APPENDIX A

Broms method for analysis of single piles under lateral loading

The method was presented in three papers published in 1964 and 1965 (Broms 1964a,
1964b, 1965). As shown in the following paragraphs, a pile can be designed to sustain a
lateral load by solving some simple equations or by referring to charts and graphs.

A.1 PILES IN COHESIVE SOIL

A.1.1 Ultimate lateral load for piles in cohesive soil

Broms adopted a distribution of soil resistance, as shown in Figure A.1, that allows the
ultimate lateral load to be computed by equations of static equilibrium. The elimination of
soil resistance for the top 1.5 diameters of the pile is a result of lower resistance in that
zone because a wedge of soil can move up and out when the pile is deflected. The selec-
tion of nine times the undrained shear strength times the pile diameter as the ultimate soil
resistance, regardless of depth, is based on calculations with movement of soil from the
front toward the back of the pile.

A1.1.1 Short, free-head piles in cohesive soil

For short piles that are unrestrained against rotation, the patterns that were selected for
behavior are shown in Figure A.2. The following equation results from the integration of
the upper part of the shear diagram to the point of zero shear (the point of maximum mo-
ment)

2
Mﬁ:g(e+1.5b+f)--?f-"-2[-’i— (A.D)

But the point where shear is zero is

P

= et A2

s Sec,b (A2)
Therefore,

M =P(e+1.5b+0.51) (A3)

Integration of the lower portion of the shear diagram yields
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Figure A.2. Diagrams of deflection, soil resistance, shear, and moment for short pile in cohesive
soil, unrestrained against rotation.

ME® =225¢ bg? (A4)
It may be seen that
L=0.5b+f+g) (A.5)

Equations A.2 through A.5 may be solved for the load P,y that will produce a soil failure.

After obtaining a value of P,y the maximum moment can be computed and compared

with the moment capacity of the pile. An appropriate factor of safety should be employed.
As an example of the use of the equations, assume the following:

b =305 mm (assume 305-mm O.D. steel pipe by 19 mm wall),

I,=175x10"m*, e=0.61 m, L =2.44 m, and
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cy = 47.9 kPa.

Equations A.2 through A.5 are solved simultaneously and the following quadratic equa-
tion is obtained.

P +1,083P.— 67,900 = 0
P =594 kN

Substituting into Equation A.3 yields the maximum moment

(0.5)(59.4) }

M, = 59.4{0.61 +1.5(0.305)+
(9)(47.9)(0.305)

=77 kN-m.
Assuming no axial load, the maximum stress is

_ (77)(0.1525)

o= 67,000 kPa
. X

Ss

The computed maximum stress is tolerable for a steel pipe, especially when a factor of
safety is applied to Py The computations, then, show that the short pile would fail due to
a soil failure.

Broms presented a convenient set of curves for solving the problem of the short-pile
(see Fig. A.3). Entering the curves with L/b of 8 and e/b of 2, one obtains a value of Py,
of 60 kN, which agrees with the results computed above.

A.1.1.2 Long, free-head piles in cohesive soil

As the pile in cohesive soil with the unrestrained head becomes longer, failure will occur
with the formation of a plastic hinge at a depth of 1.505 + J Equation A.3 can then be
used directly to solve for the ultimate lateral load that can be applied. The shape of the
pile under load will be different than that shown in Figure A.2 but the equations of me-
chanics for the upper portion of the pile remain unchanged.

A plastic hinge will develop when the yield stress of the steel is attained over the en-
tire cross-section. For the pile that is used in the example, the yield moment is 430 m-kN
if the yield strength of the steel is selected as 276 MPa.

Substituting into Equation A.3

430 = P, [ 0,61+ 0.4575+ Jm
2.53

Pt =224 kN

Broms presented a set of curves for solving the problem of the long pile (see Fig. A.4).
Entering the curves with a value of M}/c,,b3 of 316.4, one obtains a value of P, of about
220 kN.
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Figure A.3. Curves for design of short piles under lateral load in cohesive soil.
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Figure A.4. Curves for design of long piles under lateral load in cohesive soil.
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A.1.1.3 Influence of pile length, free-head piles in cohesive soil

Consideration may need to be given to the pile length at which the pile ceases to be a short
pile. The value of the yield moment may be computed from the pile geometry and mate-
rial properties and used with Equations A.2 through A.5 to solve for a critical length.
Longer piles will fail by yielding. Or a particular solution may start with use of the short-
pile equations; if the resulting moment is larger than the yield moment, the long-pile
equations may be used.

