developed by
Novak. The foundation consisted of a solid rectangular
block of concrete (16 ft long, 10 ft wide, 8 ft high)
embedded 2 ft and not embedded. It was supported
on eight 35-ft long fixed-tip timber piles in a medium
stiff clay. The machine supported on the block weighed
10 tons and the operating speed was varied. The re-
sponse of the pile foundation systemn is shown in Figure
3-3. In that figure, A, is the static deflection that is
produced by the unbalanced force at a given frequency,
M is the mass of the footing (cap) plus machine, and
m. and ¢ are the unbalanced mass and its eccentricity
within the machine. The effects of the relatively small
amount of embedment are evident.

Also shown in Figure 5-3 are the response curves for
the machine and rectangular block footing without piles.
The shapes of the various curves show vividly important



aspects of pile-supported structures: (1) damping is very
low compared to soil-supported footings and (2) the use
of piling increases the resonant frequency and, in this
case, increases displacement amplitude at resonance.
Damping can be increased by embedding the pile cap.
Material damping was not considered in this particular
analysis.

Example. Determine the equivalent spring constant
and damping ratio for vertical motion for the pile group
depicted in Figure 5-4. Assume that Novak's solution
for fixed-tip piles is valid.

o, = (Geg/v) "* = (5000 (144) (32.2)/110] **
= 459 ft/sec = 5510 in./sec

ve = (Eng/vs) " = 1[(3.5 X 10%/150] (144) (32.2)}""
= 10,400 ft/sec

5./0, = 0.044; m, = (70,000+12X12X8X 150)/386
= 629 (Ib-sec’)/in.

7, = [(20 X 20)/=1"® = 11.3 in.
1, = 90 (12)/11.3 = 95.6
Sfisa = 0,033 fiss = 0.053

k! = (E,A/r) fua = [3.5 X 10°(20)°/11.3] (0.033)
= 4.0 X 10° Ib/in.

& = (E,A/v) fz = [3.5 X 10°(20)*/5510] (0.053)
= 1.3 X 10" Ib-sec/in.

k= G, kS = 6000 (6 X 12) (2.7)

= 1.2 X 10°1b/in.
r(cap) = (12 X 12/m)"* = 6.77 ft = 81.2 in.
sz = hr, (Gﬂ:/g)oj Eﬂ -

= (6% 12)(81.2)[6000(120)/(1728)(386)1"°(6.7)
4.1 X 10* Ib-sec/in.

I

Adjust for group effects. Assuming any pile in the group
is a reference pile with o = 11.3 in,, §/2r; to an ad-
jacent corner pile is 72/226 = 3.19 and to the di-
agonally opposite pile is 1.414 (3.19) = 4.50. Using
Figure 5-2:

[/2r, = 90(12)/22.6 = 48

Use v = 0.5 (nearest to actual value of 0.4):

aq = 1 (reference pile)

a, = 0.58 (adjacent corner piles) (2 piles)
a4 = 0.5 (opposite corner pile)

I as=1+2(0.58) +05 = 2.66

6
Yk / Yo = ﬂ%%ﬂ = 6.0 X 10° Ib/in.
! ! ) {combined stiffness
of the piles)
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Adding in the stiffness of cap due to side resistance:

=60 x10°+ 1.2 %X 10° = 7.2 X 10° lp/in.

0.5
IR0
1 1

_ (1.3 X 10Y
T (286)°

= (3.2 4+ 4.1) X 10" = 7.3 X 10*Ib-sec/in.

+ 4.1 % 10°

D = &/ [2(kme)"™)
= (7.3 X 10%)/2(7.2 X 10° X 629)*° = 0.54

Note that over half of the damping is produced by the
embedded cap. Material damping s not included.

Horizontal Motion

The solutions for pure horizontal motion of vertical
piles (ref. 10) follow the same logic as those for vertical
motion. A notable exception is that a reduced value for
G, should be used to represent the action of soil against
pile as described earlier. For a single pile,

ke = Eud/rS) fur (U/r, S 25) (5-12)

¢ = (Epl/ry v) fua (U1, 3 25) (5-13)
where I is the moment of inertia of the pile cross-
section about a centroidal axis perpendicular to the
direction of translation. The subscript x denotes horizon-
tal motion, and fy,,; and f;,,. are factors for fixed-head
piles given in Table 5-2,

For a group of piles,

"ng = EIN ka:l/ EIN ayr

DS =y 611/[2\/2:' ézl me \/E‘l" cu,:l

where o, is a displacement factor for lateral motion de-
fined in an analagous fashion to «). Approximate values
for a; may be cbtained from Figure 5-5.

(5-14)

(5-15)

Finally, the stiffness and geometric damping char-
acteristics of the cap are represented as follows:
K o= GihSu (5-16)

&b = by VGsvilg Sa (5-17)

where Sy, and S, are factors given in Table 5-1.

Uncoupled Rocking Motion

Novak (ref. 10) has presented expressions for the
uncoupled stiffness and geometric damping constants
for single piles and for pile groups undergoing pure
rocking. In summary,

(Enl/70) fra

k' (5-18)

Cu‘»l = (Epl/vs) fra (5-19)

where I is the moment of inertia of the pile cross-
section about the axis of rotation, and f;,; and f; . are
factors given in Table 5-2.

For a pile group,
ko= TV L kA A kel — 22] + K
1 (5-20

where x, and z, are defined in Figure 5-6, and k.* and
k' are stiffness constants for single piles defined in
Equations (5-5) and (5-12), respectively. In addition,

kzt = (E:J/foz) fo1 (5-21)
where f, ( is obtained from Table 5-2; and
k' = Garot'Syr + G [(8°/3) + (ze/7)’
— 8(2e/72)] St (5-22)

where § = h/r,, and fm and §,, are defined in Table
3-1. Note that it is necessary to include k!, a cross-
stiffness term, in the solution. Note also that interaction
factors (&) are not included in the solution for group
stiffness because group action in pure rocking is not as
prevalent as in the translational modes and becduse ade-
quate studies have not been conducted to established
appropriate interaction factors for the rocking mode,

Finally,

e = Zf ley +e'x' + ozl — 2201 + 24"
(5-23)

where ¢;' and ¢;* are damping constants for individual
piles given by Equations {5-6) and (5-13), respectively,
and

"z{‘l» = (Epl/rv5) for

The factor fy,. is evaluated in Table 5-2. Further,

(5-24)

e’ = o' VG m/g (S + 166/3) + (/)
— 5(2.’.:/70)} Euﬂ}

where Sps and . are defined in Table 5-1.

(5-25)
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Table 5-2
Values of £, i,y 4§75 .0 T5.0 fo2
for Ifr, > 25 (after ref. 10)*

Concrete Piles (v, /v, = 0.7)

Ve U/ fu 11,2 fra fr2 fo1 Sfo,2

0.4 0.0t 0,0036 0.0084 0.202 0.139 —0.0194 —0,0280
0.03 0.0185 0.0438 0.349 0.243 —0.0582 —{.0848
0.06 0.0397 0.0042 0.450 0.314 —0.0070 —0.1410

0.25 0.01 0.0032 0.0076 0,195 0.135 ~0.0181 —0.0262
(.03 0.0166 0.0395 0.337 (.235 —0.0543 —0.0793
0.05 0.0358 0.0850 0.435 0.304 —0.0905 —-0,1321

Fimber Piles (v, /v, = 2)

Py vufv. Fii fii2 Fra I,z foa1 Sfu2

0.4 0.01 0.0082 0.0183 0.265 0.176 —0.03386 —0.0466
0.03 .0425 0.0949 0.459 0.305 —0.1010 ~0,1400
0.05 (0.0914 0.2040 0.592 0.394 —0.1680 —0.2330

0.25 0.01 0.0074 0.0165 0.256 0.169 —~(,0315 —0.0434
0.03 0.0385 0.0854 0.444 0.293 —0.0045 —0.1301
0.05 0.0828 0.1838 0.573 0.379 —0.1575 -—0.2168

*Values are appropriate for g = 0.3 (See Table 5-1), but are approximately valid { 10%) for 0.1<a0<0.8. Reproduced by per-
missior of the National Research Council of Canadz from the Canadian Geolechnical Journal, Vol. 11 (1974), p. 584,
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The geometric damping ratio can ther be computed
as the ratio of the damping constant to the critical
damping constant for rocking motion.

Testing Methods and Empirical Correlations
Based on Tests

Vibration tests can be conducted on single piles or
pile groups by placing a variable frequency steady-
state oscillater on a rigid cap atop the pile or piles
and measuring the amplitude of deformation in the
direction of loading over a range of driving frequencies.
Such tests can be conducted most easily for the case
in which the applied load is vertical. They are beneficial
in determining both the resonant frequency and the
damping ratio for friction piles either singly or in groups,
particularly where a group contains batter piles.

Results of vertical steady-state vibration tests on large,
partially embedded single piles reported by Hart (ref.
6) are shown in Figure 5-7, in which
Ly = freestanding length of pile
L. = embedded length of pile
fr = resonant frequency
FS = factor of safety based on ratio of ultimate static

capacity to static weight on the test pile
2o = unbalanced force at any frequency
k. = stiffress of pile, defined by Equation (5-28}.

The shape of the curves is characteristic for piles with-
out massive, buried pile caps: they have a sharp
resonance peak indicative of low total damping.

For a partially buried single pile, the spring constant
k; can be evaluated by combining the spring constants
for the embedded and freestanding portions (ref 2 and
20):

k= AE,/L,
ky = AE,/L,

(5-26)
(5-27)

1

where k; is the wvertical stiffness constant for the free-
standing portion, &, is the vertical stiffness constant for
the embedded portion, and the remaining factors are
defined in Figure 5-8. It then follows that

ke == keko/ (ke + ko) (5-28)
Alternatively, £; can be obtained by numerical pile load-
settlement synthesis techniques (ref. 20). In fact, use of
Equation 5-28 or numerical synthesis techniques is pre-
ferable to the use of Equations 5-5 or 5-5a when a, is
tess than 0.05.

Based on analysis of test results (ref. 4, 6, 7), the

lumped mass m of the pile can be taken approximately
as

m =M + (We/g) (5-29)
in which W, and M are defined in Figure 5-8.
The approximate resonant frequency, then, is given

by Equation (5-30) :

fr= i VE/m (5-30)

It is possible to compute the approximate total damp-
ing ratio from steady-state vibration tests. In the vertical
mode,

D, = [(Qo/kz)/Az]resnnance X 0.5

From Hart's test (Figure 5-7), D, can be seen to be
approximately 0.02 for the steel pile and 0.035 for the
concrete pile. Lacking direct test data, Dy for a single
pile can be caleulated as Novak’s D, (geometric damping
only) or may conservatively be taken to be approxi-
mately 0.025. With D, known, the amplitude of vibra-
tion at resonance is given by Equation {5-32):

(5-31)

25
\ STEEL PIPE PILE
20 } (30"h X as” waLL)
SOIL: 20" OF SOFT CLAY AND L 120
SILTY FINE SAND LI
UNDERLAIN BY L85

VERY STIFF f, 259 cps
CLAYf, R3000 L
Ay 15 ) FS1263
Qo/k CONCRETE GYLINDER PILE
z {36"$x 8" waLL)
10 L0’
L8
fr=7Bcps
F5=4.35
5 Y
-——'-"'/ H___“_‘-
e]
o7 08 09 10 1.1 k2 1.3

£/,

Figure 5-7. Vertical response curves for two partially
embedded friction piles (after ref. 6).

SINGLE PILE  1.MASS OF MACHINE AND PILE CAP
/A=CROSS-SECTJONAL AREA
M ’/E;YOUNG'S MODULUS OF PILE MATERIAL

L / 7;,=UNIT WEIGHT OF PILE MATERIAL
f E _
o S W, =EFFECTIVE WEIGHT OF PILE
i
3, [Levi,]a
Ly

END-BEARING PILE: L, =L,
FRICTION PILE: L,& ted L,

Figure 5-8. Effective weights and pile lengths for
computing vertical response of partially embedded
piles {after ref. 2).



(Az}resurmnce = (Qo/kz) (1/2D) {5-32)
where @, is the unbalanced force at the resonant fre-
quency computed from Equation (3-30).

When vertical piles are present in small groups {2-6
piles) with suspended caps and when the spacing exceeds
three times the effective diameter of the piles, analysis of
test data presented by Maxwell, Fry and Poplin (ref. 7)
indicates that the vertical response of the group can be
predicted using the equations just presented for single
piles with the modifications indicated in Figure 5-9.
The relationship of group damping to single pile damp-
ing for groups containing 2-6 piles is similar to that
described in the section on group effects. If the cap is
adequately embedded, its damping ratio should be in-
cluded in the group damping.

Equivalent vibrating lengths and weights of piling
and mass properties of the pile cap can be used to
compute resonant frequencies for pile groups containing
six degrees of freedom in numerical techniques described
by Saul (ref. 18) and Singh, Donovan, and Jobsis (ref.
19}. Saul’s method does net permit computation of
amplitudes of motion at resonance because damping is
not considered; however, the method developed by
Singh, Donovan, and Jobsis does permit inclusion of a
single overall damping facter. These metheds, which
require the off-line use of a separate digital computer
program, are useful in studying the effects of batter
piles on resonant frequency in the horizontal translatory
and rocking medes.

Although the various correlative techniques outlined
in this section are useful, uncertainties relative to their
application should be emphasized. For example, soil
stratification and the state of residual stress within a
pile after driving can have a profound effect on £,
{or L,) and, therefore, on f, and 4. at resonance,
Residual stresses generally make the stiffness of a ver-
tically loaded pile much greater for very small loads, in
the normal range of unbalanced dynamic loads, than
would be implied from using L, of 0.5 to 1.0 times Ly.
Whenever possible, therefore, both vibratory load tests,
to measure f, and A, at resonance, and very low ampli-
tude static load tests (to no more than 10% of the
frictional capacity of the pile), to measure &, should
be conducted on test piles or pile groups for purposes
of obtaining k and D for designing prototype founda-
tions.

Comparison of Theory and Measured Behavior

Few published case studies are available which com-
pare the results of the methods described in this chapter
with performance of foundations. One such study, con-
ducted by plucking 90-ft-long concrete-filled step taper
friction piles both horizontally and vertically and singly
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and in: a four-pile square group is reported in ref. 8. The
piles in the group were spaced three butt diameters on
center, and the cap was suspended above the soil. The
piles were driven through layers of very stiff, overconsoli-
dated saturated clay with a few sand seams. The shear
modulus of the soil layers as measured by crosshole tests
varied from about 5000 psi to about 30,000 psi, with an
average of 20,000 psi. The stiffness of the piles, which
vibrated at a relatively low frequency, was computed
using static numerical synthesis procedures based on
methods described in refs. 15 and 16, as opposed to
using Equations {3-5) and (5-12}, becausc a, was very
low. Damping constants were determined from the pro-
cedures developed by Novak and his associates. The
measured and predicted spring constants and damping
ratios f{or several repeated tests are shown in Figures 5-10
and 5-11. Note that damping in these fully embedded
step taper piles was considerably higher than that mea-
sured by Hart for partially embedded prismatic piles.

N
M Wep® ? Wep sivoLE PILE

N
WJ TR EZANN kz’? kz, SINGLE PILE

Oy & O-5N0t,sms|.z PILE

N PILES IN
L_} SROUP

| L
Figure 5-9. Effective weights and lengths for ver-
tically ioaded piles in a group.

4-PILE GROUP,
VERTICAL

2x10" -

XIO” FSINGLE PILE,
VERTICAL

.‘,ﬁ4 -PILE GROUR

MEASURED SPRING CONSTANT (lb/in)

HORIZONTAL
1 1.
1107 2x10’
PREDICTED SPRING CONSTANT
{lb/in.}

Figure 5-10. Comparison of measured and predicted
stifiness for piles in multipie tests (after ref. 8).



80 | Design of Siructures and Foundations for Vibrating Machines
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[
@ 4-PILE GROUP,
8 ol VERTICAL
g o
O 1 A L
0 ol 02 03 04

PREDICTED DAMPING RATIO

Figure 5-11. Comparison of measured and predicted
damping for piles in muftiple tests (afier ref. 8).

The trend in the tests was that measured stiffness
exceeded computed stiffness in the vertical mode in the
initial test but the difference in measured and computed
stiffnesses decreased as further tests were conducted,
possibly due to relief of residual driving stresses in the
piles. No such trend could be observed for stiffness in
the horizontal mede or with the damping ratio in either
mode. Note also that little difference in measured damp-
ing existed between single-pile vibration ard group
vibration. Figures 5-10 and 5-11 serve to underscore
previous statements concerning the uncertainties in
dynamic response analysis of foundations and the de-
sirability of providing for foundation tuning capability,
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6 | Design Examples:

Three block foundation design examples are presented
in this chapter. These examples use the theory and infor-
mation developed in previous chapters. The selected
foundations are typical and commonly used in many
industrial plants. The examples follow a standard format

o ey gt s L el I
R AP T2 AR N T "..’l;‘(!f"-

91

Horizontally mounted reciprocating compressors on block foundation.

Block Foundations

which includes a series of steps so that a thorough design
is accomplished without the danger of missing any neces-
sary check. Cross references have been made to other
parts of this book at each design step in order to illus-
trate the utilization of previously derived formulae.
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Example I: Foundation Design for Reciprocating
Compressor (Footing Embedment Effect Included)
(ref. 1)

A. Introduction

Reciprocating compressors are relatively heavy ma-
chines and generate vibrating forces of substantial magni-
tude at low operating frequencies. The operating fre-
quencies usually lie very close to the natural frequencies
of the foundation in the various vibrating modes, thus
creating resonance conditions in the foundation system.
The magnitude of vibration amplitude at resonance
condition becomes a controlling criteria because of the
closeness of operating and natural frequencies. There-
fore, inclusion of the effects of internal and geometrical
damping during oscillation becomes an important con-
sideration, and this can only be accomplished by using
the elastic half-space theory.

In this theory, the footing is assumed to rest on the
surface of the elastic half-space and to have simple
geometrical areas of contact, usually circular, but other
shapes such as rectangular or long strip can also be
handled with some simplification, as decribed in Refer-
ence 4. This theory includes the dissipation of energy
throughout the half-space by “geometric damping” and
allows calculation of a finite amplitude of vibration at
the “resonant frequency,” (ref. 1). The method is an
analytical procedure which provides a rational means of
evaluating the spring and damping constants for incor-
poration into lumped-parameter, mass-spring-dashpot
vibrating systems, as described in Chapter 4, Recently,
this theory has been extended to account for the effect
of depth of embedment of the foundation on the values
of spring constant and the damping ratio. The informa-
tion presented in Chapter 4 is used in the examples that
follow.

Reciprocating machines. Machinery involving crank
mechanisms, such as piston-type compressors and pumps,
internal combustion engines, and pumps, produce recip-
rocating forces. A single cylinder engine is inherently
unbalanced; however, in multicylinder engines and com-
pressors, it is possible to select the size of cylinders and
to arrange them in such a manner that the resulting
unbalanced forces are minimized (ref. 5). Unbalanced
forces and couples for different crank arrangements but
of equal cylinder bore and stroke are given in Table 6-1.
However, note that in addition to the primary frequency
either the vertical or horizontal forces and couples may
generate a secondary frequency which depends upon the
orientation of the machine.

Vibration modes. A rigid block foundation supporting
a vibrating machine can experience up teo six modes of
vibration as shown in Figure 6-1. Three modes are trans-

Table 6~1
Unbalanced Forces and Couples for Different Crank
Arrangements (ref. 5)

Forees Couples
Crank Arrangements Primary | Secondery] Primary | Seccondary
BSingle crank F' without Fr
counterwts. Nong Nons
(0.5)F’ with
coutiterwts.
' F'D with-
. out counter-
Twg cranks at 180° 3 0 2F” wts. None
In-line cylinders P,
=D with
U_qb—n 2
) counterwts, .
Opposed eylinders 0 0 Nit Nil
{L40# {L41)F'D
Two cranks at 90° without without
T E_jo counterwis. b counterwts. FeD
L (0.707)F" (070 F'D
with without
counterwts. counterwia,
Two cylinders on F' without
goe crank &, counterwis, | (1.41)F* Ni Nil
Cylinders at 90° N 0 with
counterwts.
Two cylinders on 2F’ without .
one crack counterwts, 0 None Nil
Opposed cylinders F*with
¢ounterwts.
Three oranks at 120° {(3.46)F'D
without
0 ¢ counterwta. [(3.48)F*D
A {173 D
with
counterwis,
Four cylinders
0 0 0 0
Cranks at 180° (LALF'D
1 without
counterwis.
Cranksat 90° <} JEH‘_ 0 0 OI00F'D | soF D
with
counterwty,
Six cylinders 0 0
L] 0
2 ATTTTL

r = grank rgdiu:osin.)
L = connecting-rod length {in,}
D = cylinder—center distance {in,)
W = recip. wi. of one oylinder (lb.)
F' = (0.0000284) r ¥ (rpm}? = Primury

r
P# = o F’ = Becondary

z
2l
=
T
w

>

Fr
1 Mz {TWISTING OR YAWING)

Y

o
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S T M ROCKING) ~.
1

{PFTCHING OR AQLLING) ™4

Figure 6-1. Six vibration modes of a block-type
foundation (Translational modes: vertical, longitu-
dinal, lateral. Rotational modes: twisting, rocking,
pitching.)



latory (the vertical, lateral and longitudinal modes) and
three modes are rotational (twisting or yawing, rocking,
and pitching or rolling modes). The vertical and twisting
vibration modes are usually independent. However, if
rocking oscillation caused by the eccentric location of
vertical and horizontal forces on the foundation is pos-
sible, then the vertical and twisting motions are always
coupled with the rocking motion. In many practical
problems, vertical, lateral, and rocking modes exhibit
the greatest influence on the overall motion and are
generally considered independent of each other in the
analytical solution. The results can then be superimposed.
In some special problems, where the center of gravity
(C.G.) of the foundation system along the vertical axis
is substantially higher than the center of resistance
offered by the soil to horizontal forces, coupled modes
(rocking and lateral) must be considered. A rheological
representation of the modes of oscillation is shown in
Figure 6-2.

B. Machine Parameters

The following information is supplied by the machine
vendor: (refer also to Chapter 3 for development of
information).

Vertical reciprocating compressor (four cylinders)
and auxiliary equipment:

Compressor 28,115 lbs.
Gas Coolers 4,350 lbs.
Snubbers 7,010 lbs.
Motor 18,000 Ibs. (rotor weight = 6,000 lbs.)i
Total Machine
Weight 57,475 lbs.

Dynamic forces (Figures 6-3 and 6-4)

a. Compressor speed, primary (operating] = 585 rpm,
secondary = 1,170 rpm

Max. Vertical Primary Force F, = 1,329 lbs.
Max. Vertical Secondary Force F; = 553 lbs.
Max. Horizontal Primary Force F. = 7251bs.

Max. Rocking Primary Moment Ty = 11,304 1bs.-ft
Max. Pitching Primary Moment Ty = 34,000 lbs.-ft
Max. Pitching Secondary Moment Ty =12,350 los.-ft

b. Motor speed = 585 rpm. Motor dynamic forces are
negligible.
Note: Superposition of primary and secondary
forces results in a non-harmonic forcing function
a period equal to that of the primary motion. For
simplicity, one may assume a single harmonic forc-
ing function with the maximum amplitude equal to
the sum of the amplitudes of the primary and

Design Examples: Block Foundations 93

secondary forces acting with the primary frequency.
In this example however, a complete analysis is
performed using primary and secondary forcing
functions separately.

C. Soil and Foundation Parameters

The required soil and foundation parameters are
obtained from the soil report and the facility’s plot plan.

Plant Grade EL = 1007-0%
Top of Foundation EL = 100"-6”
Recommended Foundation Base El. = 95%-6"
Soil Stratum is Medium Dense

Silty Sand with Gravel
Soil Density (y) = 117 pcf
Shear Modulus (G) = 14,000 psi
Poisson’s Ratio {v) = 035
Soil Internal '

Damping Ratio {Dy;) = 005
Static Allowable

Bearing Capacity, Su; = 2.5 kst
Permanent Settlement of Soil =0.2 in. at 2.5 ksf

D. Selection of a Foundation Configuration

Trial sizing of the supporting block follows the sug-
gested guidelines 1 and 2(a)} through 2(g) given in
Chapter 3.

Try a shallow and wide footing such that the com-
bined center of gravity of mass of machines and of foct-
ing coincides in plan with centroid of the contact area
of footing (Figure 6-4). It is also recommended that at
least 80% of the footing thickness should be embedded
in the soil to restrain the translation movement of the
footing. Note that the effective foundation embedded
depth A is taken as 3 ft, i, the full 4 ft embedded
depth minus the top 1 ft layer.

Concrete Footing Trial Outline (see Figure 6-4)

Weight of the footing {Wr) = 324,843 Ibs.

Total static load (W) = machine weight + weight
of footing = 382,318 ibs.

Weight of footing/weight of machine = 324,843/
57,475 = 5.65> 5 O.K.

Actual soil pressure = 382,318/15.75(27.5) = 883 psf

< 0.5 8z = 1,250 pSf

Thus trial area of footing is O.K.
All other guidelines for trial sizing are checked and
found satisfactory.

A dynamic analysis check is then performed on the
trial foundation. The various steps in this procedure are
listed in Table 6-2.

{text continued on page 97 )’
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Figure 6-4. Foundation layout for reciprocating machine example problem.
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Table 6-2
Dynamic Analysis of the Trial Foundation

Vertical Excitation Harizontal Excitation Racking Excitatien Pitching Excitation
Step Parameter Reference Source (z-Drirection) {z-Direction) {4 +Direction) {a-Direction)

1 Mass, and mass moment m= Wiy Iy (machine) = 95,902.9 Iy (machine) = 95902.9
of inertia n [Tmy Iy {footing) = 719, "B41E Iy (footing} = 262 612‘.]
- f\g,, = 2| —{af+ b m = 382,118/32.2 = 382,318/32.2

Pl = 11,873.2 Ibs,-sec?/L = 11,873.2 lbs.-sec?/Tt 3i5,7{{.4 355,515.ﬂ
ibs.-sect-ft Iba.-secl-ft
+ gk
Tzble 4-8
2 Spring Constant L = 27501 L = 157511
(8) Eqvl. radius Table §-2 o= 1017414 o= 11741t B = 15751t B =21501t
(rect. ftg), r, rg = 13.65ft rg = 1033 ft

(b} Embedment factor Table 4-2 Effh=45—-15=13 we = 1.232 ny = 1175 14 = 1235
for spring constant v, = 1.100

(e) Spring constant Figure 4-1 B = 2.15 Bz = 0.95 Be = 0.58 By = 0.4
coeflicient

(d) Eqvl.apring constant Tabhle 4-1 kz = 152.66 X% 106 kz = 132,58 X 107 L = 25.178 X 10? kg = 11758 } 109
(rect. foating) 1bs. /Tt 1bs./ft Ibs,-furad Ibs.-fitrad

3 Damping Ratie
(a) Embedment factor Table 4-1 ap = 1.254 az = 1.023 ay = 1.024 ag = LO4L
(1) Mass ratio Table 4-3 B, = 0.328 By = 0,408 Ry =0115 By = 0.222
(c) Effective damping Table 4-5 ny =16 ng = LBSL

coefficient,
() Gt:gmetricaldamping Table 4-3 Dy = 0.031 Dy = 0.732 Dye = 0.302 Dyg = 0195
ratio
(e} Internal damping s0il data Dgy = 0,05 Dyy = 0.05 Dy =005 Dyt = 0,65
(F) Total damping ) + (e) D, = 0.981 Dy = 0782 Dy = 0.352 Dy = 0.245
Wk 00 [152.88 5 100 132.50 % 100 00 J26.175 X 109 60 11758 X 109
4 {2} Natural req. - — ny = — ———— fpp = — ——— fpy = —— fm# - —_——
(rpm) 2 m 2z 11,873.2 2x 11,873.2 2z 815,744.4 2: 388,515.8
= 1,082. = 1,605.1 = 1,677.6 = |,611.2
(b) Resonance {req. Table 1-1 202> I, resenance 203> 1, tesonance Sy = 19343 Sme = V7176
{rpm} {ratating not possible not possible
mass)
Primary @ ot = (2r1 + D r=/2
Fzo{F) = 1,329 lbs, TyolP) =
. @ wt = 0,2nz Fug(P) = 725 lbs, 4 an(P) Xg= o . TyolP) = 34,000 loe.-t
(e} Vibrating force machine FaolP) = @ut =214 1)x/2 4 Fey(P Xg = @ wt = 0,2nx
(max, absojute patameter @ut=En4Dx/2 FP)=0 725 X 8 = 5,800 Tyol8) = 12,350 lbs.ft
ampl.) Paq(8) = 553 lbs. @ wb=nx —————— @ b =0, nx/2
@ wt =0, nx/2 17,104 lbs.-£t.
Secandary @ wt = (2n+1) =2
Fag(8) Zg = 553 X 2.75
= 1,52t lba-ft
N Mo(P)=0781@585 BPM M z(P)=0.800@585 RPM M 4(P)=1.111 @ 585 RPM MgtP)=1.128 @ 585 RPM
(d} Magnifieation factor Table 1-4 ME(S) =0.470@1,170 RPM .z&!rMax not possible Mﬁ,(S}: 54@1,170 RPM M¢(S) 1.890 @ 1,170 RPM
M pMay not possible
2= BM,Fopfks X = MyFgofks ¢ =SMy Ty/ky 6= My Tulks
. T84 13294470 X 553 BOGX 725 = (1L1LLX17,104 = (1.12834,600
(e) Displacement Table 1-4 = = + 1.454X¢1,521) +1.680X12,350)
Teaponse 152.66 %108 £32.59 108 + 25,176 X10° =+ 11,788 107
=B.62BX10°9 ft, = 48671070 t, = 0.8428107% rad = 5.036010% rad
[ - - = 0.10233%1073 in. - =0.058398X107 in. -
Xo= X4 4R,
) B, = B+ pBhytoBn, = 058308 107
(f) Total displacement = (.10233X 1073 + 0.8428 10988
response + 0.8428X 1076165 = (,133>1073 in.
+ 503690 1073045 Yi=gBy
= 07I7X1073 in.* = 8. ﬂSﬁDXID‘“XSS
= 0.4432X10"%in,
(e} Transmissihility Table 1.4 T.(F) = 1.142 T.(P) = 1.201 TR(P} = LI34 T.(B) =1
factor 708 = 1102 ’ Th(8) = 1520 T7(8) = 1.
Py = ET,F Py =T,F Pry =IT T = X7, Ty
() Transmitted force Y o inbKian YL horSs ™ i L %;gﬁ; 000
+ 1102553 = B70.7 lbs. + 1.620X1,521
= 2,127.1 lbs. = 22,035.9 lbs.-f{ = §1,107.6 ib!.-ff.

“Vertical forees and moments, and horz. forces and moments are ot of phase by 90 degrees and, hence, are not maximium at the same time. However, this combination gives canservative results.



E. Dynamic Analysis

Forces generated by the reciprocating compressor
(Figure 6-4) will result in vertical (z), lateral (x),
rocking (v}, and pitching (¢) oscillation of the footing,
while the forces generated by the motor only will tend
to oscillate the footing In the vertical (z), longitudinal
(y), torsional (4), and pitching {¢) modes. However,
the magnitude of the forces generated by the motor are
small and, consequently, the resulting vibration response
is negligible. Therefore, a dynamic analysis is only per-
formed for the compressor forces. If an analysis is
required for the motor forces, the tables and figures
provided are applicable.

F. Check of Design Criteria—Static Conditions
(See Chapter 3 for Design Checklist)

1. Static bearing capacity; proportion footing area
for 509 of allowable soil pressure, From D above,
883 < 1,250 psf, O.K.

2. Static settlement must be uniform; C.G. of footing
and machine loads should be within 5% of each linear
dimension. The center of gravity of machine loads and
footing coincide.

3. Bearing capacity: static plus dynamic loads. The
magnification factor {Table 1-4) should preferably be
less than 1.5. In the example problem, this factor is less
than 1.5 for the primary operating frequency but is
slightly higher for the secondary operating speed.

The sum of static and modified dynamic loads should
not create bearing pressures greater than 75% of the
aHowable soil pressure given for the static load condi-
tions. )

Transmitted Dynamic Vert. Force, P, =2,127.1 lbs.

Transmitted Moments Pry = #22,035.9 + 2,127.1

(2.75) + *870.7 (8.0) = 34,851.0 lbs. ft
Pry = 61,107.6 lbs.-ft

* Qut of Phase by 90°, but this combination is con-

servative.

_2Jon1  _ 34851.0(6)
Pom =185 (275) T 1575 (27.5)°

__ 61,107.6 (6)
+27.5(15.75)"

Total static plus dynamic bearing pressure = 883
+ 76.2 = 959.2 psf < 0.75 (2,500) is O.K. and 883
- 66.4 = 8186.6 psf (no uplift) is also O.K.

4, Settlement: static plus repeated dynamic loads. The
combined C.G. of the dynamic loads and the static loads
should be within six in. of the footing center of gravity.
For rocking and pitching motion, the axes of rocking
and pitching should coincide with the principal axes of

= — 66.4, 76.2 pst
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the footing. The magnitude of the resulting settlement
should be less than the permissible deflecting capability
of the connected piping system. In this example, dynamic
forces are small compared to static loads; therefore,
settlement caused by dynamic loads will be negligible.

Limiting Dynamic Conditions

1. Vibration amplitude at operating frequency. The
maximum amplitude of motion for the foundation should
lic in Zones A or B of Figure 3-3 for the given acting
frequency. The maximum vibration amplitudes are
0.000717 in. and 0.000443 in. in the vertical and hori-
zontal directions, respectively. These amplitudes fall in
Zone A of Figure 3-3 at the operating frequency of
585 rpm and are, therefore, acceptable.

2. Velocity is equal to 2=f {cps) X displacement
amplitude as determined in (1) above. This velocity
should be compared to the limiting values of Table 3-2
and Figure 3-3 for at least the “good” condition. Velocity
= 2= (585/60) (0.000717) = 0.0439 in./sec. This veloc-
ity falls in the “good” range of Figure 3-3 and is, there-
fore, acceptable.

3. Acceleration is equal to 4= f* X displacement
amplitude as determined in (1) above. This check is
only necessary if conditions (1) or (2) are not satisfied.
The acceleration should fall in Zones A or B of
Figure 3-3.

4. Magnification factors should be less than 1.5. In
this example-problem the magnification factors are less
than 1.5 for the primary operating frequency and slightly
larger for the secondary frequency.

5. Resonance. The acting frequencies of the machine
should have at least a difference of =20 with the reso-
nance frequencies; that is, f < 0.8 fy or f > 1.2 fu. In
this example, resonance cannot occur in the vertical and
horizontal modes (due to the large amount of damping
in those directions). In the rocking mode, 0.8 fn = 0.8
(1,934.3) = 1,547.4 rpm and 1.2 f, = 2,321.2 rpm.
Since the primary and secondary machine frequencies
are 585 rpm and 1,170 rpm, no resonance will occur in
the rocking mode; therefore the design is judged accept-
able. In the pitching mode, 0.8 f, = 0.8 (1,717.6) =
1,374.1 rpm and 1.2 f, = 1.2 (1,717.6) = 2,061.1 rpm.
The primary and secondary machine frequencies also
fall outside of these ranges and, therefore, no resonance
conditions are possible.

6. Transmissibility factor {usually considered for high-
frequency machines mounted on springs). The trans-
missiblity factors should narmally be less than 1. In
the example, the T, values are greater than 1 indicating
that the dynamic forces are amplified.

7. Possible vibration modes: Vertical and horizontal
oscillation are possible modes since the force may act in
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those directions. Rocking () oscillation is also possible
since the horizontal forces act above the C.G. of the
foundation. Pitching (¢) oscillation must also be con-
sidered in this example since unbalanced moments are
provided by the machine manufacturer. However, twist-
ing or yawing oscillation is not considered since the
horizontal forces do not form a couple in the horizontal
plane. The horizontal translation and the rocking modes
need not be coupled if:

\/fnzz'*'fnz'ﬂ/ (fms X fﬂw) < 2/(3f)

Using values from Table 6-2 for f.. = 1009.1, fuy
= 1,677.6 and f (primary frequency) =585 rpm, and

substituting in the above expression,

V (L,0091) + (1,677.6)%/(1,009.1 X 1,677.6)
= 1,156 X 10-3

and 2/(3 X 585) = 1.140 X 10-%, which appears tc be
a border line case (within 1%). Hence, uncoupled mode
analysis is O.K.

Environmental Demands

1. Physiological effects on persons. If the machine is
located in a building, Figures 3-4, 3-5 and 3-7 are used
to test the adequacy of the installation, In the example,
Figure 3-4 indicates vibrations to be “barely noticeable
to persons” at the operating frequency of 585 cpm for a
maximum vibration amplitude of 0.000717 in.

2. Psychological effects on persons. Use the same pro-
cedures as in (1}. When the machine is located close to
people not connected with machine operations, an acous-
tical barrier may be necessary.

3. Damage to structure, Use the limits given in
Figure 3-4. The example check shows no danger.

4. Resonance of structural components (superstruc-
ture above the footing). Avoid resonance with the lowest
natural frequency by keeping the ratio of operating fre-
quency to natural frequency less than 0.3 or greater
than 1.5. No other structural components are involved
in the example.

Conclusion. The foundation is predicted to perform
in an acceptable manner. The static and the dynamic
analysis confirm the adequacy of the proposed founda-
tion configuration and, therefore, the design as proposed
is acceptable.

Nomenclature—Example 1

a; = Width of section i, ft
B=Length of rectangular foundation
block, ft

B., B;, By, By, B, = Mass (or inertia) ratio; vertical
horizontal, rocking torsional and
pitching vibration mode

b; = Depth of section 1, ft
D = Damping ratio = C/C;

Drg, Dy, Dyg, Dy, = Geometric damping ratios; vertical,
horizontal, rocking and pitching
modes

D; = Internal damping ratio
F(t) = Excitation force, lbs.
F, = Amplitude of excitation force, 1bs.
F,=Maximum horizontal dynamic
force, Ibs.
F, = Maximum vertical dynamic force,
lbs.

f = Operating speed of machine, rpm
fo = Ciritical speed of the machine, rpm
fa = Natural frequency, rpm
fm = Resonant frequency, rpm

fmy = Resonant frequency in the rocking
mode, rpm
fme = Resonant frequency in the pitching
mode, rpm
fne = Natural frequency in the x-direc-
tion, rpm
frz: = Natural frequency in the z-direc-
tion, rpm
fay = Natural frequency in the rocking
direction, rpm
fas = Natural frequency in the pitching
direction, rpm
G = Shear modulus of soil, psi
g = Acceleration of gravity = 32.2 ft/
sec?
H = Dynamic horizontal foree, lbs.
h = Effective foundation embedment
depth, ft
Iy, Iy, Iy = Mass moment of inertia in the ¢
(rocking), 4 (twisting) and ¢
{pitching) directions, Ibs. sec®ft
i=S8egment ({=1,2,3...)

k = Spring constant, kips/ft

k; = Distarnce from center of mass to
base of footing for segment i, ft
kzs key By, ko, ky = Equivalent spring constants: wverti-
cal, horizontal, rocking, torsional
and pitching modes
L = Width of base of machine founda-
tion block, ft
M = Dynamic magnification factor
m = Mass, ib. sec?/ft
m; = Mass of segment i, lbs. sec?/ft
ng, np = Rocking and pitching mass ratio
factors for geometric damping
Py = Force transmitted in the horizontal
direction, lbs,
P, = Force transmitted in the vertical
direction, lbs.
Pry = Transmitted rocking moment, ft-Ibs,
Pry = Transmitted pitching moment,
fe-lbs,
#vayn = Bearing pressure due to transmitted
dynamic force, psf
7 = Ratio of operating frequency to
natural frequency = f/f,



7, = Equivalent radius for rectangular
footing, ft

Ry, = Horizontal distance from center to
edge of footing in the x-direction,
ft ‘

Ry, = Horizontal distance from center to
edge of footing in the y-direction,
ft

R, = Vertical distance from base to hori-
zontal machine load, ft

Sa11 = Allowable soil pressure, ksf

Ty = Unbalanced rocking moment, ft-lbs.

T¢ = Unbalanced pitching moment, ft-
Ibs.

T = Transmissibility factor
T, (P) = Transmissibility factor for primary
operating frequency
T, (5) = Transmissibility factor for second-
ary operating frequency
W = Total weight of machine plus foun-
dation, Ibs.

Wr = Weight of foundation, lbs.

X = Displacement response in the hori-
zontal x-direction, in.

X, = Total displacement response ir: the
horizontal x-direction, 1n.

Z = Displacement response in the verti-
cal z-direction, in.

Z, = Total displacement response in the
vertical z-direction, in.

& iz, @y, @p = Damping ratio embedment factor;
vertical, horizontal, rocking and
pitching modes

B = Phase angle, rad
Bes Bz, By, By = Spring coefficients; vertical, hori-
zontal rocking and pitching modes

v = Soil density, pcf

Nas Nes P> P9 = Spring constant embedment factors;
vertical, horizontal, rocking and
pitching modes

v = Poisson’s ratio of soil
p = Mass density of soil =y/g Ibs. sec®/
B
o = Frequency of excitation force, rad/
sec
wn = Natural circular frequency, rad/sec

Example 2: Design of a Foundation Block for a
Centrifugal Machine (ref. 2)

A. Machine Parameters

The machine parameters necessary for the design of
the foundation are defined in Chapter 3. The following
data are required {all terms are defined where they first
occur} :

Compressor:

Weight (W) = 35,270 lbs.
Rotor Weight (Wg) = 2,100 lbs.
Operating Speed (f) = 6,949 rpm

{w) 727.7 rad/sec
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Critical Speed (f.) = lst ~ 3,400 rpm
2nd ~ 9,000 rpm
Fecentricity of Unbalanced
Mass & = 0.0015 in. (provided
by manufacturer
for the static condition)

The dynamic eccentricity at operating speed may
then be calculated from

e=&/[1— (f/f.)*] = 0000472 in.

Oiten, the manufacturer may claim a zero eccentricity
for the rotor components. A design value can never-
theless be selected from Table 3-1 as in Example 3
which follows.

Centrifugal Force F,

= (Wg/g)e o® = 1,359 lbs.
Turbine:
Weight (W) = 16,000 Ibs.
Rotor Weight (Wz) = 545 1bs.
Operating Speed (f) = 6,949 rpm

727.7 rad/sec
Ist ~ 2,000 rpm
2nd ~ 9,020 rpm

[+]

Critical Speed (f.)

[l

Il

Eccentricity of Unbalanced
Mass, & = 0.0015 in.
{which is again given by
the manufacturer)

Dynamic eccentricity at operating speed,
e =0.0015/[1 — {6,949/2,000) 2] = 0.0001354 in.

Centrifugal force F, = 101 1bs.

Total centrifugal force F, = 1,359 4 101 = 1,460 lbs.

