

The continuous beam $A B C D$ is to be designed to carry load-factored midspan live loads of $1.5 \mathrm{Q}=160 \mathrm{kN}$ that may act on any or all spans. The task is to select a suitable grade 300 UB section and suggest appropriate lateral restraint locations.

Restraints:

All supports are assumed to provide full torsional restraint. Loads provide no restraint and are applied to the top flange.

Analysis:

We will ignore self-weight and hope to show that its

effect is negligible. This leaves 5 load cases to consider, as shown.
The results could be obtained from just two analyses (by moment distribution, for example):
(a) Load on $A B$
(b) Load on BC

All other cases can be obtained as combinations of (a) and (b). For example case (c) is simply (a)+(b), and case (d) is (a)+(b)+mirror image of (a).

Maximum design moment (all cases) $=207.1 \mathrm{kNm}$.

First approximation:

Assume a compact section, and take $Z_{e}=Z_{p}$.
For $M^{*}<\phi Z_{e} \sigma_{y}$
Require $Z_{p}>\frac{207.1}{0.9 \times 300,000}=767 \times 10^{-6} \mathrm{~m}^{3}=\underline{767 \times 10^{3} \mathrm{~mm}^{3}}$

Try 360 UB44.7, $Z_{p}=777 \times 10^{3} \mathrm{~mm}^{3}$ (isn't quite compact, but has only slightly smaller $Z_{e}=770 \times 10^{3} \mathrm{~mm}^{3}$, more than compensated for by $\sigma_{y}=320 \mathrm{MPa}$, so that $\phi Z_{e} \sigma_{y}=222 \mathrm{kNm}$, > 207.1)

Check end spans $A B, C D$

Top flange

Maximum $M^{*}(+v e)=178 \mathrm{kNm}$ - load case (e) - top flange critical (compr'n).
'FF' segment, 5 m long. $\mathrm{k}_{\mathrm{t}}=1, \mathrm{k}_{\mathrm{L}}=1.4, \mathrm{k}_{\mathrm{r}}=1, \mathrm{~L}_{e}=1.4 \star 5=\underline{7.0 \mathrm{~m}}$

$\alpha_{s}=\underline{0.293}$ (Table A1)
$\beta_{m}=\frac{44.1 \times 16}{3 \times 160 \times 5}=0.294$ (Table 5.6.1, case 4)
$\alpha_{m}=1.35+0.15 \times 0.29=\underline{1.39}$
(e)

$\phi \mathrm{M}_{\mathrm{b}}=1.39 \times 0.293 \times 222=\underline{90.4 \mathrm{kNm}}<\mathrm{M}_{\text {max }}^{*}(178 \mathrm{kNm}) \Rightarrow \mathrm{NG} \cdot:$

Try lateral (L) restraint to top flange, mid-span

This creates two segments, 2.5 m long. Considering the left hand segment:
'FL' segment, 2.5 m long. $k_{t}=1, k_{L}=1$ (load outside seg), $k_{r}=1, L_{e}=1.0 * 2.5=2.5 \mathrm{~m}$ $\alpha_{s}=\underline{0.778}$ (Table A1).
$\alpha_{m}=\underline{1.75}$ (Table 5.6.1, case $1, \beta_{m}=0$, or case 9).
$\phi M_{b}=1.75 \times 0.778 \times 222=\underline{302 k N m}$,

However ϕM_{b} must be $\leq \phi M_{s}=222 \mathrm{kNm}>M_{\max }^{*}(178 \mathrm{kNm}) \Rightarrow O K$
Right segment certain to be less critical as bending moment pattern will give rise to a higher α_{m} :
$\beta_{m}=\frac{44.1}{178}=0.25$ (Table 5.6.1, case 1).

$\alpha_{m}=1.75+1.05(0.25)+0.3(.25)^{2}=3.78=2.5(\max)$.
$\alpha_{m} \alpha_{s}>1$, so ϕM_{b} still $=\phi M_{s}=222 \mathrm{kNm} \Rightarrow O K ;$

Bottom flange

Top flange restraint does not restrain bottom flange. For loading case (b) bottom flange is critical so spans $A B$ and $B C$ revert to 5 m segments.