For the example problem, the length at which the short-pile equations cease to be
valid may be found by substituting a value of Py of 224 kN into Equation A2 and
solving for f and substituting a value of M,y of 430 m-kN into Equation A.4 and solving
for g. Equation A.5 can then be solved for L. The value of L was found to be 5.8m. Thus,
for the example problem the value of P,y increases from zero to 224 kN as the length of
the pile increases from 0.46m to 5.8m, and above a length of 5.8m the value of P,y re-
mains constant at 224 kN.

A.1.1.4 Short, fixed-head piles in cohesive soil

For a pile that is fixed against rotation at its top, the mode of failure depends on the length
of the pile. For a short pile, failure consists of a horizontal movement of the pile through
the soil with the full soil resistance developing over the length of the pile except for the
top one and one-half pile diameters, where it is expressly eliminated. A simple equation
can be written for this mode of failure, based on force equilibrium.

Py = 9¢,b(L —1.5b) (A6)

A.1.1.5 Intermediate length, fixed-head piles in cohesive soil
As the pile becomes longer, an intermediate length is reached such that a plastic hinge de-
velops at the top of the pile. Rotation at the top of the pile will occur and a point of zero
deflection will exist somewhere along the length of the pile. Figure A.5 presents the dia-
grams of mechanics for the case of the restrained pile of intermediate length.

The equation for moment equilibrium for the point where the shear is zero (where the
positive moment is maximum) is:

M = P(1.5b+ )~ f(9c,,b)(12r_)-My

Substituting a value of f;
Ms =F(1.56+051)-M, (A

Employing the shear diagram for the lower portion of the pile,
Mo =225¢,bg’ (A.B)
The other equations that are needed to solve for Py are:
L=15b+f+g (A9

and
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Figure A.5. Diagrams of deflection, soil resistance, shear, and moment for intermediate-length pile
in cohesive soil, fixed against rotation.

fz.{;_l_cub (A.10)

Equations A.7 through A.10 can be solved for the behavior of the restrained pile of inter-
mediate length.

A.1.1.6 Long, fixed-head piles in cohesive soil
The mechanics for a long pile that is restrained at its top is similar to that shown in Figure
A.5 except that a plastic hinge develops at the point of the maximum positive moment.
Thus, the M¥*™ in Equation A.7 becomes M, and the following equation results

2M

P = y (A.1D)
Y (1.5b+0.51)

Equations A.10 and A.11 can be solved to obtain Py, for the long pile.

A.1.1.7 Influence of pile length, fixed-head piles in cohesive soil

The example problem will be solved for the pile lengths where the pile goes from one
mode of behavior to another. Starting with the short pile, an equation can be written for
moment equilibrium for the case where the yield moment has developed at the top of the
pile and where the moment at its bottom is zero. Referring to Figure A.5, but with the soil
resistance only on the right-hand side of the pile, taking moments about the bottom of the
pile yields the following equation.

L—I.Sb)_My -0

Summing forces in the horizontal direction yield the next equation.

PL- 9c,,b(

P, =9¢c,b(L-1.5b)=0 (same as Eq. A.6)
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The simultaneous solution of the two equations yields the desired expression.

P, = M, (A.12)
M (0.5L+0.75b) '

Equations A.6 and A.12 can be solved simultaneously for Py, and for L, as follows
from Equation A.6, Py = (9)(47.9)(0.305)(L — 0.4575),
from Equation A.12, Ppy = 430/(0.5L + 0.229),
then L =2.6 m and Py, = 281 kN.

For the determination of the length where the behavior changes from that of the pile of
intermediate length to that of a long pile, Equations A.7 through A.10 can be used with
Mmax set equal to M,, as follows:

(2)(430)

from Equation A7, £y, =5 5)(0.305)+0.5f

439
(2.25)(47.9)(0.305)

0.5
from Equation A.8, g -—{ } =362 m

from Equation A.9, L = (1.5)(0.305)+ f + g

from Equation A.10, f = %-(47.9)(0.305)

then L = 7.27 m and Py, = 419 kN.

