

FLUID FLOW BASICS OF THROTTLING VALVES

"Uk simply make it right."

01-99

FLUID FLOW BASICS OF THROTTLING VALVES

FLUID PARAMETERS -

The following fluid parameters are frequently associated with throttling valves -

THE BASICS OF THROTTLING VALVES

THROTTLING VALVES

Valves that are utilized as fluid control devices are typically "throttling valves".

Such valves experience internal velocity and internal pressure gradients (both positive and negative) that conclude with a permanent pressure loss (ΔP) from the inlet pipe-to-outlet pipe connections. Throttling valve trim (plug-seat) experiences relatively high internal velocities nearly 100% of operating time. In comparison, ON-OFF automated or manual valves experience velocity changes ONLY when being actuated from "open-to-closed", or vice versa; i.e. a few seconds or minutes.

Bernoulli's Theorem is the most useful tool in analyzing what is going on physically within the walls of a throttling valve, which includes -

- velocity gradients
- pressure gradients

The other important tool is the 1st Law of Thermodynamics which allows analyzing —

- fluid state •
- thermal effects •

Bernoulli's principles apply to the following for throttling valves -

- inlet pipe reducer
- pressure drop to main orifice ٠
- pressure recovery to outlet
- outlet pipe reducer

<u>|BERNOULLI'S THEOREM - LIOUIDS</u>

WHEN YOU APPLY BERNOULLI'S THEOREM TO FLOWING FLUIDS, YOU ARE REALLY APPLYING THE "LAW OF THE CONSERVATION OF ENERGY". THIS LAW STATES THAT ENERGY CAN BE CONVERTED FROM ONE FORM TO ANOTHER, AND BACK AGAIN, AND THE SYSTEM TOTAL ENERGY WILL BE CONSERVED, i.e. WILL BE A CONSTANT.

Effect of elevation.

Interrelational effects of static and velocity pressures.

When the pressure gradients are graphically shown, one ends up with the rather typical "<u>vena</u> <u>contracta</u>" curve —

The velocity gradients form a sort of "inverse" of the vena contracta curve ---

The depth of the vena contracta "dip" is primarily a function of a throttling valve's geometry; globe vs. butterfly, etc. The important parameter in determining the P_{VC} is – " \underline{F}_{L} –Liquid <u>Pressure Recovery Factor</u>". As the name implies, the F_{L} factor is a measure of the effective-ness of the reconversion of velocity pressure into static pressure from the main orifice of the throttling valve (@ vena contracta) to the valve's outlet.

The following graphic attempts to give relative representation of the four major valve styles used for throttling service.

Both butterfly and ball valves are sub-classified as "high recovery valves". <u>As a general rule, globe and eccentric plug (rotary globe) styles tend to make "better" throttling control valves.</u>

FLUID STATES

Fluid flow is classified into two basic fluid states at the inlet.


```
<u>GAS–VAPOR</u>
(Compressible)
```

As pressure changes occur within a throttling valve, it is possible to produce <u>2-phase flow</u> at the valve's outlet for either a liquid or gas-vapor at the inlet.

A "vapor" is a "gas" that is at, or relatively near, its "saturation" (boiling) conditions of pressure and temperature; i.e. saturated vapor or <u>slightly</u> superheated vapor. A "gas" is a fluid that does not liquify at reduced temperatures, or is a <u>highly</u> superheated vapor.

Throttling valves operate as "<u>steady state, steady flow</u>" devices. The entering and exiting mass flow rates are the same; i.e. flow is "continuous", and the <u>Continuity Equation</u> is applicable —

(EQ. #1)
$$\begin{array}{c} P_{1}\mathbf{A}_{1}\overline{\mathbf{v}}_{1} = Q_{2}\mathbf{A}_{2}\overline{\mathbf{v}}_{2} \\ Q_{1}\mathbf{A}_{1}\overline{\mathbf{v}}_{1} = Q_{2}\mathbf{A}_{2}\overline{\mathbf{v}}_{2} \\ Q_{1}\mathbf{A}_{1}\overline{\mathbf{v}}_{1} = Q_{2}\mathbf{V}\mathbf{A}_{2}\mathbf{V}\overline{\mathbf{v}}_{2}\mathbf{V} + Q_{2}\mathbf{L}\mathbf{A}_{2}\mathbf{L}\overline{\mathbf{v}}_{2}\mathbf{L} \\ Vapor \\ Liquid \end{array}$$
 (2-phase outlet)

It is a thermodynamic principle that whenever there is a <u>phase change</u> between a throttling valve's entering and exiting fluid state, there is also a <u>temperature change (i.e. decrease or cooling)</u> in all such applications —

 $T_1 > T_2$

LIQUIDS. For simple "liquid-in and liquid-out" flow there is no density change of the liquid ---

 $Q_1 = Q_2$

This constant density results in other parameters being typically affected —

<u>GAS-VAPORS</u>. For simple "gas-vapor-in and gas-vapor-out" flow, there <u>is a density change</u> (<u>i.e. decrease</u>) of the gas-vapor as the fluid <u>decompresses (i.e. expands</u>) —

 $Q_1 > Q_2$

This changing density results in other parameters being typically affected —

THERMODYNAMIC PRINCIPLES

<u>THROTTLING PROCESS</u>. In looking into the thermodynamic principles of a "<u>throttling process</u>", we know —

THE **CHANGE IN ENTHALPY** ACROSS A RESTRICTION IN A PIPE — ORIFICE, REGULA-TOR, CONTROL VALVE — IS **"ZERO"** FOR A **THROTTLING PROCESS**.

By the continuity equation —

 $\dot{m}_1 = \dot{m}_2$ $\dot{m}_1 h_1 - \dot{m}_2 h_2 = 0$ OR

(EQ. #2)

$$\dot{m}(h_1 - h_2) = 0$$

Parameter	English Units	Metric Units
h ₁ = Valve Inlet Enthalpy	Btu/#	kJ/kg
$h_2 = Valve Outlet Enthalpy$	Btu/#	kJ/kg
m ₁ = Inlet Mass Flow	#/Hr	kg/Hr
$m_2 = Outlet Mass Flow$	#/Hr	Kg/Hr

It is the use of fluid thermodynamic data and the thermodynamic principles of the "constant" enthalpy throttling process" that throttling valves experience which allows an accurate determination of a fluid's state while internal to the valve as well as at the valve's outlet. In particular, we want to know what the fluid is physically doing at the throttling valve's main orifice (plugseat); i.e. what is occurring at the vena contracta and elsewhere within the valve?

SATURATION STATE. A fluid is said to be "saturated" when -

• Liquid - when at the boiling temperature –
$$T_{sat}$$
 – for a given pressure – P_{sat}
Examples: Water @ $P_{sat} = 14.7 \text{ psia} \longrightarrow T_{sat} = 212^{\circ}\text{F}$
 $P_{sat} = 1.0135 \text{ BarA} \longrightarrow T_{sat} = 100^{\circ}\text{C}$
Water @ $P_{sat} = 145 \text{ psig} \longrightarrow T_{sat} = 355.8^{\circ}\text{F}$
 $P_{sat} = 10 \text{ BarA} \longrightarrow T_{sat} = 179.9^{\circ}\text{C}$
• Vapor - when at the boiling temperature – T_{sat} – for a given pressure – P_{sat}
Examples: Steam @ $P_{sat} = 14.7 \text{ psia} \longrightarrow T_{sat} = 212^{\circ}\text{F}$
 $P_{sat} = 1.0135 \text{ BarA} \longrightarrow T_{sat} = 100^{\circ}\text{C}$
Steam @ $P_{sat} = 145 \text{ psig} \longrightarrow T_{sat} = 355.8^{\circ}\text{F}$
 $P_{sat} = 10 \text{ BarA} \longrightarrow T_{sat} = 179.9^{\circ}\text{C}$

Restating the above examples, we have both saturated liquid water (condensate) and saturated steam at the same Psat and Tsat. Further, for any given fluid in its "saturation" state, when we have its pressure (P_{sat}), we KNOW its temperature (T_{sat}). To say a fluid is "saturated" is to give a property of the fluid. Only two extensive properties of a fluid will locate the fluid in the physical universe. We know exactly where a fluid is when we say the fluid is -

- saturated water at $P_{sat} = 29 \text{ psia} = 2.0 \text{ BarA}$, we know that $T_{sat} = 248.4^{\circ}\text{F} = 120.1^{\circ}\text{C}$. saturated steam at $T_{sat} = 212^{\circ}\text{F} = 100^{\circ}\text{C}$, we know that $P_{sat} = 14.7 \text{ psig} = 1.013 \text{ BarA}$.

SUPERHEATED VAPOR. A fluid is a <u>superheated vapor</u> when its temperature is <u>greater</u> than T_{sat} corresponding to the flowing pressure.