Base plate: weight (Ws) = 5,000 Ibs.

Total machine weight (Wy) = Wet Wy + Wp
56,270 lbs,

B. Soil and Foundation Parameters

The soil parameters are obtained from the soil report
prepared for the plant facility. The factors which are
considered in the preparations of the soil report are
listed in Chapter 3. In this example the following infor-
mation is obtained from the soil report:

Plant Grade El. 100/-0”

Top of Foundation El. 101’-0”

Recommended Foundation base, E]. 98'-0"

Sail is Medium Firm Clay

Soil Density (v) = 125 pcf
Shear Modulus {G) = 6,500 psi
Poisson’s Ratio (v) = 045
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Soil Internal Damping Ratio (Dy;)} = 0.05

Static Alowable Bearing Capacity (S5;) = 1.3ksf

Also, the settlement at the allowable bearing pressure
is negligible.

C. Selection of a Foundation Configuration

A trial configuration is selected following the guide-
lines listed in Chapter 3 under Trial Sizing of a Block
Foundation.

A shallow and wide footing is desired such that the
combined center of gravity of the machines and of the
foundation coincides closely with the centroid of the
area of the foundation. A foundation block configura-
tion which satisfies this requirement is shown in Figure
6-5. ‘

Concrete Footing Trial Qutline:

Weight of the footing (W) = 100,500 Ibs.

Total static load (W) = machine weight +

weight of footing = 156,770 lbs.

Actual soil pressure = 156,770/12.5 (20} = 627 psf

< 0.5 (Sapp) = 750 psf

Thus, area of footing is O.K.

Weight of footing/weight of machine = 100,500/
56,270 = 1.78 which is close to the suggested minimum
of 2.0 for well-balanced centrifugal machines. All other
guidelines for trial sizing are satisfied and the dynamic
analysis is then performed.

D. Dynamic Analysis

The axis of rotation of the shaft is located 6 ft above
the buttom of the foundation. The dynamic force acting
at the axis of shaft is of the form F = m,ee? sin of (see
Figure 6-3) which will excite the structure in three
different modes, viz., vertical, honizontal, and rocking.
Since the machine will operate at a constant speed in
the steady-state condition, the amplitude m.es® is con-
stant. Thus, formulas associated with a sinusoidal force
of constant amplitude F; are used in the dynamic anal-
ysis (F = Fosinet). A complete dynamic check is per-
formed in Table 6-3.

E. Check of Design Criteria

The foundation block is checked {for the design criteria
as described in Chapter 3.

Static Conditions

1. Static bearing capacity. Proportion of footing area
for 50% of allowable soil pressure. From C above, 627
< 750 psf is OK.

2. Static settlement must be uniform; C.G. of footing
and machine Ioads should be within 5%, of each linear

dimension. The center of gravity of machine loads and
foundation coincide and is O.K.

3. Bearing capacity: static plus dynamic loads. The
magnification factor (Table 1-4) should preferably be
less than 1.5. The sum of static and modified dynamic
loads should be within 6 in. of the footing C.G. For
75% of the allowable soil pressure given for the static
load condition = 627 + 374/(12.5 x 20) = 1420(6)/
20 (12.5)2 = 632 or 626 psf < 0.75 {1,500) psf is O.K.

4. Settlement: static plus repeated dynamic loads.
The combined C.G. of the dynamic loads and the static
loads should be within 6 in. of the footing C.G. For
rocking motion the axis of rocking should coincide with
the principal axis of the footing. The magnitude of the
resulting settlement should be less than the permissible
deflecting capacity of the connected piping system. In
this example, dynamic forces are small compared to
static loads; therefare, settlement caused by dynamic
loads will be negligible.

Limiting Dynamic Conditions

1. Vibration amplitude at operating frequency. The
maximum amplitude of motion for the foundation sys-
tem should lie in Zone A or B of Figure 3-3 for the
given acting frequency. Vibration amplitude (vertical)
Z; = 0.000019 in. at 6,949 rpm. From Figure 3-3 this
amplitude is within the safe allowable limits. Vibration
amplitude (horizontal) at center of bearing area X, =
0.000018 in. at 6,949 rpm. The amplitude falls in Zone
A in Figure 3-3 and is, therefore, acceptable.

2. Velocity equals 2»f (cps) X displacement ampli-
tude as calculated in (1) above. Compare with the
limiting values in Table 3-2 and Figure 3-3 at least for
the “good” condition. Velocity equals 727.7 (0.000019)
= 0.0138 in./sec. From Table 3-2 this velocity falls in
the “smooth operation” range and 1is, therefore, ac-
ceptable.

3. Acceleration equals 47%? X (displacement ampli-
tude, as calculated in (1) above). Should be tested for
Zone B in Figure 3-3. Note: This check is not necessary
if conditions (1) and (2) are satisfied, which they were
in this example.

4. Magnification factor (applicable to machines gen-
erating unbalanced forces). The calculated values of
M and M, (Table 1-4) should be less than 1.5 at
resonance frequency, In the example, M in all modes is
less than 1.5.

5. Resonance. The acting frequencies of the machine
should have at least a difference of =209 with the
resonance frequency of Equations of Table 1-4. (0.8
fwr = f = L2 fn,). In this example, there is no reso-
nance frequency in the vertical mode. In the horizontal
mede, 1.2 X 1,221.4 < 6,949. In the rocking mode, 1.2
X 1,686.1 < 6,949. Therefore, a resonance condition
does not occur.
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Figure 8-5. Foundation layout for centrifugal machine example problem.

Table 6-3
Dynamic Analysis (Three Modes of Oscillation are Possible)

Step No, Parameter Source Vertical Excitation Rarizental Excitation Rocking Oscillation
1 Equivalent radius, ry Table 4-2 o = B.92 L 1o = 89214 = R02 It
2 Mass, and mass m =W/ m = 4,869 lbs. sec?/ft. m = 4,869 lbs, sect/fi (Machme) 62,010
morment of inertia I ¢ (Footing) = 43,218
»
my Iy = 106.128
fy = e (a24b4%) 4 myk ’]
¢ E [12 £+66) ! 1ba, sec?-ft
i Table 4-8
3 Mass ratio Table 43 B, =024 By =035 By = 0.168
4 Ge(_)metric dampiog Table 4-3 D, = 0.868 Dy = 0,494 Dy =031 ;
ratio = 0.381
Interna] dsmping Soil data Negligible Negligible Dy ; = 0.050
[ Spring cosfficient Figure 4-L Bz = 2.15 3z = 0.95 By =046
6 Equivalent spring Table 4-1 kz = 57.85 X 10% Ibs./Tt kpg = 4077 X 10% 1be /It kypg = 2,446.36 X 108
constant : # / ¥ Tbett/ead
7 Natural frequency, £y, 0 i Sz = 1,040.9 rpm Tpz = 873.9 rpm fyyp = 14488 pm
o\
8 Resonance frequency, fipr Table 1-4 Resonsnce not possible Fmz = 12214 rpm fmy = 1.886.1
8 Magnification factor, M Tabls 1-4 M = 0,022 M = 0.018 M = 0.045
10 Dynamic force Centrifugal force Vo = 1,460 lbs, Hy = 1,460 Iba, = Hgkp = 1,460 {8)
= 8,760 lba. -
11 (&)  Vibration amplitude Table [4 Z =056 X 107 it X =057 X 10791t ¢ = 01611 X 108 rad
i1 (0 Componest of At edga of ftg. Al center of bearing
rocking = ¢ Ry
eseilfation = glﬁli X 10"‘ (6 25) = 8.1611 X 107¢ (8)
= 1007 = (.967 X 104f%
11 ()  Resultant vibeation 11 () + i1 (b) Zp = 1.567 X 1% X, =157 X lﬂ" ft
amplitude = 0,000019 in. = ,000018 in,
12 Transmissibility factor Ty Table 1-4 Ty = 0.256 Ty = 0.127 Ty = 0.162

and forca transmitted, P, Py = 374 lba, P zr= 185 lba. Par = 1,420 a4t




102 Design of Structures and Foundations for Vibrating Machines

6. Transmissibility factor (usually applied only to
high-frequency spring-mounted machines). The value
of transmissibility is calculated by equations of Table
1-4 and should normally be less than I for spring-
mounted machines having an inertia block. In the ex-
ample, T, is less than 1 indicating that dynamic forces
are not amplified.

Possible Vibration Modes

1 and 2. Vertical oscillation or horizontal translation
are possible modes as the force acts in either direction.

3. Rocking oscillation is possible since the point of
horizontal force application is abeve the foundaticn mass
C.G.

4, Torsional oscillation. Since horizontal forces do not
form a couple in the horizontal plane, this mode is not
possible.

5. Coupled modes. The horizontal translation and
rocking oscillation are usually coupled. The coupled
modes may be considered as in example 3 which follows.

Fatigue Failures

1. Machine components. Follow limits in Figure 3-4
and/or Table 3-2.

2. Connections. Same as (1) but check stresses using
AISC code {ref. 13 of Chapter 3) when connectors are
bolts or welds.

3. Supporting structures. Use (2) for structural steel.
For concrete footing, if reversal of stresses takes place
and the amplitude is very high (such that the peak
stress reversal is over 50% of the allowable stress), the
main and the shear reinforcement (if any) should be
designed for the stress reversal condition.

In this example the amplitude of the dynamic forces
is not large enough to produce any significant stress
increase over the stresses caused only by the static loads.

Environmental Demands

1. Physiological effects on persons. If the machine is
located in a building, use the procedure given in condi-
tion Enviromental Demands under “Limiting Dynamic
Conditions”, and use the limits from Figure 3-4. In the
example, Figure 3-4 indicates no discomfort to people.

2. Psychological effects on persons. Use same pro-
cedures as (1). If the facility is located close to people
not comnnected with machine operations, use acoustic
barriers. In the example, the machine is located away
from habitable areas.

3. Damage to structures. Use limits in Figure 3-4 or
3-5. Example check shows no danger.

4. Resonance of structural components (superstruc-
tures above the footing). Avoid resonance with lowest
natural structural frequency by keeping the frequency

ratio either less than 0.5 or greater than 1.5. In this
example, no structural components are involved,

Thus, the trial design is acceptable and may be used
to support the machine.

Nomenclature—Example 2

A4 = Dynamic amplitude
a; = Width of section 1, ft
B=Length of rectangular foundation
block, ft
B..B,, By, Bs = Mass (or inertia) ratio; vertical, heri-
zontal, rocking and torsional vibration
modes
b; = Depth of section i, ft
D = Damping ratio
D, D,, Dy, D, = Damping ratios; vertical, horizontal,
rocking and torsional modes
D; = Internal damping ratio
e = Eccentricity of unbalanced mass to axis
of rotation at operating speed, in.
¢ = Eccentricity of the machine’s unbal-
anced mass, in.
F = Excitation force
F, = Amplitude of excitation force, lbs.
§ = Operating speed of the machine, rpm
fe = Ciritical speed of the machine, rpm
f» = Natural frequency, rpm
fn = Resonant frequency for constant force-
amplitude excitation, rpm
fms = Resonant frequency for rotating mass-
type excitation, rpm
fme = Resonant frequency in the horizontal
direction, rpm
fmy = Resonant frequency in the rocking di-
rection, rpm
G = Shear modulus, psi
g = Acceleration of gravity, ft./sec?
H, = Dynamic horizontal force, lbs.
1y = Mass moment of inertia, lbs.-sec?-ft
i == Segment (1, 2, ...}
k = Spring constant
k, = Distance from center of rotor axis to
footing, ft
k; = Distance from center of mass to base of
footing for segment i, ft
kz, kzs, kws: ks = Equivalent spring constants; vertical,
horizontal, rocking and torsional modes
L = Width at base of machine foundation
block, ft
M, = Magnification factor
M, mep = Maximum magnification factor
M = Dynamic magnification factor
m = Total mass, Ib-sec?/ft



m, = Unbalanced mass
m; = Mass of segment {
n = Number of segments
P, = Force transmitted through spring
mounts
r = Ratio of operating frequency to natural
frequency, f/fa
1o = Equivalent radius for rectangular foot-
ing, ft
R;, = Horizontal distance from center to edge
of {footing, ft
R, = Vertical distance from base to center of
rotor axis, ft
S.1: = Allowable soil bearing capacity, ksf
To = Unbalanced torque, ft-lbs.
T, = Transmissibility factor
t = Time, sec
V, = Dynamic vertical force, lbs.
W = Total weight of machine plus footing,
lbs.
W s = Base plate weight, lbs.
W = Compressor weight, lbs.
Wr = Weight of footing, lbs.
Wy = Total machine weight=W,+ W+
W, lbs.
Wy = Rotor weight, lbs.
Wy = Turbine weight, Ibs.
X.= Total displacement response in the
horizontal x-direction, in.
Z, = Total displacement response in the ver-
tical z-direction, in.
B:, Bz, By = Spring coefficients; vertical, horizontal
rocking modes
v = Soil density, pcf
v = Poisson’s ratio
p = Mass density = y/g, Ibs.-sec?/ft*
w = Frequency of excitation force, rad/sec
ws = Natural circular frequency, rad/sec

Example 3: Foundation Design for Centrifugal
Machines with Different Operating Frequencies
and Supported on an Inertia Block

In some plant facilities, due to environmental con-
siderations or poor soil conditions, it becomes necessary
to limit the propagation and amplitude of the machine
vibrations transmitted to the foundation (ref. 3). In
those circumstances, the use of an inertia block sup-
ported on springs is recommended as a vibration isolator;
see Figure 6-6. This type of supporting system requires
that the piping which is connected to the machines
be jointed with flexible couplings in order to absorb
without distress the resulting large movements of the
inertia block. This movement may be caused either
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due to a sudden surge condition during the operation
of the centrifugal machine or when a resonance condi-
tion occurs temporarily at start-up or shutdown of the
machine. The latter condition generally is more severe
since an inertia block spring system generally has
negligible damping resistance.

The inertia block spring suspended foundation is not
recommended for heavy machines with large unbalanced
forces. However, this type of system may be used when
the machines are located on an elevated steel-framed
structure.

In this example problem, a foundation system for a
gas turbine/generator set is investigated, Le., the ma-
chine consists of an electric generator powered by a gas
turbine. Both machines run at different operating fre-
quencies and the step-down from the higher to the
lower frequency is accomplished through a gear box.
Foundations for this type of machine have been dis-
cussed in Chapter 2, and the various steps required to
complete the dynamic analysis are given below:

A. Machine Parameter

1. Generator:

Weight (Wa) = 28,150 Ibs.
Rotor Weight (Wz) = 9,460 Ibs.
Operating Speed (f) = 1,800 rpm
w = 188.5 rad/sec
Ciritical Speed f. = 2,200 rpm

Eccentricity of Unbalanced Mass, ¢ ~ .001in.
(Table 3-1)
Centrifugal Force Fy = (Wg/g) ew®*= 871 Ibs.
2. Turbine:
Weight (W) == 16,305 lbs.
Rotor Weight (Wg) = 567 lbs.
Operating Speed (f) = 8,990 rpm
@ == 941 .43 rad/sec
Critical Speed (f.) = Ist ~ 2,885 rpm

2nd ~ 11,670 rpm
Eccentricity of
Unbalanced Mass
at Operating Speed, ¢ = 0.5 1/12,000/8,990 mil
{see Table 3-1)
= ,00057 in.
= (567/386) > .00057
® (941.43)*
= 742 lbs.

Centrifugal force F,

3. Gear Box:

Weight {Wg) = 13,045 lbs.

Unbalanced forces generated by gear box and cou-
plings are assumed negligible. Total Machine weight
(W) =Wy We+ We=57,500 lbs.

A layout of the eguipment is shown in Figure 6-6.
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¢ FOUNDATION
C.G. EQUIPMENT, INERTIA BLOCK
AND FOOTING COINCIDES
K0 1 {0
9% ‘\ /-l -2%
|
'i,_\/"@_ TURBINE
1ot - v
EL106'-3"~ & GENTR. IR\
N2 CONNECTION TO HAVE
r’ NEOPRENE BEARING PAD
— AND BOLT HOLES SLOTTED
S < IN VERTICAL DIRECTION
I‘\LATERAL RESTRAINT
— . Wéx20
‘o o AN (TWO EACH SIDE)
70 i 70"
(C) DETAIL LATERAL RESTRAINT
Figure 6-6. Foundation configuration for centrifugal machine with an inertia block.
4. Center of Gravity of Unbalanced Forces: 2000 T T T T T T 1111
The unbalanced forces generated by the equipment 1600 N e7ilsin 185t + 742 sin 94141
are assumed to be acting at the center of gravity of the 1200 COR APPROX. = 1813 sin 18851
machine loads and perpendicular to their shaft axis. 2 g FAA
The shaft axes are shown in Figure 6-6B. The forces é 800 TN A AN ’;“, i
of the two machines, when combined, are given by: g 400 [ \‘\\ f]" \_“\ hf\“l ! ' : \
F(t) = 871 sin 1885 + 742 sin 941.4¢ 5o Y E YT AL
H L ; ;
The plot of individual force functions, as well as the = -400 ‘\‘ ';" ‘\ f'li ﬁ \ % ’r’ [’ \,‘1'/}
combination of the individual force functions, is given E -800 ‘e v INZIRN R PRV
in Figure 6-7. * ra si 941.41 \TI ur \\!
-1200 {TURBINE)
871sin (8851 V][]
B. Scil and Foundation Parameter 1600 UISETERlAT?R \
Soil is Soft Silty Clay 200 a1 CYCLE OF TURBINE MOTION
Soil Density {y) = 110 pef g
Shear Modulus (G) = 3,500 psi {-CYCLE OF GENERATOR MOTION

Poisson’s ratio {v) = 0.35
Soil Internal Damping Ratio, (Dy;) = 0.03
Static allowable bearing capacity (Sq:) = 1.0 kst

2x
Tlees
TIME (1), sec.——m

Figure 6-7. Plot of unbalanced centrifugal force.
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Settlement of soil for a 14 ft by 28 ft footing at 1 kst
bearing pressure = 0.123 in.

Water table fluctuates and is 3 ft below grade at cer-
tain times of the year,

C. Selection of a Feundation Configuration

The guidelines listed under Trial Sizing of a Block
Foundation in Chapter 3 are followed in selecting an
initial configuration. Because the water table is 3 ft
below grade, it is recommended that the footing be
located at a shallow depth in order to avoid construction
complications and a relatively large contact surface area
be used. In order to achieve uniform settiement, it is
necessary that the center of gravity of the equipment
plus the inertia block coincide with the center of gravity
of the footing. A trial proportioning of the inertia block
and the footing is shown in Figure 6-6.

1. Tnertia Block Trial Outline (Figure 6-6A) :

Center of gravity of total equipment {y-direction)
16,305 (14.0833) + 13,045 (7.2917)
16,305 + 13,045 + 28,150
= 5.608 ft
=5 ft — 734 in. from centerline generator,
or 11 ft — 2% in. from the left edge of the inertia
block. Center of gravity of total equipment (x-
direction)
16,305 (2.0) + 13,045 (1.0}
= 716,305 -+ 13,045 + 28,150

=0.7940 ft

= 914 in. from centerline generator.

The inertia block has a uniform thickness of 8 in. {100
psf) and an additional thickness of 8 in. (100 psf) of
dimensien 10 ft X 10 ft in the region under the turbine,

The center of gravity of inertia block (y-direction)

10 X 10 x 100 (20.0) + 25 X 10 X 100 (12.5)

B 25 X 10 X 100+ 10 X 10 X 100

= 146429 ft

= 14 ft— 734 in. (from left edge of inertia block}.

The center of gravity of inertia block (x-direction)

=5 ft — 0 in. (from bottom edge of inertia block}.

From Figure 6-6B, C,

Combined C.G. of equipment and inertia block,
57,500 x (11.2292) + 35,000 (14.6429)
57,500 + 35,000

= 12 ft —6 in. from left edge of the inertia block.
Combined C.G. of equipment and inertia block,
{(x-direction) =5 ft —0 in. from bottom edge of
inertia block.
2. Footing Trial Qutline:
The footing plan dimensions should be larger than

(y-direction} =

the inertia block in order to accommodate the support-

ing springs of the inertia block and its lateral supports.
Alsc, the resultant bearing pressure on the soil should
be less than 50¢ of the allowable soil bearing pressure
in order to minimize possible foundation settlements.
A trial concrete slab size 14 ft wide by 28 ft long and
2 ft thick is then analyzed. The footing center of gravity
is made to coincide with the combined center of gravity
of the equipment and the inertia block.

Weight of the footing (We} = 117,600 lbs.

Total static load (W) = equipment weight + inertia

block + footing weight = 210,100 Ibs.

Actual soil pressure = 210,100/14(28) ~ 0.5 S.u

= 534 psf

Thus, area of footing is O.K.

D. Dynamic Analysis

A mathematical model of this foundation was pre-
viously discussed as Model 3 of Chapter 2. We have the
following parameter calculations:

Selection of Springs for inertia Block

1. Vertica! Direction. Try for transmissibility factor
(T,} = .02,

From the transmissibility equation of Table i-4, and
assuming damping to be negligible in the springs, D =0,
then the resulting equation is

0.02 = 1/|1 —r?

orr=f/fa=170

For f = 1800 rpm, f. = 257.14 rpm

For f = 8990 rpm, f, = 1284.28 rpm

A natural frequency (f,) = 257.14 will be used, since
a higher natural frequency will require a large number
of springs.

Mass (m,) of inertia block + equipment

_ (57,500 -+ 35,000)

386
= 239.64 Ibs.-sec*/in,
Total spring constant (k)

_ ([257.14 X 217])2 « 23964

60

= 173,762 lbs./in.
Try 20 spring with a spring constant for each
173,762

20

There is a commercially available spring of 8,800 lbs.
force for a l-in. deflection. The dimensions of the
springs are: height = 9.0 in., width = 5.25 in., length
= 13.0 in., and maximum solid load is 10,912 lbs. for
a 1.24-in. deflection.

Use 20 springs for total k., = 176,000 Ibs. /in.

Then, f, = (60/2=) V/ 176,000/239.64 = 258.8 rpm.

2. Horizontal Direction (Figure 6-6C). Lateral re-
straint is provided by W6 » 20 vertical posts, two on

spring = = 8,688.1 lbs./in.



each side. The posts are fully fixed at their bottom and
are connected to the inertia block by the provision of
slotted holes in the vertical direction so that the oscil-
lation of the vertical springs is not effected. A neoprene
bearing pad layer is inserted in the connection in order
to absorb high-frequency vibrations. The spring constant
in the lateral direction is given by:
ks = 3EL/E
where I; = 4 X 41.5 = 166 in.*
[=21.0in.
E = 30 x 10° psi
ke = 16132 < 108 Ibs./in,
Mass (m;) of the inertia block and equipment
239.64 lbs.-sec?/in.
o fa = (60/27) 1/ 1,613,200/239.64 = 783.5 rpm
3. Rocking Oscillation about Point 0 (Figure §-6C).
Two rows of springs, each containing ten springs, are
located at a distance of 60 in. on either side of an axis
passing through point 0. Due to this arrangement, the
inertia block is capable of rocking about that axis. The
spring constant for the rocking oscillation ky is, thus,
a function of the vertical spring constant and is given
by:
ky = 2kye?
where &, is spring constant of each row (10 X 8,800 =
88,000 lbs/in.), e is the distance from the axis to the
row (=60 in.).
Coky =2 X 88,000 X 60 x 60
= 633.6 X 10°Ibs.~in./rad.
In order to calculate the natural frequency, the mass
moment of inertia for the inertia block and equipment
must be calculated and is given by:

Machines = (57,500/386) (60)2 = 536,269.0
Inertia block = (25,000/386) (12)2
+ (10,000/386) (20)2= 19,689.0
Iy = 536,269 + 19,689 = 555,958
Ibs.-in.-sec?
o fa = (60/27) /(633.6 X 10°) /555,958
== 322.4 rpm

Therefore, the natural frequencies of the inertia block-
equipment-spring system are 258.8, 783.5, and 322.4 rpm
in the wvertical, lateral, and rocking modes. Table 6-4
lists all computations for the single-degree-of-freedom
system.

E. Dynamic Analysis as a Multi-Mass System

The calculation of the natural frequencies for a two-
mass model (see Figure 1-20) is given by:
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wi,z = % |: lil' + _kl +" 'kg

mi Mo
_ ik kit hky 4 kf:l
+ \j(m B ny ) T myms

The terms with subscript 1 stand for inertia block
plus equipment, and 2 for the footing. The calculations
for the footing only (14’ x 28’ block) is performed in
Table 6-5.

1. Vertical Oscillation:

k., = 176,000 lbs./in., my = 239.64 lbs.-sec?/in.

k2= 3.07 » 10% Ibs./in,, m. = 304.35 lbs.-sec?/in.
where k,,(Table 6-5) and m, are the spring constant and mass
of the foundation block, respectively.

w?= 69185 or fry = 251.2 rpm

ws? = 10,707.93 or f,. = 988.2 rpm

2. Horizontal Oscillation:

kg, = 1.6132 X 10%1bs./in.,, m, = 239.64 lbs.-sec®/in.

kgo = 2.3583 X 10°1bs./in.,, m,; = 304.35 lbs.-sec?/in,

w?= 3,133.31, f.. = 5345rpm

w:® = 16,647.57, fa: = 1232.1 rpm

F. Discussion of Dynamic Analysis

1. Natural frequencies. The values calculated for a
single-mass model and a two-mass model reveal that for
the vertical mode there is no difference in the calculated
frequency when either model is used. This is because the
natural frequency of the model, including the inertia
block, has a natural frequency of less than half the
natural frequency of the footing in the vertical mode
(258.8 vs. 717.5 rpm, Table 6-5, respectively). Therefore,
the fundamental frequency of the coupled model has a small
difference with the lowest frequency calculated as individual
uncoupled models (251.2 rpm vs. 258.8 rpm, respectively).
This fact can be demonstrated by using Southwell-Dunker-
ley’s formula,

1 1 I 1
R

substituting, f; = 258.8, f, = 717.5, then, f. = 243.5 rpm,
which differs less than 3.2% from the calculated coupled
model frequency and 6.3% from the calculated single
mass frequency. Similarly, for the rocking mode, the
fundamental frequency calculated by using f, =322.4
and f, = 883.2 into the Southwell-Dunkerley’s formula
will be 302.85 rpm, which differs by 6.5% from
the calculated frequency of the single mass model. If the
coupled equations of horizontal and rocking modes are
solved, then the lowest frequency is found to be close to
250 rpm. Therefore, due to the signitficant difference in
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Table 6-4
Dynamic Analysis of Single-Degree-of-Freedom System
{Machine plus Inertia Block Only)}
Step Vertical Horizontal Rocking
No. Parameter Source Excitation Excitation Osclllation
60 [k
1. Natural Frequency f, — . 258.8 rpm 783.5 rpm 322.4 rpm
27
2. Magnification factor M Table 1-4 (f = 1,800) = 0.021 = (.234 = (0.038
(f = 8,990} = 0.001 = 0.008 = 0,001
3, Dynamic force F (£) Figure 6-7 Fo (f = 1,800) = 871 871.0 Fo Xk = 3512 g{(} 60
= s
Fo (f = 8,990} = 742 742.0 Fo X h = T42 X 60
(1bs.) (1bs.) = 44,520
(1bs.-in.)
4 Vibration Table -4 (a) Z(f = 1,8 00) X = 1.263 x 10+ ¢ o= 2.722 X 1078
’ amplitude =1.039 X1
(b) Z {f = 8,09 } X = 3.680 x 107¢® ¥ = 7.027 X 1078
= 4,21 X 1076 (in.) (radians)
(in.)
¥ X Rm ¥ X R,
&. Components of rocking f= 1800 (c)2.722 X 0‘3 x 60 = 2,722 X 168 X 60 e
oscillation = 1.63 4 10 = 1,634 X 104
F=8990 (d)7 027 >< 1078 X 60 = 7.027 » 1078 X 60
= 6 X 1070 = 4,216 X 10® —
(m } {in.}
6. Resulting vibration (a}4+(b) Z, = 2,767 x 10+ X, = 2.976 X 10—+ —
amplitude +(c)+(d) (in.) (in,)
7. Transmissibility facter 7, Table 1-4 T, (f = 1,800} = 0.021 = (0,284, Pg = 203.80 T, = 0.033, Py = 1,725.0
and force Pr = 1830
transmitted Po To(f = 8990) = 0001 T, = 0008 Px= 59 7,=0001, Pu= 445
= 0.74
Total 200,74 Total 1,769.5
({lbs.-in.)

Total 19.04 (Ibs.)
(Ibs.)

the natural periods of the two mass elements, it is per-
missible to assume that the individual elements act inde-
pendently of each other, i.e., in the vertical and rocking
modes the inertia block and the bottom footing masses
can be analyzed on the basis of an equivalent one-degree-
of-freedom or uncoupled system.

However, in the horizontal mode, both mass ele-
ments have nearly equal natural frequency; the inertia
block has a patural frequency of 783.5 rpm, and the
footing has a natural frequency of 628.9 rpm. The fre-
quencies of the two-mass coupled mode are 534.5 and
1,232.0 rpm for the inertia block and the footing, respec-
tively. From Dunkerley’s formula, the lowest frequency
is 490.5 rpm, which is quite low compared to 783.5 rpm
obtained by considering the inertia block plus the ma-
chine as an individual element. Therefore, a coupled
model investipation is justified in the lateral direction.

2. Response calculations: Because the equations of
motion of Model 3 for these foundations are linear, the
dynamic response generated by each of the two com-
pounents 871 sin 188.5¢ and 742 sin 944.4¢ of the excitation
force can be combined using the principle of superposi-
tion. This procedure has been used in Steps 4 to 6 of
Table 6-4. However, in that table, the inertia block
element was considered to be acting independent of the
footing. This uncoupling was found to be justified for
the vertical and rocking modes, but for the horizontal
mode, an analysis based on coupling of m, and m, is
required. The following equations give the response
values and consider the effects described above:

(kx +hk wz)
m Fsin (wf — ¢y)

@ = ) (o — o

X1 (t) =
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Step Vertical Horlzontal Rocking
No. Parameter Source Excitation Excitation Excitation
1, Equivalent Table 4-2 L = 1407, ro = 11.17 re = 9.50
radius r, B = 280/
ro = 1117 ft
m= W/g W = 210,100 lbs. Iy (Machine) = 107,441.0
2. Mass and Iy (Inertia block) = 27,023.6
- tnass moment n . m = 210,100/32.2 m = 6,524.8 Iy (Footing) = 064,521.8
of inertia Iy = Zlmila;® + b2 Ibs.-sec?/it —_—
e —_— = 6,5624.8 {Summation) ZIy 198,986.4
12 lbs.-secZ/ft Ibs.-sec?-ft
+ miky?
Mass ratio Table 4-3 B, = 0.223 B, = 0.277 By = 0.183
Geometric Table 4-3 D, = 0.900 D, = 0.547 Dy = 0.214
damping
ratio = (.264
Internal ‘ soil data Negligible Negligible Dy = 0.050
damping
5. Spring Figure 4-1 8, = 240 g8, = 1.05 8y = 0.40
coefficient
8, Equivalent Table 4-1 k, = 36,84 x 106 k., = 2830 X 108 ky, = 1,702.12 X 108
spring lbs. /1t Ibs. /it Ibs.~ftfrad
constant
7. Natural (60/2m) v B/m o = T17.50 rpm Sfaz = 62890 rpm foy = 883.20 rpm
frequency f, ’
8. Resonance Table 1-4 Resonance not Famx = 992,40 rpm Jmy = 854.00 rpm
frequency fmr possible
@ == ki Fsin {wt — ) Comparing the amplitudes of z; () with the values of
Xg =

myms (0® — wl) (0® — wh)
In these equations, » (operating speeds) = 188.5 and
941.4 rad/sec.

w,? (square of the mass m, circular frequency)
= 3,133.31
w2 (square of the mass m, circular frequency)
= 16,647.57
m, (total mass of inertia block and equipment)
= 239.64 Ibs.-sec®/in.
m. {mass of the footing) = 304.45 Ibs.-sec?/in.
k, (horizontal spring constant between m, and m;)
= ks = 1.6132 X 106 lbs. /in,
k2 (horizontal spring constant of soil) = k,.
= 2.3575 X 10° Ibs./in.
F {amplitude of the dynamic forces) = 871 and
742 lbs.
¢1 and ¢, are phase difference and = 0, =
Substituting the above parameters,
x (£) =1.336 X 10-%sin 188.5¢
+ 3.521 > 107% sin 941.4¢ in.
x» (8) = 2.682 »x 10~5sin 188.5¢
+0.0022 x 107 sin 941.4¢ in.

x in Step 4 of Table 6-4, it may be observed that the
response values do not change significantly, using either
of the two assumptions. Therefore, the assurnption of
independent behavior of the inertia block in all modes of
oscillation is a valid step. Furthermore, in Figure 6-7,
which shows the plot of the total centrifugal force, it is
found that the total forcing function follows approxi-
mately the path of the curve: sin 188.5¢, and has an
amplitude of 1613 Ibs. Using this function in the response
equations,

x; (¢} = 2.474 X 10-*5in 188.5¢ in.

x3 (t) = 5.831 X 10-%sin 188.5¢ in.

The above values are much higher than the response
values calculated by the summation of the individual
forcing functions. Therefore, the analysis of Table 6-4
gives more accurate results,

Another point worth discussing is the exclusion of the
damping termn when solving the coupled equations of
motion of Model 3. Since the natural frequencies of the
modes, f,=534.5 and 1,232.1 rpm are quite different
from the operating frequencies, f = 1,800 and 8,990 rpm,
the influence of damping on the response values is neg-
ligible for all practical purposes.
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3. Transmissibility factor: From the foregoing dis-
cussion, it can be stated that the factors calculated in
Table 6-4, considering the footing as a stiff support for
the inertia block, is a valid assumption. Transmissibility
factors were not calculated for the footing because the
forces transmitted from the inertia block were of very
small magnitude. However, for design purposes the values
obtained for the inertia block are assumed to be trans-
mitted to the soil without any amplification or reduction.

G. Check of Design Criteria (as listed in Chapter 3)

1. Static Conditions:

(a).

(b).

(e).

(d).

Static bearing capacity. Proportion footing
area for 509 of allowable soil pressure. From
C above, 534 psf o= 500 psf (allowable).
Static settlement must be uniform; C.G. of
footing, inertia block and machine loads coin-
cides, and thus settlement will be uniform.
Bearing capacity: static plus dynamic loads.
e =534+ [19/14 (28) ]

=+ [(1770/12) 6/28 (14)3?]

=535 psf < 0.75 (1000) psf is O.K.
Settlement: static plus repeated dynamic
loads. The increase in pressure due to dynamic
loads is less than 1 psf and thus would not
create uneven settlement.

2. Limiting Dynamic Conditions (refer to Table 6-4) :

(2}

. Velocity equals 2nf {cps)

Vibration amplitude at operating frequency.
Inertia block: Z; (vertical vibration ampli-
tube) = .00028 in. at f = 1800 rmp. From
Figure 3-3, this falls within the safe allowable
limits. x; (horizontal vibration at centerline of
bearings) = .00030 in. at f = 1800 rpm. From
Figure 3-3, the amplitude falls in zone A and,
therefore, is acceptable.

Footing: The dynamic forces transmitted

through the inertia block are very small and
thus vibration amplitude is also negligible.
% displacement
amplitude as calculated in (a) above. Veloc-
ity = 2= (1800) (1/60) 0.0003 = 0.0565 in./
sec. From Table 3-2 this velocity falls in the
“good operation” range and Iis, therefore,
acceptable,

Velocity check by RMS (root mean square)
method, when response involves more than
one frequency: Using response values of m,

of Model 3,

Velocity =

VI88.5 X 1.336 X 1074)2+ (941.4 X 3.52 X 10-4)*#

= 0.0254
< 0.0565 in./sec. calculated above,
thus is O.K.

(e}

(d).

(e).
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Acceleration: 4«% (30)* (0.0003) = 10.66
in./sec?,

Magnification factor: From Table 6-4 this
value is less than 1.5 for all modes of oscil-
lation and, thus, is acceptable.

Resonance condition: The natural frequen-
cies (Table 6-4) in all modes of oscillations
for the inertia block and footing are less than
0.8(1800). Therefore, no resonance condition
occurs at the lower operating speed. This ratio
is also true for the critical speed of the
machine rotor. Thus, the foundation is class-
ified as low-tuned or under-tuned.

. Transmissibility factor: This factor js less than

5% in the vertical and rocking modes of the
inertia block and, thus, meets the normal
limitation. However, in the horizontal mode
when acted on by the lower frequency
(f = 1800), T, was found to be 1.234 > 0.0
normally used. This happened due to the use
of a structural member (W6 X 20) as a vibra-
tion isolator. Use of structural member as a
lateral restraint is a required feature in this
type of system in order to maintain the sta-
bility of the inertia block in case of failure of
the springs. In any case, the lateral force
transmitted to the footing is small and can
easily be absorbed by the lateral soil in contact
with the footing.

3. Possible Vibration Modes:
(2) and (b). Vertical oscillation or horizontal

OF

translation is a possible mode as the force acts
in either direction,

Rocking oscillation is possible since the point
of horizontal force application is above the
foundation mass C.G.

. Torsional oscillation is possible as the forces

generated by the two machines are of different
frequencies. However, it is estimated that the
natural frequency of this mode would be too
low compared to the acting frequency such
that the response values would not be of much
significance. In case an analysis is required,
then the following steps are given:

(1). Mass moment of inertia about the ver-

tical axis through center of gravity.

Machines: (16,305/386) [(85.5)" + (14.5)°]

+ (28,150/386) [(83.5)° + (9.5)°]
+ (13,045/386) [(2.5)* + (4)* ]
= 833,475.0 lbs.-in. sec’



. 95,000 7120 X 120 |, 300 X 300
Inertia block: =22 ( e+ )

10,000 , 2 o

+ ~385 (90)" = 773,316.0 lbs.-in. sec

£, = 833,475.0 4 773,316.0

1,606,791.0 Ibs.-in. sec’

(2). Spring constant of vertical posts

{W6 X 20) using the weak axis.

3ED
13
3X30X10°%X2X13.3
(21)°

= 258,503 lbs./in.

k: (2 pasts)

2 ket = 2 X 258,503 (60)°
1.8612 X 10*Ibs.-in./rad
60 in.)

ks

I

(e

_ 60 [1.8612 X 10°
~ 2r V1,6068 X 10°

= 325.0 rpm

fu

—
W
—

. Forcing function: The centrifugal force
of the generator which is in phase with
the peaks of the turbine's centrifugal
force at f = 1,800 rpm will not form any
significant torque couple. The other
peaks of the turbine force will form a
torque couple; i.e., four out of six peaks
(Figure 6-7). Conservatively, it may be
assumed that the turbine centrifugal
force will form a torsional moment and
may be given as:

Te =742 X 60 sin 941.4¢
= 44,520 sin 941.4¢ Ibs.-in.

(4). Magnification factor M = 1/(r* ~ 1)
= 0.0013

(5) . Transmissibility factor T, = 0.0013

(6). Response value of inertia block (longi-
tudinal direction) :

(1.8612 X 10%] X 60

= 1.87 X 10~%in.
(negligible)
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{7). Force transmitted to the foregoing:

(Te X T,)/2 = (44,520 X 0.0013)/
2 (60)

= 0.482 lbs.
(negligible)

Therefore, torsional mode oscillations are
not significant.

(e). Coupled modes: The degrees of freedom for
each of the masses were found to be acting
independent of each other. Because of the
linearity in the equations of motion, the prin.
ciple of superposition is used to find the total
response. Possible fatigue failure checks and
environmental demands are also found to be
satisfactory and the foundation is judged to be
adequate.

Nomenclature—Example 3

A = Dynamic amplitude
a; = Width of section i, ft
B = Length of rectangular foundation block,
ft
B,, Bs, By, Be = Mass (or inertia) ratio: vertical mode,
horizontal, rocking, and torsional vibra-
tion modes
b; = Depth of section i, ft
D = Damping ratio
D, D;, Dy, Dy = Damping ratios: vertical, horizontal,
rocking, and torsional modes
D; = Internal damping ratio
¢ = Eccentricity of unbalanced mass to axis
of rotation at operating speed, in. or
half the distance between the vertical
springs for calculating the equivalent

value of ky and ke
E = Modulus of elasticity, psi
F = Excitation force, 1bs.
F, = Amplitude of excitation force, lbs.
f = Operating speed of the machine, rpm
fe = Critical speed of the machine, rpm
fe = Equivalent fundamental frequency, rpm
fm = Resonant frequency for constant force-
amplitude excitation, rpm
fmes fmes fy = Resonant frequency in horizontal (x)
vertical (z), and rocking () modes.
fa = Natural frequency, rpm
fnis fre = Natural frequencies of masses m,, m.
in coupled model, rpm
fi, f2 = Natural frequencies of masses m,, m.
in uncoupled model, rpm
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G = Shear modulus, psi
g = Acceleration of gravity, ft/sec?
H, = Dynamic horizontal force, lbs.
I., I, = Moment of Inertia of vertical post of
strong axis (x) and weak axis (y), in.*
Iy, I = Mass moment of inertia of inertia block
in rocking (y) and torsional (8) modes,
Ibs.-in.-sec?
i= Segment (1,2,...)
k = Spring constant
kq = Distance from center of rotor axis to
base of footing, ft
ki = Distance from center of mass to base of
footing for segment i, ft
kzy kzss kys, kos = Equivalent spring constants: vertical,
horizontal, rocking, and torsional modes
L = Width at base of machine foundation
block, {t
! = Height of vertical post, in.
M, = Magnification factor
M, pax = Maximum magnification factor
M = Dynamic magnification factor
m = Total mass
m. = Unbalanced mass
m; = Mass of segment {
n = Number of segments
Py, Py = Force transmitted through springs in
horizontal (x), vertical (z) directions,
Ibs.
Py = Moment transmitted to springs in rock-
ing oscillation (y), lbs.-in.
P, = Force transmitted through spring
mounts, lbs.
R;, = Horizontal distance from center to edge
of footing, ft
R, = Vertical distance from base to center of
rotor axis, ft
r = Ratio of operating frequency to natural
frequency, f/fa
7, = Equivalent radius for rectangular foot-
ing, ft
Se21 = Allowable soil bearing capacity, ksf
o = Unbalanced torgue, ft-lbs.
TR, T, = Transmissibility factor
t = Time, sec

Vs = Dynamic vertical force, lbs.
W = Total weight of machine plus footing,
Ibs.

W, = Weight of gear box, lbs.
Wy = Weight of generator, lhs.
W = Weight of turbine, lbs.

W, = Total weight of machines, lbs.
Wy = Weight of rotor, lbs.

X, Z, ¢ = Displacement amplitude In horizontal
(x), vertical (z), and rocking (y)
modes

X, Z; = Total vibration amplitude in horizontal
{x) direction at machine axis level and
in vertical (z) direction at footing level,
in.

