Strength Envelopes for Florida Rock and Intermediate Geomaterials

FDOT Contract BDV31-977-51

PIs : Michael McVay Ph.D., Xiaoyu Song Ph.D., Scott Wasman, Ph.D. Researchers: Thai Nguyen, P.E. and Kaiqi Wang

PMs : Rodrigo Herrera, P.E., and David Horhorta, P.E., Ph.D.

UF | FLORIDA

UF FLORIDA

Background – Rock Strengths

Brazilian Splitting Tension Strength BST

For rocks, it is impractical to fabricate a bone-shape specimen for Direct Tension. ⇒ Tension strength is indirectly evaluated by BST method:

Perras and Diederichs (2014): Statistically, $q_t = 0.7 * BST$

Background – from Rock Strength to Strength Envelope

Mohr-Coulomb Strength Envelope

 q_t (=70% BST) and q_u are the 2 points on the strength envelope

UF FLORIDA

Background – from Rock Strength to Strength Envelope

Mohr-Coulomb c - φ Strength Envelope

This straight c - φ line is sufficient enough for side shear strength (adhesion/friction between concrete surface and rock) calculations for deep foundation design

Thus historically, only BST and q_u strength tests have been conducted.

Rock triaxial strength tests have never been performed for low strength/ porous rocks, such as Florida rocks.

Background - Foundation

Footing size would be larger than a typical pile cap, but still adequately sized so that there is room to construct: e.g. 4x12 ft² to 15x15ft²

Problem Statement

 σ_3

 σ_1

LOAD

 σ_1

 σ_1

Ouestion: Can a shallow foundation be adequate in terms of Bearing Capacity?

When elements underneath footing reach strength envelopes (failure), the applied load reaches its Ultimate **Bearing Capacity**

UNIVERSITY O

Bearing Capacity Evaluation Methods:

 σ_1

- 1) Finite element method: Directly needs Strength Envelopes
- 2) Bearing equation: Indirectly needs Strength Envelopes e.g.:
- Terzaghi or Meyerhof (for Soils): use Mohr-Coulomb strength parameters (i.e., envelopes)
- Carter and Kulhawy (for Rocks), currently used by FHWA and TRB, equation derived from Hoek-Brown envelopes:

$$\mathbf{p}_{\mathrm{u}} = \left[\sqrt{s} + \sqrt{m\sqrt{s} + s}\right] \mathbf{q}_{\mathrm{u}}$$

s and m: Rock parameters using Hoek-Brown

Can we use the straight line Mohr-Coulomb c- φ envelopes (using BST, q_u)?

Or should we use Hoek-Brown strength envelope using our q_u **?:**

$$\sigma_{1} = \sigma_{3} + q_{u} \left(m \frac{\sigma_{3}}{q_{u}} + s \right)^{a}$$

$$s = e^{(GSI-100)/(9-3D)}$$

$$m = m_{i} e^{(GSI-100)/(28-14D)} m_{i} \approx 10 \text{ for carbonate rocks}$$

$$a = 0.5 + (e^{-GSI/15} - e^{-20/3}) / 6 \approx 0.5$$
GSI: Geological Strength Index, evaluated based on discontinuities of jointed rock

Problem Statement

Hoek-Brown Limitations:

- Not a direct function of porosity (or bulk dry unit weight)
- Developed for underground excavation (tunnel) in hard rock with <u>brittle fracture</u>
- Rock strength (q_u) of Florida carbonate rocks are typically much lower than other rock
- They <u>do not</u> always behave as <u>brittle</u>
- Florida carbonate rocks are soft in general, but appear as jointless ⇒ Not suitable to evaluate Florida materials using GSI

Objectives

MAIN **OBJECTIVE**:

Develop strength envelopes for both compression (underneath footing) and extension (outside footing) loading for Florida carbonate-rocks. **This is unique, as none is available. Using conventional envelope can lead to unsafe foundation design.**

SIDE OBJECTIVES:

UNIVERSITY of

1) Develop volumetric strain models for Florida carbonate-rocks: (i) when the material tends to dilate; or (ii) contract

Investigation topics

- Identify key index parameters:
 - Formation/ Mineral type
 - Porosity (Dry unit weight),
 - Carbonate content,
- Identify key strength test and test ranges:
 - Traditional BST test
 - \circ Traditional q_u test
 - Triaxial test
- Identify method to measure volumetric responses thru triaxial tests

Florida Rock Index Parameters

Mineral Components:

- Calcium carbonate CaCO₃:
 - Calcite: depending on grain size:

Microcrystalline

Calcarenite

- Curearente Coquina
- Aragonite: Typically microcrystalline
- Dolomite MgCa(CO₃)₂: Typically microcrystalline
- Quartz SiO₂
- Other trace elements: Al, K, Mn, Na, Fe, and Zn

Florida Rocks are of very low strengths. Approximately 65% of 3,300 data tested resulted in q_u less than 700 psi (threshold that FHWA defines as Intermediate GeoMaterial – IGM) So, Florida carbonate materials are rocks – geologically, but most of them are classified as IGM – geotechnically.

UF FLORIDA

15 Correlations BST, q_u versus Index Parameters

Each formation has a different trendline, due to the properties of each formation, and most dominantly the carbonate content seen earlier

Triaxial tests

Hoek Cell

Oil volume change measurement is measured (GRIP 2017) so that volumetric responses of triaxial tests can be measured

Approximate range of triaxial behavior

17

UNIVERSITY of

- Brittle stress-strain (rupture) behavior typically associates with dilative volumetric responses.
- Ductileassociates withcontractive.