Examples: Steam @
$$P_1 = 145 \text{ psia } \& T_1 = 425^{\circ}\text{F}$$

 $(T_{sat} = 355.8^{\circ}\text{F})$ 69.2°F SH
 $P_1 = 10 \text{ BarA } \& T_1 = 219^{\circ}\text{C}$
 $(T_{sat} = 179.9^{\circ}\text{C})$ 39.1°C SH

To say a vapor is "<u>superheated</u>" does <u>NOT</u> give an extensive property of the fluid; so, a second property must also be known to physically locate a superheated vapor in the universe.

SUB-COOLED LIQUID. A liquid is <u>sub-cooled</u> when its temperature is <u>less</u> than T_{sat} corresponding to the flowing pressure.

<u>Example</u>: Water @ $P = 145 \text{ psia } \& T = 60^{\circ}\text{F}$ ($T_{sat} = 355.8^{\circ}\text{F}$) $P = 10 \text{ BarA } \& T = 15.5^{\circ}\text{C}$ ($T_{sat} = 179.9^{\circ}\text{C}$)

To say a liquid is "<u>sub-cooled</u>" is <u>NOT</u> to give an extensive property of the fluid; so, a second property must also be known to physically locate a sub-cooled liquid in the universe.

<u>THUMB CURVE – T vs. H GRAPH</u>. The following graph is plotted using thermodynamic data for steam condensate; i.e. straight out of the "Steam Tables".

These graphs are <u>NOT</u> useful for sub-cooled liquids; they are <u>ONLY</u> useful for analyzing boiling (vaporizing) liquid/vapors and superheated vapors.

The "critical" properties of "Critical Pressure - P_c " and "Critical Temperature - T_c " are located at the "peak" of the T vs. H Curve.

The important consideration for throttling processes is -

 $\Delta H = 0$

This means that from Condition 1-to-Condition 2 for throttling values, you move <u>downwards</u> along a vertical line, as the enthalpy does not vary.

Examples:

TEMPERATURE. By reviewing the T vs. H Graphs on pg. 9, we can make a few temperature generalizations for <u>saturated steam</u> —

- <u>A throttling ΔT (i.e. $T_1 T_2$) is always present with a throttling ΔP (i.e. $P_1 P_2$).</u>
- <u>Greater ΔT 's</u> occur for throttling ΔP 's <u>within the saturation dome</u>.
- A ΔT is always associated with a throttling ΔP that causes <u>phase change</u>.
- <u>Highly superheated vapor</u> has a relatively <u>small ΔT </u> for a throttling ΔP .
- <u>Slightly superheated vapor</u> has a <u>higher ΔT </u> for a throttling ΔP than a highly superheated vapor.
- Vapors carry higher "heat contents".

This cooling effect due to throttling is frequently referred to as "Joule-Thompson cooling".

When a liquid is sub-cooled (below T_{sat}) both in and out of a throttling valve —

• There is <u>no ΔT </u> (i.e. $T_1 = T_2$) for a throttling ΔP .

BASIC PRINCIPLES. If one learns the thermodynamic principles of watersteam, then the same principles can be applied to many other fluids, even those that typically exist as gas-vapor at ambient pressure and temperature conditions. A basic understanding of these principles will help in understanding the process industry, because fluid separation by differing boiling points is a common occurrence in the Chemical Process Industry. Notice the similarity of the saturation domes of butane, propane, ethane, and methane plotted together at right; there is a striking resemblance to the earlier water-steam H vs. T plot. As very few processes operate at ambient pressures, one must be aware of the "pressure" conditions as well as the "temperature" conditions TOGETHER; i.e. $T_{sat} \& P_{sat}$. Air separation plants and crude oil distillation processes are examples of application of these principles.

For throttling valves, an understanding of these principles will help in understand-

ing both "<u>Cavitation</u>" and <u>"Flashing" in the liquid flow realm</u>, and will also help with understanding refrigeration and cryogenic applications.

LIQUID FLOW REALM

FLOW DESCRIPTION. Liquid flow is non-compressible flow. The first consideration in liquid throttling service is whether the fluid is acting in the "turbulent" or "non-turbulent" realm. "Non-

LAMINAR FLOW

- 1. $\overline{V}_{I-AVG} < 1$ ft/sec (0.3 M/sec)
- 2. V_L is <u>NOT</u> constant across the pipe's cross-section; a "velocity profile" is formed, where at the pipe wall, $Y_L \approx 0$ ft/sec.
- 3. Flow "streamlines" are formed.

TURBULENT FLOW

- 1. VT > 2 ft/sec (0.6 M/sec)
- 2. V_T is nearly constant; no velocity profile is formed. Pipe wall velocity is only slightly less than Y_T.
- 3. No flow streamlines are formed.

turbulent" can be subcategorized as "laminar" or "transitional".

The fluid parameter that is most predictive of nonturbulent flow is the fluid's viscosity; a second predictive parameter is very low velocity, which can occur even for relatively nonviscous fluids.

REYNOLDS NUMBER. A calculated dimensionless number value — the Reynold's No. – N_{Re} - is used in both pipes and throttling valves to categorize the differing realms -

		(EQ #3)	$N_{\text{Rep}} = \frac{D \cdot \overline{V} \cdot Q}{N_0 \cdot \mu}$	
		Parameter	English Units	Metric Units
D	=	Pipe Internal Diameter	ft	М
V	=	Average Velocity	ft/sec	M/sec
6	=	Density	#/ft ³	kg/M ³
μ	=	Absolute Viscosity	—	cP (gm/cm•sec)
μ _e	=	Absolute Viscosity	cP (#/ft•sec)	—
N _o	=	Units Correlation Constant	0.0672 dimensionless	1.00 dimensionless
		Determination	of Pipe Turbulence Rea	lm
		N _{Rep} < 2100		
		$2100 < N_{\rm P} < 10.0$	00 "Transitional	Flow"

Pipe Reynold's No. – N_{Rep}

N_{Rep} > 10,000 — "Turbulent Flow"

Valve Reynold's No. - N_{Rev}

Determination of Valve Turbulence Realm

TURBULENT LIQUID FLOW – Non Vaporizing

"Turbulent" liquid flow is the most common type of liquid flow. It is in this realm's context that the English "Valve Sizing Coefficient – C_V " originated. By definition —

(EQ #5)

$$C_{v} = \dot{Q} \sqrt{\frac{SG}{\Delta P}}$$
Where: fluid = water

$$\Delta P = P_{1} - P_{2} = 1.00 \text{ psid}$$

$$\dot{Q} = 1.00 \text{ US GPM}$$

$$T = 60^{\circ}\text{F}$$

$$SG = 1.00$$

There is a "Metric Valve Sizing Coefficient - $k_{\rm v}$ " defined as —

(EQ #6)
$$k_v = \dot{Q} \sqrt{\frac{SG}{\Delta P}}$$

Where: fluid = water

$$\Delta P = P_1 - P_2 = 1.00 \text{ BarD}$$

$$Q = 1.00 \text{ M}^3/\text{Hr}$$

$$T = 4^{\circ}\text{C}$$

$$SG_N = 1.000$$

By correlating the units with conversion factors -

$$k_{v} = 1.00 \qquad \begin{cases} \dot{Q} = 1 \text{ NM}^{3}/\text{Hr} = 4.414 \text{ US GPM} \\ \Delta P = 1 \text{ Barg} = 14.5 \text{ psid} \\ T = 4^{\circ}\text{C} = 38.6^{\circ}\text{F} \\ \text{SG}_{N} = 1.00 = 1.0013 \end{cases}$$

Substituting into EQ. #5 ---

$$C_v = 4.414 \sqrt{\frac{1.0013}{14.5}}$$

7

$$C_v = 1.16$$

(EQ #7)
$$\therefore$$
 $k_v = 1.16 C_v$
or
 $C_v = 0.865 k_v$

As the " C_v " coefficient is more universally utilized, this book will remain with " C_v " hereafter.

By using the correlation factor of EQ #7 (1/1.16 = 0.865), a single equation can be used for both English and Metric units —

(EQ #8)
$$\dot{Q} = N_1 \cdot C_v \sqrt{\frac{(P_1 - P_2)}{SG}}$$

Parameter	English Units	Metric Units
$C_v = English Valve Sizing Coefficient$	dimensionless	dimensionless
Q = Volumetric Flow Rate	US GPM	M ³ /Hr
SG = Specific Gravity	dimensionless	dimensionless
P ₁ = Valve Upstream Pressure	psig, psia	Barg, BarA
P ₂ = Valve Downstream Pressure	psig, psia	Barg, BarA
$N_1 = Units Correlation Constant$	1.00 dimensionless	0.865 dimensionless

As $N_1,\,C_\nu,$ and SG are each a "constant", the "liquid sizing equation" (EQ. #7) can be represented as —

$$\dot{Q} = K \sqrt{\Delta P}$$

 $\dot{Q} \ll \sqrt{\Delta P}$

Where: K = combined constant

Thus, for non-vaporizing liquid flow, <u>FLOW IS PROPORTIONAL TO THE SQUARE ROOT OF</u> <u>PRESSURE DROP</u>.