Y,, ¥, = Displacement response of masses my, m;
in coupled model, in.

Bz, Bz By = Spring coefficients: vertical horizontal
and rocking modes
y = Sail Density, pef
u = Ratio of unbalanced mass to total mass
=me/m
v = Poisson’s ratio
p = Mass density = y/g, lbs.-sec?/ft*
w = Frequency of excitation force, rad/sec
an = Natural frequency, rad/sec
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The availability of electronic digital computers having
great calculating speed and analytical power has re-
sulted in substantial advancement in the engineering
art of analysis and design of structures supporting
dynamic machines. Increasing machine weight and

7 | Computer Analysis
and Applications:
Elevated Foundation

speed coupled with large costs have made the rule-of-
thumb approach and hand computation either unsafe
or too conservative for many structures. Modern com-
puter programs yield, among other factors, the natural
frequencies, the deformations, and the forces in the

.1 P

Table Top Compressor Unit. Co

urtesy of Big Three Industries, Inc., Channelview, Texas. Photo by

Engineering Media Center, University of Houston.
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stracture (ref. 1}. These quantities were either ignored,
conservatively assumed, or calculated in a simplified
approximate way in precomputer times. For example, an
equivalent static strength analysis of a structure sup-
porting a centrifugal machine is usually made for the
following loading conditions:

1. Total vertical load plus 0.5 of the full load acting
in the vertical direction.

2. Total vertical load plus 0.3 of the full load acting
in the transverse direction.

3. Total vertical load plus 0.1 of the full lead acting
in the longitudinal direction.

These approximate machine load factors (0.5, 0.3,
0.1) are fairly accurate for an equivalent static analysis
when the ratio of machine acting frequency to natural
frequency 7 in the specified direction is less than 1,
greater than 1, and much greater than 1, respectively,
as shown in Figure 1-36. However, the factors 0.5, 0.3,
and 0.1 are derived for a machine with an acting fre-
quency of 1,800 rpm and considered very stif in the
longitudinal direction. The selected ratios of 0.5, 0.3,
and 0.1 are generally consistent with a highest rigidity
in the wvertical direction, a not-so-high rigidity in the
transverse direction, and no dynamic load component
in the longitudial direction. Even though the ratios
0.5, 0.3 and 0.1 are approximate, they are useful in that
being conservative, a safe structure will result. Since the
strength is usually not a controlling design factor, many
designers have traditionally used equivalent static loads
in their strength check. A dynamic analysis, coupled with
the help of the computer, will give the true dynamic
forces that act on the structure in addition to the natural
frequencies and displacements,

In many cases, the structure or scil parameters are
known only within certain limits. For example, the
shear modulus of the soil may vary by 25% or more
at points below the foundation as described in Chapter
4. The effect of these variations may be studied by
making additional computer runs and varying the
parameter in question. Thus, the behavior of the struc-
ture may be predicted for probable ranges of parameter
values. This feature of computer use is important since
the possible variation of some parameters may be rather
wide and strongly affect the results.

Computer coding and software applications for the
solution of structures supporting dynamic loads are con-
sidered in this chapter. An analysis of a dynamically
loaded structure is performed to obtain the following
information:

1. Forces and deflections in members and joints for
all static loading conditions. This will determine if
the structure is statically safe or if deformations
exceed tolerable limits. For structures supporting

dynamic machines, the members are usually very
large and massive and the stresses and deflections
will be well within tolerable limits. This situation
is a direct result of initial trial sizing of the struc-
ture where the mass of the supporting structure
is made several times the mass of the machine as
described in the section on Trial Sizing of Elevated
Foundations (Table Tops) of Chapter 3.

2. A dynamic analysis is also performed to determine
the natural frequencies or eigenvalues of the struc-
ture, the mode shapes or eigenvectors, and the dis-
placements and member forces at a number of
time intervals.

The dynamic analysis technique used in most com-
puter programs is called a normal mode (or modal)
technique which results in the calculation of the fre-
quencies and mode shapes which in turn are used for
the response calculations. The method is termed normal
because the equations of motion (one per dynamic de-
gree of freedom) are transformed to a new coordinate
system called normal coordinates, resulting in uncoupled
linear equations leading to a relatively efficient solution
process.

The primary purpose of the dynamic analysis is to
ascertain possible resonance conditions, that is, to deter-
mine if any of the structure natural frequencies coincide
with the machine acting frequency or any of its critical
speeds. A true dynamic analysis is sometimes replaced
by a static analysis by using the Rayleigh method to
calculate the lowest natural frequencies. The calcula-
tion of the Raleigh frequencies is a very simple and in-
expensive feature when used with a computer static
analysis, and some designers will only perform a static
computer analysis with Rayleigh natural frequencies
calculation. However, only a complete dynamic analysis
will provide the necessary information for predicting the
behavior of a structure supporting time-dependent loads.

Example Problem

An example of computer coding for the solution of
an elevated foundation is given in the following pages.
This example has been selected to illustrate the use of
the popular computer software package, STRUDL
(Structural Design Language, part of the MIT-devel-
oped Integrated Civil Engineering System, ICES} ap-
plied to the analysis of an elevated foundation (also
called a table top).

‘The structure shown in Figure 7-1 is analyzed using
the software package mentioned above. The structure
trial dimensions are selected to meet certain preliminary
criteria as described in Chapter 3 under Trial Sizing
of Elevated Foundations (Table Tops},
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Figure 7-1. Typical elevated pedestal foundation (table top).

A. Machine Parameters

Total machine weight = 150,000 lbs.

Turbine speed = 6,949 rpm or » = 727.7 rad/sec
Compressor speed = 6,949 rpm or o = 727.7 rad/sec
Turbine rotor weight = 159 lbs.

Amplitude of turbine force = (W/g) ea®

= {159/(32.2 X 12)] X (1.04/12,000/6,949/1,000) X
(721.7)°
= 286 lbs
where ¢ is obtained from Table 3-1.
Compressor rotor weight = 4,328 lbs.
Amplitude of compressor force = (W /g) ew®

=[4,328/(32.2X12)] X (1.0 +/12,000/6,949/1,000) X
(727.7)°
= 7,794 lbs.
B. Soil Parameters
Shear modulus at the expected bearing pressure, see
Chapter 4,
Shear Modulus, G = 6,500 psi
Poisson’s ratio, v = .45
Coefficient of
subgrade reaction, k, = 120 Ibs./in.®

Soil density y = 115 pef
Allowable bearing capacity = 2,000 psf
Predicted static settlement = 0.2 in. at 2,000 psf

C. Selection of Foundation Configuration

Selection of a trial configuration is accomplished by
following the guidelines described under Trial Sizing
of Elevated Foundation (Table Tops) of Chapter
3
1. Machine and piping requirements dictate the
plan arrangement of the top of the foundation,
as shown in Figure 7-1,

2. A mat foundation is recommended by the soil
consultant. The column spans are 12 ft and 8
ft; thus, the mat thickness is at least

t=0.07 (10)4° = 1.51 ft

Try a 3-ft mat. The thickness of the mat will
also be at least one tenth of its largest dimension
to assure rigid behavior. The relative stiffness
dimension, Equation (5-1), is
IS _— [ Eta }0.25

12 (1 — vi?) ks

The modulus of elasticity of concrete is 3,122,000
psi, and its Poisson’s ratio is 0.17; therefore,

[ = 3,122,000 X (36)37]%
s 12 (1 —0.17%) 120
= 101.0in. = 8.42 ft
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A flexible mat is one whose outside dimensions
exceed 3I, or 25.3 ft in each direction and is
loaded over a small area, as described in Chapter
5. Therefore, 2 24 it by 30 ft by 3 ft mat may
be considered as rigid since the load is spread
out over most of the mat.

3-5, The cross-sectional dimensions of columns and

beams are selected according to these guidelines.

6. The ratic of mass of structure to mass of ma-
" chine is

423,000/150,000 = 2.82 ~ 3 O.K.

7. The mass of the top half of the structure is 0.8

times the mass of the machine (the ratio should
preferably exceed 1.0).

8. The maximum static pressure is

(423,000 + 150,000) /(24 x 30} = 796 psf
< 0.5 % 2,000 psf O.K.

9, The center of resistance of the soil js found to

coincide with the centroid of all superimposed
loads (structure plus machine).

10. The center of column resistance found as shown

in Figure 3-2 coincides with the center of gravity
of the equipment plus the top half of the struc-
ture.

11. Column and beam deflections are checked in

the computer analysis that follows.

12. Column resonance check shows no column reso-
nance with the acting machine frequency (6,949
rpm) . For example, for all the columns,
b= 44.34 psi
L = 168 in. (clear height of columns)
fn = 44,800 (3,000)°2%/4/44.34 X 168

= 3,842 rpm

Thus, the trial design is judged satisfactory and the

dynamic analysis for the proposed configuration is

then performed.

The idealized computer model is shown in Figure 7-2
where numbered joints have been located at member
intersections and at other points of interest such as
loading points. The structure is idealized as a Model
6 type D described in Chapter 2. The global coordinate
axes are selected according to the right-hand rule with
axis ¥ being vertical; each member is also numbered
(numbers within eircle in Figure 7-2), and springs are
placed at joints in contact with the soil in the vertical
and horizontal directions. These springs represent the
resistance that the supporting soil offers to displace-
ment, and the equivalent spring stiffness is calculated
using soil properties as described in 4 below.

A flow chart of the steps that occur during the com-
puter analysis is given in Figure 7-3 and represents a
typical analysis regardless of the scftware package being

Figure 7-2. Computer model of elevated pedestal foundation.



Computer command

I STRUDL = Ml

TYPE PLANE FRAME

ar
TYPE SPACE FRAME
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Y

JOINT COORDINATE
JOINT RELEASES
MEMBER INCIDENCE
MEMBER RELEASES
TYPE PLATE BENDING
ELEMENT INCIDENCES

Y

MEMBER PROPERTIES
ELEMENT PRCPERTIES

CONSTANTS
E
G
POISSON
DENSITY
LOADING
JOINT LOADS

MEMBER LOADS
LOADING GOMBINATIONS

PRINT DATA

STIFFNESS ANALYSIS

LI$T FORCES, REACTIONS, DISPLACEMENTS
LIST STRESSES

INERTIA OF JOINTS

DYNAMIC DEGREES OF FREEDOM

DYNAMIC LOADING
JOINT LOADS

PRINT DYNAMIC DATA

DYNAMIC ANALYSLS MGDAL
LIST DYNAMIC FORGES REACTIONS DISPLACEMENTS

LIST DYNAMIC EWGENVALUE

NORMALIZE EIGENVECTORS
LIST DYNAMIC EIGENVECTORS

FINLSH

Explanation

Type of Computer Program

Definition of Structure

Description of Structure Geometry

Description of Structure Stiffness

Elastic Constants

Static Loading Conditions

Print Input Data

Static Analysis

Print Static Analysis Results

Description of Dynamic Masses
of the Model Lumped at Joints
Description of Massas Participating
in Motion and Types ot Motion

Type of Dynamic Forces Acting

Print Dynamic Input Data

Results of Structural Analysis
due to Dynamic Forces

Calcutate and List Natural
Frequencies of Ali Mode Shapes

Calculate and List Mode Shapes

Normalized to Unit Maximum Amplitude

Termination of the Qutput

Figure 7-3. Computer program flow chart.
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used. The chart lists the specific stages in an ICES-
STRUDL analysis, and these are described in detail.
Other software packages would include similar stages,
but the exact commands and their order would be
different.

Example—STRUDL Coding

STRUDL is a command structured language where
the user can describe the structure in simple, almost
conversational statements. The commands are given in
logical order, that is, the geometry of the structure, the
topology or connectivity, the member properties, the
material constants, and the loads are described prior
to the analysis. A fixed format is not required in either
the exact order of the commands or in a precise align-
ment on a computer card.

A summary of STRUDL commands is given in Ap-
pendix B, and the reader Is referred to the ICES-
STRUDL user’s manuals for additional information
{ref. 2 and 3). The steps in coding a problem for
STRUDL solution are given below (lines in capital
letters are actual commands-one per computer card).
These steps are noted in the printout on pages 121-157.%

1. Computer program and structure definition:
STRUDL ‘EXAMPLE’ ‘STATIC AND
DYNAMIC ANALYSIS OF At
TABLE TOP7
TYPE SPACE FRAME

2. Geometry of the structure (Figures 7-1 and 7-2).
Units are defined since the default internal units are
inches and pounds. Each joint is described by its num-
ber and its x y z coordinates. Numbering of joints
should be selected so that the difference in joint number
at each end of all members is a minimum. The term
SUPPORT identifies the joint as a support. Note that
support joints have been identified under each column
and midway across the slab edge and transverse equiv-
alent “beams.”

UNITS FEET KIPS
JOINT COORDINATES
1 0.0 0.0 0.0 SUPPORT
2 0.0 0.0 10.0 SUPPORT
3 8.0 8.0 0.0 SUPPORT
4 8.0 0.0 10.0 SUPPORT
15 8.0 17.0 5.0
16 8.0 17.0 10.0
25 20.0 0.0 5.0 SUPPORT

3. Structure topology which indicates the connectivity
of the members in the structure. Each command is of
the form IJK and means that member I goes from the
start joint J to the end joint K. The positive sense of
the forces acting on the member follows the right-hand
rule when the first (axial) axis is oriented from start to
end of member,

MEMBER. INCIDENCES

1 I 9
2 2 11
3 . 3 14
37 24 25

4. Restraint conditions at the joints. Since a sup-
ported joint is assumed rigidly supported (fixed), it is
necessary to release these restraints and describe the
stifness (force per unit displacement} of springs at-
tached to the joints. The spring stiffness is a function
of the supporting soil properties and the bearing area
around the joint that acts against the soil for this rigid
mat as described above during trial sizing of the struc-
ture. Chapter 5 gives procedures for calculating the
spring constants of rigid or flexible mats. For ex-
ample, at joints 1 and 2, the contact area is (2.5 + 7)
ft along Z times (5 ++ 4) ft along X = 85.5 sq ft. The
tota! foundation contact area is 24 ft times 30 ft = 720
sq ft. The total foundation spring stiffness in the vertical
direction (see Chapter 4) is

ks = GB: VBL n;/ (1~ »)
or,

_ 6,500 X 144 X 2.2 X /24 X 30
= (1= 45) X 1,000

k. = 100,462 kips/ft
where the terms G, », and 5. (equal to unity in this
example) are defined in Chapter 4. Therefore, for nodes
1 and 2, k= &y, = 100,462 < 85.5/720 = 11,930 kips/
ft. Note that the Y direction in the computer example of
Figure 7-2 is the wvertical soil direction previously de-
noted as the Z-direction in the soil-spring constant
equations of Chapter 4. At the risk of some confusion,
the Y-direction is selected vertical in the computer anal-
ysis due to certain global-local axes advantages. Also,
rotational restraints are assumed to be non-existent since
they are generally negligible. Further discussion of the
calculation of the spring constants in the case of larger
flexible mats is presented in Chapter 5.

* The symbol T denotes continuation of the previous line on 2
single card.



UNITS KIPS FEET

JOINT RELEASES

1,2 MOMENT XY Z KFX 8649. KFY L1930,
KFZ 8649.1

25 MOMENT X Y Z KFX 4046, KFY 5581.
KFZ 4046.1

The third command listed above means that joints 1
and 2 have X, Y, and Z rotational freedom and linear
springs with 8,649 kips/ft in the global X- and Z-direc-
tions (horizontal) and 11,930 kips/ft in the Y-global
direction (vertical). The horizontal springs are placed
at exterior joints although equivalent horizontal springs
could have also been distzibuted among all joints in
contact with the soil. No significant difference would be
detected in the results.

5. Cross-sectional properties for the member. The
cross-sectional area and the moments of inertia for each
member about its own local coordinate axis are given.
The local x-axis is always directed along the member
while the local z-axis is parallel to the global Z-axis
for columns and is horizonta! for beams, provided that
the global Y-axis is set vertical. For further details on
local-global axes relationships, the reader is referred
to the MIT STRUDL User’s Manual, Volume I (ref.
2). Modifications are necessary if the local Z- and Y-
axes are not parallel to the global axes. The areas AY
and AZ are disregarded and the analysis will, therefore,
assume the members to have no shear stiffness. For
frames consisting of relatively long and shallow mem-
bers, no significant difference can be detected by neglect-
ing the shear stiffness of the members.

MEMBER PROPERTIES
1,2 PRIS AX 6.0 IX 47 IY 45 IZ 20

35, 36, 37 PRIS AX 12,5 IX 17.9 IY 26.'IZ 6.5

The second command means that members 1 and 2
are prismatic, have cross-sectional areas of 6 sq ft,
torsional moments of inertia of 4.7 ft!, moments of
inertia around the local y-axis of 4.5 ft!, and moments
of inertia of 2 ft* around the local z-axis. Note that for
these 3 ft X 2 ft columns the local z-axis is parallel to
the global Z-axis and, therefore, I. =3 X 23/12=2.0
fre.

6. Material Properties. The material properties in-
clude the modulus of elasticity E, the shear modulus of
elasticity G, Poisson’s ratio, and the material density.
These constants are 3,122 ksi, 1,334 ksi, 0.17, and ©.0868
Ibs./cu in., respectively. Density is specified in lbs/cu in.
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for convenience; however, some STRUDL packages
treat density as mass density, and units and magnitude
of mass density must be entered.

UNITS KIPS INCHES
CONSTANTS

E 3122. ALL

G 1334, ALL
POISSON 0.17 ALL
UNITS POUNDS INCHES
CONSTANTS -

DENSITY 0.0868 ALL

7. Static Loadings. A number of basic loading condi-
tions and combinations of the basic loadings are con-

sidered.
UNITS KIPS FEET
LOADING 1 ‘FULL LOAD ACTING

IN THE VERTICAL DIRECTION’}
JOINT LOADS

1,2 FORCE Y - 384

25 FORCE Y —15.0
(other loadings and combinations follow)

RAYLEIGH LOADING 3 ‘FULL LOAD ACTING
IN THE TRANSVERSE DIRECTION't

JOINT LOADS

1,2 FORCE Z 38.4

25 FORCE Z 15.0

A loading for which the RAYLEIGH frequency is
to be calculated is denoted as shown above for loading
3. This loading includes the weights of the structure
adjacent to each joint and the weight of the machine
applied in the direction of the desired vibration mode,
in this case, the transverse of Z-global direction. Thus,
the analysis will include a Rayleigh-Ritz calculation of
the natural frequency for the structure in the transverse
direction. Loading combinations as follows would be
added by some designers in a static check as discussed
previously. These loadings are quasi-static, that is, con-
servative equivalent static loadings which may be used
for design check of deflections and member forces.

Total vertical load + 0.3 X total load acting in
the transverse direction (Z)

Total vertical load + 0.1 X total load acting in
the longitudinal direction (X'}

Total vertical load + 0.5 X total load acting in
the vertical direction (¥)
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These are denoted Loading Combinations 4 through 6,
respectively, in the computer printout.

LOADING COMBINATION 4 ‘FULL
VERTICAL LOAD PLUS 0.3%
FULL TRANSVERSE LOAD® —t
COMBINE 1 1.0 303

LOADING COMBINATION 6 ‘FULL
VERTICAL LOAD PLUS 0.5t
FULL VERTICAL LOAD’ —t
COMBINE 1 10105

The first command specifies that loading combination
4 consists of loading [ times 1 plus loading 3 times 0.3,

8. Listing of all data. A printout of all internal data
1 requested with the command PRINT DATA ALL.

9. Geometry plotting. Structure geometry plots are
requested as a further check of the input data.

10. Static Analysis. The following command is used
to build and invert the structural stiffness matrix and
to solve the problem for all loadings.

STIFFNESS ANALYSIS (REDUCE BAND RCQOT)

The command within parentheses is optional and gen-
erally results in a more efficient algorithm for large
problerns.

Il. Qutput of results. Results are printed by using
the LIST commands, such as

UNITS KIPS INCHES

LIST RAYLEIGH

OUTPUT BY MEMBER

LOADING LIST 4, 5, 6

LIST FORCES DISPLACEMENTS
REACTIONS ALL#

CYCLES SECONDS

Results for loadings 4 through 6 are requested. This
step completes the static analysis. The dynamic analysis
includes the following additional steps:

12. Mass acting at each joint. The structure’s rmass
and the machine mass are taken to act at the structural
joints in the three linear directions only. Inclusion of
rotational inertia has a negligible effect on the results.
The structure mass may be computed internally and
automatically lumped at each joint and the machine
mass i5 then added at the machine support joints.

UNITS POUNDS INCHES

INERTIA OF JOINTS LUMPED

INERTIA OF JOINT ADD 9, 11 LINEAR ALL
69.881

INERTIA OF JOINT ADD 15 LINEAR ALL
117.75%

INERTIA GF JOINT ADD 17, 18 LINEAR ALL
2847+
INERTIA OF JOINT ADD 20 LINEAR ALL 73.76

Note that the added machine mass at joints 9 and i1
is 27,000/{32.2 X 12) =69.88 lbs.-sec*/in., and simi-
larly for joints 15, 17, 18, and 20, see Figures 7-1 and
7-2. The structural mass is included through the
INERTIA OF JOINTS LUMPED command.

13. Dynamic degrees of freedom—only tranpslation
modes are considered. The commands that accomplish
this are

DYNAMIC DEGREES OF FREEDOM
JOINT 1 TO 25 DISPLACEMENT XY Z

14, Damping ratio. The damping ratio for each de-
gree of freedom is given by

DAMPING RATIO (.10 75

Where total average damping of 0.10 has been speci-
fied for the X, ¥, Z translatory degrees of freedom at
each of the 25 joints, or 3 X 25 = 73 times. Note that,
realistically, those degrees of freedom associated with
foundation movement have a damping ratio in the
0.15-0.20 range, whereas damping for the remaining
degrees of freedom may only be in the 0.05-0.10 range.
Therefore, 0.10 is used throughout as an average value.
Chapter 5 gives a further discussion on the choice of
soil damping ratios. '

15. Dynamic forcing function. Forcing functions in
the wvertical (¥-direction) and in the transverse (Z-
direction) are applied at the joints where they occur,
These forcing functions include a force amplitude equal
to the unbalanced machine force, a frequency given by
the acting machine frequency (in radians) and a phase
angle of 1.5707 radians (90°) for the transverse func-
tions, i.e., the transverse function is 90° out of phase to
the vertical function in this centrifugal machine, The
dynamic forcing functions are applied at the centerline
of the centrifugal machine shaft, joints 10, 15, and 20.
One half of the turbine force acts at joint 10 or 0.5 X
286 sin 727.7¢, one half of the turbine and compressor
forces act at joint 15 or 0.5 X 286 sin 727.7¢ + 0.5 X
7,794 sin 727.7t, and one half of the compressor force
acts at joint 20 or 0.5 X 7,794 sin 727.7¢.

UNITS RADIANS SECONDS POUNDS
INCHESt

DYNAMIC LOADING 7 ‘CENTRIFUGAL
FORCESY

JOINT 10 LOAD FORCE Y FUN SIN AMPL 143.
FREQ 727.7%



JOINT 10 LOAD FORCEZ FUN SIN AMPL 143.
FREQ 727.7 PHASE 1.5707%

JOINT 15 LOAD FORCE Y FUN SIN AMPL
4040, FREQ 727.7F

JOINT 15 LOAD FORCE Z FUN SIN AMPL
4040. FREQ 727.7 PHASE 1.5707%

JOINT 20 LOAD FORCE Y FUN SIN AMPL
3897. FREQ 727.7%

JOINT 20 LOAD FORCE Z FUN SIN AMPL
3897, FREQ 727.7 PHASE 15707t

16. Time Periods. The time span and time incre-
ments for the dynamic analysis must be specified. The
integration time periods should include, as 2 minimum,
12 steps per single complete operating frequency cycle,
in order to achieve a =5% accuracy in the results (ref.
4), that is, for a frequency of 727.7 radians/sec, the
integration time periods should not be greater than T
(one cycle) = 2x/727.7 = 0.00863 sec; then,

At = T/12 =0,00863/12 = 0.0007194 sec

The following command includes 10 complete cycles of
machine operation with 12 steps in each cycle. However,
3 complete cycles of operation may be sufficient to study
the response of the structure.

INTEGRATE FROM 0.0 to 0.0863 AT 0.0007194
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17. Listing of dynamic data. A printout of all dy-
namic data is obtained with the command

PRINT DYNAMIC DATA ALL

18. Dynamic analysis. The actual dynamic analysis
is obtained with the following command with the part
within parentheses being optional. Only the first 20
modes are included in the analysis to reduce computing
time with negligible loss of accuracy.

DYNAMIC ANALYSIS MODAL
(REDUCE BAND ROOT) 20%

19. Output of dynamic analysis. The natural fre-
quencies, the modes (normalized), the displacements,
and forces for each time increment are requested with
this command. The first 20 modes are requested to con-
serve paper but more may be printed,

UNITS KIPS INCHES CYCLES SECONDS
LIST DYNAMIC EIGENVALUES 20
NORMALIZE EIGENVECTORS

LIST DYNAMIC EIGENVECTORS 20

LIST DYNAMIC DISPLACEMENTS ALL

LIST DYNAMIC FORCES ALL

20. End of analysis. The last command in the job is

FINISH
(text continued on page 137)
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STRUDL 'EXAMPLE® STATIC AND DYNAMIC ANALYSIS GF A TABLE-TOP!

—"_“—_—'_'—"'—m'F“'.'m’.""I.‘II.II""III.IDI'I""I‘I.‘

L]
»
—w ~— - TCES STRUNL-11 S

- .

. THE STRUCTURAL DESIGN LANGUAGE
- . Gh Lah .

#  CIVIL ENGINEERING SYSTEMS LABORATGRY

*  MASSACHUSETTS INSTITUTE OF TFCHNOLOGY
g CAMBRIDGE, MASSACHUSETTS <

. va Mz JUNE, 1972

: .

L] —— 2 i —— e — -

*

L]

— "".lII.I".I’...'I"l.!lllI.l'.ll".'...l‘."l..

TYPE SPECE FRAME ™ 7 A
UNITS FEET KIPS
WA fa TR T

JOINTS COORDINATES
| T— 07 0 0 00T SUPPCRT T
0.0 19,0

;2 0.0 SUPPORT

! 4 8.0 0.0 0,0 SUPPCRY

: 80 U0 0Ly SUPPORT

E RN B IR B A B

-
-
*
*
*
-*

®
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0.0

0.0 SUPPORT

. 6 14,0 -0.0 19.0 SUPPORY
T 2030 0.1 U.U—SUPPORT-_ — T mmm s o e
20,0 9.0 10.0 SUPPORT
g 0.0 17.90 0.0
TO T T7. T 5.7 T -
11 0.0 17.0 1040 S o -
‘ 12 4,0 17.0 4.0
I3 Ga Tia.U0 10,7 — . - - - ToTmTTTTT T -
14 B,0 17.0 €40
f 1S 8.0 17,0 5.0 -
E 11:) a0 T 0 TusU T T Tt T T
17 14.0 17.0 Q.0
18 14eN 1740 10,0
19 200 17.0 0.0
20 20.0 17.8 S.90 o o o L .
ul 2040 1740 100
20,0 U0 530 SUPPORT © T T - T o -
23 8.0 0.0 5.9 SUPPORLi‘ i o e e
24 14,0 0.0 5.0 SUPPORT
U R0 TSy SUPPORT T T T T e e —_ "
‘ — —————— ———— - — e — — -
r MEMBER INCIDENCES @
T I - e .
2 2 11 o o B _ _ L
' 3 3 14
4 5 TE Tt e T -
S 7 19 o . L
- - L . e s e .
' 6 8 21
T g 10 - T T T - -
a 1 11 e e
9 14 1Is
] 15 1% I T TooTmTm T T o
11 18 20 R L e e
12 29 21
T3 1T 13 - I
14 13 16 o B e e
15 16 18
143 8 21 - — o - - -
’ 17 9 12 e
18 12 14
19 & 17 -t TTTo T T T T T
20 17 13 N e
21 t 22

22
23
24

22

23

Zz
23
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25 5 24
26 24 6 e L
27T 7 25

T8 25 B, e oo R

2¢ 2 s L - e
an 4 6

J1 ] H ——— —— -
1z 3 S

33 3 5

ELY =] T —_— e e - —

s 22 23

% 23 24

T L) 4] e . _

|

JOINT RELEASES
S OUTNT RELERSES INCLUDE ENUTVALENT SPRING STIFFNESS FOR-SOTL™ T

192 MOMENT X ¥ Z KFX B64940

KFY 11930. KF

7 A649,0

3+ MOMENT x ¥ 7 KFX 6727.0
SvE MOMENT XY Z KFX " STE6507 KFy - 79574

T+8 MOMENT X Y Z KFX 7648.0

KFY 9279, KF

KFY 10604, KF

2 67270

TKFZ 576807

7 7688.,0

22

Y MOMERT X Y 2T KFX 35%1,0 KFY FBAS,0 KF7 T ASEIIT T

MOMENT X Y 2

KFX 4552.0

KFY 6279.0

KFz 4532,0

24 MOMENT x ¥ Z KFX 303%.0 KFY 4186,0 &F7 3035,0 o i

A5 MOMENT X ¥ 2 KFX 4046.0 KFY G5581.0 KFZ 4046.0

L] ———
MEMBER PROPERTIES ) . . o
$ UNITS OF AREA ARE FT.S0. ANO UNITS OF MOM.OF INERTIA ARE FT.X & @

T2

PRISFMATIV ARTB.U [T 4.7

IV 4385 12 2.0 ——

394 PRISMATIC AX 9.0 IX 1144 IY 6.8 127 6.1

546 PRISMATIC AX 4,5 IX 243 IY 3.B I2 0.8

TABTPRISRATIC EX 907 IX TIWI 1Y 6.8 12 6,8
Seln
11.12
1314417418

155164+19,20

21422 PRISMATIC ax

23424 PRISMATIC Ax

25426 PRISMATIC ax

27+28 PRISMATIC ax

29 TO 34 PRISMATIC

35 TQ 37 PRISMATIC

€

UNITS INCHES KIPS

CONSTANTS

E 3122.0 ALL

6 1334. aAlL

POISSON  N.17

PRISMATILC AX 4.5 TX 2.3

22,5 Ix
17.5 Ix
15.0 Ix
2040 Ix
AX 23.8

ax 12.5

ALt

44,41 1Y
34,54 1Y
29,61 1v
39.48 (¥
Ix 46,23

Ix 24,33

1y .8 [7 3.4

PRISMATIC &X 7.5 IX 7.8 IY 2.9]

16A7.5 1
1312.% [

PRISMATIC AX &40 IX 4.7 1Y 2,0 [7 4.5

PRISHATIC AX 4.0 IX 4.7 [Y 240 I7 4.5

IZ 5.6
Z11.7

Z 9.1

1125. 17 7.8

1500, 17 10.4

Ir 1140,

Iy &00.

17 1244

17 6.5

L®
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UNITS POUNDS INCHES
CONSTANTS DENSITY 0,0R6R  ALL
s

UNITS KIPS FEET
LOADING 1 *FULL LOAD ACTING IN THE VERTICAL OIRECTION! (:::)
JOINT LCADS

1¢2 FORCE Y =18.4
346 FORCE ¥ =34.4
5+6 FORCE Y -21,4
TeB FORCE Y =33.2
Ge1l FORCE ¥ «38,5
10 FORCE ¥ =6,8
12413 FORCE ¥ =3,%
14416 FORCE ¥ -16.9
1S FORCE Y =50.0
17418 FORCE Y -17.8
19421 FORCE Y =3,R
20 FORCE Y =31.G

22 FORCE ¥ =-16.9
23 FCRCE ¥ =13.1
2a FORCE v =11.3
25 FORCE Y -15.0

TOADING 7" TFULL LOAD ACTING IN THE LONGITUNDINAL DIRECTION®

1+2 FORCE X 38.4
Ti% FORCE X 34.4
S5 FORCE X 2144
T+B FORCE X 33.2
OITI"FORCE XY 38.5
10 FORCE X 6.8
12+13 FORCE X 3,6
TevTA FORCE X 1649
15 EE?EF X 5040
17418 FORCE x 17.8
19721 FORCE x 9.8
20 FORCE X 31.9

22 FORCE X 169
ET FORCE X T3.1

24 FORCE X 1103
25 FORCE X 1S5.0
REYLETIGH LOADTING 1 FFULL LOAD ACTING IN THE TRANSVERSE NIRECTION!
EP{NT LUQDS

1.2 FORCE 7 38.4
ek FORCE 7 34.4
S46 FQ?CE 2 214
T+8 FORCE 7 33.2

[V FORCE 7 38.5
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VlU fQRCE ] §.B
12413 FORCE Z 3.8
14316 FORCE 7 16.9
15 FORCE 7 50.0
17418 FORCE 7 k7.8
19:21 FORCE 7 9.8
20 FORCE Z 31.9

22 FORCE 7 16.9
23 FORME 7 13.1

P4 FORCE 7 11.3
25 FORCE 7 15.0

LOANING COMBINATION 4 *FULL VERTICAL L0O&D PLUS 0,3 FILL TRANSVERSE LOAD?Y =
COMAINE 1 1.0 3 0.3

LOADING COMBINATION S ‘*FULL VERTICAL LNAD PLIJS 0.1 FULL LONGITUDINAL LOADY =
COMRINE 1 1s0 2 0.1

LOADING COMBINATION & fFULL VERTICAL LOAD PLUS 0.5 FULL VERTICAL LOAD' =~
COMAINE 1 la8 )} 0.5

£
PRINT DATA &LL

FREPEURBER BTG ARG HRIBRAS RNV R AR REBRRS T . - ' TTOTTT T T T T T T e o e ey e e

®  PRGRALEM DATA FRCM INTERNAL STORAGE #
rinbeinte bbb it bbbt ituhibsbuioin et

Jas ID - EKAMPLE JOB TITLE =« STATIC AND DYNAMIC ANALYSIS OF A TABLE~-TOP o -
ACTIVE UNITS = LENGTH WEIGHT ANGLE TEMPERATURE TIME
FEET KIPA, RAD NEGF _SEC

FRBBREARRS STRUCTURAL DATA Sesssasnns

TRUTIVE STRUCTURE "TYRE = SPELE " FHAME -
ACTIVE COOQEINATE AXES X Y Z

JOINT COORDINATES==armmmmm=vmmeecescmisssrmewsmennasaneasen/  STATUS===/

JOINY X ¥ 2 CONDITICN
1 0.0 0.0 0,90 SUPPORT ACTIVE GL.OBAL
z 0.0 d.0 10.000 SUPPORY ACTIVE GLOBAL
T T T TTRWL e G0 T0 SUFPORT ACTIVE TGLOBAC T T T 1
4 B4NOO 0.0 10.000 SUPPORT ACTIVE GLOBAL
s 14,000 0.0 Ga0 SUPPORT ACTIVE GLOBAL :
& TTTTTTTTTTTITASBMY T Uh0 T T 10.6n0 T SUPPURT T ACTIVETT T GLREACTT T T
7 20,000 0.0 0.0 SUPPORT ACTIVE GLOBAL
a 20,000 0.0 10.000 SUPPORT ACTIVE GLOBAL
T T LG yoor— ACTIVE G
1o 0,0 ACTIVE GL.OBAL
11 0.0 ACTIVE GLOBAL
0 - %00 ACTIVE — ——  "GLOBAL ~~~" """ TT T T T T e
13 4,000 ACTIVE GLOBAL !
) R.000 ACTIVE GLOBAL
ST T T T 84000 ACTIVE GLOBAL™ - T
16 a.000 ACTIVE GLOBAL .
17 14,000 ACTIVE GLOBAL :
TIETTTTT T T 144000 TRECYIVE GLOEAL T T T
19 20.000 ACTIVE GLOBAL
20 29,000 ACTIVE GLOBAL :
Ty T Togneed T T T RCTIVE T T TGLOBAL T T T T T T e e e e
22 0.0 0.0 5,000 SUPPORT ACTIVE GLOBAL
23 8,000 0.0 5,000 SUPPORT ACTIVE GLOBAL
TR T 714,900 T o.n T 5.000 " TSOPPORT —  ACTIVE B 1 - £ 1
25 20.000 0.0 5.000 SUPPORT ACTIVE GLOBAL .
i
“JOTNT RELEASEGemmmmm e m e s m e i e Tl e dniarascant=dee ZECAS TIC SUPPORT T RELEASE S s S d i d s m e s na s e f i e S oo E dnauns
JOINT FORCE MOMENT THETA 1 THETA 2 THETA 3 KFX KFY KF2 KMX KMY i KMZ
1 XYz 0.0 0.9 0.0 8548,996 11929,9%6 B648.996 0.0 0.0 T ]
T T TR Y T Ul Ll TEINTT T BEABTIS6 T 1T9297996 T T ERAE 96T - 0.0 U0 T e

3 XY 7 Ged 0.0 2.0 6726,996 9278.996 67264996 0,9 i 0.0 0.0
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4 XY Z 0.0 00 0.0 6726,99¢ 927R.996 6726,996 00 0.0 O0uty
I XY T 04077777 00777 TTT0LT 5765.,995 T952.9%6 5765.996 "7 "7 0.0 0.0 C.0
6 XYz 0.0 0.0 0.0 5765.994 7952996 5765.996 0.0 D.0 G0
T XY 2z 0.0 del .0 T687,996 10603.996 T687.986 0el 0.0 %]
a8 - AT £ vy Vet Vsl 7 7 FOHT eYv0 Iusls.vye [-1-Fa b )- R | N Liry s
22 Xy 2 0.0 G0 0.0 4551.994 6278.996 4551,996 0.0 0.0 049
23 Xy z a.0 G.0 0,0 540,999 48813,996 3540,99% 0.0 0.0 0.0
24 XYz 0.0 00 0.0 3034,999 4185,996 3034.999 0.0 0.0 0.0
2s iy 7 0.0 [ ] 0.0 4045.999 S5580,.996 4045,999 8.0 0.0 0.0

i
i
i
|
i

MEMBER INCIDENCES==-=-Sa&s=7 LENGTH===ac=7 RELEASES=cee=sdaccesasserasaay/ STATUS==7 —— "~ ——
MEMBER START END LOCAL COQRD. STARY END
FORCE MOMENT FORCE MOMENT

1 1 9 17.000 ACTIVE SPACE FRAME
2 2 11 17,000 ACTIVE SPaCE FRAME
S 3 T 17,000 ACTIVE SPACE FRERE T T T -
4 4 113 17.000 ACTIVE SPACE FRAME
s 7 19 17.000 ACTIVE SPACE FRAME
) 3] Z1 T7.000 KCTIVE SPECE—— FRAME
T 9 10 5.000 ACTIVE  SPACE  FRAME
[:] 10 11 S.000 ACTIVE SPACE FRAKE
] 14 13- S 5. 000 ACTIVE SPECE FRANE T
1o 15 16 S.000 ACTIVE SPACE FRAME
11 19 20 5,000 ACTIVE SPACE FRAME
L - R 71 T 5,000 TACTIVE T SPACE FRARE — : -
13 11 13 4.000 ACTIVE SPACE FRAME
14 {3 16 4,000 ACTIVE SPACE FRAME
15 1% ™ T 6. 000 ACTIVE SPRCE FREME  —— — T T
16 13 21 6.000 ACTIVE SPACE FRAME
17 9 12 4,000 ACTIVE SPACE FRAME
TETTTTT R TTTT TR LYV LY ; ACTIVE SFACE FRANE -
19 14 17 6.000 ACTIVE SPACE FRAME
20 17 19 6,000 ACTIVE SPACE FRAME
ZT A 4 5. 000 TTTTTTTUATTIVE T SPACE T FHARE 0 T o -
22 22 Z 5.060 ACTIVE SPACE FRAME
23 3 23 S5.000 ACTIVE SPACE FRAME
L - R T 5,000 ACTIVE SPACE  FRAEME
25 5 an S.000 ACTIVE SPACE FRAME
25 24 6 5.000 ACTIVE SPACE FRAME
Z7 T 25 5000 ACTIVE SPACE FRAME ~—~~— ~ TR
28 2% 8 5.000 ACTIVE SPACE FRAME |
29 2 4 8,000 ACTIVE SPACE FRAME !
30 T e & OUY T ATTIVE T T T
k] | & 8 6,000 ACTIVE SPACE FRAME i
32 1 3 B.000 ACTIVE SPACE FRAME ;
kI 3 5 6,000 ACTIVE SPACE FRAWE |
34 s 7 6.000 ACTIVE SPACE FRAME |
as 22 23 8.000 ACTIVE SPACE FRAME i
36 AT R T T 5.0 ATTIVE SFACE — FREME g
37 24 25 6,000 ACTIVE SPACE FRAME .
MEMRER PROPERTIES=mumamnreccca s rsmessneecmen st - ——— - - — ———
“REMAERFSEG YYPE T 77T SEG.L COMPE ~ AX/YD AYZZD RI/YC IX7ZIC IY/EY TZ/EZ SY 52
1 PRISMATIC 6.000 0 040 4,700 44500 2.000 I3 0.0
Tt 0.0 Te0 T T T.T UelF 0.7 K
2 PRISHATIC 6.000 0.0 0.0 4.700 4.500 2.000 G.0 0.0
0.0 0.0 0.0 0.0 00 0.9
k] PRIS - ¥, 000 G40 00 IT.R00 5.800 6.800 0.1 0
0.0 0.0 0.0 0.0 0.0 0.0
4 PRISMATIC 9,000 0. 0.0 11.400 64800 64800 0.0 0.0
Y0 Tev VaU UeQ [P ] Vel
5 PRISMATIC 44500 tat (1Y} 2.300 2.800 o.,a00 0.0 0.9
q.0 8.0 0490 0.0 0.0 0.0
& PRISMATIC 4.500 [ ] 0.0 2.300 3.800 0.800 0,0 0.0
0.0 0.0 0.0 0,0 Q.0 0.0
ki PRISMATIC F.000 0.0 0.0 il.100 6.600 6.800 0.0 0.0
e g G T el T e T e @ g~ e mme e e
8 PRISMATIC 9,000 .0 0.0 11.100 6,800 6,800 4.0 0.0
. 0,0 O.0 0.0 0.0 0.0 040 .
g T PRISMATITT T T TERVNOT T T 0.0 4. 70T 2000 10 TTN0 T 0
0.0 0.0 b.0 0.9 040 0.0
10 PRISMATIC 6,000 0.0 0.0 4,700 2.000 4,500 0.0 0.0
B TTTTTITROTT T TR T T VG777 o I Y - e ™Y+
11 PRISMATIC 44500 Oa 0 0.0 2.300 0.800 3.800 Q.0 0.0
0.0 0.0 0.0 G.0 040 040
12 PRISFATIC (30501 BN 1 % | R | 1) | R 200 T TOGBOUT T 3,800 T T 6,90 7 0.0
0.0 Qa0 6.0 0.0 0.0 0.0
13 FRISMATIC 6,000 0.0 0.0 4,700 24000 4,500 0.0 0,0
DA Y B I R S T.0 L LY - T
14 PRISMATIC 6,000 0.0 f.0 4,700 2,000 4,500 0,0 0,0
0.0 0.0 0.0 0.0 0.6 0.0 )
TS PRISMATIC T.507 IR LTI BT 910 TUSGEIE TR T 0,0
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16 FRISMATIC 7.500 0.0 0.0 74800 3.310 S.600 0.0 ¢.0
e L Y L L A ) A T ¢ e T |
17 PRISMATIC 64000 0.0 4.0 4,700 2.000 &, 500 0.0 0,0
G 0.0 0.0 0.9 0.0 B0
g — PRISMATICT "~ T TE.myT U0 T 0L TTTUERTOETT T EGGRTTT T T RS0 T T LT 0,0
0.0 [ FY)] 0.0 0.0 00 0.0
138 PRISMATIC T.500 0.0 0.0 T7+800 1.910 5.600 0.0 0.0
e | % 1 A » ™ e ™ e P e I /K |
20 PRISMATIC 7,500 0.0 0.0 T+800 J.910 5.600 0.0 0.0
0.0 0.0 0.0 0.0 0.0 .0
- A o4~ § 5. 7. 3 ) £ S 57 | 1/ R + 2 | R | 1Y R LT ) £ A £-1: 3 Y R B 1 R Y I Y
0.0 0.0 Q.0 0.9 0.0 0.0 ’
22 PRISMATIC 22.500 0.0 0.0 44yal0 1687.498 11,700 0.0 0.0
T TTTIA . T TN T T U.C TTTUWE 0.0 Ts0 T
23 PRISMATIC 17.500 0.0 0.0 4540 1312.498 9.100 0.0 G.0
0.0 0.0 0.0 0.0 0.0 0.0
PH T PRISMATICT™ © 770 T TTTTUITLS00 T QW0 T T 040 T T T 345607 1312449677 T 9,100 9.C ) 0.0
fia 0.6 0.0 0.0 0.0 0.0
25 PRISMATIC 15.000 0«9 0.0 29,619 11244999 T.800 0.0 0.0
T e L i Y | Lt L i N
26 PRISMATIC 15,000 0.0 0.0 29.610 11244999 T.800 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
PT T T TPRISMATIC T T T T REO0D T T 0.0 T T T 0eTT T TTTIER0 TTA99.998 T T 10040077 0.0 T 7T T 0.0 T
0.0 0.0 0.0 0.0 0.0 0.0
28 PRISMATIC 20.000 0.0 0.0 3%,480 1499.998 10,400 0.0 0,0
R 1/ a0 77 TTTON0 T T TR TN T T T qe T T o
29 PRISMATIC 23.800 0.0 e 46.230 1139.999 12.400 0.0 0.0
0.0 0.0 0.0 0 0.0 0.0
IO O TTPRISMATIC T T T T T TTRT AT T T gL T T TN T T T AREV2I0 T TI394999 T 1244007 T 0T T T 0,07
0.0 0.8 (P ] 0.0 0.0 0.0
31 PRISMATIC 23.800 0.0 G0 46,230 1139.999 12,400 0.0 0,0
S 1) + R I A | Y U I L R P | e 1 |
3z PRISMATIC 23.A00 0.0 0.0 46.230 1139.999 12.400 Q.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
II T OUPRISMATIO T T TTTTT OTUURIGBOD 7T 04077 TUTTRL0T T TREGZID T I13A9.999 7 7 124400 T 040 T T T 0.0
040 0.0 0.0 0.0 0.0 G0
k) PRISMATIC 23.800 0.0 0.0 45,230 1139.999 12,400 0.0 0.0
I RS Y i / 1 + R % B 1N R L ¢ e 1
a5 PRISMATIC 12,500 0.0 0.0 24,4330 £99.999 6,500 0.0 0.0
0.0 N0 0.0 0.0 0.0 040
JE 7T PRISMATICT ™ T 126s00 T T 040 T0LCTTTT T 245330 7 599,999 0 BGS06 Q.0 = 0.0
0.0 0.0 G0 0.0 0.0 0.0
ar PRISMATIC 12.500 0.0 0.0 244330 599.999 6,500 0.0 0.0

