

Buoyancy and Floating Structure Calculation for Paraxylene Storage Tanks (TK-2090 A/B)

1					
0					
Rev.	Status	Prepared	Checked	Approved	Date

Tabulation of Revised Pages

$\mathrm{SEV}_{\text {PAGE }}$	0	1	2	3		0	1	2	3	
1	X	X								
2	X	X								
3	X	X								
4	X									
5	X									
6	X									
7	X									
8	X	X								
9	X	X								
10	X	X								
11	X									
12	X	X								
13	X	X								
14	X	X								
15	X	X								
16	X	X								
17	X	X								
18	X									
19	X	X								

1. Introduction 4
2. Project summary and abbreviation 4
3. References 4
4. Tank Design Data 5
5. Tank Capacities 6
6. Buoyancy calcualtion 7
7. Checking the stresses and deflection in the center deck 11
8. Deck support design 16

1- Introduction

All requirements and committal of API 650 code for design of internal floating roof Tank No.TK-2090 A/B are presented at this calculation notebook, that shall be applied for material selection, shop drawing and construction methods of tanks. All used units at this manual are in metric system.

2- Project summary and abbreviation

Project	Storage Terminal Development Plan
Owner	Farasakou Assaluyeh
Purchaser	HEDCO
Vendor	N.A.
Site	Assaluyeh, Iran
H.H.L. L	High High Liquid Level
H.L. L	High Liquid Level
L.L. L	Low Liquid Level
L.L.L.L	Low Low Liquid Leve
D.L.L	Design Liquid Level
E	Elastic Module $=200(\mathrm{GPa})$
ρ	Specific Gravity of Steel $=8.60(\mathrm{gr} / \mathrm{Cm} 3)$
g	Ground Acceleration $=9.81\left(\mathrm{~m} / \mathrm{s}^{2}\right)$

3 References

Mechanical Datasheet for TK-2090 A/B - Tankage area	-
Process Datasheet for Paraxylene Storage and Pumping	2134F-PR-20-PFD-111
Welded Steel Tanks for Oil Storage	API 650 (2018) - (12 th Ed.)
American Institute of Steel Construction	AISC STANDARD
Job Specification for Storage Tanks Field Erected	-

5- Tank Capacities

$\mathrm{D}=$	36 m
$\mathrm{H}=$	22.5 m
D.L.L. $=$	20.9 m
M.L.L. $=$	20.9 m
L.L.L. $=$	0.91 m
L.L.L.L. $=$	0.61 m

BOTTOM SLOP=
$\mathrm{Hb}=$
N.F.L =

1/100
0.18 (m)
20.9 (m)
L.L.L.=
0.91 m
0.61 m

GEOMETRIC CAPACITY (V_{G}) :

$$
\mathrm{V}_{\mathrm{G}}=\pi / 4 * \mathrm{D}^{2} * \mathrm{H}
$$

$$
=\quad 22902
$$

(m^{3})

NOMINAL CAPACITY (V_{N}) :

$$
\mathrm{V}_{\mathrm{N}}=\pi / 4 * \mathrm{D}^{2} *(\text { D.L.L }) \quad=\quad 21274
$$

(m^{3})
DEAD CAPACITY (V_{d}) :

$$
\mathrm{V}_{\mathrm{dC}}=\pi / 4 * \mathrm{D}^{2} *(\text { L.L.L.L })
$$

$$
=\quad 621
$$

(m^{3})
NET WORK CAPACITY (V_{N}) :

$$
\mathrm{V}_{\mathrm{N}}=\pi / 4 * \mathrm{D}^{2} *(\text { N.F.L - L.L.L }) \quad=\quad 20347 \quad\left(\mathrm{~m}^{3}\right)
$$

MAX. STORAGE CAPACITY (V_{M}) :

$$
\mathrm{V}_{\mathrm{M}}=\pi / 4 * \mathrm{D}^{2 *}(\text { M.L.L. })-\pi / 12 \mathrm{D}^{2} * \mathrm{H}_{\mathrm{b}} \quad=21213 \quad\left(\mathrm{~m}^{3}\right)
$$

