

REV	0	1	2	3	REV	0	1	2	3	
PAGE					PAGE					
l	X	X								
2	X	X								
3	X	X								
4	Х									
5	Х									
6	Х									
7	Х									
8	Х	Х								
9	Х	Х								
10	Х	Х								
11	Х									
12	Х	Х								
13	Х	Х								
14	Х	Х								
15	Х	Х								
16	Х	Х								
17	Х	Х								
18	Х									
19	Х	Х								
										<u> </u>

Tabulation of Revised Pages

TABLE OF CONTENTS

1. Introduction	4
2. Project summary and abbreviation	4
3. References	4
4. Tank Design Data	5
5. Tank Capacities	6
6. Buoyancy calcualtion	7
7. Checking the stresses and deflection in the center deck	11
8. Deck support design	16

1- Introduction

All requirements and committal of API 650 code for design of internal floating roof Tank No.TK-2090 A/B are presented at this calculation notebook, that shall be applied for material selection, shop drawing and construction methods of tanks. All used units at this manual are in metric system.

Project	Storage Terminal Development Plan
Owner	Farasakou Assaluyeh
Purchaser	HEDCO
Vendor	N.A.
Site	Assaluyeh, Iran
H.H.L. L	High High Liquid Level
H.L. L	High Liquid Level
L.L. L	Low Liquid Level
L.L.L.L	Low Low Liquid Leve
D.L.L	Design Liquid Level
Е	Elastic Module = 200 (GPa)
ρ	Specific Gravity of Steel =8.60 (gr/Cm3)
g	Ground Acceleration = $9.81 \text{ (m/s}^2)$

2- Project summary and abbreviation

3 References

Mechanical Datasheet for TK-2090 A/B - Tankage area	-
Process Datasheet for Paraxylene Storage and Pumping	2134F-PR-20-PFD-111
Welded Steel Tanks for Oil Storage	API 650 (2018) - (12 th Ed.)
American Institute of Steel Construction	AISC STANDARD
Job Specification for Storage Tanks Field Erected	-

4- Tank Design	Data							
Tank No.			TK-2090 A/B					
Number Required				2				
Geometric Capacity				22,891	(m ³)			
Nominal Capacity				22,204	(m ³)			
Net Work Capacity				20,000	(m ³)			
Tank Inside Diameter	- (ID)			36	(m)			
Tank Height				22.5	(m)			
Design Liquid Level	(D.L.L)			20.9	(m)			
Max.Liquid Level	(M.L.L.)			20.9	(m)			
Low Liquid Level	(L.L.L.)			0.91	(m)			
Min. Liquid Level	(L.L.L.L)			0.61	(m)			
	Name			Paraxylene				
	Flash Point			27	(°c)			
Contents	Max.Oper. Temp.			52	(°c)			
	Specific Gravity			0.860				
	I.B.P			HOLD	(°c)			
Gravity of hydrosta	tic test water.			1.0				
Design Code				API 650, 12TH	EDITION, 2018			
Operating Pressure				0.5	kpa			
Design Metal Tem	perature			5	(°c)			
Design Pressure (P	i)			1.5	kpa			
Vaccum Pressure (Pe)			0.5	kpa			
Design Temprature	e (Dt)			85	(°c)			
Dumning Data	IN		147		(m³/hr)			
Pumping Kate	OUT		1200		(m³/hr)	(m³/hr)		
Corrosion	FLOATING ROOF EXPOSING	G TO PRODUCT		1.5	(mm)			
Allowance	FLOATING ROOF EXPOSED	TO VAPOR		0	mm (For vapor	part)		
MATERIAL :								
A283-C $\sigma_y =$	205 S _d =	137	$S_t =$	154				
	PROJECT : STORAGE	TERMINAL DEVELO	OPMENT P	PLAN - PHASE 2	_			
PROJECT NO : A	238 CONSULTANT: Hampa	a Energy Engineering &	& Design Co	ompany	Page 5 of	19		

	EMPLOYER: Farasakou Assaluyeh				
DJECT NO : A238	CONSULTANT: Hampa Energy Engineering & Design Company	Page	5	of	19
	CONTRACTOR: Abad Rahan Pars International Group				
	PARTNER CONSULTANT: Sazeh Pardazi Iran Consulting Eng. Co				

5- Tank Capacities

* Shall be specifyed by operator .