STRUDL DATA SET

CONSTRAINT DICTIONARY=we——eeceana/

NAME RETRIEVAL
AXT T TS YT - T TABULAR

AY TABULAR

Az TABULAR

X T T TABULAR

1Y TABULAR

12 TABULAR

§Y - """ T T "TABULAR

sz TABULAR

YD TABULAR

70 — T TABULAR -
FLTK TABULAR

WETK TABULAR
YOFAFLTT T T U T T TABULAR

rY TABULAR

Rz TABULAR
TORE T T “TTABULAR -
Ye TARULAR

zc TABULAR

WEIGHT ™ — """ TABULAR =~

4anpesesas | DADING DATA #wbowdisens

LOADING - 1 FULL LOAD ACTING IN THE VERTICAL QIRECTION STATUS = ACTIVE
MEMRER AND ELEMENT LOADSmo-wme s e mt et e e e b e e e s e e et r e e e A s et e sar s e s em st e L e f
MEMAFR/ELEMENT

JOINT LOADS=we-mmcerema e st e e s et e s nraeare/ Sesss e e A e e eSS s S n -

JOINT STEP FORCE X Y Z MOMENTY X Y z

I 0.0 «J8.400 0,0 .0 0.0 0.0

? da0 =38,400 0.0 Qa0 0.0 0.9

k| 0.0 =34.400 N.0 0.0 0.0 G0

" T T T c 0.0 =34,.4400 0.0 el 0.0 0.0

S 0.0 =21.400 0.0 0«0 LY ] 0.0

6 0.0 =21+400 g.n G0 0.0 Ge0

T T T T T T OTge T <23.200 ‘.0 4.0 0.0 0.0

a Oa0 =33.200 0.0 0.0 6.0 0.0

9 0.0 =38.5040 0.0 0.0 G0 0.0

b 1 . Y T=6,800 0.0 G0 0.6 0.0

11 0.0 =38.500 0.0 d.0 0.0 0.0
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i2 0.0 =3.600 .0 0.0 0.0 0.0
T3 THRDT T UTT=34600 T T T 0,0 8.0 0.0 0.0
14 0.0 =16.900 9.0 G0 0.0 040
15 0.0 =50.000 Q.0 f.0 0.0 0.0
T e - " =164900 i 0.0 THVD T 7T 0.0 040
17 G.0 =17.800 0.0 0.0 0.0 0.0
18 0.0 =17.800 0.0 0.0 0.0 0.0
19 - Te0 ~7 77T T agLENN Dal i T 0.0 ) 0.0 0.0
an G0 =31.900 0.0 Ga01 0.0 0.0
21 0.0 =9.800 0.0 0.0 0.0 0.0
-4 i TRED T T =1699400 7 G40 LT 0.0 0.0
23 0.0 =13.100 0.0 0.0 0.0 0.0
24 0.0 =11.300 0.0 0.0 0.0 G.0
25 U0 7T TTTRE1S, 000 0.0 0.C 0.0 E 0.0

JOINT DISPLACEMENTS~rmnsmmeeasseres—stsamcocnmmecmme/ mcmmmaremsemaseaen——saee .- f
TJUINT - STEF  UISP. X ¥ ¢z HOT . X  TTTTo ¥ z -
JOINT FORCE ASSUMPTIONS memmamcemme—res-e-cssemisesiemmosss st — .. —- . e —. e eee— = —eees T eromor——coess=reas/

JOINT THETA 1 2 3 FORCE X Y z MOMENT X Y F4
"NOTASSUMPTIONS GIVEN FOR THIS LOADING

MEMPER FORCE ASSUMPTIONS =m=s=ses-asscsameceana/ B L TE T LY

“MEMAER "7 "COMPONENT -~ 'DISTANCE °~ = VALUE COMPONENT DISTANCE VALUE
NO ASSUMPTIONS GIVEN FOR THIS LOADING

i Fl{LL LoAD ACTI_NG IN THF LONGITURINAL DIRE_CTION STATUS = ACTIVE .

LOADING = 2

MEMRER AND ELEMENT LOADSer—crecccamces e e o e e e ey e e m e - e A S A A S S s s TS T s s b - f
MEMBER/ELEMENT

JOINT LNADS=mmemrmscseead— e e sssss=sscss—sesare/ Srre e eSS assssces esmm e/
JOINT STEP FORCE x Y Z MOMENT X ¥ z

5 3. 400 0.0 0.0 0.0 0.0 0.0
2 3B.400 0.0 0,0 0.0 0.0 0.0
3 34,400 0.0 0.0 0.0 0.0 0.0
I 2 I DY 1) 0.0 0.0 0.0 0.0 0.0
s 21400 0.0 0.0 0.0 0.0 0.0
6 21+400 0.0 Q.0 Gald 0.0 0.0
Yoot o o ’ 33.200 0.0 0.0 6.0 G.0 0.0
8 31.260 040 Qa0 0.0 6.0 0.0
9 38.500 0.0 4.0 0«0 .2 0.0
I 1: I a 6.800 0.0 0.0 Ned 0.0 9.0
11 34.500 0.0 0.0 0.0 0.0 0.0
12 J.600 0.0 0.0 N0 0.0 0.0
T3 3.600 0.0 0.0 0.0 0.0 0.0
14 15,900 4.0 040 0.0 L] 0.0
15 50,000 0.0 0.0 0.0 0.0 0.0
T6 — — 777 T T T 16.9007 D.0 0.0 0.0 0,0 0.0
17 17.800 0.0 0.0 LY 0.0 0.0
ta ‘174800 0.0 0.0 0.0 0.0 0.0
e T T 9,800 T B.0 0.9 G0 6.0 0.0
20 31.900 G.0 0.0 B0 0.0 0.0
21 9.800 0ad Q.0 0«0 0.0 Qa0
P2 T T 16.900 i 0.0 0.0 ) Ceft 0.0 0.0
23 13.100 0.0 G0 0.0 0.0 0.0
24 11,2300 J.0 0.0 Qeld 0.0 0.0
- 15.000 0.0 0.0 0.0 0.0 6.0

JOINT DISPLACEMENTS-=-suwemeameacmesmcosssmsmsssese/ msssmmremmcsac—emoco=em—messsesan/
TJGINT T STER  BISPL X ¥ z ROT. X ¥ z
“JOTNT FORCE ‘ASSUMPTLONS =iammiremm e aemannmre=rm e ——— o S oo o 2w mm w = mr e === e 2 m o e e 4t m

JOINT THETA 1\ 2 k) FORCE Xx Y z MOMENT X Y Z
RO ASSUMPTYTONS GTVEN FOR THIS LOADING

MEMBER FORCE ASSUMPTIONS =escecaicccearema—cewces/ e e T

BEMRER  COMPONENT ~ "DISTANCE ~ ~ vaLUE COMPOMENT  DISTANCE VALUE

NG ASSUMPTIONS GIVEN FOR THIS LDADING

LOADING = 3 FULL LOAD ACTING IN THE TRANSVERSE DIRECYION STATUS = ACTIVE
MEMBER AND ELEMENT LOADS=we=mermmmmmas=ar—s=—rmosscoecaerdssseeanmn e ———eh e -, ar-edemamedsSccseetatcanersettnannnx/
MEMRER/ELEMENT o

JOINT LOADS=mat-ceam—a-—sc-ereccccmemesescesssmsvms/ mmmmesca~eme=mamasessseassessas=anas/

JOINT STEP  FORCE % Y. z MOMENT X ¥ )

T — (1Y A N T 38400 0.0 0.0 0.0

2 0.0 0.0 3R.400 0.0 0.0 0.0

3 0.0 0.0 34,400 0.0 G0 0.0

TS S g T T (.0 T 34,400 ) 0.0 0.0



s 0.0 0.0 21,400
& Nat 0.0 214400
T T TR0 0.0 33.700
A 0.0 0.0 33,200
9 0.0 1.0 18,500
[ L e 1S R 1Y 6,800
11 0.0 0.0 34,500
i2 0.0 0.0 3,600
B AR L N Y T30600
14 0.0 0.0 16.900
15 0.0 0.0 50,000
I 1 | N SR 1 ) R £ P 1 1]
17 00 0.0 17.800
18 0.0 0.0 17.800
15 2 TR0 T hLE T T © T RLWRAaN
240 00 D.0 31.%00
21 0.0 0.0 9,869
gz 7 Bal T T QenTT T T UTELI0N T
23 0.0 G.0 t3. 100
24 040 [EX%] 11.300
4] T0.T TTOUT0L0 T T 15,000 7
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0.0 0.0 0.0
0.9 U0 0,0
‘D0 0.0 0.0
Na0 .0 0.0
Gl 4.0 0.0
Gs0 Q.0 0.0
0.0 .0 0.0
0.0 0.0 6.0
0.0 0.0 4.0
0.0 0.¢ 0.0
N0 0.0 0.0
0.0 0.0 0.0
0.0 ¢.0 .0
Nal) 0.0 0.0
T0.0 7 f.0 0.0
0.0 0.C 0.0
a0 0.0 0.0
G0 0.0 040
0.0 G.0 0.0
0.0 Ca0 0.0
0.0 0.0 Q.0

JOINT NISPLACEMENTSmmememcmcmemmammesmr—ssmemac—sanme/ mocsemmestme-—assasse———a=re.——————/

TSYEPF NISPy X T U TTTYTTT T O 2
£

TJOIRT FORCE BRSUMPTIONS serccmsccicarrors i m s er e r et e e e e r e s s A e e e st A E S o —— s m -

JOINT THETA 1 2 3 FORCE X ¥ 7 MCMENT X Y ?
WO ASSUMPTIONS GIVEN FOR THIS LDADING :

MEMBER FORCE ASSUMPTIONS =~-s=-m-mssmmocc=scames/  =—cecs——esesscs—eeeem—a- ——mmemman/

MEMRER """~ "COMPONENT ' DISTA&NCE - VALUE COMPONENT  DISTANCE VALUE

NO ASSUMPTIONS GIVEN FOR THIS LOADING

LOADING = &

COMAINATICON GIVEN - 1 1.000 3

LOADING = &

COMAINATION GIVEN = 1 1,000 2

LOAD INE;—L

COMAINATION GIVEN = 1 l.000 1

SRR RRB R SRR R AN RN RER RO L ADER R B R

* END OF DATA FROM INTERNAL STORAGE #
ENTTENSENTAATERAAARGREAARD ARG BB S AN

$ PLOTS ARE REQUESTED T0 CHECK ON THE STRUCTURE GEOMEYRY

ONLITS FEET

PLOT DEVICE PRINTER_ B

PLOT PLANE vy EQUALS 0.0

PLANE IDENTIFIED BY ~ PLANE Y EQUaLs 0.0
IN PLANE JOINTS
=TTt "™ T CODRDINATES
X Y ?
1 0,0 0.0 0.0
2 [ 7 Y T 10.0000
3 8.0000 0.0 6,0
4 8.0000 0.0 10.0000
5 T T 14,0000 0.0 0.0
) 14.0000 B0 10.0000
7 20,0000 ¢.0 0.0
TTTTETTT T UUTTTTREN 00000 T TN T 10,0008
22 0.0 0.0 5.0000
23 8.0000 0.0 S.0000
- Tho 0000 0.0 5.0000
25 20,0000 9.0 5.0000

ROTY

FuLL VERYICAL L0AD PLUS 8.3 FuLL TRANSVERSE LDaD

7_“FUE}m!ERtIC{} LDaD PLUS U.y fULL LONGITUDINAL LOAD

FULL VERTICAL LOAD PLUS 0.5 FulL VERTICAL LOAD

X - ¥ . 7

STATUS = ACTIVE

0.300

STATUS = ACTIVE
0.100

STATUS - ACTIVE

0.500
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IN PLANE MEMBERS

MEMAER INCIDENCES
MEMBER START END
T TR
32 1 3
22 22 2
TRRY TR g
23 3 23
33 3 S
G2y TR T -
30 & &
25 s 24
B L Ja S
26 26 6
31 L] 8
—r T~ “25
28 25 2
35 22 23
3% 23 24
37 24 25
OUT OF PLANE MEMBERS QRIFNTATION
— HMERAER INCIDENCES =~~~ ~
MEMBER  START END
I 1 B _
2 2 14
3 1 14
o o 1Y) -
5 7 19
& a 21
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0016
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o010

0008
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0004

0002
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HORIZGNTAL SCALE 240000 UNITS PER INCH
VERTICAL SCALE 2.0000 UNITS PER INCH
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FLOT PLANE Y EQUALS 17.0

PLANE IDENTIFEIED BY = PLANE Y EQUALS
IN PLANE JOINTS
JOINTT T COORDINATES
X Y
9 0.0 17.0000
v T TTTTELO T T T T17,.0006
11 0.0 E7.0000
12 4.0000 t7.0000
T I3 AV T 17,0000
14 B.0000 17.0000
15 8.0000 17.0000
s o000~ "1 7. 0000
17 14,0000 17.0000
18 14.0000 17.0000
Y 20500007 " TTYTL0000 T ¢
20 20.0000 17.0000
21 20,0000 17.0000
TINTPLANE MEMREHRS 7 70T T T e
MEMBER INCIDENCES
TTHEMBER T START T TTENDT
L 9 1o
17 g 12
& —m e BR T
13 11 13
18 12 14
14 13 16" -
9 ta 15
19 14 17
R - 167~
15 16 18
20 17 19
16 18~ - S h
11 19 20
12 an 21

TOOT-OF P ANE "MEMBERS
MEMRER INCIDENCES

MEMBER ™ START™™ ~~  ENO
1 1 9
2 2 11
D I 3 14
4 4 16
5 T 19
s I | —TTer

17.000

4

a0

S.honn
i6.0600

Naf
10.0000

0.0

5.0000

“10.0000

.0
10.0000
0.0 -
5.0000

10,0090
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HORTZONTAL SCALE ~ 2.000n0 UNITS PER INCH
VERTICAL SCALE 2.0000 UNITS PER INCH
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TPLOT PLANE 7 EGQUALS 0.0

PLANE [nEiTlU_ED BY = PLANE I EQUALS gt

IN PLANE JOINTS

T TJOINT ST T COORDINATES
X Y 7
1 0.0 0.0 0.0
A [ - T 1 1 ] ) 0.0 G.0
S . 14,0004 0.0 0N
7 20.0000 0.0 nen
TR T T 0.0 17,0000 Gaft
12 4.0000 17.0000 040
14 8,0000 17.0000 0.0
TTTTYYTI T 14.6000 17.0000 Net}
19 20.0000 17.0000 Qa0
H HOR1ZONTAL SCALE 2+0060 UNITS PER INCH
IN PLANE MEMBERS .
~ T MEWAER “INTIDENCES :
MEMRER  START END * VERTICAL  SCALE  2.0060 UNITS PER INCH
— Ty 9 ORIENTATION vuweny
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APEhT‘FLKNE"?'EGUALS 100

PLANE TNENTIFIEC BY = PLANE 7 EQUALS 1,080

IN PLANE JOINTS

" 77 JOINT COORDINATES
- x Y 7
2 0.0 0,0 1n.0000
B S 8.0a00 0.0 10,0000
f 14,0000 0.0 10,0000
A za.0ana 0.0 10,0000
B S U 0.0 17,0000 10,0000
13 4.0000 17,0000 10,0000
16 8.0000 17.0000 10.0000
—1e T 1440000 17.0000 in,none
21 20.0000 17,0000 10,0000
IN PLANE MEMBERS X HORIZOMTAL SCALE 2.0000 UNITS PER INCH
-*
~"" HEMRER INCIDENCES .
L]
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EIX 22
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BTIFFNESS "ANALYSTS
UNITS KIPS INCHES CYCLES

LIST RAYLEIGH

RGBS REREERRARRCNRREREE
*RESULTS OF RAYLEIGH A

AT EXIERTR S22 RSEXRY Y 3

JOR ID = EXAMPLE

ACTIVE UNITS - LENGTH
INCH

REYLEIGH NATURAL FREQUENCY =

OUTPUT BY MEMAER

TCOAOING LIST 44546

LIST FORCES DISPLACEMENTS REACTIONS ALL

SECONDS

LA AL 2L Y )

NALYSIS»
(XX T TS

WEIGHT
KIP

T O WHEEFEARRNML A RS T AR SR
SRESULTS OF LATEST ANALYSES#

HEFBRBEF RGP R R ORI D RO RO DI RN

T TPROARLEM - "EXAMPLE T

TTTTTACTIVE UNITS  INCH KT

__ ACTIVE STRUCTURE TYPE

3.98%0

ANGLE
[ do)

TEMPERATURE
QEGF

Design of Structures and Foundations for Vibrating Machines

JOB TITLE - STATIC AND OYNAMIM ANALYSIS OF A TABLE=TOP

TIME
SEC

ITLE = STATIC AND DYNAMIC anaLySIS OF A TABLE-TOP

P CYC

SPACE

ACTIVE COORDINATE AXES X v 2

T MEMAER FORCES °

MEMBER
1
4 1
R A 5
5 1
9
————g- “1-
qi
2 +
<
11
?
[ A '
6 2
11
=
[ 3
14
e g e 5
14
& 3
T
4
a 4
Tt
5 I
1%
- 4
16
5
R T
19
5 7 .
TTTTTTIe
[ 7
o 19
6 T
[ a
2
5 L3 )
2y,

LOADING  JOINT Z=z=-

AXTAL

2247012482
=22.70124R2
35,675109%
=35.6751099
563.2339020
=63.2339020

6lehln6Rer
=61.6106262
35.6751099
«15,6751099
63,2319020

. =63,2735020

A1.1257324
=31.1257324
57.4260101
=ST+ 4260101
83, 1056079
=83, 1856079

19.7RA4216
«79,78R6216
57.4260101
=57.4260101
83,1856079
=83,1856079

T 15.796807)

~15.7968073
37,8488159
-37.8488159
50,0053711
-50.005371]

S0.8770147
-S50.A7T0147?
37.R448159
-27.84AR159

CEGF SEC

FRaME

ersrmamez=—— s FORMES~=
SHEAR Y

=-0,46R3557
0,46R3557
2,4380933
=~2.43A0933
=0,4561379
0,45612379

=0,13982A2
0,13982AR2
2,4360933
=2.4360533
~0.,4561379
0.4561379

=-1,0R35218
1.0835218
A,57142R1
=A.5714283
=0.1123474
1123674

6,9336989
~0,9335989
A,5714283
=R, 5714283
“n. 11235874
01123674

0.3037781

=0,3037781
2,08745%96
~2,0874598
0.56R5053
=0 .56R5053

0,45422R9
=N,45422R9
2.0874594
=2.0874596

SHEAR 2

-12.5216949
12.521494%
=0.1276147

61276147
=0.2769509
0.2769509

~1241522217
12.1522217
61276148
=0.1276148
0.2769509
_=042769509

=l4.26A9010
14.26A9010
2.1368227
-2.1368227
3,2094212
-3.2094212

=18.5461273
18.5441273
=2.1368227
2.1368227
=3.2094212
3.2n942]2

~3, 1984711
9.1984711
1.3083725

=1.3082725

240145761

=2.0145761

-11.8847095

11+7867094
~1.3083725
_ ._143R3735

TORSION

=3.5564518
3.5564518
0,1945127
«0.1945127
0.3132216
=0,31232216

=3.9740801
3.9740801
~D. 1945105
0.1945186
~0.3132207
0.3132207

~6.5465736
6.5465736
=-6,3765850
643765850
0.5992848
=N.59928488

=7 3456202
743456202
6,3765850

=6, 765A50

=0.59928%3
0,5992853

~9,7853155
9.7853155
~1.6638527
1.6638927
~0,076]1758
0.0761758

~9.6837492
9.6A37492
1+6638A99
-1 +663B899

MOMENT Y

1399.,4728516
1154.7106934

46,778305)
=401 T449493
113.3043671
=56,R063507

1248.5998535
1230,4519042
=66+ 7783051
4047449491
=113.3043671
56,8043507

1R01.5737305
1108.R72R8027
«37,1990051
=39R.7120906
=56.3248596
=59R8.3969727

1876.672R516
1906.73582394
A7,1990204
I9R,7120306
S6.374R749
$98,39697F27

11313947754
765.0932617
~34,37237305

=232.5R44116
=S9.8608704

=151.12320564

121120971648
1213.2697754
364.3237]152
232.5844116

B LT 4 ey U L URRE PRI ¥ ¢ V1.4 N J - S )

MOMENT Z

~56.4T77374
=39.0660945
244.0932312
252.8695984
=A1.5768738
=29,4753265

-28.2914429

=0+2335469
264,0932112
A52.86959R4
=61,5768734
=29.4753265

=58.964080R8
=152.0743561
997.6184082
T7S0.9543457
A7.7592926
~110.6822357

175.9764R62
1444979982
997.6184082
75049543457
A7,7592926
=110.6822357

18.6266327
43.3441467
198,6451721
22741965042
37.0961456
78,8789875

30.A348846
61.827AR09
19846451721
227.19659472



157

15

19

| 50.0n53711 ¢.56R5G53
=50.00537¢11 -N,56R5053
«~1.1590748 ~17,23464%37
141590748 17.2346497
n.2333486 1.3999968
-0.271134R8 =3,3999968
=0.20R6]13A 5.0999956
D«?NA6123A -5.0999956
0.ARNS22T -24,0346375
=0.,AANG2RT 24.0346375
0.23134R6 -3,3999977
=0.23713486 3.399%977
=0.?2NALL1IA =5, 0999955
0.20A4173A8 5.0993956
-5.41A9]069 1.4864140
S+4169369 =1,4864140
2.3173747 24 .,9939R847
=2.3373747 =74 ,9999A847
31245861 37,4999R847
-3.124586] -37.4999847
9.583049A =4R,5135A51
=9,583049A 4R,513565]
23373747 -24.,9999A47
-2.3373747 24,9999847
3.12458K1 =37.4999A47
=3.1745R41 37.4999R4T
=3.4I0RTSS =-1,227925%3
3.4108794 1.22792%3
0.74RASAT 1R.9499941
«0.7468%R]3 -15,9499941
2«0311737 23.9249R74
=2.0311737 =23,9249A78
6.131910AT =33.1270992
=6+41391087 33.1278992
0.746R5R3 =15,.9499903
~0.746A583 15.9499%903
2,0311737 =~23,9249725
-2.0131 17127 23,9249725
044549353 -f1.3240214
~0+4549353 0.9240214
17579034 -6.2248697
=147579034 6,224B697
0.54561379 0,383%]194
-0+45611379 =-9.3839154
0.4549357 =-4.,52401A2
=N.45493%) 4.52401A3
21179030 ~3,8248701
-2+1139030 9.824RT01
04961379 ~5,0160770
=0.4561379 5.0160770
=0.49472723 9.8508663
0.4947273 -9,A50A663
=F 2073343 SIS
242675341 -5.7011518
0.56A45053 15,31054a01
-0.56A5053 =15.,319580]
~0.4947271 =7.94910A81
04947273 T.9491081
-0.48752373 -12,0988264
0.48752373 12.09R8264
0.56R850%57 =11,3803R54
=0.56A%053 11,3803854
0.1532485 1,4359131
=0+15724R% ~1.4359131
1.7599034% -4,2248697
=1.7535034 6,2248697
Na4561379 0.3R39196
-0,45641379 -0,3839196
0415324R5 -2,1640844
=0.153248% ?.1640844
2+11390230 ~9,.8248701
-2.11390%0 9,R248701
0+4561179 -5,0160770
~0.45601379 5,01A0770
12927342 10,5752373
~1.2527342 -1¢.5752373
=2.2475352 5.7011%518
242675357 -6,7011518
0+56R50%3 15, 3195R01
=0.56R5053 =1%,3195801
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=2 0166761
2.0166761

=0.3151071
0,315107]
0,339999%
=0,3399994
~0,.,0000000
0.0000000

-043151071
0.3151071
=0.3399954
0.3299%94
=-0.0000000
G.0000000

1.0159638
=0.01159438
244999981
224999981
0.0000000
-0.000006G0

0.0159638
=0.0159638
=2+4999981

2.43995981

G.00N0000
=0.0000000

~0.94A9564
0.94R9564
1.5949984
=1.5949984
¢.000000nR
=0.0000000

=0+9689564
0+ 2489564
=1.5949584
1.5949984
0.0000000
=0.000Q000

0.2786918
-0.2746918
03509633
=0.3609633
0.06A3372
«0.0683372

1,3586903
=1.35R6903
0.3609633
=0.3609633
0.06A3372
-0,0683372

=2.5343895
225343895

3,56 1518 1199aRIF -

=0.5415151
=0.01A4978
N.0164378

2.805602]
=2.8056021
05615151
=0.,5615151
=0.0164978
0,0144973

0.1875754
~0.1875754
=0.3609633

0.3609633
=0.06R3172

0,0883372

1.2675734
~1.2675734
=0.3609633

03609633
=0+1&A3372

0.06R3372

=2+5123930
2.5123%30
~0.5615151
0.5615151
040164977
=0.,0164977

0.0761767
-0.0761767

~31.5269929
31,52499219
~G.0000021
o.0000021
=0.3000027
n.onon02?

=31 .5249939
31.5249939
-0.0000021

a.0n00021
=0.0000027
o.0000n027

-A.5AA6562
8,58A4562
=0.0000006
0,0000006
~0,0000003
¢,00a0003

=A,5084552
A,58R4562
=0.0000006
0, 0000006
=0.0000003
0.0000003

~8,3734407
B,3T34407
0.0000005
=0.0000005
0.0000009
=0.0000009

~8.3734407
83734407
0.0000005
=0.0000005
D.0000009
=0,0000009

19.,3775391
=-19,9775391
66.0128021
-66.0128021
T 9R,.2115479
=98,2115479

19.9715351
=19,9775391
66,0128021
=h6.0128021
98.2115479
-98,2115479

572685242
=52. 2605242

~14¢19948239
I+162RR65
=} .1R2RALE

52.2685242
=52.2685242
1.1994839
=1.199483%
1.1A2R866
=1.146728866

=110.9712372

110.5712372
-66.0128632
66.0128632
~9R.2115479
98,2115479%

~110,9712372
110,9712372
-66,0128632
£h.012R632
=GR.21154T9
9842115479

S0.7180176
=50.7130176
=1,1996877
t.1994877
-1.16289233
1.1628933

59.860R704
35141330564

14,99R8403
1.9075861
=-12,8425339
=R,35T4286
-2.,8613808
248613806

=1.9075861
20,8140106
B.35742848
12.0425339
=7+8613806
2.8613815

~1l+&062576
De4LR4L282
=~67.35990479
~B2.6006775
=0.6726444
De6T26437

~0,44842R2
=0.5094008
B2.60N6775
67.3991089
046726437

06726432

57,0611512
=0.1237821
=43,9149780
=51,TR459426

01.1R56556
~fs] 856564

0.1237821
S6,8135984
51,.7849425
41,9149475

0.1B56564

=0.1856572.

-24.TAAOTOT
11.4108A96
~12.2370451
~5,0A91943
=3,1748016
~0,1055872

~11.4108R96
=531.8062744
5.0A%194]
~2244154358
041055872
=3.3857765

4649700470
135.505901¢4
=3R.6071320

«1.8219614

241138477
=0,9260067

=135,505%9A14
=66.4972992
1.8219614
=42.,2510529
0,9260067
0.,2618240

=20,5552826
1145516748
12.2370415
5,0A91943
11746025
0,1055868

=11.551674R
=49,2919006
=5,0A91943
274154358
=0,1055868
3.3857756

44.1515808
13A.T40ETE9
A8,6071167
1.82§9805
=2.1138420
0.9260055

37.0961456
78.8789825

=1265.68] 8848
231.6033478
=25.2678986
229.26THEOT
~4].4052124
A4T.404TA52

=731.603347R
~1210.4748535
-229.2676697
25.26TB586
=347,4047852
4}.4052124

~967.1843262
1936.,3691406
463,5261230
1036.4T7323887
695,4455566
1554.5537169

-1036,3691408
—1AT4. 4448242
-1036.4733887
=463.5261230
=1554,5537109
—$95,4455566

-795.8110352
T22.1254980
?33.7839203
723.,2155762
352.295A8984

1083.202R8R09

=722+ 1354580
=1765.5388184
-723.2155762
~?33.7339203
=-1083.2028A409
~352,.2950898%

«31.2914429
=13.0615692
=-252,8695584
=45.9242859
?29.46753113
=11.0471859

13.0615692
=230.2144775
45,9242859
=~517.5180R64
11.0471R59
-251.818%n87

P0741280365
502.1345215%
=733.0301572
£43.9189453
362.5012207
740,.5087891

«5021345215
-710.2012939
=643.9189453
-227.1965942
=740,508T89]
-78.87894825

T0.59218579
=1.6680193
=252,8695984
-45.92642859
29.4T53265
=11.047LR50

1.66801923
=105.5440521
45,924285%
=517.51A0664
11+047]1R59
-251.,8189087

276.2067871
485.2104492
-233.,4361572
A43.9189453
26245012207
T740.50874821
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1.2%27342
12527342
-0, 4RT75375

0.48T5374

N,5685053
~0.56R5053

2.57221R9
=2.57272189
=0.B523622
08523622
=0.975923A1
0.9759381

=3.,A7367%01
3.A734703
-0.85236249
0+BSRI6GAD
-0.97593a
0.97593A¢

1.46371014
=1.6871014%
=0.834]BR4

9.R341884
142359715

1.2359715

=-3,33508630
3.33%0630
~0,830]1B8R4
0.R3418R4
=1.2359715
TTINVETS9TLES

Q.8726364
=0.872636%
~0.6855827

0+&855827
=~1+1254892

1412548592

T=2.37328R2
2.3732882
-0 ,4AS5877
0,6AR5877
=-1.1254892
1.1254892

1.0171204
=1+037120R
~0.9213248

09313248
~1+5R8686N

""1.5BRREBEN

~3+155369R8
3. 155369A
-0,3313248
043313248
=1.5AR6AEN
1+5RA6860

TTR0LA89T1T

0.8897111
=1.187641A%
TTTTa1RT41RT
=0+3655444
043655444

=0.235R506

0.235A506
3.571312¢0
=3.5713170
~0.45984R3
0.459R4R]

041874470

T=0.1AT447N

1.1613836
=1.1613878
=0e4467912

C.64679]12

T 0.4023183
=0,40231R3
=1,1374189
1.1874189
=0.3H55444
0,3655444

=7.2247372
T.2247372
=12.0%9R8264
12.,09RAP64
~11.3803A54
11,38n23R54

-31,2175751
31.2175751
~B.4504757

B,4904757
=15.5776978
15.5776978

=1n.44731 14
10,4673114

B.,4504757
-A,45064757
15,5776978
-15,5776978

-30,5602570
30.5602570
-11.4810495
11,4810495
-16,R940887
16.8940887

~B.0347996
R,034T7996
11,4810495
=11.4810495
168940887
~t6.8970RTT

=l4,41318622
t4.4131622
=2,9729909
2.9729909
=31.3RP4186
3.3824186

-9,9032688
5.307326RA8
?.9729%140

-2,9729910
3,3824186

=3.3824186

~26,9A05298
?6£.9805298
-8,0229244
A,02P9766
=10.5390100
16,5390100

~12.92R5221
12.9285221
A,0229244
~A,0229244
10,539¢190
=-10.53901409

T42T78393
«7,4278393
1,9948902
=1.9948902
10,01140R8
=-14,0114088

=~27.9603424
27.9603424
=23, 7TTRABRA6S
23,77BRAGS
-24,9645386
24,9645386

$,8383856
~9,B3R3IASEG
1.,3797274
=3,3797274
10,5969954

-108.59A9554

5.9207020
=5.9207020
1.9948902
=1.9948902
10,0114088
=10,01140848

2+A2759R6
~2.A275986
-0.561515]
0.5615151
0.0164977
=N,0144977

=0.1492021
N+1492021
=04 65494465
(e 6549445
B.0872470
=0.0872470

=0.265531%
042655214
046549445
=0:6549445
=0 NRT24T0
C.0RT2470

~0.4913378
0.4913276
=1.9%511776
1.9511776
0.0172989
=D.0172389

-0,5144027
0.5144027
1.9511774

=1.95111776

=0.0172989

~1.08A63199
1.,0863199
-0.0173113
G.niT3113
a.,0178A684
-0,0138884

=1.1048384
11048384
0.0173114
=0,0172114
~0.0138R84
0.0138888

=0.4244760
0+42446760
=3.536¢3620
0.5303629
=0.11R6T92
0.1186792

=0.26A2370
0.76A2370
0.5303620
=0,5303620
0.11867062
=0,1186792

=2.6610632
2,6610632
=-0.9836210
0.9816210
=12570510
1.2570610

6.6682806
=6+66R2806
0,3154470
=0.3154470
047111034
=0.7111034

=2.353167S
" 23531675
=0.37306656
0.3730666
=0.4191979
0.4191979

~0.9849809
1.9849809
0.9838210
=0.9816210
1.2570610
-1.2570610

Design of Structures and Foundations for Vibrating Machines

S0.T1A0176
=50, 7180176
=1,1594877
141994877
=1.1628933
1,1628933

=36,B824615
3h.8R24615
~49,T7070160
49.,7070160
~16.84T4274
16.,8474274

=164,419283%
14.4192839
49,7069855
=49, 7069455
16.8474121
-16.8474]121

=16841R46419
l68.1R486619
=93,2221069
93,2221069
31.4012604
=31.4012604

=210.0530396
210.0530396
93.27221069
=93,2221069
=31.4012756
Jl1.4012756

=154.2997284
154.2997284
34,4197845
~3444197845
35.9213104
=35,9213104

=242.1947327
202.1947327
-34,6197693
3444197692
=35.9212799
35.9212799

=37.7019348
3T.T019348
=54,6304016
5446304016
=3A,3A53149
JR.3A53149

13.4786081
=13.47R608]
54,6304169
=5446304169
36.3853507
~38.36853607

=11.1071587
11.,1071587
=-69,5413666
69.5413666
=63.3713684
6£3.37136084

T78,4753418
=778.4753418
68,9584792
~68,9586792
135.2145%27
=135,2165527

=11.8803101
31.,8R03101
=-22. 3255768
2243255768
=-21,0373840
210373840

T3.3RR1073
-73,3R81073
69.5413666
~69.5413666
53,37138237
-643.3713827

~13A.T40AT6T
=65 R46359]
~1.821980S
4242510834
=0+.9260055
=3.261R312

37.416458]1
~2R. 4643402
37.2952881

2.0014019
S2.0229950
=57,257R125

478794250
=31.9475403
=2.0014057
=37.29524881
57.P578125
-~52.,0229950

T2.0997116
~42.6194916
54.34B81293
&62,77225647
27.2372284
“2R.27518617

=449192572
35.7834320
62 T225647
=54 +3480928
2R.2751617
T =ZT.2172284

T7.0192444
=12.6400490
=042396955
12783785
S5.7231550
=6,5566795

=1.8980445
70.1R83498
=1.,27R3823
0.2396970
645566795
=5.7231550

2046600189
4«BOBS4E]
154015099
16, 8002074
13, R409%4R
. T2024%

13.7ARAS232
Z2.2053422
~16.8N032227
=15.0185022
6.T202454
=13.R409%43

I5.3216156
21%.5404R16
I7.4A97319
56.9372052
S2.3362122
6RLAG1ETHA

=-247.9782867
~232.138046)

=R+ 9A6I000
=134 745RA97
-40+5051880
=10.6942759

161 .9485612

T TR&0SD
13.5061979
13.3546124
15.4174347
13,7648191

-31.8600159
[ZR.41A1AT]
=37,4A948071
~56.9374057
=52.3162122
=hAe3416T4R

=4R5.2104492
=34.9706A879
=643,91894573
=22T7.1965942
=T40.508709L
-78,878%9825

=1326.,2836%14
=G4k TTNOL9S
207630424
=509, 7%} 7480
=49,5329834
«BA4.T72940039

6£32,86840R2
~1259. 7067871
509.7917480
-2,7630262
B84,7287598
49.9329987

=1276. 7749023
«856.8403320
=101.3010406
~587,5620117
=142.26304563
~AT1.382B125

0540034180
-1187,.0898428
5AT7.5620817
10143010406
A71.3830564
142.2630463

-602.0170898
=262.7724609
91,2842407
-269,6635742
156.2579215
=35%9,1989746

?16.1595459
=-A10.,355712¢9
269.66135742
=-91.2842407
359.1989744
-156.2529?715%

~L177+5646973
=491.2670R9A
[1.9981470
=-493,3735352
18.8234A63
=671.15640625

401.6186523
=1179,329R340
493,3723%352
=11.99A13%4
AT1.16406P%
=38.8234R02

13,8721590
A99,2004395
=194.3862305
335,A955478
Al.424240]1
AB0.E6TOR9B4G

=1185.2297363
=-927.9150391
=1290.29]174R80
=62} .T7T51465
=899.A315430
=197.61567227

725.720214A8
=174356277%
3AT7.35522456
=144 0148437
7616943359

1.2892208

93,3601AA85
475.02709%6
=19&6,3B882305
385.,8955078
A0.4243011
ARD.6T0A984
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“"JOINT LOADS » SUPPORTS

JOINT LOADING
1 GLOBAL
4
e . 5
6
2 GLOBAL
SN
S
&
TFTTT 77T T GLOBAL
&
5
———— e g
4 GLORAL
&
- 5
&
5 GLOBAL
O Al N
)
]
“®TT T T GLOBAL
&
- . .. 5
T T o &
T GLOBAL
[
T
6
A GLOBAL
R e
5
&
2 777 TTLLOYAL e
4
)
]
23 GLOBAL
4
5
6
24 GLOBAL
L L. S
S
&
- T GLCBAL
4
5
e -

«0,3772805 -5,3257103
0.3772805 5,3257103
3,5713120 -23,778RAES

-3.5713120 23, TTABAES

~0.459R4A3 -26.9645386
0.45984A3 24,9645386

-0.7A11684 4,2909165
0781184 4, 2909365
1. 1413834 3.3797274

-1.1A1387% -3,3797274

0 40677 10,5969954
0e6as7912 ~10,5949954

C =0.1153864 2.2996998
0.115%864 -2.2995998
. =0.5R35527 1.3648109
| 0,5A35527 -1.3648109
. =0.1770796 ,4495478
0.1730796 -3,4495478