In summary, for the example problem the value of P increases from zero to 281 kN as
the length of the pile increases from 0.46 m to 2.6 m, increases from 281 kN to 419 kN as
the length increases from 2.6 m to 7.3 m, and above a length of 7.3 m the value of P
remains constant at 419 kN,

In his presentation, Broms showed a curve in Figure A.3 for the short pile that was re-
strained against rotation at its top. That curve is omitted here because the computation
can be made so readily with Equation A.6. Broms’ curve for the long pile that is fixed
against rotation at its top is retained in Figure A.4 but a note is added to ensure proper
use of the curve. For the example problem, a value of 415 kN was obtained for Py,
which agrees well with the computed value. No curves are presented for the pile of in-
termediate length.

fult

A.1.2 Deflection of piles in cohesive soil

Broms suggested that for cohesive soils the assumption of a coefficient of subgrade reac-
tion that is constant with depth can be used with good results for predicting the lateral de-
flection at the groundline. He further suggests that the coefficient of subgrade reaction o
should be taken as the average over a depth of 0.8BL, where
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0.25
B=|—2 J (A.11)
(45,,11,

where o, soil reaction modulus and; E,l, = pile stiffness.

Broms presented equations and curves for computing the deflection at the groundline.
His presentation follows the procedures presented elsewhere in this text.

With regard to values of the reaction modulus, Broms used work of himself and Vesic
(1961a, 1961b) for selection of values, depending on the unconfined compressive
strength of the soil. The work of Terzaghi (1955) and other with respect to the reaction
modulus have been discussed fully in the text.

Broms suggested that the use of a constant for the reaction modulus is valid only for a
load of one-half to one-third of the ultimate lateral capacity of a pile.

A.1.3 Effects of nature of loading on piles in cohesive soil

The values of reaction modulus presented by Terzaghi are apparently for short-term load-
ing. Terzaghi did not discuss dynamic loading or the effects of repeated loading. Also, be-
cause Terzaghi's coefficients were for overconsolidated clays only, the effects of sustained
loading would probably be minimal. Because the nature of the loading is so important in
regard to pile response, some of Broms’ remarks are presented here.

Broms suggested that the increase in the deflection of a pile under lateral loading due
to consolidation can be assumed to be the same as would take place with time for spread
footings and rafts founded on the ground surface or at some distance below the ground
surface. Broms suggested that test data for footings on stiff clay indicate that the coeffi-
cient of subgrade reaction to be used for long-time lateral deflections should be taken as
1/2 to 1/4 of the initial reaction modulus. The value of the coefficient of subgrade reac-
tion for normally consolidated clay should be 1/4 to 1/6 of the initial value.

Broms suggested that repetitive loads cause a gradual decrease in the shear strength of
the soil located in the immediate vicinity of a pile. He stated that unpublished data indi-
cate that repetitive loading can decrease the ultimate lateral resistance of the soil to about
one-half its initial value.

A2 PILES IN COHESIONLESS SOILS

A2.1 Ultimate lateral load for piles in cohesionless soil

As for the case of cohesive soil, two failure modes were considered; a soil failure and a
failure of the pile by the formation of a plastic hinge. With regard to a soil failure in cohe-
sionless soil, Broms assumed that the ultimate lateral resistance is equal to three times the
Rankine passive pressure. Thus, at a depth z below the ground surface the soil resistance
per unit of length P, can be obtained from the following equations.

P, =3byK, (A.12)

K, =tan2(45+gi) (A.13)
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where y = unit weight of soil; K}, = Rankine coefficient of passive pressure; and $ = fric-
tion angle of soil.

A2.1.1 Short, free-head piles in cohesionless soil

For short piles that are unrestrained against rotation, a soil failure will occur. The curve
showing soil reaction as a function of depth is shaped approximately as shown in Fig-
ure A.6. The use of M, as an applied moment at the top of the pile follows the procedure
adopted by Broms. If both P, and M, are acting, the result would be merely to increase the
magnitude of e. It is unlikely in practice that M, alone would be applied.

The patterns that were selected for behavior are shown in Figure A.7. Failure takes
place when the pile rotates such that the ultimate soil resistance develops from the
ground surface to the center of rotation. The high values of soil resistance that develop at
the toe of the pile are replaced by a concentrated load as shown in Figure A.7.

The following equation results after taking moments about the bottorn of the pile.

P(e+L)+M, = GybLK, )(—24}—9 (A.14)

Solving for P, when M, is equal to zero,

YbL’K ,
P = (A.15)
2(e+ L)
And solving for M, when P; is equal to zero,
M, =0.5vbL’K, (A.16)

Equations A.14 through A.16 can be solved for the load or moment, or a combination of
the two, that will cause a soil failure. The maximum moment will then be found, at the
depth f below the ground surface, and compared with the moment capacity of the pile. An

appropriate factor of safety should be used. The distance f can be computed by solving for
the point where the shear is equal to zero.
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Figure A.7. Diagrams of deflection, soil resistance, shear, and moment for short pile in cohesionless
soil, unrestrained against rotation.

