```
STUDENT > \# Rev 5 - Add Xm 7/29/10
```

STUDENT > \# in the subsequent rev, will change X to $\mathrm{w} * \mathrm{~L}$
STUDENT >
STUDENT > restart; Digits:=4;

$$
\text { Digits }:=4
$$

STUDENT > \# Construct Thevinin equivalent of R1, L1, Xm feeding output at mag branch
STUDENT > \# Vth is with output open circuited... could also move X1 together with X2... not done here
STUDENT > \# can move X 1 and X 2 to either side of Xm as convenient STUDENT > \# try the way that makes the Thev ckt simpler:
STUDENT > Vth:=Vs*I*XM/(I*XM+R1);

$$
V t h:=\frac{I V S X M}{I X M+R I}
$$

STUDENT > \# Zth is Vth/Isc STUDENT > Isc:=Vs/R1;

$$
I s c:=\frac{V s}{R I}
$$

STUDENT > Zth:=Vth/Isc;

$$
Z t h:=\frac{I X M R I}{I X M+R I}
$$

STUDENT >
STUDENT >
STUDENT > Z:=Zth+2*I*X2+R2/s;

$$
Z:=\frac{I X M R 1}{I X M+R 1}+2 I X 2+\frac{R 2}{s}
$$

STUDENT >
STUDENT > \# find current I2 by ohms law
STUDENT > I2:=Vth/Z;

$$
I 2:=\frac{I V s X M}{(I X M+R 1)\left(\frac{I X M R 1}{I X M+R 1}+2 I X 2+\frac{R 2}{s}\right)}
$$

STUDENT > I2:=simplify(I2);

$$
I 2:=\frac{I s X M V s}{I X M R 1 s-2 X 2 s X M+2 I X 2 s R 1+I R 2 X M+R 2 R 1}
$$

STUDENT > Iabs:=evalc(abs(I2));
Iabs $:=\left(\frac{s^{2} X M^{2} V s^{2}(-2 X 2 s X M+R 2 R 1)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right.$

$$
\left.+\frac{s^{2} X M^{2} V s^{2}(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right)^{1 / 2}
$$

STUDENT > \# NEED TO CONVERT THIS TO A MAGNITUDE
STUDENT > \# Find eq circuit total power P2 (Pairgap) leaving stator using total equivalent resistance R2/s. (note than angle of I is irrelevant in this particular calc.... can calculate real power and apparent power without ever dealing with current angle.
STUDENT > P2:=Iabs^2*R2/s;

$$
\begin{aligned}
P 2: & =\left(\frac{s^{2} X M^{2} V s^{2}(-2 X 2 s X M+R 2 R 1)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right. \\
& \left.+\frac{s^{2} X M^{2} V s^{2}(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right) R 2 / s
\end{aligned}
$$

STUDENT > \# The above quantity acts the same as the following quantity.
STUDENT > \# Find Shaft Horsepower (***neglecting motor mech losses...maybe need a better name) P_SHP using eq circuit total power ($I^{\wedge} 2 * R 2 / s$) minus rotor losses ($I^{\wedge} 2 * R 2$) \# = I^2*R2*(1/s - 1) = \# = I^2*R2* (1/s - s/s) \# = I^2*R2* (1-s) /s

STUDENT > P_SHP:=Iabs^2*R2*(1-s)/s;
$\begin{aligned} P_{-} S H P & :=\left(\frac{s^{2} X M^{2} V s^{2}(-2 X 2 s X M+R 2 R 1)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right. \\ & \left.+\frac{s^{2} X M^{2} V s^{2}(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right) R 2(1-s) / s\end{aligned}$
STUDENT > \# In the linear range of small s where R2 dominates the denomiator:
STUDENT > \# P APPROX EQUAL V2^2*s/R2 (not just prop)
STUDENT > \# Slope of P_SHP vs s is Papprox/s = V^2/R2
STUDENT >
STUDENT > \# find rotational speed w
STUDENT > w:=wsync*(1-s);

$$
w:=w s y n c(1-s)
$$

STUDENT >
STUDENT > \# find Torque T
STUDENT > T:=P_SHP/w;

$$
\begin{aligned}
T:= & \left(\frac{s^{2} X M^{2} V s^{2}(-2 X 2 s X M+R 2 R 1)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right. \\
& \left.+\frac{s^{2} X M^{2} V s^{2}(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}}{\left((-2 X 2 s X M+R 2 R 1)^{2}+(X M R 1 s+2 X 2 s R 1+R 2 X M)^{2}\right)^{2}}\right) R 2 /(s \text { wsync })
\end{aligned}
$$

STUDENT > \# in the range where R2/s dominates the denominator (the linear range of T vs s), the following hold:
STUDENT > \# T linear with s
STUDENT > \# T prop to V^2
STUDENT > \# T prop to (1/R)
STUDENT > \# T APPROX EQUAL to (V^2*s)/(R2wsync) (not just prop)
STUDENT > \# T prop to V^2 ANY SPEED (not just the linear range with s)