[^0]
6- buoyancy calcualtion

```
t min = 4.8 As per API 650
\(\mathrm{t}_{1}=\mathrm{C} . \mathrm{A}(\) product \()+\mathrm{t}_{\text {min }}=\)
\(\mathrm{t}_{1 \text { actual }}=\)
7 \(\quad\)\begin{tabular}{cc}
6.3 mm \\
7 & mm
\end{tabular}\(\quad\) For deck and outer rim and bottom pantoon
    t}=\textrm{C}.\textrm{A}(\mathrm{ vapor ) + t min }= 4.8 mm
    t}\mp@subsup{t}{\mathrm{ actual }}{=}\quad5\quad\textrm{mm}\quad\mathrm{ For upper pantoon
t inner }=20\textrm{mm
```

| WEIGHT CALCULATION (Kg) | | |
| :--- | :---: | :---: | :---: |
| Un-Corrodded | | | Corrodded

$\rho_{\text {product }}=$	700	$\mathrm{Kg} / \mathrm{m}^{3}$
$\rho_{\text {steel }}=$	7850	$\mathrm{Kg} / \mathrm{m}^{3}$
$\rho_{\text {water }}=$	1000	$\mathrm{Kg} / \mathrm{m}^{3}$

6-1- Floating in water

6-2- Floating in product

Total volume displaced by roof $=$
Volume $1+$ partial volume displaced in pontoon under deck + Volume displaced by deck \& pontoon
$==>177.9 \quad=0.00+65.4+995.38 \quad * \quad \mathrm{H}$
$=\Rightarrow \quad H=0.1130 \mathrm{~m} \quad==>\mathrm{H}=112.98 \mathrm{~mm}$

\title{

6-3- Consider the effect of two punctured pontoons and Centre Deck on the stability of the Floating Roof

Product liquid level above the deck is found as follows:
$177.90=0.00+554.98 \quad \mathrm{H}^{\prime}$
$=>\quad \mathrm{H}^{\prime} \quad=\quad 0.32 \quad \mathrm{~m}$

Free board of Pontoon above the product level for the punctured condition is : 0.58

Level of product above the deck $=320.55 \mathrm{~mm}$

6-4- Checking of Buoyancy as per API-650 cl. H.4.2.1.2
 4

| Pontoon Total Volume : $\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3=$ | 434.76 | $\mathrm{~m}^{3}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Roof Total Weight: 124,527 | kg | | | | |
| S.F. $=\frac{\rho \text { (product) } \mathrm{x}(\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3)}{2 \times \text { Roof total weight }}$ | $=$ | 1.2219 | $>$ | 1 | OK |

7- Checking the stresses and deflection in the center deck

- Data
t Thickness of plate (deck plate) $=7 \mathrm{~mm}$

E Modulus of Elasricity $=\quad=\quad 200,000 \mathrm{Mpa}$
α Outer radius of deck plate, $\mathrm{mm} \quad=\quad 11,840 \mathrm{~mm}$
q Unit lateral pressure on deck (equiv.weight of deck that float on product) $=0.00049 \mathrm{Mpa}$
$\mathrm{t} *\left(\rho_{\text {plate }}-\rho_{\text {product }}\right)$
v poisson ratio $=\quad 0.3$
y Maximum deflection, mm
$\sigma \quad$ Maximum stress due to flexure and diaphragm tension combined
$\sigma_{\mathrm{b}} \quad$ Bending stress
$\sigma_{d} \quad$ Diaphragm stress

K constants are determined in the Roark's Formula for Stress and Strain for different cases and edge condition

$$
K_{1}=\frac{5.33}{1-v^{2}} \quad=\quad 5.86
$$

$$
K_{2}=\frac{2.6}{1-v^{2}}=
$$

At center :

$$
K_{3}=\frac{2}{1-v} \quad 2.86 \quad \mathrm{~K} 4 \quad=0.98
$$

At edge :

$$
K_{3}=\frac{4}{1-v^{2}} \quad 4.4 \quad \mathrm{~K} 4 \quad=\quad 1.73
$$

In the large deflection of the thin plate, the plate is stiffer than indicated by the ordinary theory and the load-deflection and load-stress relation become non-linear. For circular plates, where the maximum deflection exceeded half the thickness, the below formula shall be used for more accurate and precise result [Roark, 2002].