 $\dot{\mathbf{Q}} = \mathbf{N_1} \cdot \mathbf{C_v} \sqrt{\frac{\Delta \mathbf{P}}{\mathbf{SG}}}$ (EQ #8)

$$\dot{\mathbf{Q}} = \frac{\mathbf{N}_{1} \cdot \mathbf{C}_{\mathbf{v}}}{\sqrt{\mathbf{SG}'}} \sqrt{\Delta \mathbf{P}'}$$

<u>CAVITATION</u>. If a throttling value is put into a test apparatus using water with adequate flow and pressure capability, it can be observed that in <u>reality</u> the straight-line result does not occur, but begins to show a "<u>deviation</u>" at the higher flow rates (also higher ΔP 's). If the ΔP is increased further, a point will be reached where added ΔP will no longer increase flow signifi-

cantly. In fact, if the ΔP is increased by lowering the P₂-outlet pressure, the flow will remain constant. Conditions have arisen that has the flow described as "<u>CHOKED FLOW</u>". Here, flow is <u>no</u> longer proportional to the square root of pressure drop. The pressure drop corresponding to Choked Flow is " ΔP_{Allow} " (Also known as $\Delta P_{Critical}$ or ΔP_{Choked}).

The deviation results because vapor bubbles are forming within the flow

stream. A bubble requires 200-800 times as much volume as a comparable liquid mass. The end result is that the average liquid + vapor stream velocity increases dramatically even though only a small percentage of liquid vaporizes. These bubbles are forming because the throttling valve's internal static pressure decreases to a level <u>below</u> the fluid's vapor (saturation) pressure. When this occurs, there are several 2-phase zones that are used to sub-categorize the flow.

"Choked flow" is a condition normally associated with gas-vapor service. "<u>Choked Flow -</u> <u>Liquid</u>" means from a practical viewpoint that the fluid is acting more like a gas vapor than a liquid.

There are three different zones describing "cavitation" that are used by Cashco ----

- Partial Cavitation
- Excess Partial Cavitation
- Full Cavitation

and one category described as "Flashing".

Cavitating liquids can be broken down into two steps -

- 1st Step Formation of vapor bubbles.
- 2nd Step Collapse or implosion of vapor bubbles.

<u>Cavitation 1st Step</u>. As previously described, the space required for vapor bubbles greatly increases average fluid velocity. The liquid velocity is raised sufficiently to cause increased trim erosion. Fluids that reach descriptions "<u>Excess Partial Cavitation</u>" or "<u>Full Cavitation</u>" should be supplied <u>only with metallic parts</u>; i.e. no soft seats. It would be best for these parts to be <u>hard-ened</u> against the <u>erosive effects</u> of liquid at high velocity. This is recommended because the vapor bubbles form <u>prior</u> to the flow passing through the main orifice. Fluids that are described in "<u>Partial Cavitation</u>" do not need special trim material considerations. It must only be recognized that trim life will be reduced in comparison to a non-cavitating liquid application. (<u>NOTE</u>: Unfortunately, there exists some nomenclature problems that "confuse" the descriptions given to the vaporizing liquid flow zones. When the vapor bubbles begin to form, this is at times expressed as "flashing". Thus, all cavitation would begin with flashing, and "Flashing"

would also begin and end with "flashing". This book will <u>ONLY</u> use "Flashing" to describe the liquid zone where $P_2 < P_{VP}$, and the outlet of valve and pipe will contain permanent 2-phase flow.)

Cavitation 2nd Step. An

"implosion" is the opposite of an "explosion". As the name implies, it is an intense, sudden vapor bubble collapse. Whereas the vapor bubbles smoothly form according to the thermodynamic physical principles, the collapse does not. When static pressure is recovering, it once again

crosses the vapor pressure level where it would be expected for the bubbles to disappear; however, unexplainably the bubbles remain beyond the valve internals zone and in many cases will be outside the valve body and in the downstream pipe before implosion occurs. No one has come up with a plausible explanation of this phenomenon; it can only be observed, predicted and accounted for.

Physical Mechanism. The "implosion" of vapor bubbles causes no harm (except vibration) when in the middle of the flow stream. However, when the <u>collapse occurs at the pipe wall, body</u>

wall, or trim parts surfaces, mechanical material damage can be observed. The mechanism for failure is fatigue, and is very similar to the impulsive forces imparted by a

hammer blow depicted to the left.

Cavitation is caused by internal fluid pressure conditions, and not by flow rate. As depicted at right, cavitation "moves" around within a valve or its

"Excess Partial Cavitation" zone or barely into the "Full Cavitation" zone, for the implosion can easily occur within the valve body, leading to premature valve "problems" —

body wall is penetrated

• packing leaks

• trim is eroded

- diaphragms fail
- guides and bearings become worn
- soft seats fail.

<u>Preventing Cavitation</u>. It is the internal static pressure "dip" depth to the vena contracta that causes the initial cavitation. By "<u>staging</u>" the overall ΔP into multiple steps, the reduced depth of the multiple "dips" can result in not crossing below the fluid's vapor pressure.

The depth of the vena contracta dip is related to the throttling valve's "F_L factor". Thus, simply by applying a <u>globe or eccentric plug (rotary globe</u>) throttling valve rather than a ball or butterfly throttling valve, you can eliminate cavitation. (See page 5.)

It is possible in liquid systems with a narrow turndown ratio (4:1) to use "<u>multiple orifice plates</u> (<u>MOP</u>)" located either upstream and/or downstream of the throttling valve to eliminate cavitation. Each MOP acts as a stage of ΔP and acts as "fixed orifices"; i.e. as flow rate varies, ΔP_{stage} also varies in accordance with —

$$\dot{Q} \sim \sqrt{\Delta P}$$

Such a system should <u>NOT</u> be allowed to develop any level of cavitation at any stage throughout its turndown range.

<u>Reducing Cavitation</u>. Most "<u>anti-cavitation</u>" throttling valve trim is somewhat of a misnomer. Such trim provides "<u>multiple orifices</u>" that are blocked-off or uncovered as the valve plug travels. This multiple orifice method still produces cavitation but it develops <u>smaller vapor bubbles</u> within the fluid stream. Thus, when the smaller bubbles implode —

- implosion normally occurs "<u>sooner</u>" rather than "later".
- implosion impulsive forces are <u>smaller</u>.
- better flow stream cross-sectional <u>distri-</u> <u>bution</u> of the bubbles is developed.
- Higher percentage of vapor bubbles imploding in the <u>midst</u> of the flow stream and away from metallic or seat surfaces; i.e. "collapsing upon itself".
- reduces noise level.
- reduces vibration.

As globe valves and eccentric plug (rotary globe) throttling valves represent the style of throttling valves most frequently applied, the graphic below shows the method used to control cavitation —

In general, the advantage of one style would be the disadvantage of the other style.

GLOBE Advantages

- 1. Smaller orifice diameters
- 2. More orifices
- 3. Higher rangeability
- 4. Better orifice "block-off"
- 5. Higher F_L
- 6. Lower noise level

ECCENTRIC PLUG Advantages

- 1. All vapor bubbles outside body; no body damage.
- 2. Seat ring and plug out of presence of vapor bubbles.
- 3. Higher C_{V.}
- 4. Straight-thru flow design.
- 5. Seal retainer serves as straightening vanes to direct flow to center of downstream pipe; locates implosion.
- 6. Less expensive parts (1/3 the cost of globe parts).

<u>Combination</u>. For high pressure drops it is possible to utilize in combination both "<u>multi-stage</u> <u>and multi-path</u> "throttling valves. Such valves have been identified as "<u>drag valves</u>", and usu-

ally consist of notched flat plates that have multiple channels milled within that take a direction changing circuitous path that can best be described as "<u>tortuous</u>". Each of the notched flat plates are then stacked in a staggered pattern into a "<u>disc stack</u>" to form the multi-stage, multi-path design.

Such drag valves can normally be designed to eliminate cavitation, or at least minimize it. This valve design is very, very expensive and is normally applied in only the most "<u>severe service</u>" instances.

PARTIAL CAVITATION. As shown in the graphics on pages 18 and 22, the "<u>intensity</u>" of the vapor bubble collapse is not so high as to create serious internal mechanical damage, nor is the percentage of fluid mass that converts to vapor high enough to significantly effect the flow rate passed through the throttling valve. A "<u>partially cavitating liquid</u>" is further described as "<u>Non-Choked</u>". There is no special sizing equation that is used for partially cavitating liquid service. The ΔP to cause the "beginning of cavitation (i.e. point of incipient cavitation)" is known as ΔP_{Incip} .