P - (oK, )(—’25} =0 (A.17)

Solving Equation A.17 for an expression for /
0.5
f—OSl({ b J (A.18)
YOk,
The maximum positive bending moment can then be computed by referring to Figure A.7.
K ybf?
ME = Re+ 1) -2 s g

2 1
Or, by substituting expression for Equation A.17 into the above equation, the following
expression is obtained for the maximum moment.

M =E(e+f)~%£+M, (A.19)

As an example of the use of the equations, the pile used previously is considered. The
friction angle of the sand is assumed to be 34 degrees and the unit weight is assumed to be
8.64 kKN/m’ (the water table is assumed to be above the ground surface). Assume M, is
equal to zero. Equations A.13 and A.15 yield the following:

K, =tan2(45+91]=3.54,
2
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_ (8.64)(0.305)(2.44)* (3.54)

P, = =222 kN
(0.61+2.44)

The distance f can be computed by solving Equation A.18.

0.5
f=0.816( 222 j ~1259 m
(8.64)(0.305)(3.54)

The maximum positive bending moment can be found using Equation A.19.

(22.2)(1.259)
3

M., =(22.2)(0.61+1.259)~ =322 m-kN

Assuming no axial load, the maximum bending stress is

_ (32.2)(0.1525)

z 1.75x10™

= 28,000 kPa

The computed maximum stress is undoubtedly tolerable, especially when a factor of
safety is used to reduce P,y Broms presented curves for the solution of the case where a
short, unrestrained pile undergoes a soil failure; however, Equations A.14 and A.17 are so
elementary that such curves are unnecessary.

A2.12 Long, free-head piles in cohesionless soil

As the pile in cohesionless soil with the unrestrained head becomes longer, failure will
occur with the formation of a plastic hinge in the pile at the depth { below the ground sur-
face. It is assumed that the ultimate soil resistance develops from the ground surface to the
point of the plastic hinge. Also, the shear is zero at the point of maximum moment. The
value of /' can be obtained from Equation A.18 shown above. The maximum positive mo-
ment can then be computed and Equation A.19 is obtained as before. Assuming that M, is
equal to zero, an expression can be developed for Py as follows:

P, = M, A20
it ) (A-20)

0.5
e+0.544 —Toin__
(vbK,)

For the example problem, Equation A.20 can be solved, as follows:

430

Pmlt
(8.64)(0.305)(3.54)]

P

[

=153 kN

0.61+ 0.544[

Broms presented a set of curves for solving the problem of the long pile in cohesioniess
soils (see Fig. A.8). Entering the curves with a value of M,/b“pr of 1926, one obtains a
vaiue of Py, of about 160 kN. The logarithmic scales are somewhat ditficult to read and it
may be desirable to make a solution using Equation A.20. Equations A.19 and A.20 must
be used in any case if a moment is applied at the top of the pile.
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Figure A.8. Curves for design of long piles under lateral load in cohesionless soil.

A2.13  Influence of pile length, free-head piles in cohesionless soil

There may be a need to solve for the pile length where there is a change in behavior from
the short-pile case to the long-pile case. As for the case of the pile in cohesive soils, the
yield moment may be used with Equations A.14 through A.16 to solve for the critical
length of the pile. Alternatively, the short-pile equations would then be compared with the
yield moment. If the yield moment is less, the long-pile equations must be used.

For the example problem, the value of Pny of 153 kN is substituted into Equation
A.16 and a value of L of 6.0 m is computed. Thus, for the pile that is unrestrained against
rotation the value of Py, increases from zero when L is zero to a value of 153 kN when L
is 6.0 m. For larger values of L, the value of P, remains constant at 153 kN.

A.2.1.4  Short, fixed-head piles in cohesionless soil

For a pile that is fixed against rotation at its top, as for cohesive soils, the mode of failure
for a pile in cohesionless soil depends on the length of the pile. For a short pile, the mode
of failure will be a horizontal movement of the pile through the soil, with the ultimate soil
resistance developing over the full length of the pile. The equation for static equilibrium
in the horizontal direction leads to a simple expression.