-0,13A2994 ~4,6T2999%

0.1382994 4.677999%4
. 1+RIR3I026 -f,41RTRAD

-1.A383026 6,41ATRAD

—0.PNT4497 -7,0094986
0.2074497 7.0094586

-0,1571361 1.8306208
0.157134} -1.8306208
0.6171244 0.0673831,

-0,6171364 -0,0673831

-0.2357042 2.7459345
0,2757042 -2,7459345

X FORCE ¥ FORCE
1,0198765 35,8043518
~6,8085517 67.6194316
0.0033467 115.2675476
=1.0156142 117.8R57769
-6.8085537 67.6134916
0,0033467 115.2675476
0.7952607 23.7T1903%9
=5.3015184 54,5713501
0.0007644 A2,9155426
=0.79470414 A6.B149915
~5,3015184 54.5713501
0.000T60G 87,9155426
0.6804323 16.6034697
-4,5326090 45,5A54187
=0.000R16 64.2790985
~0.6815410 69.1019897
-4,5326090 45,5AG4187
-0,000A316 64,2790985
0.90IR666 17.7253113
=6.0384760 59,6461487
-0.0030350 78.6692963
-0.9079132 A741671143
-6.,0384760 59,6461487
~0,0030350 7845652963
0.0009429 39,9699554
=3.5834408 351657562
0.0014144 59.9549255
0.0001519 28.6527557
-2.7904997 ?8.2784887
0.0002278 42,9791412
-0.0003180 22.3135071 "
-2,3857A70 23,7321472
| =0.0004770 33.4702606
-0.0011027 27.2213745
~3.1778603 30.9784546
-0.0018541 °  40,8320770

Computer Analysis and Applications: Example

G.7201431]
=5,7201433
=043154467

0.2154467
=0.71)1034

D.7111034

=1.7942352
T 1w TFRR352
0.1730668
~0.373066R
0.4191979
~0.4191979

-0.2962773
Q2962772
=0,000000)
Q.0000001
0.0000000
-0.0006000

0,1350319
-0,1350319
~0.0000001
0.0000001
0.0000000
~0.0000000

=0.,1022773
0.1022773
«0,0000001
0.0000001
=0.,0000000
0.,0000000

Z FORCE

=22.4542236
0.00364490
0.0041723

=22,45979))
=0,0036440
=0.0041723

=16. 1946564
0.0035663
. 0052R40

=16.2017059
~0.00256513
«0.0052R40

=13,0617371
0.0029310
0.0048117

=13.0681553
-0,0029210
«~0+004B117

=16.3271027
0.0039A16
040067920

~16+3361664
=0.0039816

-11+8119631
=0.0000000
0.0000000

=-8.5208502
=~0.0030000
=0.0000000

T 7T <6wBT3I2A00

0.0000000

- _~0:0000000

=B.5902138
0.0000000
T=0.,0000000

$98.1862793
~598, 16562793
-58.9586182
68,9%86182
~135.2165527
i35.2165527

=1.,8307295
3.8207295
2243755768
-22.3255768
2140373840
=21.0373840

R6.09A5S65
=Rk . 09IASEH5
=0,0a00425
0.0000425
=0.0000653
0.0000653

134,2614136
=134.2614136
0.,0000564
=0.0000564
0.0000816
=0.0000R16

AT,6484222
=87 .64R4222
0,0000715
=0.0000715
0.0000967
~0.0000967

RN o ¢ |- T of - TR it & Aetatataiat b L L DL L Lttt

X MOMENT

=0.0000800
=-0.0000000
=0.0000000

-G.0000000
=0.0000000
=0.0000000

~0.0000000
-0,0000000
-0,0000000

0.0000000
0.0000000
0.0000000

=0. 0000000
=0.0000900
=0.0000000

0.000000C
0.0090000
0.,0000000

=0.0000000
=0.,0000000
=0.,0000000

0.0000000
0.0000000

0.0000000

0.0000000
=0.,0000000
=0.0000000

0.0000000

=0.0000000
=0.0000000

=0.0000000

_ =9.0¢00000

0.0000000
=0.,0000000
"=0.0000000

“0.0000000 "

137
=193,9714203 =P4T,.8T34T7%0
~217.87849A82% «135.5727T186

B.9662838  -1290.2907715
13,7458935 =421, 7T514A5
40.5051727 =399,R8315430
IN.6352750G =797.6157227

140.055ATTL 2R9,87723145
=l RsATLTR1S C19LOTSFARG
~13.5062056 JAT L, IG52246
=13.A54K162 ~144.0146837
=16H.41T764347 T6)+69437159
=13.764R191 1+.2891RNR
-19,4151001 -22,4631A53
4T «RETT27]) 243, 2363445

0.0000049 -59,4135252

D.000007A 73%.435852]
=0.0000017 =33, 6948547

f.0000011 364 ,A5]123184
=1 31AGA3A =-201.3659A21
=9.4033117 =-135,0502405

G.0N00062 =41h.8A0L2TO

20000027 -4%, 2728577
=N.000000G9 =-302.34RRPAY

0.0000007 ~202.6353607
2G.9413910 182.9852799

~1A.S5T7T43R4 | =51, 1AR5267

0,0000001 Y14.1126276R
0.0000049 =10%,2608037
0.0000000 2T 4TTYTA32
N.0000001 =T&.TT0RTST

¥ MOMENT 2 MOMENT
0.0000000 €.0000000
0.0000000 0.0000000
~0,0000000 0.7000000
0.0000000 A.0000000
0,0000000 0.0000000
=0.0000000 0.000000¢
0,0000000 0.0600000
~0.0000000 0.0000000
6.0080000 0.00600000
£.0000000 0,0000000
~0.0000000 £.90090040
=0.0000000 04000000
0.0000000 0.0000000
=0,0000000 0.0600000
0.0000000 0.0000000
n.0000000 0.0000000
0.0000000 0,0000000
-g. 0003000 0.0nGN00D
-0,0000000 0.0000000
~0.0000000 Q.0000000
-0.0000000 0.0000000
0.0000000 0.0000000
-0.0000000 €,0000000
_8.0000000 _ 0.0000000
=0.0000000 0.0n00000
~0.0000000 0.0000000
-0.0000000 0.0000000
-0,0000000 0.,0000000
<0,0000080 0.0000000
-0,0000000 0.0000000
=0,0000000 0,.0000000
-0.0000000 «0,0000000
-0,0000000 0.0000000
0.0000000 ©.N000000
-(,0000000 0,0000000
20.0000000 0.0000000

emeMOMENT S e e e mem e m e —mn f
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JOINT DISPLACEMENTS - SUPPORTS

JOINT LOADING /emwm—me—amemw=ceceaDISPL ACEMENT Semamammmn- wmvmmeffmmemeaanacomesen—r e ROTAT[ONGaa e s e e
. x Disp ¥ DIsP 7 DIsp X ROT - ¥ ROT 7 ROT
—— ——srosAL © 0is? ... gpwse oo xR oo YR e
4 ~0,0016150 -0.0350144 040311540 0.,0001115 0.0000037 0,00006079
5 0.0094465 -4 0680162 -0.0000051 -0.0000032 0.0006000 ~0.0000067
———— © 2040000045 ~0,1159439 ~ ~~ "=0:0000058 =~ <0,0000053  °  0.0000000 o.n0an12?
2 GLOBAL
4 0.0014086 -0.1185775 0.0311617 0.0001185 0.0006037 0.6000083
e g 3.0094465 =0.06R0162 -~ ~ " DLUENOOST © T0.0000032 T -0J0008000 © "=0,0000067
6 -0.0000066 ~0,1159439 0.000005A 0.0000053 -0,0000000 0.0000122
3 GLOBAL
e ey -3.0014186 -N.0306745 " 0<0288AR9 “ n.0001108 O 0.000003A8 0.0N00115
5 0.0094572 -0.0705740 =0.0000066 -0.0000039 ~0.0000000 -0,0000012
6 -0.0000014 -9.1072299 -0.0000094 -£.0000059 £.0000000 0.N000193
e oLORAL 0.0000014 35 =0.00000%% ~€-000005° bed0000 : Galva
4 0.0014168 -0.1122985 0.0289015 0.0001186 0.0000038 0.0000148
5 0.0094572 -0,0705740 0.0000064 £.0000039 0.0000000 ~0,0000012
R -0,0000014 ~  -0,107279¢ 0.0000054 040000059 =040000000 $.0000198
5 GLOBAL
“ “0.0016161 -0.0250524 0.0271836 0.0001062 0.0000038 040000124
s 5 - 0.00%433] ~0,0687R22 =0.0000061 © = -0.000003% - =0,0000000 0.0000050
8 0.0000017 -0.0969884 ~0.0000100 =0.0000045 0.0000000 0.0000212
6 GLOBAL
I SR 00014184  ©  =D.1042655 F.0271970°" ° Ta00011ET 540000038 0.000015%
5 0,0094331 -0.06R7R22 0.000006] 0.0000034 0.0000000 0.9000650
6 0.0000017 -0.09698R4 0.0000100 0.0000049 -0.0000000 0.0009212
—ytottGLOBAL - - : :
% -0.0014108 -0.0200588 0+ 0254846 0.0001062 00000035 020000104
5 0.0094753 -0,0674984 -0.0000062 -0,0000036 ~0,0000000 0.,0000012
——t o g D.0000047 -0.DRY0F60 ~0.0000106  © “=B.00000S0 0.8000000 0-000015a
A GLORAL
% 0.0014171 ~040986426 0.02549R7 0.0001179 0.000003A 0.0000106
R - 040094253 -0,0674984 - © 0.0000062°° © G.0000036 T~ 00000000 - ‘0.0008012
& 0.0000047 -0,0A90260 0.0000106 0.0008050 -0,0000000 8.4000158
22 GLOBAL
T e gy - *0.0000025 -040763R79 0.0311387 G,0001066 ° © - 0.0000037 0.9000082
5 0.0094467 -0, 0672064 0.0000000 0.0000000 0.0000000 ~040000064
6 =0.0000037 ~0.1145818 ~0.0000000 0.0000000 =0.0000000 0.0000123
a3 - GLOBAL - 0-00p0037 =0.118%AR18 peo  0.009n000  =0.0000900 ~ 0.0008123
% =0.0000005 -0.0703999 0.0288761 0.0001049 0.0000038 D.0000130
5 0.0094566 ~0.0694803 040000000 0.0000000 0.0000000 ~0,0000004
SRR C s -0.0000008 =0,1055998 ‘0.0000000 p.0000000 " 500000000 0.0000195
24 GLOBAL :
4 0.0000013 -0.063966) 640271759 0.0001030 0.0000038 040004139
5 - USU096331 —u0, 06R0TBY " =0, 000G0AD ——osUUUg0A0 - - 0.0000000 0:0000D4T
& ! 0.0008019 -0.0959491 0.0000000 $.0000000 -  0.0000000 0.0000209
25 GLOBAL !
& 0.0000033 -0.0585302 0,0254777 040005017 0.000003A 0.0000107
5 0.0094252 -0,0668084 -0.0000000 ~0,0000000 040008000 0.0000016
& B

0.0000049 -0,0477952 0.0000000

-0.0900000

g.0000000 0.n000161

JOINT D!SPLA?EMENTS = FREE JOINTS

TJOINTY T T LOADING /re--eesmdmamieaos-[ISPLACEMENTS dmar e Enn e} feriasniiietcem et nueeROTAT [N v cm e mnmm e e s
x pIsSP Y DISP Z DISP X ROT Y ROT Z ROT
9 GLORAL
T T TR T T=0.0155484 ~0.03T7312 7 0.2132%22 © 0.0001252 T 0+0000045 0.0000101
s 0.03061374 =0.0707142 0.0000035 0.0000028 «0.0000000 =0.0000056
6 -0.,020R277 =0,1207261 ~0,000003] 0.0000062 =0.0000001 0.0000164
—Ir— " GLOBAL - Al revient I Dol ok R Sl i .
4 -04013R929 =0.0A11531 02132694 0.0001089 0.0000043 040000110
S 0.0306438 -0,07123737 «0,9000000 =0,0000000 =0.0000000 =0.000005&
[ TT=0,020R8794 «0.1217296 77 77«0 0000000 T © =0,0000008 ° -0.0000000 00000164
11 GLORBAL
4 ~0.0122718 =0 «1232369 D«2132563 0.0001195 0.0000046 0.0000118
- 0.0306%74 ~0.0707142 =0.0000035 ~ ° =0.0000028 - 4.,0000000 «0,0000056
& =0.0208277 -0.1207261 0.,0000031 =0.0000042 0.0000001 0.N000164
12 GLOBAL
TTTTTTIITTe =0.0155511 =0s03486T0 T T0L.2117366 T 0.0001347 O 040000055 B.n000092
5 0.0306062 =0.0717963 0.0000730 0.0000061 =0.,0000003 =0.0000029
6 =0,0208358 «0.1158606 040000341 0.0000091 =-0.0008002 0.0000159
Y3t TBLOSAL A . - ghethul R e o h g
& «0.0122799 =0.1196138 0.2116911 0.,0001185 0.0000057 t.0000120
B 5 0.0306062 ~0.0717963 -0,0000730 =0.0000061 0,0000002 =0.0000029
47 A “=0.0208358 ~0.1158606 = T =0.0000341 T abl00000%] 0.0000002 0.N000159
14 GLORAL
4 =0.01555139 =040322438 0.2101692 0.00012343 0.0000042 0.000007B
o s " 040305686 -0,0734é691 T0W0D00520° T T 0,0000094 00000006 =0.0000103
6 =0.0208439 ~0+1114240 00000695 0.000014&1 =0.,0000000 0.000012%
15 GLOBAL
- T A =0.0133n22 ° =h.0775948 T 7 DeZl02897 0.0001038 0.0000044 6.00000823
S 0.0310218 ~0.0767R40 0.0000000 =0.0000000 =0,0000000 =0.0000102
] ~0,0208532 -0,1163952 =0.0000000 =0,0000000 =0.0000000 0.000012%
—T§ " BLORAL - - A it =Sl et el oo . . : PO
& =0,0122380 =Ge.1163216 0.2100765 0.0001175 00000044 0.0000088
5 0.0305A86 =0.0734693 =-0.0000520 =0.0000094 =0.0000006 =0,0000103
- T e T =0.0208479 7 T =MLYi14340 T TSRLO00ATS T T TREDL 0050141 0 0 0.0000000 0,000012%
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17 GLOBAL
4 -0.0185R06 -0.N288R97 042080399 0.0001340 0.00000h4 0000111
- H 0.0306170 =0.0754688 00000557 0.0000094 =0.,30000023 9.0000036
& =0.0208560 ~0,1057499 020000744 G+0000141 d.0000000 0.0000184
18 GLOAAL
""" T T -0.01277274 =0.1121102 7 7 0.2079408 T TD.0000152 00000064 00000135
5 0.030617¢ ~0.N754688 =0.0000557 =0.0000094 6.0000003 0.0000035
& -0.0208560 =0,105749% -0.0000746 ~0,0000141 ~0.0000000 0.0000184
19 GLOBAL ’ ) oo mm '
4 =0.0156074 -N.0216517 0.2044226 0.0001317 040000080 B.0Nn00182
5 0,0306274 -0,9713151 d.0000222 0.0000095 6.0000007 0,0000102
- & =0,02086R7 =0,0940685 0.0000602 0.0000147 0.0000000 6.000028%
20 GLOBAL
4 ~0.0139078 =0.0656620 0.2045244 046001022 0.0000027 0.0000193
S : 5 0.0313185 =0.0742726 " TL070000D00CT T -0,0000000 =0.0000000 0,0000102
6 =0.020R617 =0.0984930 0.0000000 =0.0060000 ~0.00600000 0.0000289
21 GLOBAL ) R, -
— 7 =-0,0122169° -0,.1437729 0.7043623 T D.o601t28 0.00900R0 0.0000203
5 0.0306276 " ~0,0713151 =0.0000222 =0.,0000095 -0,0000007 0.06000102
& =0.0208682 =0.0940A85 ~0.0000602 =0.0000142 =0.00000600 0,0000289
3

TF OYNAMTIC ANALYSIS FOLLOWS
%

UNITS POUNDS INCHES

TINERTIATOF JOINTS LUMPED

.-ENFBILEWPf JOINT 4DD 9+11 LINE&R ALL 69.88
INERTIA OF JOINT afDp 15 LINEAR ALL 117.75

TINERTTA OF JOINT AND 17418 LINEAR ALL PR.47

_1ﬁ§51££_9f_49!NT ADD 20 LINEAR ALL 73.7%
DyNAMIC DEGREES OF FREEDOM

TIOINTTTTT0 25 DISPLACEMENT X Y f
DAHPING_Eﬁf}g V.10 75

UNITS RADIANS SECONDS POUNDS THCHES

“OYNARIC LOADING 7 'CENTRIFUGAL FORCES!

@@ ©

_iEiNT lp QQEE_fORCE ¥ FUNCTION SINE AWMPLITUNE t43. FRFQ 727.7
JOINT 10 LOAD FORCE 7 FUNCTION SINE AMPLITUDE 143, FRE® 727.T PHASE 1.5707
“JOTNTIS L0AN FORCE Y FUNCTIGN SINE AMPLITUNE 4040, FREQD T27.7
JDINT 15 LOAD FORCE 7 FUﬂCTION SINE AMPLITUDE 4040, FREQ T727.7 PHASE 1.S5707
JOINT 20 LOAD FGRCE Y FUNCTION SINE AMPLITYDE 3857. FREQ 727.7
“IJOINT 20 LCAD FORCE Z FUNCTION SINE AMPLITUDE 3497, FREQ 727.7 PHASE 1.57Q
71NIF§R§?E FROM q.ﬂ 10 0{0863 AT.0.0GOTIQQ

PRINT DyNaMiCc DATA ALL

96

TAFRFEFNFFFEDDEFRERFRFFARFETOARESRRERSS 40

* PROBLEM DATA FROM INTERNAL STORAGE #
I I TR YT TR Y T Y DY TY Ty

JOoB ID - EXAMPLEWA?77_{QE”TIILE_-_ST{T}C AND DYNAMIC ANALYSIS OF & TABLE-TOP
ACTIVE UNITS = LENGTH WEIGHT ANGLE TEMPERATURE TIME
INCH LB RAD ~ DEGF SEC

JOINT DYNAMIC DEGREES QF FREEDOMe==/ JOINT INERTIASecsw—msmememcvsssmccesawamcaans P

FORCE MOMENT
TJOINT T TFORCE™™ T T MOMENT X Y 7 X Y z
FEFHIF CONDENSATION IS STATIC tdowcn #peced TNERTIA OF JOINTS IS LUMPED ##saws
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3 XYz
K -
5 XYz
6 XY 7
T XYz T T -
8 XYz
s - Xy 2 £9.87999 A9.87999 69.87999 0.0 040 0.0
L - B e e BTBTOR9 0 RFLBTHSE  8Y.RTE
11 x ¥z 69.87999 #9.87999 69.87999 0.0 040 0.0
12 XYz
I3 Yy
14 xv?
15 Xy z 117.75000 117.75000  117.75000 0.0 040 0.0
16 x¥yzr T T - D o
17 XYz 28.656999 28.46999 2R,46999 0.0 0s0 0.0
18 XY 2 28,46599 28466999 28.46999 0.0 0.0 0.0
19 TTTTRTY T T ' ’ . )
20 XYz 73.75999 73.75999 73,75998 040 0.0 0.0
21 Y7
Sy e el U
23 XY 2
24 XYz
|ETTTTTTUTYY 2
OYNKRTC DAMPTHG MATRISL 50 cscdemaniamvsasasiaiiliiomanmameninesonanamemanddndcamnmenmeanamamanman ca————emm mammm e e /
MODE  DaMPING RATIO  MCDE  DAMPING RaTIO MODE  DAMPING RaTIO MODE  DAMPING RaTlC MODE  DAMPING RATIO
! 6.10000 T @ T T W.I0600T 0 T T3 Cg.10860 K 0.10000 5 0.10000
6 0.l0000 7 0.10000 a 0.10000 9 06.,10000 10 0.10000
11 0.10000 12 0,19000 13 0.10000 14 0.10000 15 0.10000
16~ 0.10000 TUITTTT O 0.10000 TR 0.10000 19 0410000 20 Us 10000
21 0.10000 22 0,19000 .23 0.10000 26 0.10000 25 0410000
26 o.loono 27 0.10000 28 0.10000 29 0.10000 a0 0410000
3 5. 1g000 32 0.10000 33 0.10000 34 0.10000 s 0.10000
36 0.10000 37 0.10000 I8 0.10000 39 o.toanc 40 0.10000
41 #.10000 42 0.10000 43 0.10000 ag 0.10000 a5 0.10000
STRETTTTTTTORL0000 T T AT 0.10000 4R $.10000 49 0+10000 50 0.10000
S1 o.lo000 52 0410000 53 0.10000 54 0.10000 55 8100600
56 0.10000 57 0410000 58 0410000 59 £.10000 60 0.10000
i B PV £11.1'] S B2 T UN10000 ! Tosal0000 0 &4 0.10000 65 0.10000
66 t.10090 67 Ns10000 AR 0.10000 69 810000 70 6.tp000
71 t.lo000 72 0.10000 73 0410000 74 0el0000 - 75 0.10000
DYNAMIC STIFFNESS MATRIX=amemamcmmemescmeeceemeessee—mese— o e —e s ———————————————————— ———— m—————— oy

7 FEERNR WATRIN TS TO BE TOMPUTED FRUM MEMAER PROPERTIES #assas

BRuoRoenns DyNAMIC LOADING DATA #whssmcass

LOADING = 7 CENTRIFUGAL FORCES STATUS ~ ACTIVE

JOINT LOADS ————— ——ma Bl e e T

CYTON™"" YIME "~ 77" "LDAD TIME ~ T TLOAD TIME LOAD TIME LOoAD

It FORTCE Y FUNCTIDNI  STN " EMPLITODEt 1.4300FE 02 FREQUENCY! “T.27T0E 02 PHASE ANGLE! 0.0

10 FORCE 7 FUNCTION: SIN AMPLITUDE! 1,4300F 07 FREQUENCY: 7.2770E 02 PHASE ANGLE! 1.5707E 0o
15 FORCE Y FUNCTIONI SIN AMPLITUDEI 4.0400E 03 FREGUENCY! 7.2770E 02 PHASE ANGLES 0.0

IS ""FORCE T Z FUNCTTOND SIN “AMPLITUDE: 4.0400E 63 FREQUENCY! 7,2770F 02 PHASE &NGLEI 1.570TE g0
2¢ FORCE Y FUNCTIONI SIN AMPLITUDE: 3.8970F ¢3 FREQUENCY: 7.2770F 02 PHASE ANGLE! 0.0
20 FORCE Z FUNCTION: SIN AMPLITUDE: 3.8970E 03 FREQUENCY: T.2770E 02 PHASE ANGLES 1.570TE 90

INTEGRATION PERIODS=ma=smmmmusessssisnsmma sansmnn/
INITIAL FINAL  INCREMENT

.t 0.08630 d,00072

HERBABAARATH U GO A DL RAGOVENATRPRBURRO SR

® FEND OF DATA FROM INTERNAL STORAGE =
1Tz 2RI SRR SRS RIS RS RRT E N



H
DYNaMIC ANALYSIS mOnDap 20
INTERPOLATION FOR DynaM1C RESPUNSE QUANTITIES
IS PERFORVED USING A CISPLACEMENT SPECTRUM
UNITS KIPS INCHES CYCLES SECONDS

LIST DYNAMIC EIGENVALUES 20

HBORNTBEVROGRHEBINIERIRLGBIOH LN

*RESULTS OF LATEST ANALYSES*
HEoaaEBEEAVHOERRADSUOREEUDES

Computer Analysis and Applications: Example

PROARIEM - EXAMPLE TITLF = STATIC ANN DYNAMIC ANALYSIS OF A TABLF=TOP

ACTIVE UNITS INCH KIP CYC DEGF SEC
ACTIVE STRUCTURE TYPE SPaCE FRAME

ACTIVE COORDINATE AXES x ¥ 2

ETGENVALUES
MONE wrenemef IGENVALUF ====~==FRFAUENCYrmer==ca=PFRIO0~u=/

1,3556%960 0l J.£819780 00 2.7159310-01]
2+21116AD 01 4. TOPI04D DO 2a1266170=n]
549840950 01 T+735694D 00 1.2927090=01
1.2704420 07 1.127139D ¢l R.AT20220-02

—
DO NDBHE DN —

1.6934980 02 13013450 ©l T.hA43600-02
1, 7040980 02 1.3054110 01 T6606210=02
1.0A69040 02 1.75125AD 01 5.7101820-n2
3.3501950 02 1.A33084D 01 5,4552490=-02
4,3372650 N2 2.082410D 01 448016870=n2
745655360 02 2.7505520 a1 1.63560340~-n2
11 B.1379070 02 2.8527020 01 3,50154490=-02
12 1.0684600 93 3.268731D0 01 3.059292N=02
13 1.1637068D 03 3.411314D Q1 2.9314210-n2
14 1.7401070 03 4.1714590 01 2.3972430-42
15 T T2.4260240 03 4.9254690 01 2.0302640-02
16 2.5718630 03 50713540 01 1.971RAGD=-02
17 3.74554090 03 621526740 0l 1.675310D=-02
1R 4,2569580 03 6.524537D 01 1.5326760~02
19 G.4795R70 03 6.6899830 01 1.454772D=02
20 4.6226A10 03 6.,7990300 01 1+4T0798D=n2

NORMALI?E EIGENVECTORS

LIST DYNAMIC EIGENVFCTORS 20

REBBHRERRNBODDRERDEBEORDRERE

#RESULTS OF LATEST ANALYSEGH
RS ERH RSB R AR RS AR SR ND S

PROALEM - EXAMPLF TITLE = STATIC AND DYNAMIC ANALYSTIS OF 4 TABLE-TOP

ACTIVE UKITS INCH KIP CYC QEGF SEC
ACTIVE STRUCTURE TYPE SPACE FRAME

ACTIVE COORDINAYE AXES X Y Z

EIGENVECTORS
MONE i )
JAINT fi——mmmemvamemn == ] SPLACEMENT ma e~ -t
X DISR, ¥ DISP, 7 DISP. X ROT,
t GLORAL =0.0067923 Ne2]124584 n,N732493 N.0037039
Ed GLOBAL ~ 0.0067923 =0.2124984 0.0792493 n.0037039
3T 77 7 GLORAL =D.0068172 02100704 0.0683671 " 0.0036E86
4 GLOBAL 0.0068172 =0.2100704 N.0683671 0.0036886
S GLORAL -0.,00681313 N+203T1RS 0,060173S 0.0035246
& T 7T GLOoBaL 0.006R131 -0,2037185 0-@601?35 N.0035246

¥ ROT

0.0001132
0.0001132
0.0001137
0.0001137
0.0001136
$.0001136

cocmecmenmseeROTAT[ONecmme e e e e m

2 RQT.

-0.0000051
0.000005]
«0.0000519
0.0000519
~0,0000615
0.000061%

141
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h GLCRAL =N.006800} D.2016964 0.0520057 N.Q03%5207 0.0001133 =0.N00C06R
L} GLOBAL 0.0068001 =-0.,2016964 01.0520057 8.0035207 0.0001133 0,000G068
9 GLOBAL =0.0069A958 B.2202079 0.9999302 1.0039341 0.00016%0 -0.0000282
10 GLORAL 0.0000¢90 =3.0000000 0.,999969% 9.0035281 0.0001629 D.0000000
1t GLAaBAL N.00%8958 =0.2202073 0,9999302 0.0039241 0.0001690 0.0000282
T2 T T GLgBaL o =0.,0098804 e21R0931 0.990R&12° $.00319948 0.0002043 ~0.0000508
13 GLGRaAL 0.0093R05 =N.218093] 0.9908612 9.0039948 0.0002043 0.,0000506
14 GLOBAL =-0.009R642 4.2153134 N.9814661 0.0040554 0,00016840 =0,000012AR
15 GLORAL n.0000000 0.G000000 0.9822227 0D.0033801 0.0001626 =~0.0000000
16 GLecAaal 0.0098642 ~0«21/3134 0.9814661 0,0040%554 0,0001680 0.0000122
17 GLOBAL =0.0099592 0.2142941 N.,9681619 0,.,0039758 6.0002373 =0,0060450
YR T TGLeBal . T0.0099552 =N.214294] 0.9681619 n.0039758 D.0002373 0.0000450
19 GLOBAL ~0.01004%0C De2104947 0.9480148 N.0038963 D.0002767 =0.0000497
2n GLOBAL 0.0000000 -N.0000000 N.9486380 0.0032142 0.0001129 ~0.0000000
AT T GLCRAL 0.0100490 D2 104947 01.9480168 0.0038963 - 0.0002767 0.0000497
22 GLOBAL 0.0000000 N.0000000 0.0791737 60034562 o.0001132 =0,0000000
P} GLoBAL 0.0000000 =0.,0000000 D.0682918 0.0034034 0.00011236 ~0,00G0000
TP4TTT TTGLORAL o 0.0000000 =N.0000000 0.0801170 T n,.0833343 D.0001135 0.0000000
2S GLORBAL 0.0300000 g.0nNOND0 0.0519509 G.0032877 0.0001133 G.000900n
MGDE 2
—JUINT T [ S ————— T Y- TRV 4 £ | 1 ¥ S e e L L Te R D 5 T LT PR R L L L L b L et Py
X DISP. ¥ DISP, 7 DIsP. X RCT. Y RCT. 7 ROT,
! GLOAAL B P 8 U 17 Rttt -l g L UTT023% (rpin ey = eyt —— — =tvdeuEYy —
F GLeRaL 0.1141280 f.2520703 N.000023R =Ne0000440 0.0000002 =D 0024447
a GLOAAL 0.11423430 1+03060R7 =0.0000023 N.0008011 -0,0000003 =0.002372R
& GLORAL 0.11434120 G.0706087 0.0000022 =0.0000011 0.,0000003 =-0,002372R
5 GLOBAL 021137926 =N 1061810 .0000100 =0.0000242 =0.000000] -0,00160853
L] GlLopaL 0.1137926 =h.ln&1R10 ~0,0000100 0,0000242 0,0000001 =0.0016053
TYTTT T gLeRaL 0.1135614 =.2192960 0.0000138 =0.0000360 ~0.0000001 ~0.00162%0
a GLGCBAL 0.1135614 =N.2192960 =0.,0000138 0.0000360 0,0000001 ~0.00162%0
9 GLOBAL 0.9840369 N.2652970 H.000123% -0,0000124 =0,0000000 =G.0027126
0T T TTGLUHAL N.9844028 Pa2hSTSIA =0,0000000 N.0040000 =0.0000000 ~0.0027126
11 GLORAL 0.3840363 N«2652970 =0.0001235 0.0000124 0.0000000 =0.0027175
12 GLOBAL 049835075 Da1503R42 Na0CG15290 =0,0000065 =0.0000210 ~0.0022718
13T " TGLD#AL . 0.9835075 Ge 1503847 -0,001129¢ 00000065 0.,0000210 =0.0022718
14 GLOAAL 0.98727755 .0284256 te00012%4 -0,0000007 4.00004835 =0.0030046
15 GLoAAL N.9930775 N1.0285451 t.000000N0 =0.0000000 -0,0000000 «0.0030048
16 T T GLOBAL 0.9R27755 N.02R4256 =0.00012%4 D.0000007 =0,000083% =1:0030044
17 GLOBAL 0.98405139 ~0,1270545 N.0001671 0.0000148 =0,0000405 =0.0015564
18 GLOBAL 09840539 =0,1270545 =0,0001671 =0.000014A 0,.0000405 =0.N01558&4
19 T 7 "GLOBAL 09044893 =0:2314Th6E =-1.0003R%8 0.0000303 0.0000998 =0.0015984
20 GLOBAL 019999995 -8 2329970 =3.0000000 =0,0000000 =0.0000000 =0.0015%984
21 GLomal 0.9844893 =~0,2314746 0.3003R48 -0,0000303 -0,.0000998 =0,0015984
72 T GLOBALT B G+1141202 1.2496134 =-0.0060000 0.0000000 =0.0000000 =0.0024069
23 GLO8sAL 0.1143250 0.0307146 =0.0080000 =0.0000000 b.0000000 =0.0022308
24 GlLosal 0.1137908 =0.1048773 =0.,0000000 =0,0000000 =0.,0000000 =0.0016196
TR UUUGLOBAL 1135581 =N.21755%0 =0.0000000 -N.0000000 0,.,0000000 =0.0015967

MOTE 37T

JOINT fommmamassncam e n a0 [SPLACEMENT == m e aan = fm- mmmmmmeeeacROTATIONr e cm e mmm e e e a
T X DISP, ¥ DISP. Z DIsP, X ROT, Y ROT, ? ROT,
1 GLORAL n.1417329 =Ns0112100 =0+2B808349 =0.0003631 =0, 0023626 n.qanoue6z2
¥ 7 GLORAL T 7 -001417329 0,0112100 -0.,2B08749 =0.0003621 =0.0023626 =0.0000622
3 GLOBAL D+1417809 0.0064624 ~0+0540366 0.00011%1 =0.0023621 0.0000324
4 GLOBAL -0,1417809 ~0.0064624 =0.0540366 0.0001191 =0,002361] ~0.0000324
& TTTGLOBAL Bel414983 N.0262196 01159251 0,0005198 =0,0023587 00003433
4 GLOBAL ~0+1414983 ~Na0262]196 0.1159251 0.0005198 =-0.,0023587 =0,0003433
7 GLOBAL 041416254 00507389 D.2R57042 0.0010257 =-0.0023576 0.0001933
® T GLOBELT T U=H.TaT4254 =N, 0507389 2857042 0.0010257 =0.0023576 =0.0001933
9 GLOBAL D+4060833 -0.0158627 =0.7106385 =0.0007704 -0,0067492 0.N0000255
10 GLOBAL 00000000 N. 0000000 =0.7108562 . =0.0000114 =0.,0067775 =0,0000000
STT T UGLABAL T TW0L.4060833 0.0158627 =0+ 7106385 =0.0007704 =J.0067492 =.0000255
12 GLOBAL 0. 4053364 =0.0020500 =0.3695758 ~0,000304] =0,0072886 0.0003814
13 GLOBAL =0+4053364 00020500 =0.3695758 ~0.0003041 =0.0072886 =0+0003814
B0 GLUBAL 0 h044307 " T 0.0045564 TTA0.0R2BTITI T d.0n01621 =0.0067165 =0.0002749
15 GLORAL 040000000 =0,0000000 =-0,0288151 n.00006328 =0.0067525 =0.0000000
18 GLOBAL -0 4044307 040045544 =0.0287171 0,0001621 0. 0067165 0,0002T49
17 GLOBAL ~ 7~~~ 7¢.4055814 T 040207648 0.4840401 Tg.0010292 =0.0072804 0.0095615
18 GLOBAL =~0e4055614 ~0.020T&48 0.4840401 0.0010292 =0.0072804 “0.000561%
19 GLOBAL 044057521 0.0622181 09971092 0.001R963 =0+0069046 0,0004315
20 GLOAAL " =g 0006000 TSR Ogo00on 0 0.999999S T d.0006073 =0.0066915 =~0.0000000
21 GLoBAL =0+4057521 -0.0622181 0.9971092 0,0018963 040069046 =0.0004316
22 GLORAL ~0.0000000 0.0000000 «0.2807355 =0,0000823 =0,0023619 =0,0000000
73 GLOBAL ~ ~ TTUUATLU000000° 040000000 ~  =0.,0540228 " 0.0001209 =0,0023625 =0.0000000
24 GLOBAL ~0.0000000 =0,0000000 0.1158892 0,0004012 =0,002358] 0.0000000
25 GLOBAL =0.0000000 0.000000N 0+2856013 0.,0007171 ~0.0023568 0.0000000
MODE & . e —m s
JOINT femammmaccacmenaeaDISPLACEMENT -—— 14 - ROTATION«c—cmccmaacaanamaa/
xoise. YOI, . ZOISP. X ROT, Y ROT.  Z RoT,
] GLOBAL =0+1357758 0.9512756 0.0000647 0.0001767 =0.0000002 ~0.0005171

2 i ?FOBAL =0.1357258

0.9512756 ~0.0000647

—0.00@1??3 -9.0000002 =0.0005171
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1 LLUHAL =041 {00009 Ced FYUH]H G« UUCQUHG] gauvogrry : -, 000U T =UL0D11T04
4 GLORAL ~0,1360005 0.879461R -0,0000861 -0.0002113 0.0000000 -0.0011704
5 GLCAAL =n,1357959 0, 7569069 0.0000824 8.0001545 0.0000000 =0,0019545
A GLOBAL -0.1357959 0. 7569069 ~0,0000824 =0,0001545 -0.0000000 =0.0019565
4 GLOBAL -0.1356713 BL.61R625N 1,0000829 0,0001A060 =0.0000000 -0.0018612
A GLOBAL -0.1356713 NG IRBZBE -0.0000829 ~0.0001600 0.0000000 -0.0018612
9 GLOPAL -0.0617551 149922456 ~0.000061) -0,0001987 0.0000036 - =0,000753]
10 GLOBAL -0,061760A #.999999R =0.0000000 0.000000D 0.0000000 -0.0007531
11 GLOBAL -0.0617591 N.9922456 0.0000611 0.0001987 =0.0000036 -0.0007531
"y GLOBAL -0.0613237 #.9523607 ~0,0007635 ~  =~0,0004418 "0.000016] ~0.00088R7
13 GLORAL -0,0613237 #.9523607 0,000763% 0.0004419 ~0,0000161 -0,8008887
T4 GLORAL -0,0608373 649116665 -0,0006962 =0.0006833 -0.0000282 =0.000728]1
18 GLAORAL -0, 0646018 n.9512376 =n.0000000 8.0000000 0.0000000 -0:000728]
16 GLORAL -0, 0608373 N.S116K65 0.0006967 0,0006833 0.0n00283 «0,0007281
17 GLOBAL ~0.0610613 n.A215370 =0.0007674 -0.0006150 0,0000132 -0.0018863
1A GLORAL -0.0610613 #.8215370 0.0007474 0.0008150 -0.0000132 -0,0013863
15 GLOBAL ~0.060084A #.6565737 -0.0002659 -0,0005467 -0.0000425 =0.1023556
20 GLOBAL -0,0670850 #.6R33196 N.0000000 0.0000000 0.0n00000 -040023556
21 GLORAL -0.0609448 $.6565737 0.0002659 0.0005467 0,0000425 ~0,0023556
22 GLORAL -041357332 0.9442801 -0.0000000 -0,0000000 =0,0000080 -0.0005266
23 GLORAL ~n.1359981 0.8703532 -0,0000000 _=0,0000000 -0.0300000 «0,0012052
24 GLORAL -0.1357964 n.7522643 0.0000000 =0,0060000 -0,0000000 -0.0019286
25 GLOBAL -0,1356719 n,6126020 6.0000000 0.0000000 =0,0000000 -0,0018%i0
MOOE 5
~JOINT fomemesacamcemeaeaD]SPLACEMENT =mmmcmmeammmmcmca//fancc e e e s wa=aROTATION = e e o e e e e f
x DisP, ¥ DISP. 7 nise, X ROT. Y ROT. 7 RoT,
i GLOBAL 0.998R343 -0.4129394 0.0000667 ~0.0000119 0.0000004 040051520
? GLOAAL 0+9988243 =0.4125794 ~0.0000658 N.0000119 -0.0000004 0.0051520
k| GLOBAL #.9999954 #.07A7779 0.0000578 0.0000362 0,0000000 0.0049613
B - GLOAAL 049999954 1.07A7779 -0,0000578 ~0,0000362 -0,0000000 0. 0949613
5 GLORAL 0.9991596 n.4351375 0.0000499 0.0000525 0.0000003 0.0045780
6 GLORAL 049991596 #.4351376 -0.0000491 ~0,0000525 =0,0000003 040045780
=yt GLOBAL 0+9930285 . T966A39 0.0000259 0,0001081 0.0000005 0,0050278
A 6LOBAL 049920285 e T9RBA3Y ~0,0000259 -0,0001081 ~0.0000005 0.0050278
9 GLORAL 0,0282955 <0.43489R1 Ne0000601 00000379 0.0000004 040052541
19 GLOBAL 0.0283761 -0.4370R04 -0.0000000 n,0000000 =0.0000000 0.005298)
1 GLORAL 0.02A2955 -0,4348981 -0.000040] -0,0000179 -0.,0000006 0.005298)
12 GLOAAL 0.0787294 -1.1753971 0.0002106 =0.0000581 =0,0000029 0.,0054684
13- GLORAL 0.0282294 «0.1753971 -0.0002104 "n,000058] 0.0000029 0,0054684
14 GLoBAL 0.0281319 0.0849489 «0.0001359 -0,0001541 0.0000217 0.0053189
15 GLORAL 0.0306760 0,0920303 0.0000000 7.,0000000 -0.0000000 0.0053189
TR GLOBAL 0.02317319 1.0869489 #,0001319 . 9.,0001541 -0,0000217 8.0953189
17 GLOAAL 0.0245549 0.4766N6A ~0.0063179 =0,00046447 -0,0000062 ¢,0053206
1A GLORAL 0.0285549 0.4TRHNGA 6.0003179 0.0006447 0.0000062 0.0053206
19 GLOBAL 00237905 048416854 -0.00074R8 ~0.0007754 0.0000289 0.60492%
20 GLOBAL 0.0328009 N.AR15361 =0.0000000 0.0000000 -0,0000000 0.0049296
21 GLOAAL 040287905 148416854 0.0007488 00007354 ~0,0000289 0.0049296
- R GLOAAL 1.9989450 -8.4119033 ~0.0000500 0.0000000 ~0.0000600 0.0051520
23 GLORAL 1.9999999 0.077255% -0,0000000 0.0090000 ~0,0000000 0.0049821
24 GLOAAL 0.9991A39 N.%340099 -0.0000000 0,0000000 =0.0000000 0.0049619
SR GLORAL 0.9980538 n.7924210 ~0.0000000 0,0000000 «0.0000000 0.0050130
---- MODE &
JOINT fommmmmmmeseeeea-aNIGPLACEMENT avammmmcrrsmamane/ /e meemsmvawr==emeeROTAT [QN v mmmemm e e m e/
LTI X D1sP, ¥ DISP. 7 DISP, X ROT. ¥ ROT. "7 ROT.
1 GLOBAL =0.0271089 -N.2949927 0.9996825 =0,0048784 0.,0003682 0.0000038
D GLOBAL 0.0221089 0.2949927 0.9996R25 =0.0048784 0.0003682 -0.0000038
3 GLOBAL -0+022500%3 -0.2909883 0.9641493 ~0.0047706 0,0003749 0.0000708
4 GLORAL #.0225003 0.2909R83 0.9641493 ~0.0047706 0.000374% ~0.0000708
5 GLORAL -G 02A982] S =0 ETIRIET 4 GIEATTT — =0, 0046508 0,0003835 © 040001563
6 GLORAL 0.022982] 0.2794129 0.5368019 =0.0066408 0.0003835 -0,0001563
? GLOBAL -0.0231594 -0,2697854 0.9090357 =0,00443969 0.,0003862 0.0000754
A GLORAL 0.0231595 02697859 0.5090357 ~0,0044969 0.0003862 -0.0000754
9 GLOBAL 0.0101810 -0.30R019¢ -0.0126071 ~0,0050918 -0,0001803 0,0000617
1o GLORAL 0.0000000 -n,0000000 “0.0126181 -0,0051546 -0.0001646 0.N0004000
I~ TTGLOBAL T =0.0101910 0.30A0194 =0.0126071 =0.0050918 -0.0001803 ~0.0000617
12 GLOR AL 0.0101242 -0,3022175 0.000102a ~0.0049588 -0,0003185 0.0001457
13 GLOB AL ~0.0101242 0.3022175 0.0001028 ~0.,0049588 -0,0003155 ~0.,0001457
T& T GLOAAL © 0.0100460 ~0.2945236 0.0144308 -0,0048259 -0.0002477 ~0,0000511
15 GLORAL 0.0000000 n.o000n00 0.6145719 -8,0050501 -0,0001273 0,0000000
16 GLORAL =040100460 0,2985736 0.0144308 -0,0048259 -0.0002477 0.0000511
17 T T GLoRAL 0.0101557 -1.2983027 t+.0399194 ~0.0046460 -0,0003974 0.0001584
18 GLOBAL -0.0101557 1.29R3022 #.0399194 =0,0046460 -0.0003974 -0.0001584
19 GLOAAL 0.0101904 —N. 276643 0.0656312 -0.00454661 ~0.00602950 0.0003157
—Z0 T GLOBAL T T -0.0000000 n.0000000 0.0661758 ~0,0046910 -0.0001069 0.0000000
21 GLORAL ~0.6101984 N.2769647 0.0656312 ~0,0044661 =0.0002960 -0.0003157
27 GLOBAL 0.0000000 -0,0000080 n,999999A -0,0049306 0.0003686 0.0000000
3 T UTUTGLOBAL 0.0020000 0.0600000 .9644235 «0.004R685 0.0003750 0.0000000
24 GLORAL 6.0000000 n.0000000 0.9371206 =0,0046715 ¢.0003829 0.0000000
25 GLORAL 0.0000000 #.9000000 0,9093761 ~0,0045153 ¢.0003860 0.0000000
MODE 7
JOINT femmmmeem e emaD4PLACEMENT mmmemmmmcmececee= /e vemawanmmmemr=rew=ROTAT [ONevr — = e e e e e
x 0IsP, Y DISP. 7 DisP, x ROT. ¥ ROT. 7 ROT.
1 GLCBAL 046619657 A.1026532 -0,8489724 6.0020031 -0.0076982 -0.0002670