$$
\frac{q \alpha^{4}}{E t^{4}}=K_{1} \frac{y}{t}+K_{2}\left(\frac{y}{t}\right)^{3} \quad \frac{\sigma \alpha^{2}}{E t^{2}}=K_{3} \frac{y}{t}+K_{4}\left(\frac{y}{t}\right)^{2}
$$

$$
\frac{q \alpha^{4}}{E t^{4}}=20,094=5.86 \frac{y}{7}+2.86\left(\frac{y}{7}\right)^{3}=20,094==>
$$

At center :

At edge :

The abobe calculation will be repeated for corrodded condition as following:
t Thickness of plate (deck plate) $=5.5 \mathrm{~mm}$
q Unit lateral pressure on deck (equiv.weight of deck that float on product) $\quad=0.00039 \mathrm{Mpa}$

$$
\mathrm{t} *\left(\rho_{\text {plate }}-\rho_{\text {product }}\right)
$$

$\frac{q \alpha^{4}}{E t^{4}}=41,425 \quad=\quad 5.86 \frac{y}{7}+2.86\left(\frac{y}{7}\right)^{3} \quad=\quad 41,425 \quad \Rightarrow \quad \mathrm{y}=170.437$

At center :

At edge :

7-2-Consider the effect of two punctured pontoons and Centre Deck on the stability of the Floating Roof 1

$$
Z=\frac{2 \sin \phi / 2\left(R^{3}-r^{3}\right)}{3 \times A_{\text {rem }}}=2.868559 \quad \mathrm{~m}
$$

Moment of Inertia of remaining pontoon area :

$$
I_{y y}=\frac{\left(R^{4}-r^{4}\right)}{8}[2 \pi-(\phi / 180 \times \pi)-\sin \phi] \quad=10092
$$

$$
\begin{aligned}
& \text { Iyy }=61581.2 \quad \mathrm{~m}^{4} \\
& \mathrm{Ixx}=(\text { Iyy }+ \text { Arem*Z2 }) \quad=\quad 65386.8 \quad \mathrm{~m}^{4}
\end{aligned}
$$

$$
\text { listening moment }=\quad \text { Weight of roof " } \mathrm{W} " * \mathrm{Z}=\quad 357212.4 \quad \text { Kg.m }
$$

Compare to actual eccentric loads :

Deck:	68,730	Kg.m			
Pontoons :	221552	Kg.m			
Total $=$					

| As $290,282<357,212$ | Roof is Ok |
| :---: | :---: | :---: |

$$
\begin{array}{llll}
\text { Additional submersion on punctured side: } & d^{\prime}=\frac{M L(R+Z)}{I x x \times s . g .}= & 0.161 & \mathrm{~m} \\
d^{\prime \prime}=\frac{M L(R-Z)}{I x x \times s . g .}= & 0.117 & \mathrm{~m}
\end{array}
$$

Nominal floatation depth is 320.5 mm , above deck
Max. Submersion $0.482 \mathrm{~m} \quad<0.782 \mathrm{~m}$ the roof still floats

8- Deck support design

- Data

Pipe 3" sch xs is adopted as Leg

Material :

Fy Yeild stress of material
d : Outside diameter
Id : inide diameter
t: Wall thickness
L: Max length of deck support
C.A : Corrosion allowance
$\mathrm{I}_{\text {corroded }}$: Second moment of inertia
$\mathrm{A}_{\text {corroded }}$ Section Area
r : Radius of gyration
E: Modulus of Elasricity
Rde R deck
Rout R outer rim
P : Design live load (As per api 650)
$\mathrm{W}_{\text {deck }}$: Deck Weight
$\mathrm{W}_{\text {poonton }}$ Poonton and attachment Weight
A : Tota area of deck