FULL CAVITATION. As shown in the graphics on pages 18 and 22, the "<u>intensity</u>" of the vapor bubble collapse is high enough to create very serious internal mechanical damage to the throttling valve and its downstream piping. The percentage of fluid mass that converts to vapor is high enough to dominate the flow stream, "<u>choking</u>" the flow at the throttling valve's main orifice. This level of cavitation is called "<u>Full Cavitation, Choked Flow</u>". As long as the throttling $\Delta P > 50$ psig (3.5 BarD), throttling valves experiencing such cavitation should be —

- Equipped with "anti-cavitation" trim to reduce cavitation intensity.
- Equipped with drag valve trim to eliminate cavitation.
- Change $\Delta P_{\text{Throttle}}$ conditions.
- Incorporate hardened trim.

The ΔP to cause full cavitation is identified as ΔP_{Allow} .

EXCESS PARTIAL CAVITATION. It is common sense to expect that as flow that is partially cavitating, but not yet choked, nears full cavitation and choked conditions, such flow could be nearly as damaging as full cavitation because —

- internal velocities are very high.
- implosion would be more likely to occur within the throttling valve.

Cashco has opted to introduce another level of cavitation intensity identified as "Excess Partial Cavitation". Both ΔP_{Incip} and ΔP_{Allow} can be mathematically calculated. Thus the two empirical values can be subtracted —

$$\Delta \Delta \mathsf{P} = \Delta \mathsf{P}_{\mathsf{Allow}} - \Delta \mathsf{P}_{\mathsf{Incip}}$$

Cashco uses the number of 30% of the $\Delta\Delta P$ as a break point between "Partial Cavitation" and "Excess Partial Cavitation". Thus, the zones of cavitation separate as follows —

- Non-choked, Partial Cavitation (0.0–30% $\Delta\Delta$ P).
- Non-choked, Excess Partial Cavitation (30.1%–99.9% $\Delta\Delta P$).
- Choked, Full Cavitation ($\Delta P_{Actual} \ge \Delta P_{Allow}$).

Valves experiencing "Excess Partial Cavitation" should be considered for applying anticavitational throttling valve trim. This is a "judgement call"; if ΔP_{Actual} is greater than 65% $\Delta \Delta P$ level, anti-cav trim is recommended. **FLASHING**. "Flashing" occurs as shown in the graphics on pages 18 and 22 when the $P_{VP} > P_2$, and the liquid portion and vapor portion of the flow stream remain separated as

liquid and vapor in the downstream piping. Because vapors typically move at higher velocities than liquids, care has to be taken to keep average combined pipe velocities low enough to prevent formation of a "wave" inside the pipe, like that shown at left. If a wave would eventually cover across the pipe cross-section, it would accelerate the average liquid velocity upwards, approaching the average vapor velocity. Should this occur and the wave would hit an elbow, it could cause a catastrophic failure of the piping support system that could put the piping into a "heap" on the floor! Why? Because water is more dense than vapor, and the momentum of the high mass liquid generates very high impulsive forces, which the pipe elbow and pipe hangers must withstand.

The severity of flashing is increased when the downstream P_2 static pressure is low because –

- Greater expansion of vapor as pressure approaches ambient.
- Greater mass of vapor-to-liquid mass percentage.

Rather than install oversized pipes, typically the liquid is separated from the vapor at a "Flash Tank" as shown at right.

LIQUID SIZING EQUATIONS -

(EQ #9)

NON-TURBULENT FLOW. The following equations are used for "<u>laminar</u>" or "<u>transitional</u>" flow realms —

$\dot{Q} = N_1 \cdot F_R \cdot C_V \sqrt{\frac{(P_1 - P_2)}{SG}}$

Parameter	English Units	Metric Units
C _v = English Valve Sizing Coefficient	dimensionless	dimensionless
Q = Volumetric Flow Rate	US GPM	M ³ /Hr
SG = Specific Gravity	dimensionless	dimensionless
P ₁ = Valve Upstream Pressure	psig, psia	Barg, BarA
P ₂ = Valve Downstream Pressure	psig, psia	Barg, BarA
$N_1 = Units Correlation Constant$	1.00 dimensionless	0.865 dimensionless
F_R = Reynolds No. Correction Factor	dimensionless	dimensionless

 F_R can be determined from the graphic on page 13.

There is no known scientific method to evaluate the pipe reducer effect for non-turbulent flow. Thus, the pipe reducer effect is neglected.

TURBULENT FLOW, NON-CHOKED. This is the basic liquid flow equation —

$$\begin{array}{c} (\mathsf{EQ} \mbox{ #8- repeated}) & \dot{\mathsf{Q}} = \mathsf{N_1} \cdot \mathsf{C_v} \sqrt{\frac{(\mathsf{P_1} - \mathsf{P_2})}{\mathsf{SG}}} & (\mathsf{No \ pipe \ reducers}) \\ \hline (\mathsf{EQ} \mbox{ #10}) & \dot{\mathsf{Q}} = \mathsf{N_1} \cdot \mathsf{F_P} \cdot \mathsf{C_v} \sqrt{\frac{(\mathsf{P_1} - \mathsf{P_2})}{\mathsf{SG}}} & (\mathsf{With \ pipe \ reducers}) \\ \hline (\mathsf{With \ pipe \ reducers}) & (\mathsf{With \ pipe \ reducers}) \\ \hline (\mathsf{Parameter} \ \ \mathsf{Parameter} \ \ \mathsf{English \ Units} & (\mathsf{Metric \ Units} \\ \hline \mathsf{Q} = \mathsf{Volumetric \ Flow \ Rate} & \mathsf{US \ GPM} & \mathsf{M}^3/\mathsf{Hr} \\ \mathsf{SG} = \mathsf{Specific \ Gravity} & \mathsf{dimensionless} & \mathsf{dimensionless} \\ \mathsf{P}_1 = \mathsf{Valve \ Upstream \ Pressure} & \mathsf{psig, \ psia} & \mathsf{Barg, \ BarA} \\ \mathsf{P}_2 = \mathsf{Valve \ Downstream \ Pressure} & \mathsf{psig, \ psia} & \mathsf{Barg, \ BarA} \\ \mathsf{N}_1 = \mathsf{Units \ Correlation \ Constant} & \mathsf{1.00 \ dimensionless} & \mathsf{dimensionless} \\ \mathsf{F_P} = \mathsf{Pipe \ Reducer \ Effect} & \mathsf{dimensionless} & \mathsf{dimensionless} \\ \hline \mathsf{Metric \ Units \ Sinter \ Sint$$

F_P makes a correction for the changes in static and velocity pressure as a result of two pipe diameters associated with pipe reducers as well as resistance (i.e. friction) coefficients.

This equation is applied for "Non-Choked" turbulent flow zone with the following △P "tests" —

TURBULENT FLOW, CHOKED. There are several equations that pertain to this zone -

(EQ #11)		$\Delta P_{Allow} = F_{L}^{2} (P_{1} - P_{VC})$	(No pipe reducers)
(EQ #12)		$\Delta P_{\text{Allow}} = \frac{F_{\text{LP}}^2}{F_p^2} (P_1 - P_{\text{VC}})$	(With pipe reducers)
	Where	$P_{VC} = F_f \bullet P_{VP}$	
	Where	$F_{\rm VP} = 0.96 - 0.28 \sqrt{P_{\rm VP}}$	7

 P_{C}

(**NOTE**: See page 43 for determining $F_{I,P}$.)

 ΔP_{Allow} is used as a "test" to determine the turbulent flow zone. If —

Please note that for either "Full Cavitation" or "Flashing", the flow is "choked".

Parameter	English Units	Metric Units
C _V = English Valve Sizing Coefficient	dimensionless	dimensionless
Q = Volumetric Flow Rate	US GPM	M ³ /Hr
SG = Specific Gravity	dimensionless	dimensionless
P ₁ = Valve Upstream Pressure	psig, psia	Barg, BarA
$P_2 = Valve Downstream Pressure$	psig, psia	Barg, BarA
$N_1 = Units Correlation Constant$	1.00 dimensionless	0.865 dimensionless
F_{L} = Liquid Pressure Recovery Factor	dimensionless	dimensionless
P _{VC} = Estimated Pressure @ Vena Contracta	psia	BarA
F _f = Liquid Critical Pressure Ratio Factor	dimensionless	dimensionless
P _{VP} = Liquid Vapor Pressure	psia	BarA
P _C = Thermodynamic Critical Pressure	psia	BarA
F _{LP} = Combined Liquid Pressure Recovery Factor	dimensionless	dimensionless

GASEOUS FLOW REALM -

FLOW DESCRIPTION. Gaseous flow is "<u>compressible flow</u>" as previously discussed in **FLUID STATES**. This means that as the throttling valve experiences its internal pressure drop, the gas is decompressing (expanding), followed in many cases by <u>recompression</u> in the pressure recovery zone. Gas expansion explains why outlet pipe sizes – \emptyset_{2P} – are typically larger than inlet pipe sizes - \emptyset_{1P} ; more "space" is needed.