STUDENT > \# is there a more diret way to find T directly (without going throuGH p_shp)
STUDENT >
STUDENT >
STUDENT >
STUDENT > subs1:=\{R1=1,R2=0.15,X1=0.5,X2=0.5,Vs=1,wsync=60,XM=20\};
subsl $:=\{R 2=.15, R 1=1, X 1=.5, X M=20$, wsync $=60, V s=1, X 2=.5\}$
STUDENT > subs2:=\{R1=1,R2=0.7,X1=0.5,X2=0.5,Vs=1,wsync=60,XM=20\};
subs $2:=\{R 1=1, X 1=.5, X M=20$, wsync $=60, V s=1, X 2=.5, R 2=.7\}$
STUDENT > T1:=subs(subs1,T);
T1 :=

$$
.002501 \frac{400 \frac{s^{2}(-20.0 s+.15)^{2}}{\left((-20.0 s+.15)^{2}+(21.0 s+3.00)^{2}\right)^{2}}+400 \frac{s^{2}(21.0 s+3.00)^{2}}{\left((-20.0 s+.15)^{2}+(21.0 s+3.00)^{2}\right)^{2}}}{s}
$$

STUDENT > T2:=subs (subs2,T);
T2 :=

$$
.01167 \frac{400 \frac{s^{2}(-20.0 s+.7)^{2}}{\left((-20.0 s+.7)^{2}+(21.0 s+14.0)^{2}\right)^{2}}+400 \frac{s^{2}(21.0 s+14.0)^{2}}{\left((-20.0 s+.7)^{2}+(21.0 s+14.0)^{2}\right)^{2}}}{s}
$$

STUDENT > plot(\{T1,T2\},s=0.001..1,color=[red,blue],thickness=[0,4]); \#T2=2nd one has higher rotor resistance

STUDENT > \# Find slip at the location of Tmax (s_Tmax)
STUDENT >
STUDENT >
STUDENT > dT_ds:=(diff(T,s));
$d T_{-} d s:=\left(2 \frac{s X M^{2} V s^{2} \% 2^{2}}{\left(\% 2^{2}+\% 1^{2}\right)^{2}}-4 \frac{s^{2} X M^{3} V s^{2} \% 2 X 2}{\left(\% 2^{2}+\% 1^{2}\right)^{2}}\right.$
$-2 \frac{s^{2} X M^{2} V s^{2} \% 2^{2}(-4 \% 2 X 2 X M+2 \% 1(X M R 1+2 X 2 R 1))}{\left(\% 2^{2}+\% 1^{2}\right)^{3}}+2 \frac{s X M^{2} V s^{2} \% 1^{2}}{\left(\% 2^{2}+\% 1^{2}\right)^{2}}$

$$
\begin{aligned}
& +2 \frac{s^{2} X M^{2} V s^{2} \% 1(X M R 1+2 X 2 R 1)}{\left(\% 2^{2}+\% 1^{2}\right)^{2}} \\
& \left.-2 \frac{s^{2} X M^{2} V s^{2} \% 1^{2}(-4 \% 2 X 2 X M+2 \% 1(X M R 1+2 X 2 R 1))}{\left(\% 2^{2}+\% 1^{2}\right)^{3}}\right) R 2 /(s \text { wsync }) \\
& -\frac{\left(\frac{s^{2} X M^{2} V s^{2} \% 2^{2}}{\left(\% 2^{2}+\% 1^{2}\right)^{2}}+\frac{s^{2} X M^{2} V s^{2} \% 1^{2}}{\left(\% 2^{2}+\% 1^{2}\right)^{2}}\right) R 2}{s^{2} w s y n c} \\
& \% 1:=X M R 1 s+2 X 2 s R 1+R 2 X M \\
& \% 2:=-2 X 2 s X M+R 2 R 1
\end{aligned}
$$

STUDENT >
STUDENT > dT_ds:=simplify (diff(T,s));
$d T_{-} d s:=-\left(X M^{2} R I^{2} s^{2}+4 X 2^{2} s^{2} X M^{2}-R 2^{2} X M^{2}+4 X M R 1^{2} s^{2} X 2+4 X 2^{2} s^{2} R 1^{2}-R 2^{2} R 1^{2}\right)$
$X M^{2} V s^{2} R 2 /\left(\left(4 X 2^{2} s^{2} X M^{2}+R 2^{2} R I^{2}+X M^{2} R I^{2} s^{2}+4 X M R I^{2} s^{2} X 2+2 X M^{2} R 1 s R 2\right.\right.$
$\left.+4 X 2^{2} s^{2} R 1^{2}+R 2^{2} X M^{2}\right)^{2}$ wsync $)$
STUDENT > \# Exampine dT/ds at slip $=0$ (slope of torque speed near zero
STUDENT > simplify(subs(s=0,dT_ds));
$\frac{V s^{2} X M^{2}}{R 2 \text { wsync }\left(X M^{2}+R I^{2}\right)}$

