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[0149] Convective heat transfer, often referred to sim-
ply as convection, is the transfer of heat from one place
to another by the movement of fluids. Convection is
usually the dominant form of heat transfer in liquids
and gases. Although often discussed as a distinct
method of heat transfer, convective heat transfer
involves the combined processes of unknown conduc-
tion (heat diffusion) and advection (heat transfer by
bulk fluid flow). For example, thermal expansion of
fluids may force the convection. In other cases, natural
buoyancy forces alone are entirely responsible for fluid
motion when the fluid is heated, and this process is
called “natural convection”. An example is the draft in
a chimney or around any fire. In natural convection, an
increase in temperature produces a reduction in density,
which in turn causes fluid motion due to pressures and
forces when fluids of different densities are affected by
gravity. For example, when water is heated on a stove,
hot water from the bottom of the pan rises, displacing
the colder denser liquid, which falls. Thereby, a heating
component submerged in water repels adjacent fluid
portions, i.e. the heating component itself is interpreted
as fluid-repellent: either hydrophobic, or oleophobic, or
omniphobic. In other words, the heating component
originates the phobic-repulsive van der Waals forces.
Again, the fluid repellency occurs at the expense of the
heat energy, which, first, is acquired by the adjacent
fluid portion, and then, become transformed into the
kinetic energy of the convective motion.

Thus, all the mentioned kinds of fluid repellence are char-
acterized by inserted spatial asymmetries of:

[0150] degrees of freedom of molecular motions, and

[0151] the phobic-repulsive van der Waals forces,

both causing a distortion of the Brownian distribution of the
fluid molecular motions, wherein the energy of the distorted
Brownian distribution is interpreted as composed of the
reduced actually-Brownian motion energy and energy of the
fluid molecular motion in a prevalent direction (for instance,
convective motion). In other words, the mentioned motion in
the prevalent direction occurs at the expense of the Brown-
ian motion energy (i.e. the heat energy) yet to be distorted.

Model Simplifications in the Continuum Mechanics

[0152] In order to describe both the Venturi effect and the
de Laval effect, the flowing fluid is modeled in the classical
fluid dynamics theory as hypothetically consisting of many
small volume portions. This approach is described in book
“The Feynman Lectures on Physics”, volume 2, chapter 40
“Flow of Dry Water” by Richard P. Feynman, Robert B.
Leighton, and Matthew Sands, where the term “dry water”
is applied to stress the model simplifications, namely:

[0153] first, the assumption that there are no viscous
forces between the fluid small volume portions;

[0154] second, the fluid small volume portions are
connected spaces;

[0155] third, the fluid being studied is a continuum, i.e.
it is infinitely divisible and not composed of particles
such as atoms or molecules;

[0156] forth, the small volume portion boundaries are
impermeable for the fluid matter and impenetrable for
temperature; and

[0157] fifth, the assumption that the static pressure,
acting on the small volume portions’ boundaries and
being the only reason of mechanical forces, is an
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abstraction having no molecular nature, and wherein
the small portions’ boundaries are hypothetically inert
to the fluid’s inter-molecular forces, i.e. are not phobic
with repulsive forces and not sticking with attractive
forces, as soon as the problem is formulated in frames
of the continuum mechanics.

In other words, the simplifications are inherent assumptions
in the classical continuum mechanics theory, ignoring the
molecular structure of fluid and ignoring the static pressure
as a thermodynamic parameter interrelated with the fluid
density and temperature in accordance with the van der
Waals law of the fluid state. In this approach, the classical
equations of fluid motion are derived. In a particular case of
hypothetically inviscid flow, the classical equations of fluid
motion, known also as the Euler equations, are applied. For
viscous flow, to overcome said first simplification, the
Navier-Stokes equations are used. The Navier-Stokes equa-
tions are the Euler equations modified by involving into the
consideration the viscous forces between the fluid small
volume portions. Again, the viscous forces are introduced
irrelative to the viscosity effect physical nature. In 2000, the
problem of the Navier-Stokes equation solution existence
and smoothness became one of the Millennium Goals for-
mulated by the Clay Mathematics Institute. It is noted in the
“The Feynman Lectures on Physics”, volume 2, chapter 40,
cited above, that even in the simplest case of no moving
fluid, the equation of hydrostatics: —-VP-pV¢=0, where V is
vector differential operator, P is the fluid static pressure, p is
the fluid density, and ¢ is the stand for the potential-energy-
per-unit-mass (for gravity, for instance, ¢ is just gz, where g
is the gravitational acceleration and z is the height above the
Earth’s ocean surface level), in general, has no solution, as
soon as both: the pressure P and the density p are spatially
dependent and not interrelated in the mentioned simplified
approach of the continuum mechanics theory. To facilitate a
numerical analysis in practice and to overcome said second
simplification, the Navier-Stokes equation further modifica-
tions (for example, the Spalart-Allmaras hypothetical model
of turbulences), assuming that the chosen fluid portions
could be dismembered into smaller connected spaces, are
applied to computational fluid dynamics. However, the third,
fourth and fifth simplifications remain inexact, making that
the fluid model loses physical sense for thermodynamic and
kinetic theory of matter and, as a result, the classical fluid
model, on the one hand, has not exact solutions for com-
pressible fluids, and on the other hand, leads to paradoxical
solutions for incompressible and inviscid fluids. For
example, the d’Alembert paradox, derived from the Euler
equations, in particular, says that a body, moving in an
incompressible fluid, does not experience a drag force as an
impact effect. Describing this paradox, for example, “Ency-
clopedia of Fluid Mechanics” by J. D. Jacob, Department of
Mechanical Engineering, University of Kentucky, Lexing-
ton, Ky. 40506-0108, comments that “in the 18" century, it
was at odds with both observation and intuition of flow
about a body in motion”, and further defines the term “drag”
as primarily related to a viscosity phenomenon, neglecting
by the impact effect. The Navier-Stokes equation having
introduced viscous forces makes the d’ Alembert paradox as
latent. To provide the principles of thermodynamics, one
adds equations of gas laws to the Euler system of equations
and further approximates the equations numerically.

[0158] There is, therefore, a need in the art for a method
to provide a proper model of fluid motion to exclude