Laminar or viscous gaseous flow is so very <u>rare</u> an occurrence that there are no "special" sizing routines used for throttling valves. All gaseous flow is regarded as "<u>turbulent</u>". (<u>NOTE</u>: High temperature/pressure polymers are an example of very viscous gaseous flow. Pilot plant testing is used to verify throttling valve suitability/sizing.)

Whereas "liquid choked flow" is problematic, <u>"gaseous choked flow" service is a common</u> <u>occurring set of conditions</u> that cause no particular "mechanical problems", unless accompanied by a <u>high noise level</u>. <u>"Choked Flow</u>" is a self-limiting flow rate for a throttling valve, and it occurs when the gas <u>velocity</u> reaches the <u>speed of sound</u> near the main orifice (i.e. vena contracta) of the valve, which acts to set up a "<u>barrier</u>" to additional flow. <u>"Choked Flow</u>" is sometimes also called "<u>Critical Flow</u>" or "<u>Sonic Flow</u>".

SONIC VELOCITY. The "speed of sound", also known as "sonic velocity" or "Mach 1.0", is a function of the particular type of gas and its temperature —

		(EQ #15)	$C = \sqrt{\frac{k \cdot g_c \cdot \overline{R} \cdot T}{MW}}$	
		Parameter	English Units	Metric Units
С	=	Gas Sonic Velocity	ft/sec	M/sec
k	=	Gas Specific Heat Ratio	dimensionless	dimensionless
g _c	=	Gravitational Constant	32.2#m - ft/#f-Sec	² 9.81M/sec ²
R	=	Universal Ideal Gas Constar	nt 1545#f - ft/# mole -	°R 846.8 kg-M/kg mole - °K
Т	=	Absolute Gas Temperature	°R	°K
MW	=	Gas Molecular Weight	#/# mole	kg/kg mole
			<u></u>	

In observing EQ #15 previous, one can see that the <u>sonic velocity is proportional to the square</u> root of the absolute temperature; note that pressure is not involved.

As an example, the sonic velocity of air at ambient conditions is -

k = 1.4 MW = 28.95
$$T = 60^{\circ}F = 520^{\circ}R = 289^{\circ}K = 15^{\circ}C$$

This is a very high velocity, and with throttling valves being frequently in "choked flow" conditions, this is the magnitude of what must be physically considered.

There is a useful factor frequently used to evaluate gaseous service throttling valves —

(EQ #16)
$$P_{Ratio} = \frac{P1}{P2} \Big)_{Abs}$$
ParameterEnglish UnitsMetric Units $P_1 = Valve Upstream PressurepsiaBarA $P_2 = Valve Downstream PressurepsiaBarA $P_{Ratio} = Valve Pressure Ratiodimensionlessdimensionless$$$

The first pass "rule of thumb" estimate gives -

This factor is useful because it guides one to know "<u>when</u>" to expect "Choked Flow", and thus when to expect throttling valve <u>noise</u>.

NOISE. Throttling valves are perceived as "noisy" when the measured "Sound Pressure Level - SPL" one meter downstream of the valve outlet and one meter perpendicular to the pipe wall exceeds 85 dBA. The perceived noise is actually the vibration of the pipe itself, much as a tuning fork vibrates. The pressure waves originate from the vena contracta zone of the throttling valve. Obviously, if the pipe is vibrating, then so are the throttling valve internals. There is more to a throttling valve manufacturer attempting to limit noise than just the human ear, the level of internal vibration is also being reduced in order to -

- reduce stem guide wear.
- reduce fatigue effects.
- increase soft seat life.
- reduce packing leaks.
- reduce diaphragm failures.

LOW NOISE TRIM. Calculation of throttling valve noise for gaseous service is a <u>very complex</u> issue. This book will only "touch the surface" of this topic. (Readers who are interested in a more detailed discussion of throttling valve noise control principles should request "TAT-001"

directly from the Cashco factory.) Basically, throttling valve gaseous noise is controlled much as liquid cavitation is controlled by —

- staging pressure drop.
- controlling noise frequency bands by controlling velocity.
- using multiple orifices.
- using multiple paths.

Drag-type valves are also utilized for severe noise applications, and use passages that increase in crosssectional area as flow "snakes" its way through the disc stack. <u>**dB PLATES</u>**. A "dB Plate" is essentially a MOP as discussed on page 20, with the main difference being that multiple plates can be used to introduce additional ΔP stages. As flow decreases, the ΔP_{stg} decreases in a "square root" relationship, such that this type of device</u>

becomes less effective because the variable orifice(s) <u>1st stage</u> throttling valve must increase its proportionate share of overall ΔP_{Total} , as the fixed orifices <u>dB plates decrease</u> in their proportionate share of overall ΔP_{total} . Such devices have a practical 4:1 turndown in flow rate to remain effective.

Example:

<u>∆P_{Total}</u>	Max Flow	ΔP_1	$\Delta \mathbf{P_2}$	$\Delta \mathbf{P_3}$
217.5 psid (15 BarD)	100% – High	72.5 psid (5 BarD)	87 psid (6 BarD)	58 psid (4 BarD)
217.5 psid	50% – Medium	181.2 psid	21.8 psid	14.5 psid
(15 BarD) 217.5 psid (15 BarD)	25% – Low	(12.5 BarD) 208.5 psid (14 4 BarD)	5.4 psid	(1 BarD) 3.6 psid (0 25 BarD)

As one can observe, it is <u>VERY IMPORTANT</u> to know both <u>maximum</u> AND <u>minimum</u> conditions to properly size and select dB plates, because the ΔP 's shift around as flow changes.

VENA CONTRACTA. Because gaseous flow is decompressing on ΔP through a throttling valve, the internally formed vena contracta takes on some significantly "different" shapes until the vena contracta completely loses it presence at high velocities. To control noise in a throt-tling valve, we want to keep the formed vena contracta present to the highest degree possible. The most recent ISA recommendations for controlling throttling valve noise use five different "regimes" to classify and describe each stage of ΔP through a throttling valve.

NOISE AND REGIMES

There are several contributors when a high noise level is generated in a throttling valve. The most obvious root causes are:

- High flow rate.
- High pressure drop.
- Low outlet pressure.
- Basic valve type.

Any one of the above can be sufficient to generate excessive noise alone. When two or more are together, one can expect up front that a noise level may be high (dBA > 85) or low (dBA < 85).

The following "rules-of-thumb" can be used as a tip-off to expect a noisy "throttling" application when the flow required is at Cv > 20:

• <u>High Flow Rate</u>. When the inlet pipe is 3" or 4" size, the flow carried is sufficiently high to probably cause high noise level with one other of the causes present also. A 6" inlet pipe alone can carry sufficient flow to cause high noise primarily due to the mass flow rate alone.

High flow rates tend to generate broader frequency bands, including lower noise frequency levels which are difficult for the pipe wall to "absorb" (i.e. "alternate").

If the C_v Required is greater than $C_v = 50$, start expecting high noise level. If the C_v Required is greater than $C_v = 100$, the noise level will more than likely be high.

• <u>High Pressure Drop</u>. If the ΔP_{Choked} is just reached and the flow is barely choked, noise level will likely be high. If the ΔP_{Actual} is greater than ΔP_{Choked} by 15% or greater, the noise level will likely be high.

An approximation of ΔP_{Choked} can be as follows:

 $\Delta P_{Choked} \approx P1(absolute)/2.$

High pressure drops tend to generate higher noise frequency levels.

Low Outlet Pressure. When the outlet pressure is P2 < 25 psig (1.7 Barg), the outlet density is relatively low, increasing the possibility of a high velocity, which in turn will generate high noise levels. This consideration alone will almost always cause a high noise level to be developed if the ΔP_{Choked} > 65 psid (4.5 Bard).

Low outlet pressures tend to generate lower noise frequency levels.

A better indicator of expected noise is a combination of pressure drop and outlet pressure as follows:

(EQ #16 Repeated)

When the P_{Ratio} exceeds 2.3 – 2.7 and there is Cv > 20, noise levels will likely be high (dBA > 85) without the use of noise attenuating trim.

<u>Basic Valve Type</u>. Different valve types with their different internal flow passage geometries will affect the noise levels generated. In general, the F_L factors below can be used as a guide.