	PROJECT : STORAGE TERMINAL DEVELOPMENT PLAN - PHASE 2				
	EMPLOYER: Farasakou Assaluyeh				
PROJECT NO : A238	CONSULTANT: Hampa Energy Engineering & Design Company	Page	6	of	19
	CONTRACTOR: Abad Rahan Pars International Group	_			
	PARTNER CONSULTANT: Sazeh Pardazi Iran Consulting Eng. Co				

6- buoyancy calcualtion

t min = 4.8 As per API 650

 $t_{2 actual} =$

5

mm

 $t_1 = C.A(product) + t_{min} =$ 6.3 mm $t_{1 actual} =$ 7 mm $t_2 = C.A(vapor) + t_{min} =$ mm 4.8

For deck and outer rim and bottom pantoon

For upper pantoon

 $t_{inner} =$ 20 mm

\triangle											
WEIG	WEIGHT CALCULATION (Kg)										
		Un-Corrodded	Corrodded								
Deck Plate	=	24,830	19,509								
Deck Legs	ł	5,000	4,250								
Deck Miscellaneous	ł	5,000	4,250								
Total deck	=	34,830	28,009								
Top pontoon	=	23,847	23,847								
Bottom pontoon	=	33,386	26,232								
Inner rim	=	7,789	7,205								
outer rim	II	5,675	4,459								
compart	ł	3,000	3,000								
Pontoon legs	II	2,500	2,125								
Trusses	Ш	3,500	3,500								
Pontoon Miscellaneous	ł	10,000	8,500								
Friction Force of Sealing System	=	1,131	1,131								
Total pontoon	=	89,697	78,868								
		124,527	106,877								

 $\begin{array}{lll} \rho_{product} = & 700 & Kg/m^3 \\ \rho_{steel} = & 7850 & Kg/m^3 \\ \rho_{water} = & 1000 & Kg/m^3 \end{array}$

6-1- Floating in water

	Deals floating denth = -	Total deck weight				
	Deek noating deptil – – –	ſ	o (water)	x A_deck		
	Deck floating depth	=	79.1	mm		
$V_{displacement}$ (pontoon) =	Total Pontoon Weight ρ (water)	=	89.7	m ³		
$H_{displacement}$ (pontoon) =	Vdisplacement-Vbackslope Pontoon cross area in volume 2	=	161.6	mm		
	H _{DECK} -H _{PONTOON}	=	82.5	mm		
Total volume displaced by	roof = $\frac{\text{Roof total weight}}{\rho \text{ (water)}}$	=	124.5	m ³		

6-2- Floating in product

Total volume displaced by roof =

Volume1 + partial volume displaced in pontoon under deck + Volume displaced by deck & pontoon 177.9 995.38 * = +65.4 +Η H =0.1130 H =112.98 m mm 113 _____ 230.9 DECK 117.9

6-3- Consider the effect of two punctured pontoons and Centre Deck on the stability of the Floating Roof

	Volume	available v	vith two	out of	12	compartn	nents punct	tured	=	362.3	m3
	Min. vo	lume requii	red to m	eet design	requireme	nts =	177.9				m3
	As	362.30	>	177.90	Availab	le volume :	is sufficier	ıt			
	Product	liquid leve	l above	the deck is	found as t	follows:					
		177.90	=	0.00	+	554.98	H'				
	=>	H'	=	0.32		m					
	Free boa	ard of Ponto	oon abo	ve the prod	uct level f	for the pun	ctured con	dition is	:	0.58	
	Level of	f product ab	ove the	deck =	320.55	mm					
6-4- Ch	ecking o	of Buoyan	cy as p	er API-65	60 cl. H.4	.2.1.2	Δ				
	Pontoon	ı Total Volu	ume : V	1 + V2 + V	73 =	434.76		m ³			
	Roof To	otal Weight	:	124,527		kg					
	S.F. = •	ρ (pro	duct) x (x Roof	(V1 + V2 + total weight)	+ V3) .t	- =	1.2219	>	1	OK	

7- Check	ing the stresses and deflection in the center deck \triangle			
- Data t	Thickness of plate (deck plate)	=	7	mm
E	Modulus of Elasricity	=	200,000	Mpa
α	Outer radius of deck plate, mm	=	11,840	mm
q	Unit lateral pressure on deck (equiv.weight of deck that float on product) t * ($\rho_{plate} - \rho_{product}$)	=	0.00049	Mpa
v	poisson ratio	=	0.3	
у	Maximum deflection, mm			
σ	Maximum stress due to flexure and diaphragm tension combined			

- σ_b Bending stress
- σ_d Diaphragm stress

K constants are determined in the Roark's Formula for Stress and Strain for different cases and edge condition

$$K_1 = \frac{5.33}{1 - v^2} = 5.86$$
 $K_2 = \frac{2.6}{1 - v^2} = 2.86$
At center :

$$K_3 = \frac{2}{1-v} = 2.86$$
 K4 = 0.98

At edge :

$$K_3 = \frac{4}{1 - v^2} = 4.4$$
 K4 = 1.73

In the large deflection of the thin plate, the plate is stiffer than indicated by the ordinary theory and the load-deflection and load-stress relation become non-linear. For circular plates, where the maximum deflection exceeded half the thickness, the below formula shall be used for more accurate and precise result [Roark, 2002].