7 GLosaL =0+4619697 =N.1026532 -0, Re89224 ¢+0020031 -0.0074982 0.0602470
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TATTTTTTTGLORAL T T T TDe6621285 0.0461054 -0.1098231 0.,0007171 -0.0076992 =0.0D0027186
4 GLOBAL ~0, 4621285 =~0.0461054 =-0.109823) 0.0007171 -0.0076992 6,0002716
5 GLOBAL D 4623657 =0,0152219 _Deb4sTIES =0,0004191 -0.0077036 -0.00097238
TR T GLOAAL T T <0, 4823857 0.0152219 DabbaT166 =0.0004191 -0,0077034 0.600973R
7 GLOBAL 0+4621059 -0.0841920 0.5992144 =0.0017586 =0.9077045 =0.0005645
A GLORAL =0.4621059 0.0A41920 [a9992144 =0.0017586 =0.00770405 B 0005645
T GLEBALT T =UL.0688524 041209738 63347217 0,0030519 0.0012073 ~0.0002315
10 GLOBAL 040000000 =8.0000600 N+3352479 n.0014984 0.,0010669 0406000000
11 GLORAL 0.0688224 =0.1209738 0.3347217 n.+0030519 0,0013073 0.0002315
T2 GLOBAL T T S4.06A) 450 00799024 t.206198A 0.0018638 0.0035192 -0,0010993
13 GLOBAL 040681750 =0.0799024 0.20619RR 0.0018638 0,0035192 0.0050993
14 GLOBAL -0.0673107 0.05253R3 N.0509307 0.0006757 £.0023527 0.0003516
TS GLOBAL T TTUE0,TO00000 -0,0000000 0.0518339 0.0009756 0.,0005064 0,0000000
16 GLOBAL 040673107 ~0, 05253483 0.0509307 N. 0006757 6.0023527 ~0.0003516
17 GLOBAL =04 0695602 =0.0024613 =042404357 =N, 0015924 0.0048511 “0.00L5154
TR GLORAL TTT0W0B55602 7 T T 4.0024613 T =Dl 2404357 =M. 0015924 0.004851) 0.0015154
19 GLOBAL ~0+0709032 «0s1135046 =5,5523883 =0 0038605 0.0033811 =0s0012085
20 GLOBAL 0,0000001 He0000000 =0.5606926 =0.,0008074 0.0000840 0,0000000
TZiT T GLOBAL D.0709832 6.,1135048 =0.5523883 =0,0038405 0.0033811 0.00120R%
22 GLORAL ~0.0000000 =3.0000000 -0.8495282 0,0015032 -0.007700& 0.0000000
23 GLOBAL =0,0000000 ~3,0000000 =0,1098380 0,0007453 =0,0077047 0.0000000
D GLOAAL =0, 0000000 n.00800G0 " N.4451560 ~0.0001740 =0,0077074 d.0000000
25 GLORAL =0.0000000 0.0000000 1.9999997 «0.0011113 ~D.0077028 0.0000000
MODE B8
JUINT T fecedemttmcccr e n=[SPLACEMENT e r e —meammcmse e/ fmmeamrmrromamem e e e RO T AT [ONemm w et /
X DISP, ¥y DISP. 7 DISP, X ROT, Y ROT» 7 ROT,
YT GLOBALT T =04 42094661 =0.5031327° =0,0001302 6G+0000374 =0.0000015 00032842
? 6L0OBAL ~0+4209460 =0.5031327 0,00601302 =0.0000374 0,0000015 0.0032342
3 __6LoAaL =044209600 =0,1250688 0.0000262 =0,0000213 =0.8000021 0.0038364
& GLagar TED.5209604 =Ns1290688 =0, 0000263 0,0000213 0.0000021 6.00182368
5 GLORAL —9.4225176 0.30)2768 0.0001572 =0.0000274 =-0,0000016 0.9074400
& GLOAAL -0.4225175 De3012768 ~0,0001572 0.0000274 0.0009016 B,0074400
LIST DYNAMIC DISPLACEMENTS ALL
s itd&.lIllill.ﬁaoﬁﬂoionﬁllb#ﬂﬂl
®RESULTS OF LATEST ANALYSES®
GHBBUHGASRRO RSO LB GO EOTRBENON
T PROALEM ~ EXAMPLE  TITLE = STATIC AND DYNAMIC ANALYSIS OF A TARLE-TOP
ACTIVE UNITS INCH KIP CYC DEGF SEC
ACTIVE STRUCTURE TYPE SPACE  FRAME
ACTIVE COORDINATE AXES X Y Z
ERT======S2 EEsor s I RN AT SIS IEESESSSISIEIITTISSITITISIEISS RSTITSESIEIRITCSENIIENENEE

CENTRIFUGAL FORCES

ING - 7

RESULTANT JOINT DISPLACEMENTS- SUPPORTS

JATNT

1 . GLORAL

focmiememmecmenecaD[SPLACEMENT ammaxe—a~

TIME ——ff
% DIsP, Y.DISP. Z DISP, X ROT,

0.0 a.0 Dot 0.0 NeD
g.ngn72 d.000angan 0.000n000 0.0000000 G.0000000
G 001564 0.0000000 .0000000 0.00000040 0.0000900C
L. 00216 0.0000000 0.0000002 G.0000000 0.0080000
N« 00288 0.0000001 0.0000005 0.0000001 G.0000000
0.003648 d.000000] D.000n012 0,0000002 0.0000000
0400432 0.0000002 0.000n0022 0.0000004 0.0000000
0.,00504 0.0000004 0,0000027 0,000000%5 G.0000000
0.0057& 0.0000006 0.0000056 0.00000056 G 0000001}
0.00647 0.000040A4 0.0000079 6.0000005 . 9.0000001
0.00719 0.0060010 0,0000104 ¢.0000003 0.0000001
n.n0i9] p.0000013 N.n000130 0.0000001 G«0000001
n.00863 0.00000L4 0.0000158 =0.0000001 0.0000001
0.00935 0,0000020 0.0000186 =0.0090002 0.0000000
0.01007 0.0000024 k.0000213 ~0.0000003 0.00000060
0.01979 0.000G073A G.000n024N =0.0000003 =0.0000000
N.01151 0.0000036 G.000N266 -0.0000003 =0.0608000
0,01223 0,00000644 D.npan292 =0.0000003 -0.0000001
0.012%% 0.0000057 6.0000320 -0,0000003 =0.0000001
Na01367 0.0004n06) 0.0000349 =0,0490002 ~0.0000001

Y ROT.

040
=0.0000000
=0.0000900
-0.0000000
~d.0000000
=0.,0000N000
=0.0000000
=0.0000000
«3.0000000
=0.0000000
=0.0000000
=f.0400000
=0.0000000
-0,0000000
~0.0000000
=0.,0000000
=0.00009000
~d.0000000
=-0.6000000
-0.0000000

+

B e L L L e e R E e L P P R e s Lt PP T P P L R R i St LI P e R AL 2 s £ 2] )

cmemmmaeatROTATION—r— e e ==

Z ROT,

0.0

0.0000000
N.QN00000
0.0000000
0.0000000
0.,0000000
0.0000000
0.0000000
0,0000000
0.0000000
0.00600N0
o.0000001
4.0000001
0,000000t
0.0000Q01
0.0000001
0.00004001
0.000000]
0.0000000
n.,00080080
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0.016439 n.0000070 0.7000381 =0.0000004 =0.0000000 «0.0000000 0«CN000N0
0.01511 0.00000RN Ne000N&13 -0.0000006 -0.0000000 ~0.0000000 0.0000001]
n.01583 0.0000090 0.0000464 ~0.,000GN0A 0.40080000 ~0,0C00N00 0.000000]
0.0165% 0.000009% g.hn0n470 =~0.0000010 0,0000000 =0.0000000 N 000000
a.01727 6.0000108 0.0000488 ~0.0000013 0.0000001 =-0.0000000 D.0000001
0401798 G.6000117 0.0000497 =0+0000015 0.0000001 =0,0000000 040009001
8.01870 G.0000125 0.0000497 «~0.0000017 2.0000001 ~0,0000000 0.0000001
0.01942 0.0000134 n.0000493 ~0.0000018 0.,0000000 =0.,00004900 0.0300001
0.02014 £.0000147 n.000n049] ~0.0000018 0.0000000 ~0,.0000000 a.0000001
0.02086 0,0000149 00000496 -0, 0000019 -0.0000000 ~0.8000000 00000000
FrG2i5A- - 0 G000 T RIS 1S - TS0 GUen A2 - SO To At T = G T T =0T —
0.02230 0.0000164 1.00N0548 =0.000002¢ =0.0000000 =0.0000900 =0.0000000
0402302 n.0000179 C.0000593 =0.0000024 =0.0000000 -0.0000000 =0.0000000
0.02374 0.0000176 0. 0000645 =0.0000027 0.0000000 =0.0000000 =n.0000000
0,024646 0.0000182 0.0800692 =0.0000030 0,0000001 «0,0000000 ~0.0000000
t.02518 0.00001R6 0.00007%27 -N.0000033 0.0900001 =0.0000000 0.0000000
“0.02590 0,00001R9 0,000n747 =~0,0000035 2.0000001 «0,0000000 0,0000000
0.02662 0.0000191 0.0000734 =~0,0000037 D.0000001 =0,0000000 naD0ANOBL
002734 0,0000192 n,a60070% =0.0000038 2.0000001 -0.,00006000 0.0000001
0.0280& 0.,0000192 0.000n667 =0.0000037 2.0000000 ~0.,00006000 0.0000000
0.02878 0.0000191 0.000N616 ~0.0000036 -0.000000% ~0.0000000 0.0000000
0.02950 00000189 0.000057S =1.0000034 ~0.0000001 040000000 N.000D0GD
TUTNL03021 TV.0000186 0,0000549 =0.0000037 =040000001 =0,0000000 ~0.0000000
0.03093 0,0000183 0.0000539 =~0.0000031 -0.0000001 =0,0000000 =~0.0800000
H.03165 0.000017R N.0000543 -0.0000030 ~000006001 =0,0000000 =0000000
TTU8.03237 0.00001T2 n,0000555 =0.0000030 =0, 0000000 =0.0000000 =0.0800000
#.03309 0,0000165 N.8000565 =-0.0000030 0.0000000 =0,0000000 t.0000000
n.03381 0.0000156 N«0000565 ~0.0000029 0.000n001 =00000000 000800000
0403453 0.0000L46 0.0000550 =0.000002R 0.000M001 =0.0000000 0.0an0001
0,03525 040000135 0.04000518 -0.0000026 ¢.0000001 -0,0000000 0.0000001
003597 6.0000127 0.0000473 ~0.0000023 t.000n000 =0.0000000 040000001
T0.03669 0.000010% 0.0000424 =0.000001R =~0.0000000 =0.0000000 N«0000001
0.03741 0.,0000095 0.0000379 -0,0000013 =0.0000000 =0.0000000 00000000
0.03813 0.0000080 0.00003467 =0.0000007 -0.0000001 ~0,0000000 0.0000000
0.03885 0.0000064 0,00002331 =~0.0000002 ~0.0000001 0.0000000 =0.0000000
0.,03957 0,0000048 0.00003237 n.0000003 =0.0000001 0.0000000 «0.0000001
0404029 Ne00N0G3L 00000344 B.0000007 -0.0000000 0.0000000 =0+0000001
TTeV0al0l 0.0000014 NaN000357 0.000001¢ =0.0000000 0.0000000 =0.00n0001
0.06173 ~0,0000004% 0.00MN3G6Y 0.0000014 040000001 0.0000000 «0,0000000
[FLEE-LY] =0.0000027 040000347 0.0000017 020000001 n.0000200 =0.0000000
n.04316 =0.0000041 0.000031) 0.0000021 040000001 0.00N0000 00000000
0.04388 -0.0000060 0,000n0252 0,0000025 0.0000001 0.0000000 GL0na0900
004450 =0,0000080 0.0000176 0.0000030 0.0000001 0.0000000 0.0000000
0.04532 0404000140 0.0000093 0.0004035 0.0000000 0,0000000 0.0000000
0.04604 ~0.0000121 0,0000014 0.000004] =0.0000000 0.0000000 0.0800000
004676 =0+0000140 00000049 0.0000047 =0.0000001 0,00008000 ~0.0000000
N.04748 =0.0000160 -N,0000091 0.0000052 =D 0000001 0.0D00M0BN =N.000N000
0.04B820 ~0.0000179 ~0,0000111 nN.0000056 =0.0000001 0.0000000 =p.00n0N00]
0404892 =0.0000197 =0.0000114 D«0000NSY =0.0000000 0.0000000 =0+0000001
T 0040647 =0.0000215 =0.,0000109 0+0000061 0.0000000 0.0000000 =0.0000001
0,05036 ~0.0000232 -0,0000107 0.,0000062 040000000 0.0000000 “(.0000000
0.05108 ~0,0000249 -0.0000119 040000067 040000001 0.0000000 =040000000
0.,05180 =0.0000265 =0.000p0152 0.0000063 0.0000001 0.0300000 G.0000000
0,05252 =0.00002R1 =0.0000206 0,0000064 0.0000001 £.0000000 0.,0000000
0.05324 040000295 ~G.0000276 0.0000066 G.0000000 0.0000000 Da0000080
TTTEVAS395 " =0.0000309 ~0,0NNR3SE N.000006A =(.0000000 n.0000000 D.0000000
0.,054A7 =0,0000321 ~0.0000429 0.0000070 =040000001 0.0000000 0.0000000
0,05539 ~0.0000332 =0 0000490 0.0000072 =0.0000001 0.0000000 “fs0NNONOD
" 0e05611 =0.0000341 =0.0006531 0.06000074 =0.000000¢1 0.0008000 ~0.0000000
0,06683 =0.0000349 =0.000n551 0.0000074 =0,0000001 0,0000000 =0. 0000000
0.05755 =0.0000355 =0,0000554 fn.0000073 =0.0000001 0.0000000 “0.0000001
T y.b5827 =~0.0000360 -0.,0000549 h.0000071 =040000000 0,0000000 ~0.0000000
0.,05899 «0,0000361 ~0.0000548 0.000006% 0.0000000 0,0000000 -0.0000000
0.05971 =0.0000365 =0.0000559 0+0000066 0.0000001 0,0000000 0.00M0000
006043 ~0.0000366 ~0.00nn5RAY 0.0000063 9.0000001 040000000 g.00n00000
0.,0611% =0.0000366 =0.,0000637 0.0000061 0.0000001 0.0000000 D.000000D
0.06187 “0,0000364 ~0.0000698 00000059 0.000000] 0.0000000 p.0000001
0. 0B25Y =0.0000360 =0,.000n76N0 0.0000058 0,00010000 g.0000000 0.000000
0.06331 =0,0000355 =0,000nR1s 0.0000058 ~0,0000000 0.0000000 0.0000000
B 0B403 -0,0000349 ~0,0000ASH 0.0000057 =0+0000001 0.,0000000 0.0000000
T 0.064TS =-0,0000341 =0,00nn862 0.0000056 =0.0000001 0.0000000 =-0.0000000
0406547 =0.0000331 =0,0000849 040000053 =0.000n001 0,0000000 =0.0000000
0.06618 =G.0000320 =0.,0000817 140000050 =0.000000% 0,0000000 =h.0010000
TUAL0ERIE T =0.0000307 ~0.0000777 00000046 ~0s0000000 0.0000000 =0.,0000000
0.,06762 =0.0000293 =0,0000739 G.000004] 040000000 0.0000000 =0.0000000
0.06834 =0.0000279 +0.,0000715 0.0000037 . 0.0000001 05.0000000 B.0nNOONG
DeD&TGH ~0.0000471° T=0.000n8480 D.0000708 = FULUGOOOCT =FO000002 =g pongent
n.04R20 =0.0000474 =0.000n356 N.0000601 -0.0000002 =0.0000002 0.0000000
0.04892 =0,00004A7 -0.000n050 0.0000334 =0.0000002 =0,0000001 040000002
ne04964 -0.0000493 0.4090152 ~0+0000026 =0.0000001 04.0000001 0.0000003
0.05034 =0,0000500 0.00nn192 ~0.0000382 =0.0000040 0.0030002 0.0000003
n.05108 ~0.0000501 0,0000055 0, 0000640 0.0000001 9.0000002 0.0000002
0.05160 =0.0000491 =0.000n2234 =0.0000739 0,0000002 0.0000003 0.,0000001)
n05252 ~0.,00004732 =-0.0000572 =0.0000630 n.0000002 n.n000002 =0.0600000

0.05324 ~0,0000445% =0.0000AR97 =0.0000367 9.0000002 0.0000001 =0.,0000002
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GLOBAL

¢.05395
05467
0.015539
0.N561}
N.05687
0.05755
0.05827
. 05899
0.05971
G.0R043
06115
0.06187
006259
N.N6331
N.06403
0.06475
NaN6547
D.0D6ALA
n.06690
006762
0.N6R34
0.0D6906
N« 06974
0.07050
N.07122
N.N07194
0.07264
N.N733A
N.07410
N.07482
0.07554
0.07626
0.07697
0.07769
0.07841
0,07912
0.07985
008057
0.0RL29
0.08201
0.08271
0.08345
N.08417
N« 0B4AT
0. 08561
008630
e
0.00072
000144
0400216
0.00288
0.00360
0.00432
0.00504
0400576
000647
0.00719
BLCLLEAAS
0.00861
000935
0.01007
0.01079
0.01151
0.01223
0-01295
24012367
0.01436
0.01511
0.01583
0401655
0.01727
0.01794
G.01B70
d4.01942
002014
0.02086
0402158
0.02239
“0.02302
0.0237%
0402446
0.0251A
0.08590
0-02662
N.02734%
0.02806
0.0287H
01.02959
0.03021
0.63093
0.03165
0.,63237
n.03309

-3.0000417
-0.0000394
~0.0800377
«0.0000362
~0.0000363
-0.0000771
-0,9000381
-0.0000389
-0,000038%
-0.00003A0
=0.0000362
-0.0000337
-0.0000110
~D. 0000286
-0,0000270
-040000267
-0.0000267
-0.000027A
-0.0000792
-0.0600030¢4
-0.0000329
-0.0000304
~0.200029]
~0.0000270
-0.0000268
~0.0000230
-0,00002t9
~0,0000217
~0.0000276
=04 0000742
~0.0000269
-0.0000275
-0.00002813
-0.0000281
-0.0000270
-0.000025?
~0.0000231
-0.0000214
-040000204
-0.0000204
~0,0000217
~0,0000230
~0,0000248
-0, 0000264
=0.0000272
-0.0000270
a0
-0.0000000
~0.0000000
~0,0000000
«0+0000000
=0,0000000
~0.0000600
0.0000000
0.0000081
0.0000001
0.0000001
=Uas
-0.00000073
-0.0000006
~0,0000011
-04000001R
=0.0000025
-0.000003?
=0.0000040
«0.0000043
=040000056
~040000065
-0.0000075
=0,40000086
~0,0000098
-040000113
=0,000012R
-0.0000144
-0.0000161
+0+0000179
~0.0000196
=0.0000214
-0.0000222
~0.0000250
-0.0000269
-0.0000289
-0,0000310
=0.0000332
=0,0000154
-0,0000375
-0,0000795
-0.0000414
~0.0000430
-0.0000645
=0.0000457
~0.0000467
=0.0000477

=0.0001111 ~0,0000013
-0.000115A 0.0000334
-0,0001023 N.0000584
-0.000n741 0.0000663
~0.000N385 0.0000550
-N.000N04A £,0000272
0.0000183 -6.0000098
0.,0000245 =0+000046%
0.0000137 =0.0000729
-n.0000121 -0,0000826
~040000451 «0.0000730
-0.0000762 ~0.0000468
~0.0001966 ~0.0000104
-0,0001005 0.0000252
-0,0000857 0.0009510
-0.000058R4 0,0000598
-0.000n?30 0.0000492
n.N000103 0.0000219
N.000A32A ~0.0000148
0.0600387 ~0.0000512
0. N0ON266 -0,0000774
-0.0000001 ~0,0000671
-(.000n340 -0.0000771
~0.00n0660 -0,0000504
~0,0000A77 -0,0000143
~04000091A 0.0000216
~0,0000783 0.0000475
~0.0000507 0+0000566
-0.0006145 0.0000462
0.600019} 0.0000193
0.0000423 =040000170
£.000069] -0.0000529
1.0000301 -0,0004789
0.0008126 -0.00008T8
=0.0000201 -0,0000773
-0.0000509 «0,0000500
~2.0000710 -0.0000134
=0.0000746 0.0000230
«0.0000603 00000693
-0.0000315 0.0000587
0,000n045 2.0000487
0.0090384 0.0000219
0.0000614 =0.0000143
0.0000674 -0,0000502
0.0000562 -0,0000761
0.0006310 ~0.0000850
0.0 0.0 -
0.0008020 0,0000110
0.00a0152 0.0000363
040000463 0.0000616
9.0000958 0.000076%
0.0001568 0.0000R0S
0.0002174 0.0000752
0.0002640 0,0¢00634
0,0002851 0. 0000430
00002756 0.0000206
0.0002339 =0.0000043
— RO T TSRO0 2 29
0.0001007 -040000260
0.000n372 -0.0000117
~04000n058 $+000015%
-0.0000204 0.0000466
-0.0000056 0.0000729
0.0004322 0.0000882
$.0000817 0.000099n
0.00012% 0.0000784
£.0001635 040000559
0.0001767 £.0000268
0.0001669 -0,0000024
0.0001405 -0.0000243
0.1001072 -0.0000330
0.0000789 -0.0000264
0.0000661 -0.0000073
0.0008748 0.0000182
0.0001068 0.0000424
D.0001499 0.0000585
0.0001999 0,0000626
0,0002396 040000537
0.0002606 0.0000%43
0.00N2556 0.00000%4
0.N007247 =040900)46
0.0001741 -0.0000397
a,0001152 =0.0000348
0.0000610 ~0+0000255
a.0006231 -0.0000055
0.900n086 0.0000195
0.0000181 6.0000425
0.0000458 0.0000568
0.000n899 0.0000583
0.0001107 0.0000463
0.0001267 0,0000236
0.0001145 ~0.0000060
0.0000816  =0.0000796

0.0N0N002
Ga0000001L
0.0000000
=0.0000000
=0.08000001
-0.000000%
-8.0000001
=0.0000000
0.00406000
0.0000001
0«0000001
0.009004001
0.0000001
=-3,0000000
=-0.,0000001
=0 0000001
=0.00000Q2
-0.0400002
=0.0000001
=0.0000001
06.0000000
0.0000001
0.0000001
0.0000002
0.0000001
0.0000001
=0.0000000
=0.0000001
=0.0000001
~040000001
=0.9000001
=0.000000¢0
Q.0000000
0.0000001
0.0000001
0.0000001
0.0000001
0,0000000
=0+00000Nt
=0.0000001
=0,0000002
=-0,0000002
-0.0000001
~0.0000001
0.0000000
0.0000001
G.0
=0+0000000
~3.0080000
~0.0000000
=0.0000000
=0.0000000
=D 0000000
D.0000000
0.000N000
0.,0000000
0.0000000

U000 00¢

d.0000000
G.0000000
0.0000000
0.0000000
N«d000000
0.0000000
0.0000000
0.0000000
00000000
0.0000000
0.0000000Q
0.0000009
0.0000000
0.0000000
0.,0080000
0.0000000
0.0000000
0.0000000
0.0000000
0.0060000
0.0000000
0.0000000
0.0000000
040000000
0.000n0000
t.0000000
=0.0000000
~0,0000000
«0.0000000
=G.0000000
=0.0000000
0.0000000
n.0000000
0.000000¢
0.0000000

-0.0000001
-0,0000002
-0.0000003
-0,0000003
~0.4000002
~0,0000001
0.0000001
0.0000002
0.0000003
£.0000003
0.0000002
0.0000001
-0.0000000
~0.0000002
-0.,4000002
~0.0000003
-0.0000002
-0.0000001
0.0000001
0.0000002
0.0000003
0.0000003
0.0000002
0.0000001
-0.0000000
~0,0000001
=0,0000002
-0.0000002
~0,0000002
~0.0000001
0.0000001
0.0000002
¢.0000093
6.0000003
0.0000002
0.0000001
~0.0000000
=0.4000002
=0, 0000001
=0.0000003
=0.0000002
«0.0000001
0.0000000
0,0000002
040090003
00400003
0.0
0.0000000
0.0000000
0,0000000
0.0000001
£.0000001
0,0000001
0.0000000
-0,0000000
=041000001
-0.0000002
=T+ 000700072
-0.0000002
=0.000000]
=0.0000901
£.00000600
0.0000001
0.0000002
0.0000002
0.0000001
0.00000601
=040000000
-0.0000001
-0.0000001
-0.0000002
~0,0000002
«00000001
~0.0000001
0.0000000
0.0000001
0.0000001
0.0000001
£.0000000
=0.0000000
=1.000000]
=0.0000001
=0.0000001
-0.0000001
-0.0000000
0.0000000
0.0000001
0.0000001
0.0000001
0.0000001
0.0000000
=0.0000000
~0.0000001

=0.0000602
=0+0000003
=0.0Q0n00n2
=0,0000001
0.0000000
0.0000002
0.0000003
0.0000403
0.0000002
N+0000001
0+0000000
=0.000000]
=0.00n0002
=0.00N0007
=0.0000002
=0.,0000001
00000001
0.0000002
n.0000003
0.,0000003
0.0000002
0.0000401
=C¢.00n0000
=0.00004001
=0.0000002
~0.000N0002
~0.0000002
~0.0000000
0.0000001
0.0000002
0.0000003
0.00080003
0,0000003
0.0000002
0.0000000
=0.0000001
=N.0000002
~0a0N00002
=0.0000002
=3.0000601
0.0000001
9.0000002
0.0000003
0.0000003
f.0000002
0.0000001
Q.0
0.0090000
0. 0000000
00000000
a,0000800
N. 0000001
0.0000001
t.00n0002
g.0000002
¢.00n0003
0«0000002
0 Onanen2”
D.0000900
-0.0000001
=0.0000002
=0.0000004
~8.0000006
~0.0000002
=0.0000001
Ne00n0001
00000003
0.0000004
0,0000005
0.0600005
0,00000023
0,0080002
0.0000000
=f.00n0001
“0.0000002
~0.0000001
~0.0000001
0.0000000
0.0090001
0.00n0002
0.0000002
0.0000001
0.0000000
=0.0000001
=0.0000002
=0,0000003
=~0.9000003
=0.00n0002
~G.0a00001
a.0000001
d.0000002
0.0000003
00000003
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n.03381 040000486 6,0000315 ~04N000465 C.0000000 =0.0000001 0.0000003
0.03453 ~0,0000494 =0.0000246 =3.000050% 0.0000000 =0.0000001 040000001
0403525 ~0,0000502 ~0.0000727 =0,0000196 0.,0000000 =¢.000000} =0,0000000
WinI597 ~0, 0000510 ~0.0001044 =0,0000175 =~0.0000000 =0.0000000 =0«0000002
0.03665 =0,0000517 ~0.0001097 0.0000101 ~0.0000000 0,0000000 00000003
0,03741 =0.0000523 =0.000n894 0.,0000361 _  =h.0000000 0,0000001 ~0.0000003
0.03813 =-0,0400527 =0.0000495 0.0000535 =0.0000000 0.0000001 ~0,0000003
0.03085 =-0,0000529 =0.0000013 n.0000579 =0.0000000 - 0,0000002 =B 0000002
103957 =0+0000579 0.0000622 00000482 00000000 0.0000001 =0.000000]
TEV0RG29T T T ~0.0000528 0. ManA692 n.0000270 00000000 g.0000001 0.0000000
0404101 ~0.0000524 0.0000728 =~0,0000000 040000000 0.0000000 p.0000001
004173 ~0.0000528 0.0000521 =0.0000257 0.0000000 =0.00000061 D.0000007
0.04244 =0,0000516 0.0000128 ~0.0000434 0.0000000 =0.0000001 0.00N0001
n.04316 ~0,0000511 =0,0000364 -0,0000484 0.0000000 =0.,000000) D.0000000
0.04388 =0.0000507 -0,0000768 ~0,0000397 0.0000000 =0.,000000% =0.0000001
“0.04460 =0,00005n2 -1, 0001031 ~0s000D0197 =0, 0000000 =0.0000000 —0.0000002
0.04532 =0,0000497 =0,0001067 0.0000060 =0.0000000 0.0000080 =0.0009003
NeN4604 =0.0000491 =0.0000871 040000303 “Ne0G00000 0.5000001 =~0.0000003
BD4ETE =0,0000484 =0,60005098 040000465 =0.00000060 0.0000001 =0e00N0002
0. 04748 =0,0000476 =0,000007S 00000501 =0.0000000 0.00004801 =0.0600001
0404820 =0,0000464 0.0000290 N.0000402 . 040000000 040000001 0.0000000
0.04092 =0,00004%54 n.onona8| 0.0000192 0.0000000 0,000000) N.0000002
0.04964 =0,0000442 0.000043) =0,0000072 0.0000000 -0,0000000 0,0000002
0405034 =0.0000430 0.0000140 =0,0000321 0,0000000 =0.,0000001 N1.0000002
05108 7 =0.0000419 =0.0000329 0. 0000487 0. 0000000 =0,0000001 0.0000002
0.05180 ~0, 0000408 =-0.0000861 -0,0000527 0.0000000 =0.0000001 G.0000001
0.05252 ~ ~0.0000398 =0.,0001325 =0.000043) 0.,0000000 =0.000000% =0+ 0000000
TUL 5324 =0.0060390 ~0.00014606 =-0.0000225 0.0000000 =0.0000000 =0.00n0002
0.05395 ~0.00003A1 =0.0001633 040000034 -0.0000000 0. 0000000 ~040000002
0.05467 «0.0000377 ~0,0001402 0.0000275 =0.0000000D 040000001 =0.0000003

A A A% A

LIST DYNAMIC FURCES ALL

TT ARG SR UOSSA MG ARERRIRIR YRS

SRESILTS OF LATEST ANALYSES®
GEHOGERIBRARBANBIBGNBRE DO NES

7T UPROALEM ~ EXAMPLE TITLE - STATIC AND DYMAMIC AMALYSIS OF & TABLE=TOP
" TACTIVE UNITS INCH KIP  CYC DEGF SEC
. ACTIyE_?TSUCTp?E tYDE. SPﬁCE _FRAME

ACTIVE COORDINATE AXES X Y Z

2RSS ETENEESESSISIISTCESESSssSSEasssEx
CENTRIFUGﬁL FORCES

3 e e e e P i P iyt Y A e Lo R T T ]

EE R E PP PR R PR P P A TR PR A P LR T ) 1

MEMHRER FORCES

WEMRER "~ JOINT| TIME  JossceusioasisovamosmeF ARCE seomansarsmmmuiiom s/ fams s s o mrmm = oo o MOMENT = o m oo e e e/

AXTIAL SHEAR-Y SHEAR=Z TORSIONAL BENDING=Y BENDING~Z
1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
T T 0.0007 =0.0000048 0.0000009 =0.0003077 =0.0006793 0.0193290 0.,0001064
G014 =0.0001502 0.0000078 =0.0021204 =1 0045415 041298373 000104891
0.0022 =0.0008772 040000967 -0,0055061 N.0021757 043169094 00089364
o - 0.0029 ~0.0026475 0.0n06098 -0.0090810 0.0497976 0.4692348 0.0489277
0.0036 =N+0n55652 D+ 0021775 =0.0109826 0a16514673 04597294 0.1676926
0.0043 =0.009174% 0.00534523 «0.0n97662 Ne26222T6 0o 29724531 0.408R)1S
040050 ~0.012644]) 0.0100831 =0.,0051750 0,26230023 =0,2983776 D.T7784010
0.0058 =0.0150404 Ne0156145 0.0016432 041586174 =0.9366371 1.230155%
040065 -0.,0156170 . 0,0206603 0.0087142 =0,0330958 =1.5520172 1.86776514
D Q.0072 7 =G.0141106 n.023a722 0.0139952 -0,2]147561 =1.9815874 2.0209589
. 1040079 =0.0109225 0.0262475 N.0160011 -0.2977197 -2.,0986624 2+ 1748085
0.0086 -0.90697KS N 0214649 D.0142484 =0.2579504 =1+8469486 2.0945234
0.0034 ~0.0032276 0.0160976 0.,0092973 =0 1346154 =1.2519779 17953174
¢.0101 ~0.0N00RE2 n.0095301 0.0024694 0.0131671 ~0.4124475 143549767
n.0108 0.0029029 N 0035914 =0.0045336 1.1459336 0.5161754 048944716
EREE 0.0115 - - 00069477 ~0.0000216 =0.0100539 0.26922531 . 1.3506975 05433298
n.0l22 0.0134R42 =0.0002491 =-0,012837% 0,3157126 191469483 044036594
n.n129 0,0233904" n,0030436 ~0.0122392 043334895 2.0837745 045232136
o 0.0137 0.0361552 0.0090360 =0.0083136 T 0.2921811 i 1. 794149 0.BA15T42
0.01644 0.06493169 0.0161635 «0,0018346 0. 1959444 1.0883017 13932562
0.0151 t.0585164 Hhe0225332 0. 0058038 0.0677934 0.,1083144 1+92TRA4]
0.0158 0.0SR2R2¢0 N 0264420 0.01281407 =0.0587701 ~0.,92173313 2e34411R1
0.0165 0.043564] 0. 0268340 0.01736A3 =0.152086% ~1.742R083 2.52660N6
n.al73 0.0E15493 0.023549 ¢.0181152 ~D.190]1968 -2.1293535 2+614482]
R N.0180 -0,01367126 n.0173131 0.0145969 ~0s1643412 ° =149591026 2.014T102
0.0187 ~1.0954685 0.0095437 0,0075082 -0,08162327 =1.2601366 1+39881123
0.0194 =0 1546631 0.0017872 =0.00]138R2 0.0338514 =0,2167616 046850468

,0.0701 ~0.20FT7426 =N.0042960 -0, 0095884 0.1459095 0.8728356 0.0100942
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0.029%
0.0216
002237
6.0230
0.0237
00245
0.0252
0.0259
"0.0266
0.0273
0.0281
“n.0288
D.0295
0.0302
00309
0.0317
0.0324
0.0331
0.0338
040345
"TW. 0353
0,0260
BeNIGT
TOENITET
0.0281
0.0388
0.03%6
040403
0.0410
THVAR1T
0.0424
00432
‘040439
[T
0.0453
TOe04sa0 T
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0.0432 =-0.1R380811 ~0.0597470 4.0792806 1.3345032 ~10.2067137 =6, TIFT060
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0.0518 0,23106R3 =N«0355639 0.1115117 1.2706022 =11.7735806 =3.300N669
0.0525 0.4162063 =0.0216025 0.1267267 0.9259447 =11.7566042 =2.6617665
0.,0532 ’ 0,5235810 =t 0055600 0,111R471 0.308879] =8.7913780 -1.6173630
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T BGUSTE T T T =0.2430895 0.0005312 =0,0805900 =0.4985T49 T«20601634 12940025
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040590 ~0+2116947 =04 0159695 0.009]1948 049311283 =1.5295172 =0.1997SR0
T 0.0597 =0.0730006 T =0.0163365 0.0598422 13520088 =B.4063425 =0.59274630
0.0604 0.0948347 ~0+010387} 0,0951753 1.4069719 =11,0923347 07772999
0.0611 024186435 0,0005621 0,1050421 1.0818844 =-10,8341154 =0.4033225
B Y 1L T 043240478 040138548 0,0R61841 04628273 =T 6694T1T 0,3548610
00626 043155766 0.0262291 0,0431046 ~0.2860366 ~2,413882) l1.3212008
00633 0.2158186 N 0246616 =0.0130162 =-0.9685075 3,54303136 22623234
0. 0640 T 0.0495389 0.0372138 «0.06T4058 =1 44059448 8.,6233702 249536905
0.0647 «041396977 0.0335302 =0.,1056104 =1+4857130 1144772606 3.2387066
00655 =0.3012106 he0249262 =0.1172754 =1.1907291 1134571236 3.070073)
[ -1 Y- =0.3907927 ‘n.0t40222 =0.0994251 =0.60346745 8.2646198 245217123
040669 =-0,3825864 n. 0040282 =0.+0563249 0.1154204 30560265 1.,7479633
0.,0676 =0.,2760773 =0,0021313 0.0006807 0. F122126 ~2.8910856 1.0356015
5.0683 =0,09631392 =0.0026131 0.0566735 141901741 ~7.+9919910Q 0.5419340
0.469] 0.1125151 n«0n28381 0.09702840 1.2578478 -1G.8099164 0.4361137
0.0698 0.2989416 n.0128158 0.1113062 0+9585546 ~10.81A8076 0.75T4Tan

0.0705 - 0.4175187 0.0246210 0,0960323 0.3746176  =7,8078775 1.626A133

0
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=-0,012023%
0.15859A4
0,3046486
0.3828066
D.3676524
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0.0812921
=-0,1213772
~0,29840840
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=0.4125T713
=0G.322214]
=0,1575125
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0.0
0.0002123
0.0044363
0.0255420
D.0B3127S
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0.7577871
0.5553125
0.7438354
0,8701954
0.ARATI1237
0.7756323
0, 5480148
0,2537333
=0,0390394
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=0.3793103
-0.3TA44R4
=0.2940490
«0.18441237
=0.1125942
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~0.5A27353
~0,7063757
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=-0.5302948
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0,4011045
0.7076420
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0.9457258
0.A564020
0.6671323
0.4326499
0.2102970
0.0455328
~0. 0380844
-0.0424068
0.00A5163
0.0769686
0.1228997
0,1151260
0.8797344
«0,0961722
~0.2661157
-0,4307856
-0,5478945
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=0.5187370
=-0,359974a0
=0,13381136
6.1161515
4,3197R97
B.4924479

0.545932%

1,4956185
0.36)6733
0, 1R3A511
0.7113255
=0.11063R7
-0,1523511
«0,1077963
0.0038309
0.1638146
0.7642225
0.3219426
0.2907124

0,03498681
00409523
0.0406691
0.033R985
N.0220906
0.00R0059
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=-n,013%235
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N.0028674
=0,010763]
=0.02328%4
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=0.0341451
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=0.000001%
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0.0001087

0.000R333

0.0028684

0.0063761

0.010225%
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0.0090547
=0.0006521
=0.0174258
-0, 0396872
~0.0640907
=N.0061348
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~1. 0983194
«N0801644
-0, 0549632
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=0.005E747
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1,0)32748
0.0074577
-0.0050747
-0.0198880
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-0,0391188
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0.0183701
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-0,0063317
-0.0083972
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140226079
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0,0593143
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040086360
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1.0510613
040603361
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N.0382946
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0.0181378
0.0152553
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0.0353877
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~0.0912187
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0.0070126
0.0602027
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0.0499917
=0.005672%
=0,06005968
=04 0986601
=0.1111527
=0.0941738
=0.05272)2
0.0035458
0.0582902
040964117

0.0
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0.0120985
0.0369658
0.0740476
0.1138172
0.1432559
0.1512737
041329493
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0,0351137
=0.0219958
~0.06T410S
=0.0918984
~0.0920048
=0,0705286
=-0.0353900

0,0025754

0.0322799

0.0450314

0.,0¥7TE4

0.00%3970
~0.029405%9
~0.0680910
=0.0945525

=-0,0997583

~0+0R04A5S
=-0,0402940
0.0114582
040621501
0,0992309
041134979
01015251
0.0666420
0.01817T7
~0.030ABA]
=-0,0672068
=0.0811093
«0.0683764
=0,0324459
0.0168373
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B.0912844
0., 0482705
~0,0084066
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=0.1044820
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=0.9619930
-0,0058172
0.0505592
0.0924733
0.1092430
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0.0083854
-0. 0427679
«0.0792806
~0.0908923
~0.,0742337
~0.0337506

0.0194940

0.0708076
0.10583T76

0.1144512

0.0934860
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D.0476374

-0.335015%
~N.9776955
-1.3789978
«1.4296970
-1.1151857
-0.5194606
0.1973841
0.8421244
1.2403107
1.2632022
¢.9571283
843473576
-0.3843259
~1.6431509
=1,4530449
-1.5039492
-1.1812860
=0.5699438
0.1683037
G.B379821
1.2620792
1.3338833
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00019988
0.0270053
f1a1264631
03319557
0.5647615
0.6203490
0.2890622
=0.4589667
=1.389420%
~241198044
=2.3446387
=1.9989376
~142225723
-0.2519156
0.7041437
1.4904547
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Ne4274780
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0+9846TT2
043029035
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~145575218
=1.1654434
~0+4T76283]
03354450
140691795
1.5401802
1.6352282
143363562
N.T264T40
-0,0319727
-047396186
«1.2131577
~1,3345032
=1:0815744
=0.,5334885
0.1523109
0. 7TEISTID
1.1857061
1.248R632
0.9572873
0.3929802