VALVE TYPE	F _L FACTOR	RELATIVE NOISE LEVEL *
Globe	0.9	lowest
Eccentric plug - FTO	0.85	
Eccentric plug - FTC	0.68	
Butterfly	0.65	│
Ball	0.45	highest

* For same flow conditions.

Again in general, globe or FTO eccentric plug (rotary globe) valves are less noisy than a butterfly or ball valve.

REGIMES.

The new terminology concerning "Noise Regimes" definitions are as follows:

Regime I – Flow is <u>subsonic</u> and the P2 outlet pressure exhibits a high recovery (recompression) level; i.e. well formed, classical vena contracta. No "shock cells" formed.

Time / Distance

High noise levels would not be expected, except at higher flow rates.

<u>Regime II</u> – Flow is <u>sonic</u> and slightly beyond. "<u>Shock cells</u>" (barriers) develop but do not interact. P2 outlet pressure exhibits some pressure recovery, but lower recovery as upper limit of regime is approached.

the inefficiency is such that no pressure recovery takes place. There is <u>no clearly formed</u> <u>vena contracta</u> point in the valve. There is a "strung-out", continuous pressure drop through the valve as flow traverses. <u>Shock cells significantly interact.</u>

Regime IV – The individually formed shock cells merge together to form a single "<u>Mach Disc</u>". The pressure gradient curve is similar to Regime III above. A "jump" upwards in the noise level occurs after passing from Regime III to Regime IV.

<u>**Regime V**</u> – In this regime the flow reaches "constant acoustical efficiency". When in Regime V, if the P2 outlet pressure is lowered, the noise level remains constant; this would not be true in any of Regimes I through IV.

REDUCING NOISE. To reduce noise generation in a throttling valve is best accomplished by controlling the internal velocities to be "sonic" but not "too much sonic". This keeps the generated frequencies high enough for the downstream pipe wall to attenuate. This is essentially the methodology of most of the different

types of noise attenuating trim designs.

The secret is to keep the throttling valve to 20-30% of the overall pressure drop at "maximum" flow condition. As the flow rate decreases and the throttling valve moves towards closing, the control valve's variable orifice(s) will take on a higher percentage of the overall pressure drop, and the fixed orifices a lower percentage.

Time / Distance

For fixed downstream orifices within a valve body, noise can be brought down to an acceptable level at maximum conditions, but as flow decreases the valve would become noisier. A reasonable rule-of-thumb is that at about 1/3 maximum flow rate the noise level may "re-peak" (go from Regime III to Regime IV) for such a trim design.

Velocity. The velocity in the outlet pipe should always be kept to Mach No. --

 $\mathsf{M} \le 0.30.$

To exceed the above limit invalidates the calculated noise level prediction equation accuracy.

The velocity may exceed the $M \le 0.30$ limit at the valve outlet <u>ONLY</u> for valves without noise attenuating trim, but the noise prediction will be in error.

The velocity may <u>NOT</u> exceed the $M \le 0.30$ limit at the valve outlet when noise attenuating internal trim is applied. To exceed this limit invalidates the calculated noise level prediction equation accuracy.

VELOCITY CONSIDERATIONS ARE VERY IMPORTANT IN GASEOUS SERVICE!!

The following "limits" are recommended:

GAS VELOCITY LIMITS – Mach No.					
Location	Recommended	Maximum	Limitations		
Inlet Pipe	<0.15	<0.225	<u>No</u> noise		
Valve Body	<0.50	<0.75	attenuation		
Outlet Pipe *	<0.30	<0.45	trim applied		
Inlet Pipe	<0.15	<0.225	With noise		
Valve Body	<0.225	<0.30	attenuation		
Outlet Pipe *	<0.225	<0.30	trim applied		

* After any pipe reducers.

OPTIONAL CONSTRUCTION. Generally speaking, gaseous service presents few problems other than noise in throttling service for either control valves or regulators. It is only when the fluid polymerizes, when solids (particulates) are in the flow stream or when liquids in a small percentage (2-phase flow) are present, that special considerations are necessary.

Stellited seating surfaces are seldom required for gaseous service.

If the fluid is "sour gas", the presence of H₂S requires that the "NACE Construction be selected.

If temperatures are sustained at temperature levels $T_1 > 450^{\circ}F$ (230°C), live-loaded, high temperature packing or thermal radiation columns should be considered.

<u>Steam</u>

FLOW DESCRIPTION. Steam is a common case of a gas. Thus, most of the principles of steam flow are the same as those for gaseous flow. The main differences are primarily due to the fact that the degree of expansion for steam is normally higher than other gases when going through the same level of pressure drop. This means that <u>velocity limitations</u> come up more frequently for steam than most gases.

There is a wealth of experience with steam, and this experience has come up with <u>lower</u> recommended pipe velocities for steam than other gases; this is due to the steam being "saturated" in many cases, and thus condensate (2-phase flow) will be present. When this is all put together, the end result is:

- more "noisy" throttling valves
- larger valve body sizes
- larger inlet and outlet pipe sizes.

NOISE & REGIMES. The principles for steam are the same as a gas as previously described.

VELOCITY. The velocity in the outlet pipe should always be kept to Mach Number --

 $M \le 0.30$

To exceed the above limit invalidates the calculated noise level prediction equation accuracy.

The velocity may exceed the $M \le 0.30$ limit at the valve outlet <u>ONLY</u> for valves without noise attenuating trim.

The velocity may <u>NOT</u> exceed the $M \le 0.30$ limit at the valve outlet when noise attenuating internal trim is applied. To exceed this limit invalidates the calculated noise level prediction equation accuracy.

VELOCITY CONSIDERATIONS ARE VERY IMPORTANT IN STEAM SERVICE !!

The following "limits" are recommended:

SATURATED @ INLET, SUPERHEATED @ OUTLET – VELOCITY LIMITS - Mach No.							
Location	Location Recommended Maximum Limitations						
Inlet Pipe	<0.125	<0.225	<u>No</u> noise				
Valve Body	<0.225	<0.40	attenuation				
Outlet Pipe *	<0.20	<0.30	trim applied				
Inlet Pipe	<0.10	<0.20	With noise				
Valve Body	<0.20	<0.30	attenuation				
Outlet Pipe *	<0.20	<0.30	trim applied				

* After any pipe reducers.

SUPER HEATED @ INLET, SUPERHEATED @ OUTLET – VELOCITY LIMITS - Mach No.				
Location	Recommended	Maximum	Limitations	
Inlet Pipe	0.175	<0.25	<u>No</u> noise	
Valve Body	0.25	<0.40	attenuation	
Outlet Pipe *	0.20	<0.30	trim applied	
Inlet Pipe	0.15	<.225	<u>With</u> noise	
Valve Body	0.225	<0.30	attenuation	
Outlet Pipe *	0.20	<0.30	trim applied	

* After any pipe reducers

SATURATED OR SUPERHEATED @ INLET, <u>FLASHING</u> @ OUTLET – VELOCITY LIMITS – Mach No.					
Location	Recommended	Maximum	Limitations		
Inlet Pipe	<0.05	<0.10	<u>No</u> noise		
Valve Body	<0.075	<0.125	attenuation		
Outlet Pipe *	<0.075	<0.125	trim applied		
Inlet Pipe	< 0.05	<0.10	<u>With</u> noise		
Valve Body	<0.075	<0.125	attenuation		
Outlet Pipe *	<0.075	<0.125	trim applied		

* After any pipe reducers

OPTIONAL CONSTRUCTION. Generally speaking, steam service presents few problems in throttling service for either control valves or regulators other than noise. Most problems for steam are caused by improper piping arrangements and inadequate/faulty steam trapping at inlet or outlet.

When pressure drops exceed 150 psid (10 BarD), consideration should be given to using hardened trim; i.e. models with stellite or hardened 416 SST.

If steam is flashing at the outlet, always use stellited or hardened trim. This is severe service.

TFE soft seats/seals are of marginal effectiveness in steam service. Results can be disappointing as to good shutoff. They should be limited to inlet pressures less than 150 psig (10.3 Barg). Metal seated designs for all steam services <u>are recommended</u>.

It is recommended to use stellited trim on applications for <u>steam</u> service where —

- $\Delta P > 200 \text{ psid} (14 \text{ BarD}) \text{ and saturated.}$
- $\Delta P > 150$ psid (10 BarD) and superheated.
- Where valve is in "closed" position for extended time.

When steam pressure is greater than 500 psig (34.5 Barg) and "saturated", trim should be stellited.

If temperatures at outlet are sustained at temperature levels $T_2 > 450^{\circ}F$ (230°C), live-loaded, high temperature packing or thermal radiation columns should be considered.