$$\frac{q\alpha^4}{Et^4} = K_1 \frac{y}{t} + K_2 \left(\frac{y}{t}\right)^3 \qquad \frac{\sigma\alpha^2}{Et^2} = K_3 \frac{y}{t} + K_4 \left(\frac{y}{t}\right)^2$$

$\frac{q\alpha^4}{Et^4} = 20,094$	=	$5.86\frac{y}{7} + 2$	$.86(\frac{y}{7})$	³ =	20,094	==>		y =	133.82	mm
At center :										
$K_3 \frac{y}{t} + K_4 (\frac{y}{t})^2$	=	413	=	$\frac{\alpha^2}{E^2}$	===>	σ_{total}	=	28.86	Mpa	
		$K3\frac{y}{t}$	=	54.6		σ_{bending}	=	3.82	Мра	
		$K4(\frac{y}{t})^2$	=	358.2		$\sigma_{diaphgran}$	=	25.04	Mpa	
At edge :									-	
$K_3 \frac{y}{t} + K_4 (\frac{y}{t})^2$	=	716	=	$\frac{\alpha^2}{B^2}$	===>	σ_{total}	=	50.07	Mpa	
		$K3\frac{y}{t}$	=	84.0		σ_{bending}	=	5.87	Mpa	
		$K4(\frac{y}{t})^2$	=	632.3		$\sigma_{diaphgran}$	=	44.20	Mpa	

The abobe calculation will be repeated for corrodded condition as following:

t	Thickness of plate (deck plate)	=	5.5	mm
q	Unit lateral pressure on deck (equiv.weight of deck that float on product) t * ($\rho_{plate} - \rho_{product}$)	=	0.00039	Mpa

 $\frac{q\,\alpha^4}{Et^4} = 41,425 \qquad = \qquad 5.86\frac{y}{7} + 2.86(\frac{y}{7})^3 \qquad = \qquad 41,425 \qquad = > \qquad y = \qquad 170.437$

At center :

$K_3 \frac{y}{t} + K_4 (\frac{y}{t})^2$	=	1030	=	$\frac{\alpha \alpha^2}{R^2}$	===>	σ_{total}	=	44.44	Mpa
		$K3\frac{y}{t}$	=	88.5		σ_{bending}	=	3.82	Mpa
		$K4(\frac{y}{t})^2$	=	941.1		$\sigma_{diaphgran}$	=	40.61	Mpa

At edge :

ni cago.				2					
$K_3 \frac{y}{t} + K_4 (\frac{y}{t})^2$	=	1798	=	$\frac{\alpha x^2}{R^2}$	===>	σ_{total}	=	77.58	Mpa
		$K3\frac{y}{t}$	=	136.2		σ_{bending}	=	5.88	Mpa
		$K4(\frac{y}{t})^2$	=	1661.3		$\sigma_{diaphgran}$	=	71.70	Mpa

7-2- Consider the effect of two punctured pontoons and Centre Deck on the stability of the

$$Z = \frac{2\sin\phi/2(R^3 - r^3)}{3 \times A_{rem}} = 2.868559 \text{ m}$$

Moment of Inertia of remaining pontoon area : $(R^4 - r^4)$

$$I_{yy} = \frac{(R^{*} - r^{*})}{8} \Big[2\pi - (\phi/180 \times \pi) - \sin\phi \Big] = 10092$$

$$Iyy = 61581.2 m^{4}$$

Ixx = (Iyy + Arem*Z²) = 65386.8 m⁴

Compare to actual eccentric loads :

Deck : 6	58,730	Kg.m	Total =	29	90,282	Kg.m		
Pontoons :	221552	Kg.m						
As	290,282	<	357,212			Roof i	s Ok	
Additional submersion on punctured side: $d' = \frac{ML(R+Z)}{Ixx \times s.g.} = 0.161$								
				<i>d</i> " =	$=\frac{ML\left(R-\frac{1}{Ixx\times s}\right)}{Ixx\times s}$	$\frac{-Z}{.g}$ =	0.117	m
Nominal floatati	on depth is	320.5	mm,	above d	eck			
Max. Submersic	on 0.482	m	<	0.782	m	the roof s	till floats	
Min. Submersion	= 0.204	m			Angle of R	loof=	0.519	deg