STUDENT >
STUDENT >
STUDENT >
STUDENT > s_Tmax:=solve(dT_ds=0,s); \# as can see entire behavior
with R1, R2, X. Loc of peak goes to lower slip (higher speed) as R2 dec, R1 and X inc

$$
\begin{aligned}
s_{-} T m a x & :=\frac{\sqrt{\% 1\left(X M^{2}+R I^{2}\right)} R 2}{\% 1},-\frac{\sqrt{\% 1\left(X M^{2}+R I^{2}\right)} R 2}{\% 1} \\
\% 1 & :=4 X 2^{2} X M^{2}+X M^{2} R I^{2}+4 X M R I^{2} X 2+4 X 2^{2} R I^{2}
\end{aligned}
$$

STUDENT > \# Choose the positive root
STUDENT > equation1:=sTmax=s_Tmax[1];
equation1 $:=s T m a x=\frac{\sqrt{\left(4 X 2^{2} X M^{2}+X M^{2} R 1^{2}+4 X M R 1^{2} X 2+4 X 2^{2} R 1^{2}\right)\left(X M^{2}+R 1^{2}\right)} R 2}{4 X 2^{2} X M^{2}+X M^{2} R 1^{2}+4 X M R 1^{2} X 2+4 X 2^{2} R 1^{2}}$
STUDENT > R2:=solve (equation1,R2);

$$
R 2:=\frac{s \operatorname{Tmax}\left(4 X 2^{2} X M^{2}+X M^{2} R 1^{2}+4 X M R 1^{2} X 2+4 X 2^{2} R 1^{2}\right)}{\sqrt{\left(4 X 2^{2} X M^{2}+X M^{2} R 1^{2}+4 X M R 1^{2} X 2+4 X 2^{2} R 1^{2}\right)\left(X M^{2}+R 1^{2}\right)}}
$$

STUDENT > \# Above is the value Cpage 5^{2} ? which gives Maple V Release 4 -Student Edition

$$
\begin{aligned}
& \text { sTmax \%1/(} \left.\sqrt{\% 1\left(X M^{2}+R I^{2}\right)} \text { wsync }\right) \\
& \% 1:=4 X 2^{2} X M^{2}+X M^{2} R 1^{2}+4 X M R I^{2} X 2+4 X 2^{2} R l^{2} \\
& \% 2:=X M R 1+2 X 2 R 1+\frac{s T m a x \% 1 X M}{\sqrt{\% 1\left(X M^{2}+R l^{2}\right)}}
\end{aligned}
$$

STUDENT > \# starting torque is heavily dependent on R2. High R2 gives good start torque and low start current - both great for starting but lousy for run efficiency => deep-bar design or variable resistance on wound-rotor rotor.
STUDENT > \# starting torque is also propr to $\mathrm{V}^{\wedge} 2$ based on above.
STUDENT > \# check that this gives the correct starting torque value for a specific set of circuit values.
STUDENT > subs(subs1,T_start);
$.02414\left(400 \frac{(-20.0+1.448 s \operatorname{Tmax})^{2}}{\left((-20.0+1.448 s \operatorname{Tmax})^{2}+(21.0+28.96 s \operatorname{Tmax})^{2}\right)^{2}}\right.$

$$
\left.+400 \frac{(21.0+28.96 s \operatorname{Tmax})^{2}}{\left((-20.0+1.448 s \operatorname{Tmax})^{2}+(21.0+28.96 s \operatorname{Tmax})^{2}\right)^{2}}\right) s \operatorname{Tmax}
$$

STUDENT > \# Summary picture of changing R2 (see earlier graph). As R2 increases, TslopevsS ($\sim V^{\wedge} 2 / R 2$) decreases, peak moves to left (same height), starting T increases. There is a crossover
STUDENT >
STUDENT >
STUDENT > \# Look at slip vs power in the linear range
STUDENT > \# first look at slope of T vs N in linear range near $s=0$
STUDENT > RunningTSlope:=subs (s=0,dT_ds);

$$
\begin{aligned}
& \% 1:=4 X 2^{2} X M^{2}+X M^{2} R I^{2}+4 X M R I^{2} X 2+4 X 2^{2} R I^{2}
\end{aligned}
$$

STUDENT > \# This is same thing we came up with previously.
STUDENT > \# High R2 gives lower slope and higher slip (moves peak toward lower speeds)
STUDENT >
STUDENT > \#Also note that $\mathrm{V}^{\wedge} 2$ gives lower slope and higher slip.
STUDENT >
STUDENT >

```
STUDENT > #as a close approximation - speed is constant and "slope"
    of power vs s curve is related to V^2 and (1/R2)
STUDENT > # And actual value of slip (for given horsepower) is
    directly related to the slope.
STUDENT >
STUDENT > # Summary - ** slip prop to R2/V^2. Note that R2 is
    F(Temperature)
STUDENT >
STUDENT >
STUDENT >
```