For steam systems it is mandatory that steam traps be located directly before the inlet to the control valve, particularly if the steam is supposed to be "saturated". Any condensate (liquid) entrained in the flow stream at the inlet will cause accelerated trim wear due to erosion.

GASEOUS SIZING EQUATIONS

<u>CHOKED VS. NON-CHOKED</u>. The first step to gaseous throttling valve sizing is to determine whether the flow is "<u>choked</u>" (i.e. "<u>critical</u>" or "<u>sonic</u>") at the main orifice, or "<u>non-choked</u>" (i.e. "<u>sub-critical</u>" or "<u>sub-sonic</u>" at same. As pipe reducers are almost always included on both the upstream and downstream of most throttling valves, the gaseous equations include the "pipe reducer effects".

The following preliminary calculations and then tests are applied to determine the flow description at the throttling valve's main orifice and to determine the proper factors involved —

$$\mathsf{F}_{\mathsf{k}} = \frac{\mathsf{k}}{1.40}$$

$$X_{T} \approx V_{GF} \bullet F_{L}^{2}$$

<u>where</u>: V_{GF} varies as to valve type.

Valve Type	V _{GF}
Globe - Single Port	.85
Eccentric Plug	.84
Butterfly	.82
Ball	.81
Globe - Double Port	.83

NOTE: See page 44 for determining X_{TP}

$$X = \frac{\Delta P}{P_1} = \frac{(P_1 - P_2)}{P_1}$$
(EQ #17)
$$Y = 1 - \left[\frac{X}{3 \cdot F_k \cdot X_{TP}} \right]$$

$$\frac{\text{With Limit: } 2/3 \le Y \le 1.0}{\text{and}}$$

$$\frac{\text{Limit: } X_{\text{Max}} = F_k \cdot X_{TP}}{(\text{Use "lesser value" of X or X_{max} in above EQ #17.)}$$

When "Y" reaches its minimum value of 2/3 (0.67), the flow is described as "<u>Choked Flow</u>". If "Y" is greater than 2/3 (0.67), the flow is described as "<u>Non-Choked Flow</u>".

		Parameter	English Units	Metric Units
k	=	Specific Heat Ratio	dimensionless	dimensionless
F _k	=	Specific Heat Ratio Factor	dimensionless	dimensionless
Х	=	Pressure Drop Ratio	dimensionless	dimensionless
Χ _T	=	Pressure Drop Ratio Factor	dimensionless	dimensionless
Х _{ТР}	=	Combined Reducers/Pressure	dimensionless	dimensionless
		Drop Ratio Factor		
F_L	=	Liquid Pressure Recovery Factor	dimensionless	dimensionless
V_{GF}	=	Valve Geometry Factor	dimensionless	dimensionless
Р ₁	=	Upstream Pressure Absolute	psia	BarA
P_2	=	Downstream Pressure Absolute	psia	BarA
ΔP	=	Sizing Pressure Drop	psid	BarD
Y	=	Expansion Factor	dimensionless	dimensionless
X _{max}	, =	Choking Limit Factor	dimensionless	dimensionless

STD. VOLUMETRIC FLOW BASIS.

(EQ #18)	$C_{V} = \frac{\dot{Q}}{N_{7} \cdot F_{P} \cdot P_{1} \cdot Y} \sqrt{\frac{SG \cdot T_{1} \cdot Z_{1}}{X}}$	
(EQ #19)	$C_{V} = \frac{\dot{Q}}{N_{9} \cdot F_{P} \cdot P_{1} \cdot Y} \sqrt{\frac{MW \cdot T_{1} \cdot Z_{1}}{X}}$	

			Parameter	English Units	Metric Units
	C _v	=	English Valve Sizing Coefficient	dimensionless	dimensionless
	Q	=	MSC - Standard Volumetric Flow Rate	SCFH	SM ³ /Hr
*	Q _N	=	STP - Normal Volumetric Flow Rate		NM ³ /HR
	₹ ₁	=	Compressibility Factor	dimensionless	dimensionless
	SG	=	Gas Specific Gravity	dimensionless	dimensionless
	MW	=	Molecular Weight	#/# mole	kg/kg mole
	T ₁	=	Absolute Temperature	°R	°K
	P ₁	=	Upstream Pressure Absolute	psia	BarA
	Y	=	Expansion Factor	dimensionless	dimensionless

			Parameter (Cont.)	English Units	Metric Units
	F _P	=	Piping Geometry Factor	dimensionless	dimensionless
	N ₇	=	Units Correlation Constant	1360 dimensionless	416 dimensionless
	N ₉	=	Units Correlation Constant	7320 dimensionless	2245 dimensionless
*	N _{7N}	=	Units Correlation Constant	_	393 dimensionless
*	N _{9N}	=	Units Correlation Constant	—	2121 dimensionless
	••••				

* Use N_{7N} or N_{9N} in conjunction with Q_N.
 (<u>NOTE</u>: See page 45 for clarification of "<u>STP–Normal</u>" or "<u>MSC–Standard</u>" standard conditions.)

MASS FLOW BASIS.

(EQ #20)	$C_{V} = \frac{\dot{m}}{N_{6} \cdot F \cdot Y} \left[\frac{1}{\sqrt{X \cdot P_{1} \cdot \gamma_{1}}} \right]$
(EQ #21)	$C_{V} = \frac{\dot{m}}{N_{8} \cdot F_{p} \cdot P_{1} \cdot Y} \sqrt{\frac{T_{1} \cdot Z_{1}}{X \cdot MW}}$
(EQ #22)	$C_{V} = \frac{\dot{m}}{N_{10} \cdot F_{p} \cdot P_{1} \cdot Y} \sqrt{\frac{T_{1} \cdot Z_{1}}{X \cdot SG}}$

		Parameter	English Units	Metric Units
m	=	Mass Flow Rate	#/Hr	Kg/Hr
Cv	=	English Valve Sizing Coefficient	dimensionless	dimensionless
MW	=	Molecular Weight	#/# mole	kg/kg mole
SG	=	Gas Specific Gravity	dimensionless	dimensionless
Ξ_1	=	Compressibility Factor	dimensionless	dimensionless
Х	=	Pressure Drop Ratio	dimensionless	dimensionless
Y	=	Expansion Factor	dimensionless	dimensionless
Р ₁	=	Upstream Pressure Absolute	psia	BarA
T ₁	=	Absolute Temperature	°R	°K
Fp	=	Piping Geometry Factor	dimensionless	dimensionless
γ	=	Actual Density @ Upstream Cond.	#/ft ³	kg/M ³
N ₆	=	Units Correlation Constant	63.3 dimensionless	27.3 dimensionless
N ₈	=	Units Correlation Constant	19.3 dimensionless	94.8 dimensionless
N ₁₀	=	Units Correlation Constant	104 dimensionless	510 dimensionless

STEAM. As steam is a vapor/gas that does not exist as a fluid within piping systems at standard conditions of pressure and temperature, Equation #20 is utilized using actual density — γ_{Actual} and mass flow basis. As this equation is based on "actual non-volumetric" conditions, there is no Compressibility Factor – Z_1 required to correct for deviation from the ideal gas laws. Should Equations #21 or #22 be utilized, these are based on the ideal gas laws, so Compressibility Factor – Z_1 is required as an input.

MISCELLANEOUS — PIPE REDUCERS CORRECTION FACTORS

TRIAL AND ERROR SOLUTION. A close look at EQ's #23 and #24 show that both " C_v " and "d_{1V}" are included in the formulas correcting for pipe reducer effects. Since determining " C_v and then "d_{1v}" is the ultimate purpose of the sizing equations, it should be obvious that the only possible method of a sizing calculation must be done iteratively — repeat trial and error calculations.

LIQUIDS AND GASES.

(EQ #23)

$$F_{p} = \frac{\sum K \cdot C_{v}^{2}}{N_{2} \cdot d_{1v}^{4}} + 1$$

<u>Where</u>: $\Sigma K = K_1 + K_2 + K_{B1} - K_{B2}$

$$K_{1} = 0.5 \left[1 - \frac{d_{1v}^{2}}{D_{1P}^{2}} \right]^{2}$$
$$K_{2} = 1.0 \left[1 - \frac{d_{2v}^{2}}{D_{2P}^{2}} \right]^{2}$$
$$K_{B1} = 1 - \left[\frac{d_{1v}}{D_{1P}} \right]^{4}$$
$$K_{B2} = 1 - \left[\frac{d_{2v}}{D_{2P}} \right]^{4}$$

<u>NOTE</u>: Both the inlet and outlet pipe reducer effects are involved. If reducers are the same size for inlet and outlet, $K_{B1} = K_{B2}$ then the terms cancel out.