Py, =15YL*BK,, (A21)

A2.1.5 Intermediate length, fixed-head piles in cohesionless soil

As the pile becomes longer, an intermediate length is reached such that a plastic hinge de-
velops at the top of the pile. Rotation at the top of the pile will occur, and a point of zero
deflection will exist somewhere along the length of the pile. The assumed soil resistance
will be the same as shown in Figure A.7. Taking moments about the toe of the pile leads
to the following equation for the ultimate load.
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My 2
By ==+ 05BLK, (A22)

Equation A.22 can be solved to obtain P, for the pile of intermediate length.

A2.1.6 Long, fixed-head piles in cohesionless soil

As the length of the pile increases more, the mode of behavior will be that of a long pile.
A plastic hinge will form at the top of the pile where there is a negative bending moment
and at some depth f where there is a positive bending moment. The shear at depth f is zero
and the ultimate soil resistance is as shown in Figure A.7. The value of f may be deter-
mined from Equation A.18 but that equation is re-numbered and presented here for con-
venience,

p 0.5
/=08 lﬂ(bep J (A23)

Taking moments at point fleads to the following equation for the ultimate lateral load on a
long pile that is fixed against rotation at its top.

p M;+M;

it = 05
e+ 0.544{—‘?"‘—“~J
70K,

Equations A.23 and A.24 can be solved to obtain P, for the long pile.

(A.24)

A2.1.7 Influence of pile length, fixed-head piles in cohesionless soil

The example problem will be solved for the pile lengths where the pile goes from one
mode of behavior to another. An equation can be written for the case where the yield mo-
ment has developed at the top of the short pile. The equation is:

P, —-’y—’—+os bI*K (A25)
nlt 7 I DY P .

Equations A.22 and A.25 are, of course, identical but the repetition is for clarity. Equa-
tions A.21 and A.25 can be solved for P, and for L, as follows:

from Equation A.21, Py, = 14.0L°

430

from Equation A.25, P, Al 15.31°

ult =

then L = 3.59 m and P,,;, = 180 kN.

For the determination of the length where the behavior changes from that of a pile of in-
termediate length to that of a long pile, the value of P,y from Equation A.22 may be set
equal to that in Equation A.24. It is assumed that the pile has the same yield moment over
its entire length in this example.
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from Equation A.22, P, = .‘_"%9 +4.6641
from Equation A.24, P, = 2(430) _
0.61+0.544 B
(8.64)(0.305)(3.54)

then L=6.25m, Py =251 kN

In summary, for the example problem the value of P,y increases from zero to 180 kN as
the length of the pile increases from zero to 3.59 m, 180 kN to 251 kN as the length in-
creased from 3.59 m to 6.25 m, and above 6.25 m the value of P,y remains constant at
251 kN.

In his presentation, Broms showed curves for short piles that were restrained against ro-
tation at their top. Those curves are omitted because the equations for those cases are so
easy to solve. Broms’ curve for the long pile that is fixed against rotation at its top is re-
tained in Figure A.8 but a note is added to ensure proper use of the curve. For the example
problem, a value of 300 kN was obtained for Py, which agrees poorly with the computed
value. The difficulty probably lies in the inability to read the logarithmic scales accurately.
No curves are presented for the pile of intermediate length with fixed head.

A.2.2 Deflection of piles in cohesionless soil

Broms noted that Terzaghi (1955) has shown that the reaction modulus for a cohesionless
soil can be assumed to increase approximately linearly with depth. As noted earlier, and

using the formulations of this work, Terzaghi recommends the following equation for the
soil modulus.

E, =k,z (A26)

Broms suggested that Terzaghi’s values can be used only for computing deflections up to
the working load and that the measured deflections are usually larger than the computed
ones except for piles that are placed with the aid of jetting.

Broms presented equations and curves for use in computing the lateral deflection of a
pile; however, the methods presented herein are considered to be appropriate.

A.2.3 Effects of nature of loading on piles in cohesionless soil

Broms noted that piles installed in cohesionless soil will experience the majority of the
lateral deflection under the initial application of the load. There will be only a smali
amount of creep under sustained loads.

Repetitive loading and vibration, on the other hand, can cause significant additional
deflection, especially if the relative density of the cohesionless soil is low. Broms noted
that work of Prakash (1962) shows that the lateral deflection of a pile group in sand in-
creased to twice the initial deflection after 40 cycles of load. The increase in deflection
corresponds to a decrease in the soil modulus to one-third its initial value.
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For piles subjected to repeated loading, Broms recommended for cohesionless soils of
low relative density that the reaction modulus be decreased to 1/4 its initial value and
that the value of the reaction modulus be decreased to 1/2 its initial value for soils of
high relative density. He suggested that these recommendations be used with caution be-

cause of the scarcity of experimental data.