T0.2869973 -

~2+6732769
1.2011395
"B.2349014
11.0746117
10.9564240
T.3115925
2475%971%
~3.1270933
=-8.15R8936
=10.9887295
-10.8564357
«T.T9664T]
=2.6299877
3.,2565203
8.2810106
1140907412
10,9247999
7.B184328
245941162
~3.3583574
=844577220
=1142779131

0.0
0.2101146
1.6142435
4.90AA5G7
9.8635731
15.3324909
19,T000732
2l.5087128
19,98077239
15.25864440
8.3196983

0.6A48325

-5,0351791
=~10.5494871
~12.1RA1135]
=[1.0143309

=T+ 7476220

~1.546074%

0.28847%4%
26246957
2.7B4604]
0.,7330778
~2.8922853

-5,9463978
~10.1044130
~11.2513781

~5.8078070

~5.,B948193

«0,3029751

5.7131166

10.7545374

1346336117

13,6811428

13.9291515

6.1182728
0.5200544
=-4,3870583
=7+3075065
~T44A17237]
=4 ,903A620
=0.3381418
4,.,8792921
9,1977253
112905374
10.4198742
6.6557798
0.8680839
=5.5003271
=10.8176317
=13.7001982
=13.3849163
~9,9363852
=4 42326946
2+2672386
T.9125538
11.30609052
11.6510143
F.0064516
4.2156363
«1+3060360
=5.9665346
=B44334211
=7.9974289
~4.7651281
0.3705510
5.9728975

10.4508152

12.49005232

11.4106159

. [Ts3349986

22575302
3.0237179
3,5022259
1.542040R
3.1030645
2.2673035
12174835
0.1838151
«0,5932040
=0.9723478
«0+9025089
=0,4590942
0.1821550
0.7931361
1.1552914
141188011
06431982
=0.1914369
=1.2057619
-2+16%1399
=2.8614368
=3.1301794

0.0
0.01001R99
Q. 0005584

-0.0158727

-041151969

=0.3930402

-0,8717811

=1.7981037

~]1.6481582
~1.P507629
0.0538078
2.2981577
5,2405777
R.3IBT1TNA

11.0882568

127690622

11.1746082
8,1793737
4.3877220
0.5999123

~7.392372]

=4,0172043

-4.0700162

-2.7683044

«045693408
1.7919617
3,690274)
46711941
445693626
3.5244942
143176692
042507923

~0.9560848

=1+492166%
~1.1451406
~0.1123038
1.2358189
2,4220205
2.9912033
2.6343184
142746696

-0,9056938

=3.5854760

~6,0001507

»7.8704510

-8,730529R

-8,4242134

740654955

-5.0121832

=2.77R8A9T

-0.9098857
041565589
041975298

-0,7405754

-2,3585472

-4.1875305

-5,7168703

-6.5320730

-6,4251387

~5,46486713

«~3«B954526

=2,2162924

-0.8918617

-0,2988615

-0.6043690

-1,7180500

«3.3150215

-4.9233036

_=6,05218T0
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0.0763
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0.0777
0.0784
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0.00827
[ EREY
0.0842
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0.0007
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0.0036
0.0043
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0.0058
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00094
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D.0165
0.0173

T ol.nisn

0.0187
0.0194
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0.0209
0.0216
0.0223
4.0230
0.n237
0.0245
G.,0252
0.0259
0.0266
040273
0.0231
0+N2AR

0.16890139 frhutlngs
-0.0194972 0140445860
=¢.23100R2 0.035563%
~0.4142043 0.0216025
=0.523%5810 00055600
-0,5318830 =-0,0091184
-0,4375798 =-0.0193087
~0.2653R43 =0.0230315
-0.0597058 =0+0199695

0.1271863 =Na0115440

0,2490695 =0.0005312
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0.,2114947 0.015965%5

0,0730006 0.0£63365
-0.0948347 040103871
~0.P418435 =0.0005621
-0.324N4T7H =0.0130548
=0.315576& -0.0262291
-0.71581R6 -.0346616
=0.0495389 -0.0372138

0.1396977 ~+0335303

0.3012106 -0+0269262

043907927 =0.0140222

0.3825R66 =0 00402R82

0.2760773 N.0021313

00963393 ne0026133
=0,1125151 =-0.0428381
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=0.4175197 ~Ne 0246210
04408600 =~0.0349861
=043666B67 =0.0409523
=0.2182248 =0, 0406691
~0,0378010 =0,033R985

0.12461R1 s 0220906

p.22648862 =0+N080059

0.2365214 n.0050122

01577734 0.0139235

0.012027%% 0, 0187950
~-0.1585984 n.0133128
=0.3046486 n.004R593
=04« 3A2B0GE ~f+0058610
=0,36T6924 -0.0155485
=0,25R8910 =0.0211942
~0.0812921 N, 020RRSL

n.1213772 =0.0143157

0.2980R60 =0a002R674

044040304 040107631

D.4125T13 0.02320%54

0.322214] 0.03]17168

0.1875125 040341451
=0,0310494 M. 005204

0.0 nah
=0.,0001A64 “0e0R0ROIS
=~0,00%1355 -0.0000166
-0.0240203 =0.00301640

T -0.07HA1S6 =0.000R725
~0.1826430 =-N.0027RAT
=0,3792448 -0 0062046
=0.530817) 001046336
-0,7108652 =0,0136748
=0.8534275 00134517
=0, ART954A -N.0073866
G, 7971013 0.0059009
=-0.5A85954 n,0259529
=0.3030272 040500446
=0.0062460 040735660

0.2382730 n.0912580

043824616 0.098A221

0.4126R40 0.0942210

043524008 n.0782285

0.2529546 00541776

D 1 TH2%0A 0.0270997

041630471 ne0025122

6.2363133 ~N.0)148656

0.3752971 =N.0221746

8:5119106 =0.0190089

0.644HT1S -n.3074103

0.6AN0074 0.0087157

N1.54T9496 0.0246211

0.3138701 n.0359264
=0.0035371 0.03970R2
=0.3467314 N+ 0351645
“DehbP1506 0.0236880
=-0.8414730 0.0003677
=0.9126108 -0, 0069072
=0.A556442 =0.0184R24
-0,59R1410 -0.0238618
-0.49580A83 ~N«07230640
~N.2A96310 ~0.0149787
-0,0931478 “0.00461T7

0170367 0+0051806

0.N555979 N.0108902

Computer Analysis and Applications: Example 155

~HriH1T7549
-0.0696971
~0,1115117
=0.1267267
«0.1118471
=0.0712652
=0.,01606T9
0.0389289
4.0791914
0. 0942544
0.0R05900
T M. 0E2RTET
=0.0091948
=0.0598422
~0.0951753
=0,1050423
=-0.,0861861
«0.04310646
0.0130162
0,0674058
0.1056104
0.1173794
0.0994251
0,0563249
=-0,0N06807
=0.0565735
=0.0970280
=0.1113062
=N.0960323
=-0,0556060
-0.0011093
0,0526720
0.0912187
0.1061607
¢.0RA0597
0.0472177
-0.0070126
=0.0602027
=0.0978097
=D, 1095608
=0.092119%5
=0.0499917
8.0056720
0.0600598
0. 0986601
0.1111527
0.094]1728
0,0522212
=0.0035458
=0.0582902
-0.0964117

4.0
040011465
0.0080162
0.07226003
0.0439428
0.068AB63
0,0923717
0.1080523
0.105%9312
0.0946802
040633646
0.0216743

=0.0214746

-0,0564417

~0.0756844

=0.,0T604238
=-0.0596923
=0,0333240
~0.0058305
0.0145441
0.0225278
0.0169218
0.00046%94
=0.0211363
=0.,0407326
=-0,0514295
=-0,0484137
=0,0304409
=0,0005563
0.0344756
00658262
8,0851025
0.08680)1
0.0700004
0.,0387431
0,0011203
=0,0330R40
=0.0548871
~0,0586856
=040438053
“0.0147298

=-0.8931396]1
=1.2561665
~1,2706022
=0.9259447
-0,30R8793

0.4190827

140644732

1.45236686 .

1.4797649
141318474
0.4985749
-06725%9910
=0.9311203
=-1.3520088
=1.4069719
=1+ 081RALL
=0.4628272
0.2860366
0,9685075
1.405%448
1,4857130
141907291
D.6036T4S
~0.1154204
~0.7722126
=1:1901741
=1.2578478
~0.35R5546
=0.3746174
0.3350154
0,9776955
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1.4296970
1.1151857
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=0.197384]
=0+8421244
~1.2402007
=1.28232022
=0,9571283
=043472976
0.3843259
1.0431509
1« 4530449
15039492
t.1812840
0,56934138
=0.1683037
=0.8379821
=1.2620792
=1,3338433

0.0
~0,0020090
«0,0271508
-0.1277064
=0.3375441
=0.5803854
=046515951
=0.3354454
0,4092340
1.3596315
2.1384077
2,4368639
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144603386
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=0.4348801
+1,2682371
-1,8364897
~2,0203943
~1.7613077
=1.10T2626
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1.397R224
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1.1561747
0.4160337
~0.3623415
~0,94941R8
-1.1915AT4
«l+04R418D
=G.59647T0
n.0077021
0.5795717
1.9539721
1.0207272
0.74R8991
8.1978058
“0.4916466
=1.1296A92

1.2570438
~5.4004641
=10.974B077
«14,0956545
=14.,0254326
=-10,851R734
=5,4613895
069914756
6.0086555
9.1027336
9.2341938

6.,4572565 °

1.6537876
-3.8014622
=B.3234329

~10.5945063
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~0.BATT194

5.1274090
10.0672684
12.5996866
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=3.56%4094
-8.9037962

=11.8376591
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«3.4274302
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1042971667
10.9525846

6.,89682]15

1.6945246
=4412264566
~B,9644556

=11.4939632
=10.9957218
-7.5683193
=2+0993576

3.,9711761

9.0359173
117503576
11.3930302

B8,05901085

2.6350117
=3.4374743
-B.3900814

0.0
=0,0642679
=0.4033713

-1,0062379°

-1.49154639
-2,91A0231
=3.88%4682
~4,5514994
=4,5646030
~1.6899443
=1.9451361
0,3405234
2.6026516
4,215A585
4,T7062492
3.9302177
2+1461792
-0.0635742
=1,9974209
=3,0773020
-3,0263233
~1+9236860
~0.14663566
1.75231929
3.1AR9286
3.6816397
2.9857998
1.1783552
=1.,3273783
=3.8687963
=5,7121477
=6.2712097
-5,2948895
-2.96028R0
0.1605507
3.2573108
5,4A26317
6.2376601
5.2973194
2.904151%
=0.2994934

~6u3266478
~5,59122148
=3.954955]
=1+7651501
0.4831237
242773476
3,222628)
341454296
241381807
0.5334232
=1.1856356
=2.513863)
=3.,058016A8
=2.639A764
=1.34}70R2
0.5179933
2.4715214
44 0294561
4.R0BA319
446379213
1.6014719
2. 0148668
0.338A4103
-0:9461579
=1.4702625
=1.0750542
0.142B6RA3
1.A569422
1,59786A%
4,8796320
523305578
497942610
1.37325486
1.4034185
=0+46340061
-2,239998A
=3.0292120
~2.8329811]
=1e7434616
=0.0B87820
126547327
2.9897470
3,5304RR0
3.1058273?
1.8015919
=N4,05822192
~2.0042374
=3,5452795
=443010931
=4.1041670
=3,0959749

0.0
-0.0001810
-0.,0017793
=0.0130819
=0+0627619
~041953400
=0a&364323
«0,7519658
=1.032550R
~1.1099901
=0+ T9851 34

040443943

144477510

3.2775269

5.2439995

£.975116R

Ra 1246110

A 4673510

T.9506550

6.6977844

%.,9745035

3.1202997

1.525¢177

0.4506367

0.0669023

0.36280RS

1.15786T4

21462584

2.9755497

3.3392220

340563393

21162214

0.6780038
=0,9720656
=2.4930019
«3,5734043
=4 0078154
=3,7473192
=2.91216828
17633543
=0.63873148

r
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Interpretation Of Results

Computer output results include the following:

Member Forces—-Static Loads. Axial forces, shear
forces, torques, and moments at each member end are
tabulated for the design loading conditions, loading 4
{full vertical load plus 0.3 full transverse load), loading
5 (full vertical load plus 0.1 full longitudinal load),
and loading 6 (full vertical load plus 0.5 full vertical
load). These approximate equivalent static loading con-
ditions yield conservative estimates of the maximum
dynamic plus gravity loads, forces, and deflections as
described previously. The members and deflections are
then checked for the maximum applied loads. In the
usual case, this step includes selection of the longitudinal
reinforcement, which is often the minimum code value
and which is otherwise determined by the largest axial
force and moment. Transverse reinforcement is also
selected during this stage using the tabulated maximum
shear and torque values.

Displacements—Static Loads. Displacements of the
joints, both support joints as well as free joints, are
tabulated. Certain tolerable limits on deflections may
be established based on attached piping or other equip-
ment, and the deflection values are checked against the
tolerable limits. Note that the tabulated values include
the effect of gravity loads, The incremental deflections
due to the 0.3, 0.5, and 0.1 equivalent static loads over
and above the deflections due to gravity only are very
small and, therefore, negligible in this example problem.

Dynamic Eigenvalues—Natural Frequencies. The
first 20 natural frequencies (out of a total of 75 arising
from 25 joints with 3 translatory dynamic degrees of
freedom each) are printed. Each frequency corresponds
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to a mode shape discussed below. The first frequency
(transverse mode) is given as 3.682 cycles/sec, section
19 of the computer printout, which compares to a
Rayleigh-calculated frequency of 3.985 cycles/sec, sec-
tion 11 of the computer printout. In general, Rayleigh-
obtained natural frequencies are close to but higher
than the corresponding true natural frequency as ob-
tained from a dynamic analysis. Since the acting ma-
chine frequency is 727.7 radians/sec (see 13 above),
which equals 6,949 rpm or 115.8 cycles/sec, the first 20
natural frequencies for the structure are well below the
acting frequency, and the structure is said to be low
tuned {undertuned). The undesirable range of natural
frequencies is between 0.8-1.2 of the acting machine
frequency as given in item 2{f) of the checklist table
in Chapter 3. This check assures that no resonance con-
dition will be encountered during machine operation.
Additional checks are performed, not necessarily during
the computer analysis phase, but during the preliminary
design to assure that no resonance condition exists be-
tween the natural frequencies of vibration of individual
columns and bearns with the acting machine frequency,
as in item 12 of the trial sizing procedure above.
Dynamic Eigenvectors—Mode Shapes. The first 20
eigenvectors or mode shapes which are normalized to a
maximum unit value are listed. These serve to identify
the physical direction for each mode. For example, for
Mode 1| joints 9 through 21 show a near-unity Z
displacement. Therefore, the first mode occurs in the
transverse Z-direction. This is as expected since the
structural stiffness is the lowest in the transverse direc-
tion. In general, the modes are ordered according to
the stiffness of the structure in each direction. Other
listed values give the deformation of the structure and
a plot of the structure vibrating at its first frequency

vA
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Figure 7-4. Structure vibrating at the first fre-
quency mode (transverse).

mode may be obtained either manually or using a
built-in STRUDL plot package; see Figure 7-4. The
second mode shows joints 9 through 21 with near unity
longitudinal displacements; thus, the second mode occurs
in the longitudinal X-direction. In particular, all modes
occurring in the direction of the applied dynamic forces
{transverse and vertical in this example) are important
for response studies. Some of the higher modes are
coupled since they result from combination of basic
lower modes.

Dynamic Displacements. Displacement of all joints
in the structure at each time period are listed. The upper
joints show the largest displacements.. For example,
joint 20 has a maximum displacement of 0.0002851 in.
(0.007 mm) in the ¥-direction occurring at time equal
to 0.00576 sec. This maximum amplitude of displace-
ment is then located on Figure 3-3 at the given machine-
acting frequency. The point falls in zone B (minor faults,
correction wastes dollars) which indicates satisfactory
perfermance. Figures 3-6 and 3-7 also indicate that for a
maximum displacement of 0.007 mm and a machine
speed of 6,949 rpm (115.8 ¢cps), the predicted structure
behavior is satisfactory. The amplitude of vibration at
all other joints, being smaller, is also satisfactory. Note
that many structures supporting centrifugal machines
show a largest amplitude of vibration in the transverse

direction. However, in this example, the representation
of the soil support as springs results in the amplitude of
vibration being the largest in the vertical ¥-direction.

Maximum Velocity. The maximum velocity is

(6,949 X 2r < 0.0002851) /60 = 0.207 in./sec
This maximum velocity falls in the “slightly rough”
range of Table 3-2. However, the combination of
velocity and machine speed fall within the acceptable
zone B of Figure 3-3. The designer may consider increas-
ing the base dimensions and re-analyzing the revised
structure so that all design criteria are met.

Dynamic Forces. The dynamic forces acting at the
ends of each member at each time increment are listed.
The forces are very small, for example, the dynamic
axial force is 1,132 lbs. in column member 5 at 0,0237
sec. 'The moments are likewise very small, and the struc-
ture is considered adequate for supporting these small
dynamic loads.

Since the structure was dimensioned initially to meet
the design requirements listed in Chapter 3, including
providing a sufficiently large soil bearing area, the pro-
posed design is satisfactory and the structure meets its
intended purpose. Note that all items listed in the design
checklist of Chapter 3 are explicitly considered during
the initial trial sizing phase or implicitly considered dur-
ing the computer analysis. The design checklist serves
as a reminder of important factors to be -considered
during a step-by-step hand calculation.
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Appendix A

Introduction

A multidegree-of-freedom system may be defined as 2
systemm in which more thar one independent motion is
possible. These independent motions may either be
associated with a single mass, or a single independent
motion may be associated with each of the several masses
in a system. In the former type of system, the motion of
the mass may either be coupled or uncoupled. The
coupled motions of a single mass are described by the
equations of motion where detérmination of the response
(vibration displacements) of the system involves the
solution of a set of simultaneous equations. An example
of this type of system is shown in Figures 1-45 and 1-46.
The response values x and ¢ (associated with a single
mass) appear in both equations, and the pair is said to
be coupled. The characteristic of uncoupled motions is
described by the model of Figure 1-47. The response
values x and @ appear individually in the equations of
motion, and each of those equations can be independently
solved.

An example of a multidegree-of-freedom system having
several masses associated avith one type of independent
motion is shown in Figures 1-50 and 1-51. The inde-
pendent motions x, and x, in the vertical direction are
associated with masses m, and m,, respectively. These
types of systems always undergo coupled motions, and
that effect is due to the coupling of masses m, and m,
through the spring k.. Thus, the two equations of motion
for this system have to be solved simultaneously since
%, and x; appear in both of them. Note that it is not
necessary for each mass to have only one type of motion.
If the masses are capable of oscillating in the horizontal
direction, then each of the masses m, and m, wili have
two types of motions, i.e., vertical and horizontal meo-
tion. In fact, a two-dimensional planar system has up to
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Solution of
Multi-Degree-of-
Freedom System

three degrees of freedom {two linear and one rotational
direction) per mass. For a spatial system, each mass can
oscillate in six directions {three rectilinear and three
rotational directions) and has six degrees of freedom.
Therefore, the number of degrees of freedom is not
necessarily equal to the number of lumped masses,

Dynamic Analysis

A complete dynamic analysis of a system is normally
performed in two stages. The initial stage of investiga-
tion involves the determination of the natural frequen-
cies and the mode shapes of the system. The natural
frequencies and mode shapes provide information about
the dynamic characteristic of the system. For instance,
the lowest value of the natural frequencies (generally
called fundamental frequency) indicates the relative
degree of stiffness built into the system. In addition, it
is also possible to compare the lowest natural frequency
with the frequency of the acting dynamic force so that a
possible resonance condition may be prevented. This
requirement can be achieved when the ratio of the
operating frequency to the lowest natural frequency
does not fall within a given range (normally the undesir-
able range is at least 0.8-1.2). The determination of the
mode shapes in a multidegree system has further signifi-
cance. The mode shapes (see definition of first (funda-
mental)} mode of the Terminology section in chapter 1)
gives the deflection pattern that the system assumes when
it is left to vibrate after termination of the disturbing
force. Generally, it is the first mode which dominates
the vibrating shape, and the higher mode overrides
(when superimposed} that shape. The first mode will
also indicate the particular mass or masses which will
have the maximum amplitude of oscillation in a given
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direction from their state of rest (static equilibrium).
This serves to indicate the relative degree of structural
stiffness among varicus points of the system. This
examination of the mode shapes in the vibrating system
is considered a valuable step in adjusting the vibration
amplitudes at critical points by varying the stiffness,
mass, and damping resistance of the system. A practical
example can be observed in the operation of a washing
machine during the rinse cycle. Tf the load is acciden-
tally lumped to one side of the drum during centrifugal
motion, severe vibratien beyond a predetermined magni-
tude can occur. Special sensor cut-off switches are then
activated in order to prevent damage to the iachine.
Activation of the contact switches is actually set accord-
ing to the fundamental mode of the spindle-drum
assembly.

The next stage of analysis is a response calculation of
the system caused by the dynamic force. This solution is
quite tedious and time-consuming for multidegree-of-
freedom systems; however, for a system with three
degrees of freedom, the response calculation can be
accomplished by using hand calculators. Use of com-
puter programs is recommended for systems with more
than three degrees of freedom. This part of the analysis
gives the displacement, velocity, and acceleration of the
masses and also the internal forces in all members of the
system.

Determination of Natural Frequencies
and Mode Shapes

Natural frequencies and mode shapes are obtained by
employing one of following methods. A three-degrees-of-
freedom system shown as Model 6-C (part a) of Chap-
ter 2 (Figure 2-8) is used as an example. The parame-
ters for that model are

m, = 9.662 kips-sec®/ft

ky = 6,160.2 kips/ft

my; = 17.80 kips-sec?/ft

1y = 2,843.3 kips-sec?-ft

k; = 72,835.0 kips/ft

ky = 14,703,707 kips-ft/rad

D, =050
Dy =020
H=170ft

Determinant Equation Method

All natural frequencies and mode shapes are obtained
at the same time in this method, The general form of
the equations of motion for a three-degree-of-freedom
system is given by (ref. 3, Chapter 1) :

muX1 + mn¥; + muky + g + ot

+ enxs + kuxy - koo + kuxs = FL({E)

ma ¥ + mpky - mu¥s + onkl - end
+ ety + kaxs + kaxe + kegxs = Fy (6) (Al-1)
mai¥t + maaks + maXs + ca¥s + caake

Feaaxy + kuxy + ks + kg = F; ()

The natural frequencies depend on the mass (m;;)
and stiffness (k;;} terms; therefore, the damping {c:;)
and applied forces (F;) terms are omitted.

Equations (Al-1) are then reduced to

mu¥1 + muXs + mu¥a

+ kuxy -+ ket A kaxe =0

mnX) + mpXs + mui :
+ Farxy + kuxy + kuxe = 0 (Al-2) -
maXy + maz¥y + masks

- Faaxy - kaexr + kagxe = 0

It is assumed that the free-vibration motion of masses
is simple harmonic (see definition of modes in the
Terminology section of Chapter 1), which is expressed
for a multidegrees-of-ireedom system as

x; = Aysin {wf + @)
where; = 1,2, 3

(A1-3)

Substituting Equation {(Al-3) into Equations {(Al-2)
and comitting the sine term, the following set of equa-
tions is obtained:

(ki = mue’) 4y + (b — mw’) A
+ (ki — mmwz) 4; =0

(ko — mae’)y Ay -+ (hey — maua®) As
+ (kza —_ mz;wz) Aa = 0 (A1-4)
(kn - m31w2) A1 + (hyp—myuwt) Ay

+ (ksx - mnawz) A; =0

Equations (Al-4) are a set of algebraic equations
and have a nontrivial solation for 4; only if the deter-
minant
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(2} o

22.63 2
(4) w, = 66.94
(¢) w; = 76.68 5
The mode shapes are cbtained by substituting the
above frequency values in any (Al-8) equation. For

Equation Al-8(a) and (b} using the given values of
masses and spring stiffnesses,

fi

{Al1-13)

{a) (78,995.2 — 17.80ws) 41, — 6,160.24,
+ 104,723.44,, = 0
‘ (Al-14)
() —6,160.241, + (6,160.2 — 9.662w5) Az,
— 104,723.44,, = 0

In the equations above, the subscript n takes the
values of 1, 2, and 3 and gives the amplitudes 4’s for
each of the three modes. Since the right sides of Equa-
tions (Al-14) are zero, unique values of the 4’s are nat
obtained. However, it is possible to obtain the relative
values of all amplitudes, in other words, the ratio of any
two amplitudes. When one amplitude is assigned an
arbitrary value, then all others are fixed in magnitude.
A set of such amplitudes defines the mode shape, and
therefore, the modes shapes are not dependent upon the
absolute true values of amplitude. Using n = 1 and sub-
stituting ;> = 512.0 in Equations (Al-14),

(a) 69,881.64y — 6,160.24n
+ 104,723.44,, = 0
(Al1-15)
(8) — 6,160.241 + 1,213.345
— 104,723.4441 = 0

Assuming an arbitrary value of 4;; = +1 and solving
Equations (Al-15) simultaneously for 4,, and Ay, the
amplitudes of the first mode are obtained:

An = +1, 4y = +12.8809, A4, = +0,0904

The notation adopted is that the first subscript of the 4
identifies the mass, or point on the structure at which
the amplitude occurs, and the second subscript desig-
nates the mode. Using the value of n = 2, and substitut-
ing w,? = 4,481.0 in Equations (Al-14) yields,

(a) 766.6045 — 6,160.245
4 104,723.44,0 = 0
(A1-16)
(b) — 6,160.241, — 37,135.24
— 104,723.44,, = 0

Again setting 4,, = +1.0 and solving Equations (a)
and (b) of (A1-16) simultaneously for A., and Ay, the
amplitudes of the second mode are obtained:

Ap = 410, Anw = —0.16, Ay, = —0.002091

Similarly, the amplitude for the third mode can be
obtained by following the procedures given above for the
first two modes. Those amplitudes using o,* = 5,880.0
are:

A = +1.0, A4y = —0.560248, 4,3 = +0.212150

\The computation of natural frequencies and mode
shapes were performed using small electronic hand cal-
culators with eight significant digits. However, in order
to solve the cubic equation (Equation (Al-11)}, 15 sig-
nificant digits are required to obtain more “‘exact” results.
This type of accuracy is normally not available in small
hand calculators and if sufficient number of significant
digits are not retained in the calculation of frequency,
then large errors are present in the mode shape ampli-
tude results. Therefore, it is important that the values
of mode shape amplitudes be checked using the ortho-
gonality conditions. The orthogonality cendition of nor-
mal modes (see definition in the Terminoclogy section of
Chapter 1) is expressed by the following equation
(ref. 1, Chapter 2) :

m

Z M, 4y drn = 0 (AI-17)

where [ and n identify any two normal modes of the sys-
tem, and the subscript r refers to the rth mass out of a
total of m masses.

Expanding the series of Equation (A1-17) for the first
and second mode, i.e., I = 1 and n = 2; then

MIAnAu + MzAg;Am + M;A;uAsz = 0 (A1-18)

Substituting an appropriate value for each term,



| ki — my w | = 0; thus,
(kn—mnwz) (km—mmwﬂ) (kxa"*mmw?)
A () = (kzz—mzlwz) (kzz-*mzzwe) (kzs—mzawz) =0

{kn— muwz) (hyy —myp?)  (kgz— m33""2)

(Al-5)

The expansion of determinant {Al-5) gives the char-
acteristic equation of the system. This equation will be
of third degree in the frequency parameter (»*) and has
three roots representing the three basic frequencies of
the system. Having determined the three natural fre-
quencies, the mode shapes are obtained by making use
of Equations {Al-4). For each of the three values of
w?, the ratios of (A4,/A;), (A:/4,), and (As/4,) are
evaluated and yield the three mode shapes for the system.

Example. For part (2} of Model 6-C, the equations

of motion without damping and applied forces terms
are:

(@) miés + (ks + kadxs — kpxe + badTY = 0 l

5 (A1-6)

Substituting the assumed solution of the form

(5) mu¥a — kyty + kny — kpHip = O

(¢) muHxs + Top + kyp = 0

A; sin {wt -+ @)

(a} X
(b) X3

() ¢ = Ay sin (0t + @)

Ay sin (wt + @) (Al-7)

into Equations {A1-6),

(a) (kz + kn— m!wz)z’h —kpds+ 5 HA, =0

(b) - khA]_ + (kn - muw"’)Ag - kﬂHAiﬁ' =0

s (A1-8)

The frequencies of the system are given by the condi-
tion A = 0, where A is the determinant of the square
matrix in Equation (A1-8}. The expansion for a deter-
minant

(6) — myHaw'dy + (ky — 1,63)Ay =0
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ai aj ai3
lay| =] an a a3 (A1-9)
31 a3z a3

= a1 (azg_aa:; —_ azaaaz) + a1 (5123431 _ a2laa3)
+ an (anas — aznan)

In order tc reduce the amount of computation, the
values of a;; are calcuylated by substituting the actual
values of masses and stiffnesses.

an = (b + ky — me’) = (78,995.2 — 17.80 &)
an = —ky = '—6,160.2

a = kH = 6,160.2 X 17.0 = 104,723.4

aym = —ky = —6,160.2

e = (ky — muw’) = (6,160.2 — 9.662 w®)

ay = —kH = —6,160.2 X 17.0 = —104,723.4
a3y = 0

—mHe' = —164.254 &

(ky — Iw") = (14,703,707 — 2,843.3 ")

i

da
daa

i

Substituting these values in the expansion of Equa-
tion (A1-9) and setting o® = z,

{78,995.2 — 17.802){9.0577775 X 10%°

— 17.515296 x 10°z — 142.06721 X 10%

-+ 27,471.9642% — 17.201237 X 10%]

— 6,160.2[9.0577775 X 10 — 17.515296 X 10%]

+ 104,723.4{1.011837 x 10°z] =0 (A1-10)

Rearranging Equation (Al-10) results in a cubic equa-
tion in z,

2 — 10,872.9922% + 31.6553102 X 10%

— 1.3491464 X 10° = 0 (AI-11)

Solution of the cubic equation yields three roots:

{a) zy= 5120
(b) 2. = 4,48L.0 (A1-12)
(¢) 22= 5,880.0

The square root of the z’s is then the natural frequen-
cies {in rad/sec) of the system,



My =m = 1780, M, = m, = 9.662,
M; =1, = 2,843.3

A;l = +10, Am = +10, An = +128809,
Azz = —01600, A;u = A‘p]_ = +00904,

Ap = Ay = —0.002081 on the left side of equation
(41-18),

17.80 X (1) (1) + 9.662(12.8809) (—0.16)
+ 2,843.3(+0.0904) (—0.002091) = —2.650298,

which is not zero and thus indicates errors in the results
calculated above. Similarly, the orthogonality condition
for the first and third modes ({ = 1, » = 3) is checked
by expanding Equation (Al-17) into a series:

MiAndn + MeAndn + Miduds = 0 (Al1-19)
Substituting Ad,s = +1.0, 42 = —0.560248, Ay
= +0.212150, and the values of other terms which are
given above into the left side of Equation (Al-19):

17.80 X (1) (1) + 9.662(12.8809) (— 0.560248)
+ 2,843.3(+0.0904) (+0.212150) = +2.6040,

which is again not zero, thus confirming that errors are
present in the frequency calculations. Therefore, it is
desirable that natural frequencies be calculated using
digital computers for a systern having more than two
degrees of freedom,.

Stodola-Vianello Method

Calculation of the natural frequencies and characteris-
tic shapes become cumbersome even with hand calcu-
lators for cases where the degrees of freedom exceed
more than two, as is evident from the above example.
The reascn is that round-off errors are relatively impor-
tant when the equations include terms of very large and
very small numbers. Accuracy is lost in rounding off
significant figures during the process of solving for the
roots of the characteristic equation. It, therefore, has
become common practice to resort to numerical, iterative
(i.e., trial and error) procedures, such as the Stodola-
Vianelio method (ref. 1, Chapter 2). The various steps
in the solution are as follows:

(1) Assume a characteristic shape, ie., a set of 4;
values (see Equation (Al-4)); (2) using one of Equa-
tions (Al-4), solve for «®; (3) using the remaining
(N-1} equations, obtain a new shape by solving for the
(N-1) As in terms of the Nth A4; and (4) use the new
computed shape as the revised assumed shape in the
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next cycle starting at (2) again. The procedure is to be
repeated until the computed shape is the same or very
close to the last assumed shape. In Step {1} it is usually
convenient to assign a unit value to the first value of 4.

The procedure outlined above can best be described
by applying the method to the solution of Equa-
tions (A1-8).

The equations of motion (Al1-8) can be rewritten as:

() —w'mdr + (ks + k)
- kp.Az + thA\p = 0

(3 —o'myds — kdy A1.20

+ badds — BHA, = 0 (A1-20)

(¢) —w'l 4, — w'm,HA;
+ k‘pA‘u = 0

Multiplying equation (Al-20b) by H and adding to
Equation {Al-20c) in order to eliminate the term
w?myH A, from Equation (Al-20c}, the resulting equa-
tions are rearranged in a convenient form:

o etk , kb
(a) wp A1y = " Ar, mlAzn
-t Mﬁh
my
(8) & dan = — 2 gy + B gy,
my My
e (A1-21)
A A&n
My
((:) w?lAWn = ]_CLEAIH - 'kh_HAEn

1, 1,
v

where the added subscript n indicates that the equations
apply to any mode. Substituting the values of m;, my,
Iy, ke, kn, ky, and H in the Equations (A1-21),

{a} & d1p = 4,437.934;, — 346.084:,
+ 5,883.34 Ay,

(B) wh Aew = —637.5741, + 637.5742, AL.22
—10,838.69 4. ( )

(c) wh A,, = 36.834,, — 36.8342,
+ 5,797.49 Ayn
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The iteration procedure converges on that of the
highest, or third mode. The following steps are used:
1. Assume values of A's (amplitudes of the mode)
such that the amplitude of mass | = +1.0, ie,

A, = +1.0;

2. Substitute the values of A’s in the right side of
Equation {Al-22a} to compute the value of wn?;

3. Substitute the value of w.” and trial values of A’s
in the right side of Equation (A1-22b) to compute
the value of Az,;

4. Substitute the value of w.? and the trial values of
A’s in the right side of Equation (A1-22c) to obtain
the value of Ay,;

Use the new values of 4:, Ayn along with the value
of Ay, = +1.0 as new trial values of the A’s and follow
Steps 2 to 4. This process is to be continued until con-
vergence is achieved, ie., the difference between previous
and new trial values is negligible. For example, the
amplitude values for mode shape three, ie, n =3

A]_; = ‘+‘10, Aza = —1.5, A‘pa = +0.5,

Substituting these in Equation {A1-22a),

wh (+1) = 4,437.93(+1.0) — 346.08(—1.5)
- 5,883.34({40.5)
- wi = 7,898.72

Substituting this value for w;* and the trial values of 4’s
in the right side of Equation (A1-22b}),

7,898.72(4y,}) = —637.57(41.0) 4 637.57(—1.5)
— 10,838.63(+0.5)

or A;, = —0.8879

Finally, from Equation (Al-22c),

7,898.72(d ,5) = 36.83(+1.0) — 36.83(—1.5)
— 5,797.49(+0.5)
or Ags = +0.3786

Therefore, the first estimate of ws® is 7,898.72, and the
next set of trial values of A’s are + 1.0, —0.8879, and
+0.3786. This procedure is to be repeated from Step 2
to 4 until convergence is achieved, as shown in
Table Al-1. The value of A's computed are in fact the
amplitude ratios with respect to 4,3 which is arbitrarily
taken = +1.0.

Proceeding further to the second mode, the ortho-
gonality conditions given by Equation (A1-17) are used

in order to reduce the number of equations by one.
Expanding the equation for the second and third mode,
ie, !l =2and n = 3:

3
Z M. A4 = Midpdn + Modpdy + Madpds =0
1

re=

Substituting My = m; = 17.80, M, = m. = 9.662,
M, = I, = 2,843.3, 4 = +1.0, 4y = =-0.6011,
Ap = Ay = +0.2412, in the series.

17.80(A1)(+1.0) + 9.662(A2){—0.6011)
+ 2,843.3(45) (40.2412) = 0

or A» = —0.025955 Au. + 0.0084694y, (A1-23)
which is equal to Ay..

Substituting the expression for Ay, into Equations {a)
and (b) of (A1-22) and using n = 2, yields

(@) ws A1 = 4,285.234;, — 296.2545
(A1-24)

(b) ws A = —356.2545 + 545.74 45,

Equation (Al-24) is iterated in a similar fashion as
was done for Equation (Al-22) in order to find w.f,
Az and Az, Then, Equation (A1-23) is used to obtain
Aye. As a first trial, assume A;» = +1.0 and 4., = +0.5.
Using Equation {Al-24a),

wi (+1) = 4,285.23(51.0) — 296.25(-+0.5)
or wp = 4,434.36

Using Equation {Al-24b),

4434.36(4y) = —356.25(++1.0) + 545.74(+0.5)
or Azz = ‘“‘0.14‘19

Subsequent cycles of iterations are given in Tabie Al-1,
where it may be seen that the values converge rapidly
in four cycles. In the fourth cycle, Equation (A1-23) is
used to obtain Ay..

The determination of the first mode is made directly
from the orthogonality conditions by applying the condi-
tions to the first and the second modes, and then, to the
frst and the third modes. Expanding Equation (A1-17),
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Table Al1-1
Stodola-Vianello Procedure for Model Shown in Figure 2-9
Third Mode
Trial Values Computed Values
wg? Aza Ays
Trial Equation Equation Equation
No. Az Aag Ays (A1-22a) (A1-22b) (A1-22¢)
1, +1.0 —15 +0.5 7,808.72 —0.8879 +0.3786
2 +1.0 —0.8879 +0.3786 6,972.65 —0.7611 +0.3248
3 +1.0 —0.7611 +0.3248 6,612.24 —Q.7022 +0.2046
4 +1.0 —-0.7022 -+-0.2046 6,414.18 —0.6670 +0.,2760
5 +10 —0.6670 +0.2760 6,291.64 —0.6444 +0.2641
8 +1.0 ~0.6444 +0.2641 6,214.73 -0.6293 +0.2561
7 +1.0 —0.6203 +0.2561 6,162.44 —0.6190 +0.2507
8 +1.0 —0.6190 +0.2507 6,127.11 —0.8120 +0.2469
9 +-1.0 —1.6120 +0.2469 6,102.33 —0.6069 +0.2443
10 +1.0 - 0.6069 -+0.2443 6,085.27 —0.6035 +0.2425
11 +1.0 —0.6035 +0.2425 6,073.50 —0.6011 +0.2412
Second Mode
Trial Values * Computed Values
wa? Azz Aps
Trial Equation Equation Equation
No. An Azz (Al-24a) (A1-24b) (A1-23)
1 +1.0 —0.5 4,433.36 —0.1419
2 +1.0 —0.1419 4,327.27 —0.1002
3 +1.0 —0.1002 4,314.91 --0.0952
4 +1.0 —0.0952 4,313.44 ~(.0946 —0.02676
Summary
W
w? Ay Az Ay (radians/sec.} f (cps)
Third Mode 6,073.50 +1.0 — 0.6011 +0.2412 77.93 12.40
Second Mode 4,313.44 +1.0 — 0.0946 —0.0268 65.68 10.45
First Mode 515.68 +1.0 12.6804 +0.0815 22,71 3.61
3 Assuming 4;; = +1.0, these two equations are solved
(a) = M,4nd,s = Midudy + MaAnds simultaneously to provide
Tl
. 4 Midnds (A1-25)
(b) T M,Ands = Midudy + Midndn An = 126894, Ay = 441 = +0.08151
= + MyAydn
The value of &,* may be computed by making use of any
Substituting the values of My = m; = 17.80, My = m,  one of Equations (Al1-22). Using Equation (Al-22a),
= 9662, M3 = Ig. = 2,8433, A],z = +10, Azz =

—0.0946, Aaz = A‘pz = “002676, An = +10, Az;; ==
—0.6011, 43 = Ays = +0.2412, Equations (A1-25a)
and (b} vield

(a) 1780(:‘111) (10)

+ 9.662(A4n) (—0.0946)

+ 2843.3(4n) (—0.02676) = 0
(b) 17.80(4n) (4+1.0)

+ 9.662{dx) (—-0.6011)

+ 2843.3(4n) (+0.2412) = 0

(Al-26)

wy (41.0) = 4,437.93(+1.0) — 346.08(-+12.6894)

-+ 5,883.34(~+0.08151)
wh = 595,93

(A1-27)

If Equations (A1-22b) and (¢) are used and the last
computed mode is substituted, w,? is found to be 517.70
and 515.68, which for normal purposes is considered to
be an accurate solution. A summary of the complete
solution is given in Table Al-1.
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Steady-State Response Analysis

Calculation of the maximum amplitude of vibration
for a steady-state condition is often the main item of
interest in an engineering dynamics problem., The
amount of computation work is quite extensive when a
response analysis is required for a system with more than
three degrees of freedom, In those cases, computer pro-
grams such as ICES-STRUDL, NASTRAN, ANSYS,
or NISA may be used. Hence, the investigation of the
three-degrees-of-freedom system considered above is
extended to the calculation of the mode shapes and fre-
quencies. There is a variety of methods for finding the
response in this type of problem; however, a modal anal-
ysis technique is used here. This technique has become
the current state-of-the-art (ref. 1, Chapter 2}. This
method of analysis consists of calculating the response
for each normal mode individually and then superimpos-
ing the individual responses to yield the total solution.
There are seme limitations on the applicability of this
method: The system has to be linearly elastic and the
dynamic forces acting on the masses must follow the
same time variation, 1e., if the applied forces are har-
monic, then all the forces must have the same acting
frequency. However, these restrictions can be relaxed if
numerical methods are used in the solution of the modal
equations. For a lumped multimass system having j
masses M damping, constant C, assoclated with mass 7,
s springs, and N normal modes the modal equations of
motion for the nth mode is derived by the use of the
Lagrange equation.

At any instant in the system, the total kinetic energy Is

J N 3
K=2 %Mr(z )

{A1-28)
r=1 n=1
the total strain energy in the springs is
] N 2
U=3Z Yk (z Ap,,), (A1-29)
g=1 r=1
the total energy dissipated by the dampers is
Jj N
D=—-Z CZ a,an (Al-30)
re=1 n=1
and the total work in terms of displacement is
1 N
W,=2 F.2 a, {A1-31)
r=1 n=1

In equations A-1.28 to A-1.31, a,, and a,, are respec-
tively the displacement and velocity component of mass
r associated with the nth mode, A,, is the distortion of
spring g {i.e., the relative displacement of its ends) in
the nth mode, and k, is the stiffness of that spring.
These equations are based on the fact that any displace-
ment or velocity is equal to the sum of the modal com-
ponents.