Unit unifrom load per deck	4,013	$\mathrm{~m}^{2}$
$\mathrm{~N} / \mathrm{m}^{2}$		

$$
\triangle
$$

Leg Series	QTY	Radius (m)	Ri (m)	Ro (m)	Deck area supported by legs $\left(\mathrm{m}^{2}\right)$	Area per leg $\left(\mathrm{m}^{2}\right)$	P load per leg (N)	Fc (Mpa)	Fa (Mpa)
1st	3	2.0	0.00	3.5	38.485	12.83	51,473	32.9	89
2nd	6	5.0	3.50	6.5	94.248	15.71	63,028	40	89
3rd	9	8.0	6.50	9.5	150.796	16.76	67,230	43	89
4th	12	11.0	9.50	12.5	207.345	17.28	69,331	44	89
5th	15	14.0	12.50	15.50	263.894	17.59	70,592	45	80
6th	15	17.0	15.50	17.0	153.153	10.21	40,969	26	80
7th	6	17.5	17.00	17.5	54.192	9.03	36,241	23	80

$\mathrm{L}_{\text {deck }}$: Maximum length of deck support in deck
$=2,000$
mm
$\mathrm{L}_{\text {poonton }}$: Maximum length of deck support in pontoons
$=3,000$
mm

As per AISC standard :
On the gross section of axially loaded compression members whose cross sec-tions meet the provisions of Table 5.1, when Kl / r, the largest effective slender-ness ratio of any unbraced segment is less than Cc , the allowable stress is:

In deck:	$\mathrm{KL} / \mathrm{r}=$	66.37	$<$	128.25
In poonton :	$\mathrm{KL} / \mathrm{r}=99.55$	$<$	128.25	

For Fa deck support :

$$
2 * \mathrm{C}^{2} \mathrm{c}=32899 \quad(\mathrm{~L} / \mathrm{r})^{2}=4405 \quad 1-\frac{(L / r)^{2}}{2 . C^{2} c}=0.866
$$

$\frac{5}{3}+\frac{3(L / r)}{8 \cdot C c}=$
1.861
$\frac{(L / r)^{3}}{8 . C^{3} c}=0.0173$
$1.6-\frac{L}{200 . r}=1.2682$

Therefore :
$\mathrm{Fa}_{\text {Deck }}=88.9 \quad \mathrm{Mpa}$

For Fa poonton support :

$$
2 * \mathrm{C}^{2} \mathrm{c}=32899 \quad(\mathrm{~L} / \mathrm{r})^{2}=9910 \quad 1-\frac{(L / r)^{2}}{2 . C^{2} c}=0.699
$$

$\frac{5}{3}+\frac{3(L / r)}{8 . C c}=1.958$

$$
\frac{(L / r)^{3}}{8 . C^{3} c}=0.0585
$$

$$
1.6-\frac{L}{200 . r}=1.1022
$$

Therefore :

$\mathrm{Fa}_{\text {Poonton }}=80.1 \quad \mathrm{Mpa}$

For deck :
Deck support : PIPE 3" SCH. 80
\& SLEEVE: PIPE 4" SCH.STD

For pontoon :

Table C-C2.1

$\mathrm{K}=\quad 1$

Buckled shape of column is shown by dashed line						
Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0
Recommended design value when ideal conditions are approximated	0.65	0.80	1.2	1.0	2.10	2.0
End condition code		Rotation fixed and translation fixed Rotation free and translation fixed Rotation fixed and translation free Rotation free and translation free				

9-1-Sections for pontoon trusses

SEE DWG.

9-1- Sleeve Design

Sleeve :	PIPE 4" SCH.80,	Wall Thk. =	8.56	mm		O.D. =	114.3 mm
Support :	PIPE 3" SCH.80,	Wall Thk. =	5.49	mm		O.D. $=$	88.9 mm
Material :	A 53-Gr.B			rength $=$	225	Mpa	

Allowable Stress $=$	202.5	Mpa	
Length $=$	1000	mm	$(\mathrm{~min})$

$\sigma b-1=$ bearing stress for leg support $=\mathrm{P} / 2 /($ pin bore diam. X leg support thk. $)=183.69 \mathrm{Mpa}$
$\sigma b-s=$ bearing stress for leg support $=\mathrm{P} / 2 /($ pin bore diam. X leg sleeve thk. $)=117.81 \mathrm{Mpa}$
Acceptable

[^0]: * Shall be specifyed by operator .