8- Deck support design

- Data							
	Pipe 3" sch xs is adopted as Leg						
	Material :					А53-В	
Fy	Yeild stress of material				=	240	Mpa
d :	Outside diameter				=	88.9	mm
Id :	inide diameter				=	73.66	mm
t :	Wall thickness				=	7.62	mm
L :	Max length of deck support				=	3,000	mm
C.A :	Corrosion allowance				=	1.5	mm
I _{corroded}	Second moment of inertia				=	1,419,185	mm^4
Acorroded	Section Area				=	1562.7	Mm2
r :	Radius of gyration				=	30.1	mm
E :	Modulus of Elasricity				=	200,000	Mpa
Rde	R deck				=	11,840	mm
Rout	R outer rim				=	17,800	mm
P :	Design live load (As per api 650)	=	1.2	Kpa	=	1,200	N/m ²
W_{deck} :	Deck Weight				=	341,678	Ν
W _{poonton}	Poonton and attachment Weight				=	896,972	Ν
A :	Tota area of deck				=	440	m^2
<mark>Unit un</mark>	ifrom load per deck					4,013	N/m ²

					$\underline{\land}$				
Leg Series	QTY	Radius (m)	Ri (m)	Ro (m)	Deck area supported by legs (m ²)	Area per leg (m ²)	P load per leg (N)	Fc (Mpa)	Fa (Mpa)
1st	3	2.0	0.00	3.5	38.485	12.83	51,473	32.9	89
2nd	6	5.0	3.50	6.5	94.248	15.71	63,028	40	89
3rd	9	8.0	6.50	9.5	150.796	16.76	67,230	43	89
4th	12	11.0	9.50	12.5	207.345	17.28	69,331	44	89
5th	15	14.0	12.50	15.50	263.894	17.59	70,592	45	80
6th	15	17.0	15.50	17.0	153.153	10.21	40,969	26	80
7th	6	17.5	17.00	17.5	54.192	9.03	36,241	23	80
		4		Γ					

lease clarify why 6 additional leg support: re considered with 0.5[m] radial distance rom the 6th sets of leg supports? Please recheck

L_{deck} : Maximum length of deck support in deck	=	2,000	mm
L _{poonton} : Maximum length of deck support in pontoons	=	3,000	mm

As per AISC standard :

On the gross section of axially loaded compression members whose cross sec-tions meet the provisions of Table 5.1, when Kl/r, the largest effective slender-ness ratio of any unbraced segment is less than Cc, the allowable stress is:

As per AISC standard Table C-C2.1			K=1			$F_a = \frac{1}{\frac{5}{3}}$	$\frac{\left[1 - \frac{(Kl/r)^2}{2C_c^2}\right]H}{+ \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)}{8C_c}}$	$\frac{r_y}{l/r)^3}$
$C_c = \sqrt{\frac{2\pi^2E}{F_y}}$	===>	Cc =	128.25					
In deck :	KL/r =	66.37	<	128.25				
In poonton :	KL/r =	99.55	<	128.25	>			
For Fa deck supp	ort :				•		·- · · 2	
		$2*C^2c =$	32899		$(L/r)^2 =$	4405	$1 - \frac{(L/r)^2}{2.C^2c} =$	0.866
$\frac{5}{3} + \frac{3(L/r)}{8.Cc} =$	1.861		$\frac{(L/8.C)}{8.C}$	$\frac{r)^3}{c^3c} =$	0.0173		$1.6 - \frac{L}{200.r} =$	1.2682
Therefore	e :	Fa _{Deck} =	88.9	Mpa	Δ			
For Fa poonton su	upport :							
		$2*C^2c =$	32899		$(L/r)^2 =$	9910	$1 - \frac{(L/r)^2}{2.C^2 c} =$	0.699
$\frac{5}{3} + \frac{3(L/r)}{8.Cc} =$	1.958		$\frac{(L/8)}{8.C}$	$\frac{r)^3}{c^3c} =$	0.0585		$1.6 - \frac{L}{200.r} =$	1.1022
Therefore	e :	Fa _{Poonton} =	80.1	Mpa	Δ			
For deck :								
Deck support :	PIPE 3" S	CH.80	&	z	SLEEVE :	PIPE 4" S	SCH.STD	
For pontoon :								
Pontoon support :	PIPE 3" S	CH.80	&	Z	SLEEVE :	PIPE 4" S	SCH.80	

Table C-C2.1											
Buckled shape of column is shown by dashed line	(a)	(b) +] (b) +] (c) + [+ (c)			(e)						
Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0					
Recommended design value when ideal condi- tions are approximated	0.65	0.80	1.2	1.0	2.10	2,0					
End condition code		Rotation fixed and translation fixed Rotation free and translation fixed Rotation fixed and translation free Rotation free and translation free									

K = 1

9-1- Sections for pontoon trusses

SEE DWG.

 σ b-1=bearing stress for leg support=P/2/(pin bore diam.X leg support thk.) =