The squared series In Equation A-1.28 is equivalent
to the sum of the squares of all modal components of
¢ plus twice the sum of all cross products of these
components. When summed over all masses, the total of
these cross products must be zero, according to the
orthogonality condition given by Equation A-1.32.

J
2 Ma,a,=0

r=1

(A1-32)

This orthogonality condition is true for the displacement
and for the velocity vectors. Thus Equation A-1.28 may
be written as

J N
E=32 WMz
n=1

=l

(A1-33)

Similarly, by the same reasoning the cross product terms
of the series in Equation A-1.29 will also be zero and
thus, is reduced to

. N
U=3 Y k2 A, (Al-34)
=1 n=1

For each mode it is convenient to select a modal
displacement X, so that all individual mass displace-
ments may be expressed in terms of this one variable.
Xy is usually taken as the displacement of one arbitrary
selected mass. Thus

(a) drp = Xn (?) = Xn Am
1

(b) bm = -’:Yn (%l) = Xn Arn

(€) Dgw = X, (/X)) = X, Aa,, (A1-35)

where 4., and Aa,, are constants for a given mode, The
resulting equations of K, I/, D, and W, may therefore
be written as



J N
(a) K =% Y M, 2 Xi 4
ral =1

s N
b U= z Y% &, ;zﬂXf, A's,

;7 N
()D=—-Z CZ X, X, 4
=1 =]
i N
()W, =2 F,2 X, A4, (A1-36)
reml =1

The Lagrange equation for a conservative system 1s
given as

d(g_f_g) aK  3U 8D _ dWe (A1-37)

2\ a4 ) " 0g: " 3q 3¢ dgs

where ¢; and §; are the generalized coordinates of the
system, which in Equation A-1.36 are X, and X
Substitution 'of expressions of Equation A-1.36 into
A-1.37 leads to the equation of motion

o J . J J
X.Z M, A+ 3,2 C A+ X, 2 k Aa,,
r=1 ] =1

J
=Z F, A (A1-38)

r=l

These equations of motion are analogous to the single-
degree-of-freedom system equation and are associated as
follows:

z M, AL = equivalent mass

=]

T C, A7, = equivalent damping constant
r=l

s

I k, A%, = equivalent spring constant

g=1

Z F, A, = equivalent force
re=1

where X, = displacement of nth mode,
F,= F,[f(t)} = forcing function acting on
mass 7,
A, = constant of mode n at mass r,
Aayn = distortion of spring g of mode n.

a=1, N
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Solution of Equation (Al-38) for a normal mode = is

j
f(t) Z Fr1 Arn
X, = —"=— (M), (A1-39)
wa T M, An,
=1
where M is the magnification factor given in Table 1-4.
The total displacement for the mass r is given by
superimposing the N modes:

J
N z Frl Arn
Xf (t) =z L Am (M)n'f_l— f (t) (A1“40)

wpZ M, A
=t

The parameters F,,, M., and f(t) are specified for
each particular problem, and if the meodal frequencies
and characteristic shapes are available, then the solution
of Equation (A1-40) follows.

Example. The response of a three-degree-of-freedom
system shown in part (a) for Model 6-C in Chapter 2
(Figure 2-9) subjected to dynamic loads will be deter-
mined. The modal frequencies and mode shapes were
previously obtained and the results listed in Table Al-1
are used. The equations of motion containing damping
terms and the forcing functions for the system are as
follows:

(a) m;i‘-]_ + C;1JE1 + k,xl——k,, (xz——xl—\l/H) = 0
(b) muSc'g + kh (xi"'—x]_—l[/H) = Fzz (t) (Al-‘“.)
© I + Owl + myxH + ki = Faa () H

The following values of the forcing functions are
given for this example as:

le (t) = Fu f(f) =0
Fop () = Fy f(t) = 8.080 sin 727.7¢ kips
T, () = Fuf() = 137.360 sin 727.7¢ kips-ft,

where the acting frequency is w = 727.7 rad/sec

Il

The values for the masses are
m; = 17.80 kips-sed /ft
l my = 9.662 kips-sec’/ft

I, = 2843.3 kips-sec-ft
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Table Al-2
Modal Response Analysis
a
E Ffl '4:'11
71
Made Forcing 2z 3 2
Mass Amplitude Function Mass a2 o S M A, .
Point r A Py [ . M, M. A g ra (M), Iﬁuntmn: A-1-40
Mode n (1) (5) {3} é#) (5) (6) (€] 1)) Tahle 1-4 (Max. Response)
1 1.0000 0 0.0 17.80 17.80 113,725 2 = 0,000075(1)
+ PSR (138.50 X 10-¢)
2 +12.6894 8.080 102,530 9,662 1,555.78 515.68 511.88(1,502.47) 0.000975 - 0.008180{1)
= 138.50 X 107¢ (5170 3¢ 107%)
1 3 + 0.0815 137.360 11.195 2,843.3 18,80 =+ 0.011590(1)
£24,93 3 10%)
) 113.725 1,502.47 = 0.0011 X 1078 {t
1 + 1.0060 0 ¢.0 17,80 17.80 —4.445 =2 = 0.000975 (12.6804)
— {138.50 X 107%)
2 — 0.0846 8.080 —0.764 9.662 0.0865  4,313.44 4,313.44(10.93) 0.00818¢ 0. {l’DBIS’D ( 0.0046)
= —5§1.70 X 1078 (=517 0%
2 3 — 0.0268 137.360 —3.681 2,843.3 2.04 ?‘0 011590 (—)0 L5011)
z —4.445 19.03 = L.580 X {U"" It
1 1.0000 0 0.0 17.80 17.80 28.274 ra = 0.000975(0.0815)
— (138.50 X 10°%)
2 — 0.8011 8.080 —4.857 9.662 3.49 8,073.50 6,073.71(186.71) 0.011590 + .008180(— 0.0268)
= 24.53 X 107¢ (—51.70 X 108
3 3 -+ 0.2412 137.360 33.141 2,843.3 166.42 + |:011590(4-() 2%!2)
z 28,274 186.71 = 0.092 X% 1070 rad

The inclusion of damping in a multidegree-of-freedom
system is accomplished by assuming a certain percentage
of critical damping in each mode. This factor is nor-
mally accounted for while computing the value of the
magnihcation facter (M) for that mede, which are then
superimposed. In multi-degrees-of-freedom problems
requiring a steady-state response analysis, damping is
generally assumed in terms of the damping ratios rather
than as damping coefficients such as C;; and Cy used in
Equation {Al-41)., These damping coefficients are in-
cluded in the equations of motion, when it is required
that a free-vibration (transient) analysis be obtained.
Therefore, in this example problem, damping ratio {D)
for various modes are assumed as follows:

Mode 1, D = 0.0 (no damping in the structure)

Mode 2, D = 0.50 (damping in the lateral moede)

Mede 3, D = 0.20 (damping in the rocking mode)
{A1-42)

For the sake of clarity, Equation (A1-40) is expanded
as

F11A11+F21A21+F31A31
wi(M1A 1+ MoAG+ M A%)

xa(l) = An(M)l[ ]f(t)

Fudo+Fade—+ Fads :I
+ Au(M): I:wﬁ(M1A?2+M2A22+MzA§z) s

Fudn+ Fandn+ Fnds ] 0
Wi (MrADy+ MaA G+ M A%)

(A1-43)

+ A(M), [

Similar expansions can also be written for x; and ;.
Numerical solutions of these expansions are tabulated
in Table Al-2 where », corresponds to the deflection at
mass m; (at the base of the footing), x. corresponds to
the mass m, (at the top of the structure), and x; is the
rotation of the mass Iy. The function f(t) in this
example problem is equal to sin !, which when supe:-
imposed with the maximum displacements, gives the
final solution:

() x, = 0.0011 X 10-%sin 727.7¢ ft
(b} x.= 1.5800 X 10-sin 727.7¢ ft
(c) w=009195 X 10 sin 727.7¢rad

(A1-44)



AppendixB

Summary of
ICES-STRUDL
Commands

The following ICES-STRUDL commands are described in refs. 2 and 3 of Chapter 7. Some special symbols
are used to denote options. Among these are:
__Underlines: The portion of the word which is required is underlined and the rest of the word is optional,
—Braces {}: A set of braces indicates that a choice exists. Any one, sometimes more than one choice, can be made.
— Parentheses () : Any item in a parentheses may be omitted. The element inside a parentheses is optional, there-
fore, the meaning of the command does not change if the item is omitted or included.
—Asterisk #. An asterisk located outside and in front of a set of braces indicates that more than one choice may
be made,
—_Arrow — : An arrow located in front of an element inside a set of braces indicates that if the user does not
make any choice, the element indicated by the arrow will be assumed (default value).

For convenience, the format of the “list”’ element is given first. The symbols v, vi . . . Vn denote decimal
values.
*( alphalist
where: list = ¢ integerlist
n, TO ng
alphalist = ‘al (‘as’) ...
integerlist = i {12) ...

1. EJECT Command
EJECT

2. FINISH Command
FINISH

3. DEBUG Command

OFF
MAP
REGISTERS
— COMMON
POOL
ALL

DEBUG

169
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4, STRUDL Command

Design of Structures and Foundations for Vibrating Machines

‘a,” (‘title’)
STRUDL {RESTORE ‘ay }
5, SBAVE Command
SAVE (*a’)
6. CHANGE ID Command
CHANGFE E ‘a;’ (‘title’)
7. UNITS Command
*
length unit
force unit
angular unit
UNITS temperature unit
timnes unit
mass unit
Elements:
INCHES CYCLES
FEET angular unit = RADIANS
¥F DEGREES
CENTIMETERS
length unit = ¢ CMS
METERS . FAHRENHEIT
M temperature unit = 1 GENTIGRADE
MILLIMETERS
MM
SECONDS
POUNDS time unit = MINUTES
LBS HOURS
KIPS
TONS
force units = MTONS LBM
SEWTON 5 SL—U'G
_K'N mass unit = KILOGRAM
MN e
= GM
8. Input Mode Command
-> ADDITIONS
CHANGES
DELETIONS
9. TYPE Command
TRUSS - XX
PLANE FRAME X_Z'
TYPE GRID YZ
- TRUSS —
2408 { frv | |
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10, Identification Mode Command

INTEGER
SET ELEMENTS { TUNRESTRICTED }
11. TIME Command
“TIME BEGIN
TIME PRINT

12. SCAN Command

— ON
SCAN OFF

—»ON (i)
OFF l

13. DUMP Command

DUMP COMMON
POOL
TIME

14, JOINT COORDINATES Command

{IJ%I-SET } COORDINATES

i — FREE
([XCOORD] v, [YCOORD] v, [ZCOORD] v;)
2, SUPPORT
i - FREE
ORD] v =
{a} (IXCOORD] v, [YCOORD] v, [ZCOORD] v,) { §UPP0RT}

15, JOINT RELEASES Command
JOINT
NODE

force releases
moment releases

*
RELEASES ( i E ), (angle specs), (elastic support specs)

*
list force releases
moment releases

E), {angle specs), (elastic support specs)

*
list ( { force releases

moment releases l‘), (angle specs), (elastic support specs)

* X
force releases = FORCE { Y }
VA

* X
moment releases = MOMENT{ Y }
Z

angle specs = ([TH1] v; [TH2] v, [TH3} va)
elastic support specs = ([KFX] vi [KFY] vs [KFZ] v; [KMX] v; [KMY] vy [KMZ] vo)
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16. MEMBER INCIDENCES Command
MEMBER INCIDENGCES

L L "
{ ‘a;’} starting joint, end joint

In
{‘an,} starting joint, end joint
17. MEMBER RELEASES Command

* 5 START* { force releases
MEMBER RELEASES ({ —5=, | moment releases
E— —_— force releases

moment releases

force releases

|
Py
e e |
}
|
P

list {
. force releases
moment releases

moment releases

list ( force releases

moment releases

\-—-\/‘-./\’\/—5/\.—-\/--../

* { force releases
* 5 X
Y

force releases = FORCE l
* X
moment releasess = MOMENT Y
Z

18. MEMBER ECCENTRICITIES Command
MEMBER ECCENTRICITIES (eccentric specs}

list (eccentric specs)

list (eccentric specs)

GLOBAL *jw (X] va [X] va [Z] vs

— LOCAL

eccentric specs =

lgrj_n [X] va [¥] ve [2] ve

19, MEMBER END SIZE Command
MEMBER END (JOINT) SIZE (size specs)

list (size specs)

list (size specs)
size specs = [START] v, [END] v.
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list * \FORCE [X] vi, [Y] v, [Z] vs
) MOMENT  [X] v, [¥] vs, (2] vsf |
list * {FORCE [X] vi, [Y] vay [Z] ¥
) MOMENT  [X] v, [¥] v [Z] v}

25. JOINT DISPLACEMENTS Command

JOINT * {DISPLACEMENTS  [X] vi, [Y] vs, [Z] v2
B DISPLACEMENTS { < — — — )
NODE — ROTATIONS [X] vi, [Y] vo, [Z] vs
Jist * {DISPLACEMENTS  [X] vi, [Y] v, [Z] vs )
is — — — -
ROTATIONS [X] vi, [YT] ve, [Z] s
o * (DISPLACEMENTS  [X] vi, [Y] vs, [Z] vs )
is — — — —
ROTATIONS [X] vi, [Y] v, [Z] vs
26. MEMBER LOADS Command
MEMBER LOADS, (direction specs), (type specs)
list, (direction specs), {type specs)
lis-t, (direction specs}, (type specs)
> 1
FORCE Y
z
directions specs = {(GLOBAL)
fx
MOMENT Y
|z
CONCENTRATED (FRAGTIONAL) [P] vi, [L] vz
type specs = UNIFORM (FRACTIONAL) [W] vy, ([LA] v, [LB] vs)
LINEAR (FRACTIONAL) [WA] v, [WB] vi ([LA} vs, [LB] ve)

27. MEMBER TEMPERATURE LOADS Command
MEMBER TEMPERATURE(LOADS) (temp specs)

list, (temp specs}

!is.t, {temp specs)
*{ [AXIAL] vs

temp SpeCS = {'F;R_ACTIONAL) ([&] Vi, [E] VZ:) (BENDING) [Y] A [Z] v
4 5
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28. MEMBER DISTORTIONS Command

MEMBER DISTORTIONS (place types)

list (place types)

list (place types)
%CONCENTRATED (FRACTIONAL) [L] v

place types

— —

DISPLACEMENT [X] v., [Y] ve, [Z] ve
dist data = {—— ol T
ROTATION [X] Ve [Y] vs [Z] ve

29. MEMBER END LOAD Command

MEMBER END (LOADS)

(* START  FORCE
END 'MOMENT

*

START  FORCE
END  MOMENT

list
*{START  FORCE

list
END MOMENT

30. JOINT FORCES Command

UNIFORM (FRACTIONAL) [LA] v [LB] v

‘ dist data
[(X] v [Y]
[X] v [Y]
[X] v [Y]
[X] v [Y]
[X] v [Y]
[X] v [Y]

|
|

JOINT FORCES (force specs, (angle specs), loading specs)

list, (force specs, (angle specs), loading specs)
list (force specs, (angle specs), loading specs)
FORCE Xor FX
FORCE Y or FY
FORCE Zor FZ

force specs =

MOMENT X or MX
MOMENT l’ or MY

MOMENT  Z or MZ

THI o, l
TH? 6,
THS o, j

angle specs =

Vi - . . Va }
‘loading,” vy . . . ‘loadings’ va

loading specs

<!
»

<
[

<!
W

5

<
ta

<
ra

N

<
&

N

l

N

N
i 8

N

™~
o

<
-

=

<
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20. MEMBER PROPERTIES Command PRISMATIC, (Section values)
VARIABLE
MEMBER PROPERTIES { { TABLE ‘table name’ (‘section name’) )
FLEXIBILITY
STIFFNESS

list

list

(PRISMATIC), section values
variable specs

( { table specs )
(FLEXIBILITY), matrix specs

STIFFNESS), matrix specs

(PRISMATIC), section values
variable specs

( table specs )
{(FLEXIBILITY), matrix specs

(STIFFNESS), matrix specs

[AX] vi [AY] v: [AZ] ve
(IX] v, [IY] v [IZ] v,

section values = [8Y] v; [SZ] vs [YD] v

(VARIABLE)

SEGMENTS i, (AND i;) l

SEGMENTS i, (AND i,)

[ZD] v ﬂj'] Vi
[_Z_G] Viz [_E_X] Via [E'_Z_] Vig

LENGTH
TABLE ‘table name’ ‘section name’ XG
section values YC Vi
zc
LENGTH
TABLE ‘table name’ ‘section name’ XG
section values YC Vi
e

matrix specs = a series of commands, the first of which
contains the “list” element and, if not specified in the
heading, the word FLEXIBILITY or STIFFNESS,

173
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(MATRIX) COLUMNS (i) (is) (is) (i) (is) (is)

ROW 1 Vi1 Viz Viz Vig Vis Vie

ROW & Ve1 Vez Vga Ves Vg5 Vs

21. CONSTANTS Command
CONSTANTS (constant description)

constant description

constant description

E

G

‘GTE v, list, v list, v, Lst . . .
constant description = D—E;SITY v, &

-B—E-T_A | vi ALL BUT v, lList, v, list . . .

POISSON

22, LOADING Command

LOADING S it
Ay

23. LOADING COMBINATION Command

i
LOADING COMBINATION ") (‘title’) (COMBINE loading specs)

€

loading specs = vz (€ v va) onnn.
) az
ag
24, JOINT LOADS Command
JOINT LOADS * (FORCE [X] vi, [Y] vz, [Z] vs
NODE MOMENT [X] vi, [Y] vs [Z] W
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31. MEMBER FORCES Command
MEMBER FORGES (force specs, distance specs, loading specs)

list, (force specs, distance specs, loading specs)

lis-t, (force specs, distance specs, loading specs)

FORCE X or FX
FORCGE Y or FY
FORCE Z or FZ.
force specs = ) MOMENT X or MX
MOMENT or MY

Y
MOMENT Z or MZ

. DISTANCE v
distance specs = -
FRACTION v
Vi.. . Vg
loading specs = ) )
‘loading,” v1 . . . ‘loadingy’ va

32, ACTIVE-INACTIVE Command

5 MEMBERS l 5 ALL l
ACTIVE % JOINTS ALL BUT list
INACTIVE l LOADINGSS l list 5

3%. LOADING LIST Command

ALL l
ALL BUT list

f
I

5 STIFFNESS l
DETERMINATE
l PRELIMINARY 5

LOADING LIST

34. ANALYSIS Commands

(ANALYSIS) ([NJP] i) (REDUCE BAND ROOT)

35. COMBINE Command
i
COMBINE { o } {loading specs)

36, PRINT Command
PRINT, type, (component specs}
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DATA
STRUCTURAL DATA
LOADING DATA
DESIGN (DATA)
LENGTH
RELEASES
CONSTANTS
MEMBER INCIDENCES
PROPERTIES
type = STATUS
END (CONDITIONS
STATUS 1
JOINT COORDINATES
l RELEASES 5
5 MEMBER LOADS
APPLIED JOINT LOADS
l JOINT DISPLACEMENTS

\ FORCE ASSUMPTIONS

5 ALL, (active and inactive) (joints and members)

component specs = ¢ JOINTS list
z MEMBERS list

JOINTS MEMBERS
joints and members = } (AND )

MEMBERS MNTS

ACTIVE INACTIVE
active and inactive = (AND )

INACTIVE ACTIVE

37. OUTPUT Command

s DECIMAL i
OUTPUT f LOADING 1
BY JOINT
l MEMBER 5
38. LIST Command
* 1 FORCES
DISTORTIONS
LIST LOADS (component specs)
REACTIONS

DISPLACEMENTS
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5 ALL (active and inactive) (joints and members)
C()mponent SPBCS = MEMBERS list
l JOINTS list
. L. ACTIVE INACTIVE
active and inactive = —— (AND —
INACTIVE — ACTIVE
. MEMBERS JOINTS
members and joints = - (AND R
JOINTS — MEMBERS
39. SECTION Command
SECTION section specs {MEMBER list)
. NS i Vi . .« Vi
section specs = (FRACTIONAL) — )
= 1 DS v v (NS 0

40, Internal Member Results Command
ALL (MEMBERS)
MEMBER. list

LIST, output type, % (SECTION section specs)

SECTION FORCE
SECTION STRESS

FORCE ENVELOPE

STRESS ENVELOPE

MAXIMUM STRESS

MAXIMUM STRESS EACH LOADING

output type =

41. PLOT DEVICE Command
*(LENGTH v,

—> PRINTER v
PLOT DEVICE { PLOTER (JDTH vl

_— — S?OPE COLUMNS i

— ROWS i

42, PLOT Command PLANE
PLOT DIAGRAM (identification specs)
ENVELOPE
For PLOT PLANE TRUE (VIEW)

§ XY l 5 JOINTS id,, idy, ids
XZ § PROJECTION —

1 Y7z l MEMBERS id,, id,
XY THROUGH (JOINT) ‘id’
identification -
specs = XZ

Scag—

vz

EQUALS v,

[N ] [2e

e Nl g g,
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y’
id =

*

For PLOT DIAGRAM and PLOT ENVELOPE

FORCE

identification

specs =

MOMENT

PLOT FORMAT ‘format type’

/> NORMAL

STANDARD
QORIENTATION s~

EQUAL
MAXIMUM

LENGTH

SCALE
FORCE

MOMENT

LENGTH

(

(

NON STANDARD

—

*

%
Paa N ! i, el sl

—_—

s

[N [= |4

|

SIZE (FRACTIONAL) | VERTICAL

[0 Ima |24 IO [r 4 1N [ |
Nt R T g

[N 1= 14

* 5 HORIZONTAL

Vi

Vi

Vi

Vi1

ALL (MEMBERS)
MEMBERS ‘list’

|

(UNITS PER INCH)
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{

format type = J SCALE FORCE

INTERVAL Vi (UNITS)

[N 14
o

S

MOMENT

) v

[0 [ § 34

POSITION [HORIZONTAL] v [VERTICAL] v

(i) HORIZONTAL v, }

POSITION INCREMENT (FRACTIONAL)
— — — (i) VERTICAL v,

* ALL Vi
TOP -
MARGINS ¢( BOTTOM v
LEFT v
RIGHT vi
SSTANDARD
DATA =
=== MINIMUM

SEGMENT (CHARACTER) ‘@’

AXIS (CHARACTER) ‘a’
(43 THROUGH 58 REFER TO DYNAMIC ANALYSIS)
43. INERTIA Command

General form:

list [X] vy
5 ALL ¥ ;@EAR 5 Y] v
JOINTS ALL BUT list ANGULAR (2] Vs
INERTIA (CE‘) ( i EDES l ADD list l &L Vi
- LUMPED
Elements: { GONSISTENT}
Vi, .+ .., vi = values of inertias expressed as lumped masses. Note that

mass, not weight, is Input.
44. STORE TIME Command

General form:

STORE TIME (HISTORY} (

FORCE
DISPLACEMENT — TRANSLATION
— - ) ‘Name' (IN) —

VELOCITY ROTATION
ACCELERATION
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— USER

(DATA SET) (FACTOR s) {DUMP)
SUBSYSTEM ‘password’ - B =

Vit veta ..l vy,
Elements:
‘name’ = the identifier (up to 8 characters) which is given to the time history record,
‘password’ = the ‘password for the subsystem data set.

5 = the scale factor to be applied to the record prior to storage; i.e. the value of the time

history at t, will be stored as v, X s. s is set equal to 1.0 if omitted.

45. STORE RESPONSE Command

General form:

5 DISPLACEMENT 5 — FREQUENCY l
.STORE &EEPONSE (@GTRA) VELOCITY Vs ‘Name’ (IN) —
ACCELERATION z PERIOD 5
— UUSER
— (DATA SET) (DUMP)
SUBSYSTEM ‘password’ -_— —
RATIO
DAMPING {—— A (FACTOR s,)
R PERCENT —
F PPRE YPRS P SR Cin fin
RATIO
DAMPING Vi (FACTOR s;)
PERCENT _
Ty fore £ . L Tim fim
(END ((_:)_F_ B_E_SPONSE S_P'E_CTRA))

46. DYNAMIC LOADING Command
General form i
DYNAMIC LOADING } {“title’)

47. JOINTS LOAD Command

General form:
JOINTS FORCE 5_1 (load )
list (LOADS) —(  (load specs.
NODES = MOMENT
where

5 FILE ‘Name’ ([FACTOR] v;)
(load specs.) l (FACTOR v;) (time history)

( function specs.)

(time history) = f,
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{function specs) =

SINE
FUNCTION [AMPLITUDE] v, [FREQUENGY] v, ([PHASE] v.)
— COSINE —= ——

48. SUPPORT ACCELERATION Command

|
l

l

I

General form:

SUPPORT (i,) (ACCELERATIONS)

X

TRANSLATION X
DISPLACEMENT Y (load specs.)

Z

ROTATION

TRANSLATION l 5&1
DISPLACEMENT Y (load specs.)
ROTATION 5 l Z S

where

(load specs) = same as for JOINT LOAD command.

49, TIME POINTS Command

General form:

TIME (POINTS) ti t; . . . ta

50. END OF DYNAMIC LOADING Command

END (OF DYNAMIC LOADING)

51. RAYLEIGH Commands

a) RAYLEIGH LOADING

f‘, % (‘title’)

a1

b) LIST RAYLEIGH (NATURAL FREQUENCY)

52. DYNAMIC DEGREES OF FREEDOM Command

|

DYNAMIC DEGREES (OF F_REEDOM)

+*
JOINTS *( DISPLACEMENTS 5 X l
list - Y
NODES ROTATIONS 2

.
.

183
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*

JOINTS *{ DISPLACEMENTS 5 X

Jor! " Dis v

NODES ROTATIONS l Z

53. DYNAMIC ANALYSIS Command
DYNAMIG ANALysrs |~ TRIDIAGONALIZATION 1
TRI] . g

DYNAMIG ANA ITERATION ( [NJP] 3 (sclution

specs.) (REDUCE BAND ROOT)

where

(frequency specs,)

EIGENVALUE (ONLY)
MODAL
PHYSICAL ([BETA] v.)

(solution specs.) =

(MINIMUM (FREQUENCY) v.) MAXIMUM (FREQUENCY) v, 1

N ———

(frequency specs.) = {iz)
l RITICAL (FREQUENCY) v, (ia) 5

534. PRINT DYNAMIC Command
General form:

PRINT DYNAMIC (type specs.) (component specs.)

where

* QEA-

STRUGTURAL (DATA)

LOADING DATA

NORMAL (MODES)

DEGREES (OF FREEDOM)
(type specs.) = { JOINT (INERTIAS)

MATRICES

LOADS

SUPPORT (ACGELERATIONS)

INITIAL (CONDITIONS)

INTEGRATION (PERIODS)

5 ALL (active and inactive) {joints and members)

(component specs.) = § JOINTS list
l MEMBERS list



' . ‘ ACTIVE (AND
{active and inactive) = ( INACTIVE —
N JOINTS (
(joints and members) = ( MEMBERS

55. NORMALIZE EIGENVECTORS Command
General form:

NORMALIZE EIGENVECTORS

56. LIST DYNAMIC Command

General form:

Summary of ICES-STRUDL Commands

INACTIVE
ACTIVE ))

MEMBERS
JOINTS | ))

LIST DYNAMIC (type specs.) (BY (TIME)) (component specs.)

*

FORCES
DISTORTIONS
LOADS
REACTIONS

DISPLACEMENTS

{type specs.) = (MAXIMUM) STRESSES
PRINCIPAL
VELOCITIES

ACCELERATION

EIGENVALUES

STRAINS
STRESSES

(1)

EIGENVECTORS (i)

ALL (active and inactive} (joints and members) l

component specs.) = ( ( JOINTS list
MEMBERS list

. . JOINTS
(joints and members) = ( { ~— {AND
MEMBERS
) . ACTIVE
{active and inactive) = —_ (AND
INACTIVE

57. INTEGRATE Command
General form:

INTEGRATE (FROM) t;, (TO) t, (AT) t
(FROM) to; (TO) tar (AT) tu

; )
MEMBERS
JOINTS

INACTIVE
ACTIVE

185
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58. DAMPING Command
General Form:

— RATIOS )
DAMPING { — f v (ix)

PERCENTS

59. PARAMETER Command
PARAMETER (‘parameter’) 3 parameter specsz-

‘parameter’ «,parameter specs }

‘narameter’ arameter specs
P p P

Elements:

‘parameter’ = alphameric parameter name (up to 8 characters)
vy (FOR) (MEMBERS) list
parameter _ v: ALL

specs
v, ALL BUT v, (FOR) (MEMBERS) list

60. CHECK CODE Command

CHECK. (CODE (FOR) ) MEMBERS list
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foundations in, 65-68
Coefficient damping, 15
Column resonance, 51
Column stress, 50

Compressor, reciprocating
design example, 92—99
Computer analysis, [3, 113 ff.
coding, 118
example, 118 ff.
flow chart, 117
interpretation, 157—158
reasons for, 113114
Consistent mass, 20
Constant damping, 15
Constant spring stiffness, 27
Constraint conditions, 14
Continuous mass, 20
Continuous system, 28
Coordinates
types of, 15—16
Coupled modes, 21—22, 55
Critical damping, 6, 15
solution equations for, 7—8
Critical speed, 26
Crosshole tests, 63

D
Damped harmonic frequency, 18
Damped natural frequency, 18
Damping, 3233

coefficient, 15

critical, 6—7, 15

dashpot, 15

geometric, 70—71

material, 70—71

types of, 15
Damping constants, [5
" for flexible mats, 7980
Damping ratio, 6, 15, 70-71, 80, 83

computation of, 59

geomemetric

computation of, 82

in modeling, 32—33

obtaining, 78

for pile foundations, 81
Dashpot damping, 15
Deep foundations, 80—89
Design checklist, 51-54, 96, 110—111
Design conditions, 46—54
Design criteria, 54, 97, 100, 110
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Determinant equation method
of frequency and mode shape determination, 160—163
Differential equations
types of, 16
Displacement, 12. See also Displacement amplitude
Displacement amplitude, 13. See also Displacement
Donovan, N.C., 89
Bynarmic analysis, 14, 97, 100, 106
multi-degree-of-freedom-system, 159—168
Dynamic balancing, 14
Dynamic conditions, See also Dynamic design conditions
limiting, 97—-98, 100—102
soil
problems of, 59—62
Dynamic design conditions, 52—53
Dynamic design factors, 5
Dynamic equations of motion
types of, 16—17
Dynamic equilibrium equation, 33
Dynamic force, 17
Dynamic load, 17
Dynamic response, 26
Dynamic system, 17, 28

E

Eccentricities machine, 11, 47—48
Eigenvalues, 16

Eigenvectors, 16—17, 22—24, 117, 121
Elastic halfspace model, 58

Elastic spring stiffness, 28, 32

Elevated foundation, See afso Elevated frame foundation struc-

ture; Elevated pedestal foundation
example, 114—158
trial sizing, 50
Elevated frame foundation structure, 18

Elevated pedestal foundation, 1. See also Elevated foundation

typical (modetl), 36—38
Embedment. See Footing embedment

Environmental demands, 49, 54, 98, 102. See also Geotechnical

considerations

Equations of motion, 20. See also Differential equations,

Dynamic equations of motion
development, 33-34
for forcing function, 11
in modeling, 34—38
Equivalent forcing function (F(#))
calculation for, 4
Equivalent lumped-mass model, 20
Equivalent mass {rm,)
calculation of, 2—4
Equivalent spring constant (4,)
calculation of, 4
Equivalent spring stiffness, 28
Equivalent system, 28
Excitation. See also Excitation frequency
rotating mass-type
solution for, 11-12
sources of, 8—11
types of, 17—18
Excitation frequency, 19

F
f(t), See Equivalent forcing function
Factor damping, 15
Fatigue, 53—54
failures, 102

Field shear modulus
determinations of, 62—64
Finite elements, 32, 40, 79
First mode of vibration, 22
Fixed beam (model), 3536
Flexible mat foundations, 83
Flexible shaft, 27
Footing embedment
effects of, 72, 92—99
Forced vibrations
steady-state solution of, 8—1i1
Forcing frequency, 19
Forcing function (F(r)), 4
equation of motion for, 11
and free vibration, 6
in modeling, 33
Foundation analysis
theoretical approach to, 1~2
Foundation configuration
selection of, 93, 100, 106
Foundation mass, 50
Foundation response
modification of, 78—79
Foundation—soil interaction, 71—72
Foundation structure {for machine), 18
types of, 48—49
Foundations, 7790
block, 1, 18, 83
design checklist, 52—54
design examples, 91—112
model, 34
trial sizing, 49—50
categories of, 1, 78
deep, 80—89
sizing and construction of, 81
design of, 1
elevated, I, 18, 36—38, 50, 113
elevated pedestal, 36—38, 113
embedment, 72, 92
flexible mat, 40, 83, 115
forms of, 1
machine mass ratio, 49 -
mat, 18, 50, 7980, 83
model, 3435
pile, 80—89
rigid mat, 83
structural systems, [
table top
structure in, 1, 18, 113
Free system, 28
Free vibrations
mathematical model, 4, 6—8
Frequencies, See also Fundamental frequency; Rayleigh's
frequency
circular, 18
circular natural, 6
natural, 19
determination of, 160—168
resonance, 26
types of, 18—20
of vibration, 16
Fundamental frequency, 19 3
Fundamental modes, 22

G
Generalized coordinates, 15



Geometric damping, 7071
Geotechnical considerations, 47—52, 57-76
Geotechnical requirements. See Geotechnical considerations
Ghazzaly, O.1, 81
Gravels
foundations in, 64—65
Grige, R.F., 81, 84

H
Hardin-Drnevich equations, 66—67
Harmonic components, 9
Harmonic excitation, 17
Harmonic motion, 21
Horizontal motion

in pile foundations, 86
Hudson, W.R., 79
Hwong, S.T., 81

I
1CES STRUDL commands
summary of, 169—186
Idealized system, 28
Idriss, I.M., 66—68, 70
Impulse excitation, 17
Inertia block
(model), 35
use of, 103
Inertial excitation, 17
Initial conditions, 15

J
Jobsis, A.C., 89

K
k,. See Equivalent spring constant

L
Laboratory shear modulus
determination of, 63—64
Lagrange’s equation, 33—34, 166, 167
Linear differential equations, 16
Linear spring stiffness, 28
Linear system, 28
Load factor, dynamic, 17
Loose granular soil {sand) stratum
effect of, 74—75
Lowest modes, 22
Lumped mass, 20
analysis of, 37
technique for obtaining, 2—4
Lumped-mass spring-dashpot system, 28
Lumping of mass
in modeling, 32

M
Machines
properties of, 46—47
requirernents for, 46—47
service factor, 54
Vibration-Severity-Data, 54
Magnification factor, 10—11, 13, 20
Mass, 20
calculations for, 2—4
consistent, 20
continuous, 20
of foundation, 50

Index 189

lumping of, 20
in modeling, 32
technique for obtaining, 2—4
multi-lumped (model), 36—37, 38
single-lumped (model), 36
two-lumped (model), 3738
Mat foundations, 18, 50, 83
model, 34—35
vertical spring and damping constants for, 79-80
Material damping, 7071
Mathematical model
calculation of parameters for, 2—4
formulation of, 4—11
Matrix method analysis, 14
MDOF. See Multi-degree-of-freedom system
Modal analysis, 14
Modal multi-degree lumped-mass analysis, 37, 159
Mode shapes, 157
determination of, 160—168
Model
elastic halfspace, 58
mathematical
calculation of parameters for, 2—4
formulation of, 4—11
Modeling alternatives, 58
Modeling techniques, 32—-33
Modeling types, 33—38
Modes of vibration, 53, 92—93, 102, See also Mode shapes
types of, 2124
Motion, 6, 20-21
horizontal
in pile foundations, 86
vertical
in pile foundations, 81—83
Multi-degree-of-freedom {(MDOF) system, 28—31, 107, 159
solution of, 159—168
Multi-lumped mass with coupled soil-structure interaction, 38

N

Natural frequencies of motion, 19
determination of, 160—168

Natural frequencies of vibration, 16

Node, 24

Node points, 24

Node vibrating systems,. 24

Nonlinear spring stiffness, 28

Nonlinear systern, 28

Normal coordinates, 16

Normal modes, 22—24

Northey, R.D., 67

Novak, M., 80—81, 84, 86

0
O'Neill, MW, 81
Operating frequency, 19
Orthogonality
condition, 162, 166
Oscillation, 24. See also Oscillator tests
Oscitlator tests, 63
Overdamping
solution equations for, 8
Overturned foundation structure, 18

P

Particular integral, 9—10

Peak-to-peak {double amplitude of vibration), 24
Pedestal foundation, elevated (model), 36—38, 113
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Period, 24

Periodic excitation, 9, 17
Periodic motion, 20
Phase, 24—25

Phase angle, 6—12, 2425

Physiological effects. See Environmental demands

Pier foundations. See Pile foundations -
Pile cap, 81, 84
Pile foundations, 49—50, 80—89
Pile groups, 82—86
Poisson’s ratic
selection of, 7172
and soil density, 7172
typical values, 72
Principal coordinates, 16
Principal modes of vibration, 22—24
Procedures, design, 54
Psychological effects. See Environmental demands

R
Ratio damping, 6, 15
Rayleigh wave lengths, 63
Rayleigh’s frequency, 19-20, 114, 119
model, 36—-37
Reciprocating compressor
design example for, 9299
Reciprocating machines, 92—93
design for, 49
Resistance
calculation of, 4
ceater of columns, 5, 116
of soil, 49=50, 116
Resonance, 12, 25-26
column, 51
condition, 25—26
frequency, 26
Resonant column test, 64
Response, dynamic, 26—27
foundation
modification of, 78—79
steady state, 10, 26—27
transient, 6, 27
Richart, F.E., Jr., 72
Rigid mat foundations, 83
Rigid staff, 27
Rocking equivalent spring, 38, 111
Rocking motion
in pile foundations, 86—88
Rotating-mass-type excitation
dynamic system subjected to, 11—12, 17

5
Sands, 74-75
foundations in, 64—65
Saturated clays
foundations in, 65—68
Saul, W.E., 89
SDOF. See Single-degree-of-freedom system
Seed, H.B., 66—68, 70
Shaft
critical speed of, 27
Shear modulus. See also Shear strain magnitude
calculation of
for structure-soil interaction analysis, 68—6%
correlations, 64—68
field
determinations of, 62—64

laboratory
determination of, 63—64
and pile foundations, 81
soil, 62—69
field procedures for, 62—64
laboratory procedures for, 64
typical values, 69
Shear strain, 69-70
Shear strain magnitude
selection of, 69—70
Simple harmeonic motion, 21
Simultaneous differential equations, 16
Singh, J.P., 89
Single-degree-of-freedom (SDOF) system, 2, 28
in layered soils, 73—74
model examined, 4—12
Sinusoidal excitation, 17
Sinusoidal motion, 21
Skempton, A.W., 67
Seil
loose granular, 7475
stiff, 72—74
Soil density
and selection of Poisson’s ratio, 71—72
Soil dynamics
problems of, 59—62
Soil—foundation interaction, 71—72
Soil parameters, 47—49
evaluation of, 59—62
Soil shear modulus, 62—69
Soil spring stiffness, 28
Soil—structure interaction, 38, 7172
Soil tests, 63 )
Southwell-Dunkerley formulae, 107
Spring absorbers (model), 35
Spring constants,
equivalent
calculation for, 4
evaluation of, 58—59
in modeling, 32
obtaining, 78
vertical
for flexible mats, 79—80
Spring-dashpot system. See Lumped-mass spring-dashpot
system
Spring stiffness, 27—28
Static analysis, 14
Static balancing, 14
Static conditions, 100
Static design conditions, 50, 52, 114
Steady-state response, 26—27
method of frequency and mode shape determination,
166—168
Steady-state solution of forced vibrations
solution equations for, 8—11
Stiff shaft, 27
Stiff underlying stratum
effect of, 72—74
Stodola-Vianello method, 163—165
Stokoe, K.H.,, II, 72
Strain magnitude
selection of, 69—70
Stratum
loose granular soil
effect of, 7475
stiff underlying
effect of, 72—74



Structural system of foundations, }

Structure—soil interaction, 71—72
analysis of, 68—69

STRUDL computer coding, 118—121
commands, 169—186

Subharmonic motion, 21

Superharmonic motion, 21

T
Table top foundation structure, [, 18. See also Elevated
foundation

Terminology, 12—-31
Testing methods, 63, 88—89
Theory of vibrations

fundamentals of, 2
Transient excitation, 18
Transient motion, 6
Transient response, 27
Transient vibrations

mathematical model, 4, 6—8, 16
Transmissibility factor, 26, 31
Trial sizing

of block foundation, 49—50

of elevated foundation, 50
Two-lumped mass, 16, 23, 37-38

U
Uncoupled modes, 22
Undamped system
solution equations for, 6—7
Underdamped system
solution equations for, 7

Index 191

Undertuned foundation structure, 18

Y
Velocity, 12
Vertical motion
in pile foundations, 81—83
Vibrating machine
supported by a cantilever (model), 35
supported by a fixed beam (model), 35—-36
supported by block-type foundation (model), 34
supported by mat-type foundation (model), 34—35
supported on inertia block and vibration isolated from
foundation {model), 35
Vibration amplitude, 13
Vibration analysis, 14
Vibration limits, 52—54
Vibration modes, 53, 92—94, 102
types of, 21-24
Vibration response,
in multidegree model, 37
Vibration tests, 88
Vibration theory fundamentals, 2
Vibrations
forced
steady-gtate solution of, 8—11
free
solution of, 4, 6—8
transient, 4, 6—8
Viscous damping, 15

w
Whitman, R.V., 63—64, 71
Woods, R.D., 67
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Des'gn ofS.I.mures This text brings together traditional and new concepts and
procedures for analyzing and designing dynamically loaded
am FOLIndaﬁOl'leOl' structures. With Design of Structures and Foundations for

a . - Vibrating Machines, practicing engineers and students now have
vlmhrg M"‘Bs a text which integrates theories of vibration, geotechnical

engineering (including soil dynamics and half-space theory),
computer coding and applications, and structural analysis and design. The many concepts and
procedures used in the design of structures supporting dynamic machines and ultimately supported by
the soil until now have been unavailable in a single source.

The design process in this field has gradually evolved from an approximate rule-of-thumb procedure to
a scientifically sound procedure. In Design of Structures and Foundations for Vibrating Machines, state-
of-the-art techniques are employed in actual design problems by using simplified step-by-step routines.
In addition, at every step of investigation a brief description explains the physical meaning of the -
parameters used and the role they play in the design process,

The introductory chapter reviews fundamentals. Chapter 2 describes alternatives of modeling
dynamically loaded systems. Chapter 3 considers and lists the information necessary for design.
Chapters 4 and 5 describe the geotechnical aspects of the problem, and Chapter 5 specifically considers
flexible mats and foundations. Finally, Chapters 6 and 7 include examples of different types of structures
supporting dynamic machines.
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