		Parameter	English Units	Metric Units
F _P	=	Piping Geometry Factor	dimensionless	dimensionless
ΣK	=	Combined Head Loss Coefficient	dimensionless	dimensionless
Cv	=	English Valve Sizing Coefficient	dimensionless	dimensionless
N_2	=	Units Correlation Constant	890 dimensionless	0.00214 dimensionless
d_{1V}	=	Valve Inlet Body Size	in.	mm
d_{2V}	=	Valve Outlet Body Size	in.	mm
D _{1P}	=	Inlet Pipe Size (before reducer)	in.	mm
D_{2P}	=	Outlet Pipe Size (after reducer)	in.	mm
K ₁	=	Inlet Resistance Coefficient	dimensionless	dimensionless
K ₂	=	Outlet Resistance Coefficient	dimensionless	dimensionless
K_{1B}	=	Inlet Bernoulli Coefficient	dimensionless	dimensionless
K_{2B}	=	Outlet Bernoulli Coefficient	dimensionless	dimensionless

<u>LIQUIDS</u>.

(EQ #24) $F_{Lp} = F_{L} \left[\frac{\sum Ki \cdot F_{L}^{2} \cdot C_{v}^{2}}{N_{2} \cdot d_{1v}^{4}} + C_{v}^{2} + C_{v}^{2} \right]$	1-1/2
---	-------

<u>Where</u>: $\Sigma Ki = K_1 + K_{B1}$

$$K_{1} = 0.5 \left[1 - \frac{d_{1v}^{2}}{D_{1P}^{2}} \right]^{2}$$
$$K_{B1} = 1 - \left[\frac{d_{1v}}{D_{1P}} \right]^{4}$$

NOTE: Only the <u>inlet</u> pipe reducer effect is involved.

Parameter		Parameter	English Units	Metric Units
FL	=	Liquid Pressure Recovery Factor	dimensionless	dimensionless
F _{LP}	=	Combined Reducers/Liquid	dimensionless	dimensionless
		Pressure Recovery Factor		
∑Ki	=	Combined Inlet Head Loss Coefficient	dimensionless	dimensionless
Cv	=	English Valve Sizing Coefficient	dimensionless	dimensionless
N_2	=	Units Correlation Constant	890 dimensionless	0.00214 dimensionless

Parameter (Cont.)			English Units	Metric Units	
d _{1V}	=	Valve Inlet Body Size	in.	mm	
D _{1P}	=	Inlet Pipe Size (before reducer)	in.	mm	
K ₁	=	Inlet Resistance Coefficient	dimensionless	dimensionless	
K _{B1}	=	Inlet Bernoulli Coefficient	dimensionless	dimensionless	

<u>GASES</u>.

(EQ #25)

$$X_{Tp} = \frac{X_T}{F_p^2} \left[\frac{X_T \cdot \sum Ki \cdot C_v^2}{N_5 \cdot d_{1v}} + 1 \right]^{-1}$$

$$\sum Ki = K_1 + K_{1B}$$

$$K_1 = 0.5 \left[1 - \frac{d_1v^2}{D_{1P}^2} \right]^2$$

$$K_{B1} = 1 + \left[\frac{d_1v}{D_{1P}} \right]^4$$

 $\underbrace{\textbf{NOTE}}_{\text{integration}}: \qquad \text{Both the inlet and outlet pipe reducer effects are involved through } F_p.$

		Parameter	English Units	Metric Units
>	< _{TP} =	 Combined Reducers / Pressure 	dimensionless	dimensionless
		Drop Ratio Factor		
>	< _T =	 Pressure Drop Ratio Factor 	dimensionless	dimensionless
2	∑Ki =	- Combined Inlet Head Loss Coefficient	dimensionless	dimensionless
(C _v =	 English Valve Sizing Coefficient 	dimensionless	dimensionless
F	- P =	 Piping Geometry Factor 	dimensionless	dimensionless
١	۹ ₅ =	 Units Correlation Constant 	1000 dimensionless	0.00241 dimensionless
C	1 _{1V} =	 Valve Inlet Body Size 	in.	mm
۵) _{1P} =	 Inlet Pipe Size (before reducer) 	in.	mm
ł	< ₁ =	 Inlet Resistance Coefficient 	dimensionless	dimensionless
ł	< _{B1} =	 Inlet Bernoulli Coefficient 	dimensionless	dimensionless

STANDARD CONDITIONS FOR GASES

Std. Temp. = 60° F	<u>METRIC</u> "MSC" – Metric Std. Conditions Std. Temp. = 15°C	Use of the ideal gas law is extensiv to adjust for the "ideal vs. real" con \underline{Z} - the "co	we in the process industry with a correction factor nditions. This correction factor is known as — <u>ompressibility factor</u> "	
<u>"Normal"</u> Metric Volume NM ³ /Hr N lit/min	Std. Pressure = 1 Atm "STP" – Std. Temp. & Pressure or "N" = Normal Std. Temp = 0°C Std. Pressure = 1 Atm "Standard" Metric Volume SM ³ /Hr M ³ /Hr S lit/min lit/min	Combined Ideal Gas Law $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ $PV = nRT$ $PV = mRT$	Combined Real Gas Law $\mathbf{z}_{1} x \frac{\mathbf{P}_{1} \mathbf{V}_{1}}{\mathbf{T}_{1}} = \mathbf{z}_{2} x \frac{\mathbf{P}_{2} \mathbf{V}_{2}}{\mathbf{T}_{2}}$ $\mathbf{PV} = \mathbf{Z} \mathbf{n} \mathbf{R} \mathbf{T}$ $\mathbf{PV} = \mathbf{Z} \mathbf{m} \mathbf{R} \mathbf{T}$	
If the flow rate does not indicate as "standard" metric volume.	"N" or an "S", assume that it means			
SPECIFIC GRAVITY – DENS	TY – MOLECULAR WEIGHT	VOLUMETRIC FLOW _{STD CONDITIONS} vs. MASS FLOW—GAS		
ρ OR γ (rho or gamma are ρ STD = <u>MW</u>	used as density terms) SG gas = ρ fluid	MASS FI	vs. LOW—GAS	
ρ OR γ (rho or gamma are ρ STD = <u>MW</u> V molar <u>ENGLISH</u> ρ air = .07622 #/ft ³ = ρ STD	used as density terms) SG gas = $\frac{\rho \text{ fluid}}{\rho \text{ air}}$ <u>METRIC - STP</u> ρ air = 1.2924 kg/m ³ = ρ STP	$\dot{Q}_{1E} = 15,000 \text{ SCFH}$ $\dot{Q}_{2E} = ?$	PLOW _{STD CONDITIONS} VS. LOW—GAS (1) (2)	
$eq:rescaled_$	used as density terms) SG gas = $\frac{\rho \text{ fluid}}{\rho \text{ air}}$ <u>METRIC - STP</u> ρ air = 1.2924 kg/m ³ = ρ STP V molar = 22.40 m ³ /kg - mole @ 0°C & 1 ATM SG = .7738 x ρ Fluid	$\dot{\mathbf{MASS F}}$ $\dot{\mathbf{MASS F}}$ $\dot{\mathbf{A}}_{1E} = 15,000 \text{ SCFH} \qquad \dot{\mathbf{a}}_{2E} = ?$ $\dot{\mathbf{a}}_{1M} = 430 \text{ SM}^3/\text{hr} \qquad \dot{\mathbf{a}}_{2M} = ?$ By the "law of conservation of manot" store" any mass, and most pr	PLOW _{STD CONDITIONS} VS. LOW—GAS $i_{\Delta P}$ $i_{TE} = 5000 \#/hr$ $\dot{m}_{2E} = 5000 \#/hr$ $\dot{m}_{1H} = 2500 kg/hr$ $\dot{m}_{2M} = 2500 kg/hr$ $i_{M} = 2500 kg/hr$ $\dot{m}_{2M} = 2500 kg/hr$	

Γ

IDEAL GAS vs. REALITY—

 $\frac{P_{std} \bullet V_{molar}}{T_{std}} = \underline{Constant} \text{ with a ``mass'' component} = \overline{R}$

molar volume at standard conditions.

<u>MANLME SIZING COEFFICHENTS</u> — <u>C_{V-2} C_{J-} and C3.</u>

A proprietary set of equations commonly found in throttling value sizing uses a totally different empirical mathematical approach to calculate their C_g (gaseous service) and C₅ (steam service) factors. The C_V factor used is identical to ISA formula's C_V factor.

Below are estimate "conversion factors" to relate the C_g and C₅ factors to the more widely accepted C_V factor for <u>ALL FLUIDS AND VALVES</u>.

• 607 West 15th Street • P.O. Box 6 • Ellsworth, KS 67439-0006 • PH: (785) 472-4461 • FAX: (785) 472-3539 (domestic) or (785) 472-8544 (exports) • E-mail: sales@cashco.com or exportsales@cashco.com www.cashco.com