Approximate range of triaxial behavior

Not typically encountered for shallow formations

1							1	
		Bulk Dry Unit Weight Range						
σ3		60 - 65	66-85	86-110	111-120	121-130	>130	pcf
(MPa)	(psi)	9.4-10.2	10.3-13.4	13.5-17.3	17.4-18.9	19.0-20.4	>20.4	kN/m³
0-0.1	0-10	Transition	Transition	Brittle	Brittle	Brittle	Brittle	
0.2-0.3	25 - 50	Ductile	Transition	Transition	Brittle	Brittle	Brittle	
0.9-1	130-150	Ductile	Ductile	Transition	Transition	Brittle	Brittle	
1.4	200	Ductile	Ductile	Ductile	Transition	Transition	Brittle	
>2.1	>300	Ductile	Ductile	Ductile	Ductile	Transition	Transition	
>7	>1000	Ductile	Ductile	Ductile	Ductile	Ductile	Ductile	

Typically encountered for shallow formations

Some formations (such as Anastasia) would be more predominantly

ductile, even in the 121-130 pcf zone.

In this case, the deviatoric stress $\sigma_d = 0$

It does not mean the rock has zero strength. The porous rock was simply "pulverized" or "crushed" under high isotropic pressure. The test stopped due to excessive displacement in combination with drop in pressure.

The strength envelopes have steeper downward curve slopes than the Hoek-Brown envelopes. Florida rocks have high porosities and typically behave ductile, especially under high pressure Hoek-Brown equation was developed for brittle rupture.

Florida envelopes would ONLY match w/ Hoek-brown in the brittle rupture behavior

р

Strength envelopes – Key Largo formation

р

Again, Florida envelopes would match w/ Hoek-brown in the brittle rupture behavior zone. But in ductile zone, Florida envelopes have steeper downward curve slopes

Strength envelopes – Anastasia formation

Again, Florida envelopes would match w/ Hoek-brown in the brittle rupture behavior zone.

In ductile zone, Florida envelopes have steeper downward curve slopes

Strength envelopes – Miami formation

UNIVERSITY of

Again, Florida envelopes would match w/ Hoek-brown in the brittle rupture behavior zone.

In ductile zone, Florida envelopes have steeper downward curve slopes

Strength envelopes – Shallow Ft Thompson formation

24

UNIVERSITY of

- Florida carbonate materials are very porous (up to 55% void).
- Unconfined strength (i.e., BST or q_u) as well as confined strength depend on:
 - 1. Cementation is influenced by binder (carbonate content and mineral)
 - 2. Grain size (i.e., calcarenite) versus microcrystalline grain size (calcite or dolomite)

CONCLUSIONS

1) Florida strength envelope:

- a) is not defined by conventional strength envelopes (i.e., Hoek-Brown using GSI index)
- b) Is a function of:
 - a) Porosity (bulk porosity, vug porosity, permeable porosity)
 - b) Carbonate formation :
 - Carbonate contents (which controls the cementation binder)
 - Mineral structure: Mineral type and grain size: i.e., sand grain size (calcarenite) versus microcrystalline grain size (calcite or dolomite)

2) Florida strength envelopes have steep curves, especially in the ductile behavior zone. Design using conventional envelopes would be unsafe

In the brittle rupture zone, the envelopes are similar to Hoek-Brown.

3) Stress – Strain behaviors (ductile or brittle) depend on:

- Porosity (dry unit weight)
- Confining pressure

Most Florida carbonate rocks, would behave as ductile (i.e., can be modelled as elastic – perfectly plastic)

4) Volumetric response:

- Brittle stress-strain behavior tends to have dilative volumetric response
- Ductile stress-strain behavior tends to have contractive volumetric response

RECOMMENDATIONS FOR DESIGN

- Engineer to perform index testing: Porosity, and/or specific gravity/ carbonate contents
- Conventional BST and q_u strength tests. These are still the 2 points on the envelopes.
- Limited triaxial tests to verify a selection of appropriate strength envelope on Intact Rock
- Strength envelope for the Rock Mass:
 - Evaluate potential void when REC is low
 - Reduce the weighted average dry unit weight for the mass in selecting strength envelope
 - Reduce the strength envelope based on REC or RQD

Numerical Modeling

1. Validate the numerical simulation

Vesic's Bearing capacity equations:

$$q_{u,B.C.} = cN_c + \gamma DN_q + 0.5\gamma BN_{\gamma},$$
 Where

c: cohesion intercept

 γ : dry unit weight of soil

D: foundation depth

B: width of foundation

FEM result vs. Lambe & Whitman vs. Vesic B.C.

- I. Simulations of Strip Footings under same cohesion, but different phi (strength envelope curvatures).
- II. Simulations of Strip Footings for Florida carbonaterocks, for strength envelopes at Different Dry Unit Weights (90, 100, and 110 pcf)
- III. Simulations are performed at 3D conditions vs. Strip

Bearing Capacity (Cohesion and phi to P_{peak} then 8⁰ slope)

UNIVERSITY of

Bearing Capacity (Cohesion and phi to P_{peak} then constant)

Bearing Capacity (Cohesion and phi to P_{peak} then constant)

Cohesion

 p_{peak}

≻σ

7.56 *tsf*

31.2 *tsf*

UNIVERSITY of

Simulating Florida Limestone

Simulating Florida Limestone– 3 Different Unit Weights

Numerical modeling

3D footing simulation

- I. Run Simulation of Bearing Capacity for Different Formations Based on Unit Weight (C, phi, P_{peak}, and slope 2) as function of L/B and Embedment Depth, D
- II. Implement Sand Model into FEM and Repeat simulations of different formations [i.e. unit weight (C, phi, P_{peak}, and slope 2)] with T (limestone Thickness) function of B (footing width)

III. Develop Bearing Graphs for I & II