Maximum $M^{*}(-v e)=113 \mathrm{kNm}$
' $F F^{\prime}$ segment, 5 m long. $k_{t}=1, k_{L}=1, k_{r}=1, L_{e}=5.0 \mathrm{~m}$

$\alpha_{s}=0.436$ (Table A1)
$\alpha_{m}=\underline{1.75}$ (Table 5.6.1, case 1, $\beta_{m}=0$).
$\phi M_{b}=1.75 \times 0.436 \times 222=\underline{169 \mathrm{kNm}}>M_{\max }^{*}(113 \mathrm{kNm}) \Rightarrow O K ;$
Check middle span, $B C$

Top flange

Top flange is critical flange for load cases (b), (c) and (d).
Maximum $M^{*}(+v e)=207 \mathrm{kNm}$ - load case (b) - top flange critical.
'FF' segment, 8 m long. $\mathrm{k}_{\mathrm{t}}=1, \mathrm{k}_{\mathrm{L}}=1.4, \mathrm{k}_{\mathrm{r}}=1, \mathrm{~L}_{\mathrm{e}}=1.4^{*} 8=\underline{11.2 \mathrm{~m}}$
$\alpha_{s}<\underline{0.190}$ (Table A1; $\alpha_{s}=0.19$ is for $L_{e}=10 \mathrm{~m}$)
$\beta_{m} \frac{F L}{8}=113 ; \quad \beta_{m}=\frac{113 \times 8}{160 \times 8}=0.706$ (Table 5.6.1, case 4)

$\alpha_{m}=1.35+0.36 \times 0.706=\underline{1.60}$
$\phi M_{b}=1.6 \times 0.19 \times 222=\underline{67.5 \mathrm{kNm}}<\mathrm{M}_{\max }^{*}(207 \mathrm{kNm}) \Rightarrow \mathrm{NG}: 2$

Try lateral (L) restraint to top flange, mid-span

This creates two segments, 4 m long. Considering the left hand segment:
'FL' segment, 4 m long. $k_{t}=1, k_{L}=1$ (load outside seg), $k_{r}=1, L_{e}=1.0 * 4=\underline{4 m}$ $\alpha_{s}=\underline{0.55}$ (Table A1).
$\beta_{m}=\frac{113}{207}=0.546$ (Table 5.6.1, case 1).
$\alpha_{m}=1.75+1.05(0.55)+0.3(.55)^{2}=2.42$.

$\alpha_{m} \alpha_{s}=1.33$, so $\phi M_{b}=\phi M_{s}=\underline{222 k N m}>M_{\text {max }}^{*}(207 \mathrm{kNm}) \Rightarrow O K ;$

Bottom flange

Predominantly -ve bm in loading cases (e) and (a) results in critical bottom flange. Since bottom flange is unrestrained it becomes an 8 m segment.

Load case (e):

Maximum $M^{\star}(-\mathrm{ve})=44 \mathrm{kNm}$
'FF' segment, 8 m long. $\mathrm{k}_{\mathrm{f}}=1, \mathrm{k}_{\mathrm{L}}=1, \mathrm{k}_{\mathrm{r}}=1, L_{e}=8.0 \mathrm{~m}$ $\alpha_{s}=0.248$ (Table A1)
$\alpha_{m}=\underline{1.0}$ (Table 5.6.1, case 8)
$\phi M_{b}=1.0 \times 0.248 \times 222=55 \mathrm{kNm}>M_{\text {max }}^{*}(44 \mathrm{kNm}) \Rightarrow O K \odot$

Load case (a):

Maximum $M^{*}(-\mathrm{ve})=64 \mathrm{kNm}$
44.1
(e)

(a)

'FF' segment, 8 m long. $\mathrm{k}_{\mathrm{f}}=1, \mathrm{k}_{\mathrm{L}}=1, \mathrm{k}_{\mathrm{r}}=1, L_{e}=8.0 \mathrm{~m}$
$\alpha_{s}=0.248$ (Table A1)
$\beta_{m}=\frac{19.6}{63.7}=0.31$ (Table 5.6.1, case 1).
$\alpha_{m}=1.75+1.05(0.31)+0.3(.31)^{2}=2.1$
$\phi M_{b}=2.1 \times 0.248 \times 222=115 \mathrm{kNm}>M_{\text {max }}^{*}(64 \mathrm{kNm}) \Rightarrow O K$ ©

Check that dead load IS negligible:

Dead load is $44.7 \mathrm{~kg} / \mathrm{m}$ giving $\mathrm{w}_{\text {dead }}=1.2 \times 0.45=0.53 \mathrm{kN} / \mathrm{m}$. Applying a uniform spread load of $0.53 \mathrm{kN} / \mathrm{m}$ gives the bm's shown below.

These are insignificant compared with the 1.6Q (live load) bm's which ranged up to 207 kNm .

Final configuration:

X = additional restraint to top flange

