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Tension Stiffening :
Tension carried by the concrete between the cracks reduces the average tensile strain in the
reinforcement, effectively making the section stiffer.

When the section is cracked, the concrete continues to carry tension in the regions between
the cracks. This reduces the average tensile strain in the reinforcement, resulting in a stiffer
section. Cracked section response is typically calculated on the basis of the transformed
cracked section for calculating stresses. This neglects tension stiffening effects. Where these
are important, for example in calculating deflections, a nominal allowance is made. Note that
the flexural stiffness of a cracked beam is typically about half that of the uncracked
equivalent. Where tension stiffening is important, as for example in calculating deflections,
nominal allowance is made for this effect.
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12.6 Cracked Transformed Sections
When determining member stresses, it is necessary to ensure member force equilibrium:

CC+CS =T0rfCAC+fS,A;‘ =fSAS

Working from a linear strain assumption for both the concrete and the reinforcement, and
recognising that strains will remain in the elastic regime, the stress in each component can be
related to the strain using:-

f.=E_e_, and

Consequently the stress profile is not linear, as shown below. By transforming the
reinforcement to concrete by the modular ratio:

an equivalent concrete section is obtained, having both a linear strain profile and a linear
stress profile. Using similar triangles, it is then relatively simple to develop equations that
have the neutral axis depth as the only unknown. Note that this implies that at the
serviceability limit state the neutral axis depth is constant, regardless of the stresses acting
upon the section.
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12.6.1 Transformed Section Analysis Procedure

When concrete is subjected to flexural tension it is assumed to crack, and support no tension
forces. Consequently it is disregarded in the calculation.
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The method used is:
@) Find the neutral axis position by:
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(ii)  Find I of the transformed section
(iii)  To find stresses in the section, two different methods may be used:
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Example
If f'c = 25 MPa and the serviceability bending moment is 330 kNm, find the stresses in the
concrete and the tension reinforcement.

E, =3320425 +6900= <3 500 M w g

TN
E, =200000 MPa , o \_ 5.520H
n:%:zgof(?(s): g g} o :oo‘:

.
¢ f = 7.p25H
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A’ =2-D20H=2x314= &£ 2% pv o
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For force equilibrium the sum of the first moments of transformed area about the neutral
axis = 0.

Alternatively, recognising that stress is linearly related to the distance from the neutral axis:

£ x%, £, o< (y=60), f, o< (600 y)

Force equilibrium may be expressed as:
C.+C, =T

‘_‘}Atfc'l'(n'_l)A:vfs,:nAsfs
=5 400y -;—+ 4719 (y—60)=29241 (600 y)
Zopy + 9y~ 280040 + 289241y ~ [7544600 - O
\\j ot 7 o .

The solution to this expression can then bé obtain by rearranging to form a quadratic
equation, or by finding a solution by trial and error:

Try y =200 mm 8,000,000 + 660,660 = 8,660,660 (LHS)
11,696,400 (RHS) — Therefore increase y
Try y =220 mm 9,680,000 + 755,040 = 10,435,040 (LHS) ’

11,111,580 (RHS) —s Therefore increase y '

Try y =225 mm 10,125,000 + 778,635 = 10,903,635 (LHS)

10,965,375 (RHS) — Therefore OK




12.6.2 Cracked Section Stiffness

Once the location of the neutral axis has been determined, the cracked section stiffness can be h M 330
found using the parallel axis theorem. Note that generally the reinforcement will have little ence T= id = 0.52 = 627 kN
moment of inertia about its local axis, sO that only rotation of the reinforcement about a / 5261
displaced axis needs to be considered. ”
and £, = T _627x1000 _

A 3436 (82 8 MPe

3 2 s
hence, 1., = 200X 225" 4 400 x 225 x (323] +4719 (22560 +29241 (600225 bl O =677 x 10 o
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Note that I, of the untransformed section (ignoring reinforcement) is: beam, where:

3 < z
bh® _400x (600+75) _ /0. 25 % )57 mm I,21,>1,
12 12

576 x 10° | / Based on I,

Therefore, 1., =— 5= 0S¢ L, i
: 10.25x10 | Tension
v : / 7z

Note also that the above calculation has assumed a cracked section, but has not been 2 7 Steel yields
dependent upon the applied loading. § /L -

/ N
12.6.3 Determining Stresses 4 Deflection beased on I,

/ Flexural cracking occurs

To find jd, it is necessary to find the centroid of the compression forces in the concrete and
reinforcement. As the section is behaves linearly (constant neutral axis depth and constant
jd), the forces for any stress in the top fibre can be calculated and these values can be used to
find jd. This may be done by assuming a compression stress at the extreme compression
fibre, or by conducting the calculation treating the extreme compression stress as an
unknown.

Deflection

The value of I, varies with the stress level in the beam. It is greater than I, to allow for

tension stiffening effects, as discussed earli
of inortin is e by o 33230 ier, In the New Zealand code the effective moment
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(a-D) e = strexurh cracking moment (Note: f; is not a reliable
Stress in 2-D20H = 165/225 X }0 x7.51 = SC.)M% o— Ingt )
C’s = 628 x 55.1 = 34163.2 N = 34-¢ niJ - < ¥,
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]ioca(t’a}?tnsog 2%1"32’3?35 T . f = modulus of rupture = 0.6y f, MPa (CI3.8.13)
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